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Abstract—We propose a multi-modal and multi-discipline data 

fusion strategy appropriate for Automatic Target Recognition 

(ATR) on Synthetic Aperture Radar imagery. Our architecture 

fuses a proposed Clustered version of the AlexNet Convolutional 

Neural Network with Sparse Coding theory that is extended to 

facilitate an adaptive elastic net optimization concept. Evaluation 

on the MSTAR dataset yields the highest ATR performance 

reported yet which is 99.33% and 99.86% for the 3 and 10-class 

problems respectively. 

 

Index Terms—Automatic Target Recognition, Convolutional 

Neural Networks, Data Fusion, Sparse Coding, Synthetic 

Aperture Radar 

I. INTRODUCTION 

ODERN warfare requires high performing Automatic 

Target Recognition (ATR) algorithms to avoid collateral 

damage and fratricide. During the last decades, both industry 

and academia have made several ATR attempts in various data 

domains such as 2D Infrared [1], 3D Light Detection and 

Ranging (LIDAR) [2]–[4] and 2D Synthetic Aperture Radar 

[5]–[19] (SAR). Despite each data modality having its own 

advantages, SAR imagery is appealing because it can be 

obtained under all-weather night-and-day conditions extending 

considerably the operational capabilities in the battlefield. Due 

to these advantages, SAR ATR has been attempted using 

various techniques.  

Suggested methods include feature-based solutions where 

the SAR image is described by a set of robust attributes 

capable of achieving target classification under various 

nuisance factors. Feature-based solutions may rely on 

Krawtchouk moments [20] where features are derived from 

the discrete-defined Krawtchouk polynomials or on 

biologically inspired features. The latter can rely on episodic 

and semantic features [21] or sparse robust filters [22] that 

originate from the human cognition process. Other methods 

include binary operations [23], using the target’s scattering 

centers [15], [24] or the azimuth and range target profiles 

fusion [25].  

Another type of SAR ATR algorithms uses a Stacked 

Autoencoder (SA) that extracts features from SAR imagery 

and inputs them to an SA type neural network. The latter is an 
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unsupervised learning structure used in neural networks that 

can convert the input data into abstract expressions utilizing a 

non-linear model. SA type SAR ATR suggests either 

exploiting Local Binary Features [18] or modifying the 

reconstruction error of the typical autoencoder scheme by 

adding an Euclidean distance restriction for the hidden layer 

features [17]. Other autoencoder based solutions are 

influenced by the human visual cortical system [26] or are 

combined with a Synergetic neural network concept [27]. 

Compressive Sensing (CS) has also been used for SAR 

ATR to recover the SAR signal that has been remapped from 

the originating domain into a domain where the signal is 

sparse using a non-adaptive linear projection. Signal recovery 

is achieved via an l1-norm optimization process. For example, 

Multitask CS [28] exploits the statistical correlation among 

multiple target views to recover the target’s signature that is 

then used for target recognition under a compressive sensing 

scheme. Bayesian CS [14] relies on the scattering centers of 

the SAR image that are used as an input signal to the CS 

technique. 

Sparse Representation Classification (SRC) or Sparse 

Coding (SC) type of solutions aim at recovering the SAR 

testing imagery out of a dictionary where the SAR training 

images are the dictionary’s base elements. SRC aims at 

identifying the sparsest representation of the testing imagery 

within the dictionary by employing an l1-norm optimization 

scheme. The final classification decision mechanism matches 

the class that provides the smallest residual error. Joint SRC 

[29] for example, exploits three target views to increase the 

completeness of the target’s SAR signature and a mixed l0\l2-

norm. The reasoning of using multiple views is that these are 

highly correlated sharing the same response pattern within the 

dictionary and thus this conciseness can enhance the overall 

ATR performance. In [19] authors suggest the L1/2-NMF 

technique that combines the l1/2-norm optimization to identify 

the sparsest solution, with a Non-negative Matrix 

Factorization (NMF) scheme. The NMF features used as input 

to the SRC technique are the outcome of a NMF process that 

is applied on the SAR imagery. Dong et al. in [11] use the 

monogenic signal of a SAR image as an input to the SRC 

process. This signal comprises of the 2D SAR image signal 

and its Riesz transformed representation.  

Deep Convolutional Neural Networks (CNNs) have also 

been suggested for SAR ATR. Literature proposes several 

CNN based solutions that use handcrafted CNNs [5], [8], [12], 

[13], [30] that are trained on SAR template images. Recently a 
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Recurrent Neural Network is also suggested [31].  

In the context of SAR ATR, SC and CNN based methods 

have individually shown theirs strengths by achieving quite 

high recognition rates. However, these techniques have not 

been fused yet such as to complement their strengths and 

afford an even higher recognition rate. Most important reasons 

to fuse SC and CNN based ATR are: 

a. To extend the search space for the SAR ATR solution 

as SC and CNN ATR search for an ATR solution in different 

spaces. Indeed, SC ATR searches for linear projections 

between the target and the feature spaces while CNN ATR for 

non-linear projections. Hence, by fusing these two concepts, 

we essentially span a wider search area aiming a gaining 

higher ATR rates. 

b. Combined classifiers can improve performance, as 

training a single classifier to work well for all test data is 

difficult. This multi-classifier strategy might not necessarily 

out-perform a single best performing classifier, but on 

average, it will perform better. 

Driven by these reasons we fuse CNN and SC. Even though 

fusion in general, can be at a data, feature or decision level, in 

this paper we implement a decision level fusion. This is 

because the data modality for both contributing ATR modules, 

i.e. CNN and SC, is the SAR and therefore a data fusion 

scheme is not applicable. Additionally, despite feature-fusion 

could be an option, we neglected it as this would create an 

even larger feature encoding every SAR image, increasing the 

processing time needed to perform feature matching and 

neglecting it from military applications that require near-real 

time performance.  

Additionally, state-of-the-art CNNs such as AlexNet [32], 

VGG [33], GoogleNet [34] and ResNet [35] have not been 

used in the context of SAR ATR. Driven by that, we suggest a 

novel architecture dubbed l1-2-CCNN that fuses an adaptive

1l norm , 2l norm  SC scheme with a modified Clustered 

AlexNet CNN (CCNN) that uses a multi-class Support 

Vectors Machine (SVM) structure for final classification. The 

contributions of this paper can be summarized as: 

a. In contrast to current SC based applications that use a 

fixed pl norm , we propose a novel adaptive elastic net type 

optimization that balances the advantages 1l norm  and 

2l norm depending on the characteristics of each scene SAR 

imagery. It is worth noting, that in contrast to current SC SAR 

ATR solutions, we neglect using the scattering centers of the 

SAR imagery in order to reduce the additional processing cost. 

b. We extend the usability of the AlexNet CNN from the 

visual domain to the SAR by introducing a hidden layer-

clustering technique. This modification is combined with a 

multi-class SVM classification module that bridges the visual-

SAR modality gap. 

c. We innovatively fuse these two multi-discipline 

solutions under a decision level scheme that adaptively 

changes its fusion weights. Fusing these two techniques aims 

at expanding the search region of the SAR ATR solution and 

overcome the weaknesses of each of the two techniques. 

The rest of the paper is organized in the following sections. 

Section II introduces the proposed l1-2-CCNN architecture, 

while Section III evaluates our method on the MSTAR 

dataset. Finally, Section IV concludes the paper. 

II. SAR ATR ARCHITECTURE 

The suggested architecture relies on a weighted SC, a 

clustered AlexNet variant and a decision level fusion scheme 

aiming at exploiting the advantages of all three techniques, 

each of which will be analyzed in the following paragraphs. 

A. Sparse Coding 

Sparse Representation or Coding aims at recovering a 

sparse representation x  of a measured 1-dimensional signal 

y  as a linear combination of a few atoms i.e. entries of a 

dictionary D  [11], [29], [36], [37]:  

 y Dx  with , , { }M ND M N Rank D M     (1) 

where 1Nx   is a coefficient vector whose non-zero entries 

determine the linear combination of the atoms in D  that 

reconstruct measurement y . Ideally x  should be K-sparse 

with K=1, i.e. all entries to be zero except from the one that 

associates y  with the training sample within D .  

Since M N , Eq. (1) is underdetermined and therefore has 

infinite solutions. Determining the best solution bx  is an 

optimization problem that is ideally solved using the 

0l norm  in order to identify the sparsest vector 0x  out of the 

infinite solutions: 

 
0

argminbx x  subject to Dx y   (2) 

where 0|| || : #{ : 0}ix i x N    , which counts the number of 

non-zero entries in x . Solving Eq. (2) is NP-hard and 

therefore compressive sensing theory [38] suggests exploiting 

the sparse nature of the signal y  (if it fulfills that prerequisite) 

and recovers the initial signal by solving the optimization 

problem: 

 
1

argminbx x  subject to Dx y   (3) 

For 2-dimensional data such as SAR images 
a bI  , these 

are first remapped from the original a b  image basis to a 

c d  feature basis by down-sampling I  using bicubic 

interpolation. It is worth noting that I  is not the complex data 

representation of a SAR image, but a grayscale 2D image 

where the pixel values correspond to the amplitude of the SAR 

based reflectivity that is constrained in the 0-255 value range. 

We down sample I  to reduce its dimensions and thus 

decrease the computational demands and increase the 

robustness of the SC ATR module to noise, resolution 

variation and to depression angle variation. We examine 

several down-sampling factors to identify the one that presents 

an optimum performance (Section III-B-1). The reason for 

exploiting bicubic interpolation rather than other interpolation 

techniques appropriate for 2D imagery in general, is 

smoothing I , which enhances robustness to nuisance factors, 
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e.g. noise.  

Then the remapped images are converted into a 1m  

column vector with M c d   [39] and are normalized to 

have a unit 
2l norm : 

 
1a b M

spI I    , M c d a b      (4) 

Finally, the dictionary is defined as 1 2[ , ,..., ]jD D D D  

where j  is the number of training classes and each class is 

defined as 
_1 _[ ,..., ] ,o o k m k

o sp spD I I o j    with k the number 

of atoms/ entries per class j. Hence, we create an overcomplete 

dictionary M ND   with base elements the 1D SAR feature 

vectors of the corresponding SAR training images as created 

by Eq. (4). In contrast to current SC based SAR ATR methods 

[8], [11], [14], we do not create the 1D SAR feature vectors 

from pre-processed grayscale SAR images but from the raw 

grayscale SAR images. The advantage of using directly the 

grayscale SAR imagery is relaxing the complexity and thus 

reducing the processing burden of the proposed SC module 

without though sacrificing its SAR ATR performance (Section 

III). It is worth noting that the size of D  has a major influence 

on the performance of the SC algorithm. Specifically, N  

purely depends on the available training images, but the value 

of M , i.e. 1D feature vector length, even though fixed it is 

user-defined, meeting the constraints presented in Eq. (1). For 

this work, we examine several feature lengths such as to 

optimize the SC SAR ATR performance (Section III-B-1).  

SC classification relies on the assumption that a new 

unknown test image 'I  from class u  that is converted into a 

1D feature vector 
'

spI  lies within the same subspace with the 

training atoms of the same class. Thus 
'

spI  can be represented 

by Eq. (1) and solved with Eq. (3). It is reminded that the test 

SAR image is not input directly to Eq. (3) but we exploit its 

corresponding 1D feature vector 
'

spI  that is produced 

according to Eq. (4). 

Driven by the underlying SAR imagery data structure, we 

generalize [40] and consider that an 1l norm  SC is effective 

for non-Gaussian type 1D SAR feature vectors, whereas 

2l norm  for Gaussian type. Therefore, given a test SAR 

image, we first remap it according to Eq. (4) and then analyze 

its core structure to identify if it is a Gaussian or a non-

Gaussian type. Specifically, we analyze the 1D SAR feature 

vector 
'

spI  as a combination of a two-component Gaussian 

Mixture Model (GMM) [41]:  

  
2

' '

1

( ) ,sp i sp i i

i

p I N I  


  (5) 

 1 2 1    (6) 

  
 

2
'

'

2

1
, exp

22

sp i

sp i i

ii

I
N I


 

 

 
  
 
 

 (7) 

where ,i i   and i  are the mean, the variance and the 

component weight of the ith GMM component of the 1D SAR 

feature 
'

spI . 

Then, we substitute Eq. (3) with an elastic net regularization 

technique [42] that is extended to use an adaptive coefficient 

estimator such as to optimize the regression problem 

depending on the GMM 1D SAR feature vector analysis : 

   2

2 1
arg min 1b

x

x a x a x    subject to '

spDx I  (8) 

where a  is the penalty factor that we adaptively define as:  

 
 1 max

0.5
a

 


   (9) 

such as 1a   when max( ) 0.5i   and 0a   when 

max( ) 1i  , with   a very small constant (in our trials we 

use 510  ) and 
i  the GMM component weight. We solve 

Eq. (8) using the Least Angle Regression – Elastic Net 

(LARS-EN) [42], with a convergence threshold of 10-4 for the 

cyclical coordinate descent [43] that is computed along the 

regularization path with 105 maximum iterations. Using the 

LARS-EN solver implies the penalty factor to be in the range 

of (0,1] . 

It is important to note that in contrast to [40], our extension:  

a. Does not consider SC classification on 1D data that are 

affected by Gaussian and non-Gaussian noise. In our 

architecture, we solve Eq. (5) after analyzing the underlying 

structure of 2D SAR imagery and determine whether the core 

of this structure is governed by a Gaussian or a non-Gaussian 

distribution.  

b. Does not involve a fixed value of the parameter α that 

is determined after a tuning process. Instead of that fixed 

approach, we adaptively estimate a  for each 2D SAR target 

image that depends on a GMM based analysis of the target 

image. The advantage of this adaptive estimation is that it 

fully exploits the capabilities of the elastic net solution of Eq. 

(5) as it spans a  to a range of possible values with (0,1]a . 

This methodology aims at determining whether a single 

dominant Gaussian distribution can or cannot describe the 1D 

feature 
'

spI  of the SAR image 
'I , and accordingly adapt Eq. 

(9) such as to optimize the elastic net given by Eq. (8). Fig.1 

shows two extreme case examples where the 1D feature 
'

spI  of 

the SAR image 
'I  (blue curve) is analyzed into a two-

component GMM (black and red curve show the Gaussian 

distribution of each model). Depending on the contribution of 

each GMM, in Fig. 1(a) we show an example of a 1D feature 

vector that has two equally important Gaussian distributions 

and thus in Eq.(8) we input 0.922a   ( max( ) 0.538  ), 

while in Fig. 1(b) an example of one dominant Gaussian 

distribution and hence in Eq.(8) we input 0.308a   (

max( ) 0.846  ). Therefore, in the former case of Fig. 1(a), 

the SC SAR ATR problem of Eq. (8) is solved mostly based 

on a 1l norm  scheme while for the latter case of Fig. 1(b) the 

solution of Eq. (8) is more affected by the 2l norm  

contribution.  
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(a)  (b) 

Fig. 1.  GMM analysis of a SAR image (top left) in the 1D feature space showing (a) mutual GMM importance (b) dominant GMM importance 

(percentage highlights the influence per GMM distribution – GMMs scaled based on their % contribution) 

 

Fig. 2.  Dependency of penalty factor a  with the dominant GMM distribution i  

(dashed lines show pure 
1

x  for 1a   and 
2

2
x  for 0a   solution schemes) 

 

Fig. 2 shows the i variation of the dominant Gaussian 

component and the corresponding penalty factor a  over a few 

example SAR images. From Fig. 2 it is evident that the 

contribution i  of the dominant GMM varies based on the 

SAR image reflectivity that affects the 1D feature vector spI , 

which in turn adaptively adjusts the penalty factor a  (Eq. (9)) 

and ultimately influences the elastic net regularization of Eq. 

(8). Fig. 2 also shows the two extreme cases where the 1D 

SAR feature vector is a perfect balance of two GMMs i.e. 

1 2 0.5    and thus 1a   and therefore from Eq. (5) the 

SC ATR problem for that SAR image is solved purely based 

on 1l norm . Fig. 2 also shows a hypothetical perfect 

imbalance of the two GMMs with 1 1   and 2 0   (or vice 

versa). In that case, a   and from Eq. (5) the SC ATR 

problem for that SAR image is solved based on a 2l norm  

scheme. 

B. Clustered Convolutional Neural Networks 

In the context of SAR ATR, literature suggests several 

CNN based solutions that rely on handcrafted CNNs [5], [7], 

[8], [12], [13]. A common feature of these CNN architectures 

is their relatively low depth that varies from six up to nine 

layers, opposing to the mainstream visual domain CNNs 

where layers are 23 for AlexNet [32], 16 or 19 for VGG [33] 

depending on the version, 22 for GoogleNet [34] and 152 for 

ResNet [35]. This is because visual images have a higher 

information content per pixel compared to the radar reflections 

presented in a SAR image. Unarguably, current mainstream 

CNNs have an exceptional classification capability in the 

visual domain. A typical way to deviate these CNNs from the 

dataset these were trained on, is by exploiting the Transfer 

Learning technique [44]. Nevertheless, this technique is not 

always effective in steering the weights of the CNN towards a 

completely different data modality i.e. from visual to SAR 

imagery [45]. Additionally, the limited number of publicly 

available military SAR imagery imposes the SAR ATR CNNs 

to populate the training images either by creating artificial 

variants e.g. rotated versions of the existing templates or by 

sampling patches out of the image. Opposing to that, RGB 

images are widespread and thus the pre-trained CNNs [32]–

[35], [46]–[48] for that domain can exploit a massively larger 

training set. 

Driven by the advantages of the RGB pre-trained CNNs we 

propose a multi-discipline and multi-modal architecture that 

combines the concepts of CNN and Multiclass Support Vector 

Machine (M-SVM) classification [49]. The intention is to 

transfer the already proven classification capability of the 

AlexNet [32] from the RGB domain to the X-band SAR 

without using Transfer Learning [44]. This is because the 

combination of the completely different data modality 

between SAR and visual imagery along with the lack of SAR 

training samples imposes a huge constrain to steer the weights 

of these CNNs towards SAR data and thus offering a moderate 

classification performance [45]. 

AlexNet is a 23-layered network that encapsulates from an 

RGB image features that vary from low-level corners and 

blobs, in the initial hidden layers, up to high-level RGB 
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oriented complex features in the last layers. Although AlexNet 

is powerful, it has been trained on the RGB images of 

ImageNet [50] that are completely different to SAR imagery. 

AlexNet is trained on RGB color bands while SAR images 

contain radar reflections. Therefore, directly applying AlexNet 

on SAR imagery is not an optimum solution. Hence, we group 

the 23 layers of AlexNet into nine clusters l  of varying 

feature description capability, introducing the Clustered-

AlexNet (C-AlexNet) presented in Table I. Notation l  refers 

to the cluster layer activated with  1,2,3,4,5,6,7,8,9l . 

This means, for instance, 4l   activates up to AlexNet’s 

clustered layer 4 while the remaining layers  5,6,7,8,9  are 

discarded. C-AlexNet uses the same parameters (stride, 

padding and convolutional filter sizes) as in the original 

implementation [32].  

This specific clustering scheme is directly related to the 

position of the convolutional layers within AlexNet, which in 

turn are directly linked to the complexity of the features 

extracted from each cluster. That is, the deeper the 

convolutional layer, the more complex and data specific the 

detected features are. It should be noted that a fully connected 

layer is a convolutional layer that uses a kernel that has the 

size of the output of the previous hidden layer [51]. Therefore, 

the input layer of clusters six to eight is a fully connected 

rather than a convolutional layer. 

Given a SAR image Ia b , ,a b Z   and 

( , ) {0,1,...,255}I s t   with 1 s a   and 1 t b  , we initially 

remap I  into a 3-D tensor to meet the input requirements of 

AlexNet: 

 1 ( ) ( ) ( )I B I B I B I   (10) 

where ( )B   is a bicubic interpolation process and || ( )  is a 3D 

concatenation of a single SAR image in order to replicate the 

RGB layers that AlexNet requires as an input.  

Once 1I  is input to the C-AlexNet, it is transformed into a 

3D tensor 
l l ll H xW xDX  which propagates through the hidden 

layers until it becomes the output 
lY  of the end-layer of 

cluster l . Hence, 1X  is the input to cluster 1l  , 2X is the 

output of cluster 1l   and simultaneously the input to 2l   

etc. Notation Hl, Wl and Dl refer to the height, width and depth 

of the tensor at clustered layer l and an element belonging to 

lX  has an index set of ( , , )l l lu v d  with 0 l lu H  , 

0 l lv W  , 0 l ld L  . Network activations are computed 

by forward propagating input 1I  through the CNN architecture 

up to the specified layer l. For the feedforward process we use 

a mini batch size of one i.e. one training instance per iteration 

to estimate the gradient of the loss function and estimate the 

response of the CNN network. The reasoning of choosing a 

mini batch size of one is to increase the accuracy of the 

response.  

3D tensors 
lX  and 

lY  are stacks of 2D matrices that 

highlight features of various complexity in a response map 

type of representation. As the 
lX  tensor propagates within the 

CNN’s activated clusters and ultimately becomes tensor 
lY , 

the tensor’s size changes based on the size of the 

convolutional kernel of each layer. That is a kernel size of 

11x11x3 for cluster 1, the height and width of which 

approximately halves for each subsequent convolution till 

cluster 3 and thereafter it stabilizes at a kernel size of 3x3 

(height x width) . Tensors 
lX  and 

lY  can be regarded as a 

generalized scale-space theory [52] concept where the various 

scales are envisaged via the subsequent shrinking of the 

convolutional kernel size and the octaves via the kernel 

weights that are auto-adjusted by the CNN during the training 

stage. In computer vision, scale-space is an important theory 

for keypoint detection contributing to the robustness of pattern 

recognition algorithms. Therefore, by linking tensors 
lX ,

lY  

with scale-space theory, we highlight the importance of these 

tensors and validate their contribution in regards to pattern 

recognition tasks as examined in this paper.  

As noted in Table I, the features that further propagate in 

our clustered SAR ATR architecture are the ones provided by 

the end-layer of each clustered layer l  that may be a Rectified 

Linear Unit (ReLU) layer, a Max Pooling layer or a Fully 

Connected layer. Therefore, it is important to present the 

operating details of these layers. 

1) ReLU 

This layer increases the non-linearity of a CNN by applying 

an individual truncation process on every ( , , )l l l lX u v d : 

  , , , ,max 0,l l

u v d u v dY X   (11) 

where , ,

l

u v dY  is the output of the l  cluster layer. The 

advantages of ReLU against the classic tanh activation 

function are the reduction in training time [32] and 

incorporating a purely supervised training scheme avoiding 

the need of unsupervised pre-training [53].  

2) Max Pooling 

This operation substitutes a sub-region 
l

sX  of size  x s s , 

i.e. pooling size, of the tensor 
, ,

l

u v dX  with its maximum value: 

  , , maxl l

u v d sY X   (12) 

TABLE I 

CLUSTERED ALEXNET LAYERS 

C-AlexNet 

layer ID (l) 

AlexNet 

layer ID 
Operations involved 

1 1-2-3-4-5 Image input – Convolution – ReLU – 

Normalization – Max pooling 

2 6-7-8-9 Convolution – ReLU – Normalization – 

Max pooling 

3 10-11 Convolution – ReLU 

4 12-13 Convolution – ReLU 

5 14-15-16 Convolution – ReLU – Max pooling 

6 17-18 Fully connected - ReLU 

7 19-20 Fully connected – ReLU 

8 21 Fully connected 

9 22-23 SoftMax – Classification output 
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, ,

l

u v dY  will have a size of 1 /l lH H s  , 1 /l lW W s   and 

1l lD D  . 

3) Fully Connected 

Through the fully connected layer, the ( , , )l l l lX u v d  input 

of size l l lH W D   is remapped to: 

 , ,

l l l

u v dY w X bias   (13) 

that has size o

l l lH W D  , where , ,

l

u v dw  is the weight 

parameter that the fully connected layer is aiming at tuning 

and o

lH  the height of 
lY  that is defined during the design of 

the convolutional neural network. 

In the suggested architecture, the output tensor , ,

l

u v dY  of the 

l  cluster layer is remapped into a 1D-feature vector of length 
l l lu v d   by undergoing a multi-feature fusion process. The 

latter is implemented via a multi-dimensional vectorization 

process defined as: 

 
,

, , 1,1, ,1, 2,1, ,2, 1, , , ,
1, 1

: [ ,..., , ,..., , ,..., ]
H W

T

d u v d d H d d H d W d H W d
u v

a a a a a a a
 

   (14) 

over dimension d which is then followed by a vectorization 

procedure: 

  
,

, ,
1, 1

H W
l l

u v
u v

y vec Y 
 

 
  

 
 (15) 

where [1,..., ]d  . The advantage of this multi-fusion 

process is encompassing both the feature responses and the 

topology of the features for the entire tensor depth.  

4) Multi-class Support Vector Machines (M-SVM) 

The 
ly  feature produced from the C-AlexNet at layer l is then 

used to train a one-vs-all M-SVM classification scheme. 

Given j the number of classes, the 
thg  class is trained with all 

the examples in the 
thg  class having positive labels and the 

remaining classes having negative labels. For h training 

images, the data 
ly  vs. target class Cl  correlation is 

1 1( , ),...( , ),..., ( , )l l l

p p h hy Cl y Cl y Cl  with {1,.., }pCl j  being the 

class of 
l

py . M-SVM performs multiple binary SVM 

classification tasks and labels the 
ly  feature belonging to the 

class that gains the highest response. For a detailed analysis on 

SVM classification, the reader is referred to [54]. 

C. Decision level fusion 

The 1D vector bx  obtained from Eq. (8) includes responses 

from all the atoms within D regardless of the class these 

belong. Thus, we remap bx  to facilitate a single normalized 

response per target class j given by: 

 
max( )

pSC

p

p

x
r

x
  (16) 

with px a subset of 
bx  that includes only the responses of the 

target class p, p j .  

Similarly, the output 
lY  of the activated layer in the 

clustered CNN module is converted into 
CNN

pr  so that each 

target class has a single response: 

 CNN l

pr y


  (17) 

Then we normalize the response per target class obtained 

from the suggested SC and C-AlexNet modules, i.e. 
SC

pr and 

CNN

pr  respectively, to make them comparable. Normalization 

is done via the z-score technique and the SAR ATR decision-

making function   is based on a weighted winner takes it all 

concept that is given by: 

 
   

arg max

CNN CNN SC SC

p p p p

CNN SC
p

p p

r r r r

r r


 

  
  
 
 

 (18) 

where || ( )  is a 1D concatenation process, ,  ( )r r  are the 

average and standard deviation of the corresponding SAR 

responses and   is a regulating parameter: 

 
 1  

1.25

templateI templateif S S E S

otherwise




   
 


 (19) 

with IS  the target SAR image entropy, E  a tuning parameter 

while templateS  and  templateS  the average and standard 

deviation of the entropy of the templates. The role of 

parameter   is to tune finely the decision-making function of 

Eq. (19) depending on the deviation of the target’s SAR image 

disorder IS  in comparison to the disorder of the templates. 

The value of λ=1.25 is determined experimentally. 

Our proposed Convolutional Neural Network and Sparse 

Coding data fusion architecture named l1-2-CCNN is presented 

in Fig. 3. 

III. EXPERIMENTS 

A. MSTAR dataset 

We evaluate the performance of the proposed architecture 

on the MSTAR database [55], which includes the ground 

target classes presented in Fig. 4. Each class contains chips of 

15° and 17° depression angles using an X-band SAR sensor, 

while some classes contain additional 30° and 45° depression 

angle viewings. All target SAR chips cover a full 0°-360° 

azimuth orientation. Table II presents the number of targets 

per type and depression angle used in this paper. To avoid the 

influence of background, we crop all images by extracting a 

80x80 patch set at the center of the image. For compatibility 

with current literature we adopt [55] and establish a training 

set based on the 17. 
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Fig. 3.  Proposed l1-2-CCNN architecture for SAR ATR 

 

     

 

  
2S1 BMP2 BRDM2 BTR60 BTR70  15° 17° 

     

 

  
ZIL131 ZSU23-4 D7 T62 T72  30° 45° 

 (a) (b) 

Fig. 4.  (a) 10 classes of the public MSTAR database at 17° depression angle (b) the 2S1 target at various depression angles while at same azimuth 
 

TABLE II 

MSTAR DATABASE 

Target BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4 Sum 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14  

serial No 9563 9566 c21 c71 132 812 s7 k1 b01 e71 - a51 e12 d08  

train 17° 233 232 233 233 232 231 228 256 299 298 299 299 299 299 
SOC-1 

2747 

SOC-2 

3671 

test 15° 195 196 196 196 196 195 191 195 274 274 274 273 274 274 3203 

test 30° - - - - - - - - 288 287 - - - 288 863 

test 45° - - - - - - - - 288 287 - - - 303 878 

 

B. 3-class problem 

We use this experiment to fine-tune the free parameters of our 

architecture i.e. the modules of SC, C-Alexnet and decision 

level fusion. The target classes used are the BMP2, T72 and 

BTR70. For the former two we use all three variants namely 

the 9563, 9566 and c21, for the T72 the 132, 812 and s7 and 

for BTR70 the c71 which is the only one included in the 

dataset. Images captured at 17° depression angle are used as 

training and images at 15° for testing. 

Specifically, our architecture is governed by the feature 

dimension m of the adaptive l1-2-norm SC (Eq. (8)), the layer l 

of the C-AlexNet that is activated (Table I) and the entropy 

boundary E  (Eq. (19)) during the fusion stage. During tuning, 

we set as baseline values m=512, l=2 and E=3, and evaluate 

the 3-class ATR performance of the suggested technique by 

altering consecutively one of these three values. For the given 

baseline parameters, Table III highlights the performance of 

our architecture compared to current algorithms. It is evident 

that fusing the SC and CNN techniques under their suggested 

modified versions can outperform solutions that rely on a 

single method only. All trials are performed in MATLAB on 

an Intel i7 with 16GB RAM and an Nvidia Quadro K2200 

GPU processor. MatConvNet [56] is used to implement 

AlexNet. The value of λ=1.25 in Eq. (19) does not affect the 

performance of the 3-class ATR problem. 

1) Adaptive Lp-norm based SC optimization 

We create and evaluate a dictionary 1622dD  of various 

feature dimensions {64,128,256,512,1024}d  . As expected, 

Fig. 5 (a) shows that the larger the feature space dimension the 
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TABLE III 

3-CLASS ATR (%) 

 CM [57] BMO [23] SRF [22] Huang’s [21] DFSS [58] ASC [24] PCA [59] 2DPCA [60] 
l1-2-SC 

only 

CCNN 

only 

l1-2-

CCNN 

BMP2 - 97.28 94.89 94.38 91.65 97.27 97.44 99.15 94.90 98.30 98.5 

BTR70 - 98.98 96.43 98.47 99.48 97.96 99.49 98.47 97.40 98.48 100 

T72 - 97.78 96.91 96.91 96.04 97.53 95.92 98.45 96.90 99.14 99.50 

Avg. 98.69 97.58 95.98 96.04 95.72 97.58 97.61 98.75 96.40 98.64 99.33 

 

better the classification performance but the greater the 

processing time. Fig. 5 (a) shows that for the chosen feature 

length size of m=512, the total processing time for the fused 

SAR ATR solution we propose is 800ms. This is because by 

increasing the feature space dimension, the SC based 

encryption becomes more distinct but Eq. (8) requires more 

processing time to provide a solution. 

2) C-AlexNet activation layer optimization 

During this tuning phase, we vary the activating layer of the 

CCNN according to Table I. Fig. 5 (b) shows that the deeper 

the activated layer the more RGB specific the feature response 

becomes and harder to steer the CNN towards the SAR data 

domain. Thus the less capable the M-SVM is to linearly 

separate the three target classes in the activated feature space. 

Optimum performance for the suggested fused scheme is 

identified at 2l   achieving 99.0% target recognition.  

3) Decision level fusion optimization 

We investigate how the decision level fusion regulating 

parameter E  affects the overall performance of our proposed 

SAR ATR architecture. From Fig. 5 (c) it is evident that this 

parameter has a minor role to the overall performance but it 

can still affect it.  

C. Assessment against large depression variation 

For this trial, we use three similar targets, namely the 2S1, the 

BRDM2 and the ZSU 23-4. Images at 17° depression angle 

are used for training, while the 15°, and 30° and 45°for testing. 

Table IV shows that the suggested multi-discipline scheme 

affords a high performing ATR solution. 

Depression variation involves a non-linear feature 

transformation and since our l1-2-norm solution seeks for linear 

projections from the image space to the feature space the low 

performance of the SC module is anticipated [39].  

D. Assessment against resolution variation 

We challenge the robustness of the l1-2-CCNN to resolution 

variations from 0.3m×0.3m (original resolution), down to 

0.7m×0.7m. Table V shows a target under these resolutions 

along with the performance of the suggested technique and the 

performance of current algorithms. 

Table V shows that l1-2-CCNN outperforms all competitor 

solutions, while at the lowest resolution it still manages a 

94.77% recognition rate. The robustness of l1-2-CCNN 

originates from the robustness of its individual modules i.e. 

the l1-2-SC and CCNN, which rely on the low-level abstract 

features extracted from the 2l   layer of C-AlexNet and 

adaptive l-norm process of the l1-2-SC as described in Section 

II-A. 

E. 10-class ATR 

Literature suggests various target configurations for the 10-

class ATR problem, with commonly used the standard 

operation conditions 1 (SOC-1) and SOC-2. Although both are 

10-class ATR subsets, their difference relates to the variants of 

BMP2 and T72 used. Specifically, SOC-1 for both training 

and testing includes only serial number 9563 for BMP2 and 

only serial number 132 for T72. SOC-2 uses all available 

serial numbers for both targets, for training and testing. Both 

SOC-1 and SOC-2 ATR evaluated based on the target’s class 

and not its serial number. For both target set configurations, 

the 17° depression angle is used for training and the 15° for 

testing.  

Tables VI and VII compare the ATR performance of l1-2-

CCNN against current literature for the corresponding SOC-1  

   
(a) (b) (c) 

Fig. 5.  Tuning parameters (a) SC feature space dimension (b) CCNN activation layer (c) E decision level fusion regulating value 
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TABLE IV 

3-CLASS ATR WITH LARGE DEPRESSION VARIATION (%) 

 NNSC [19] L1/2-NMF [19] MSRC [11] CKLR2 [37] 
Bayesian CS 

[14] 
JSRC [29] l1-2-SC only CCNN only l1-2-CCNN 

15° 96.11 98.91 - 99.75 99.20 99.50 95.60 100 100 

30° 87.25 91.42 98.49 98.29 89.60 91.80 77.30 99.43 99.61 

45° 70.19 78.44 59.63 74.56 70.80 75.30 60.00 68.67 70.87 

 

TABLE V 

3-CLASS ATR WITH RESOLUTION VARIATION 

Resolution variation 0.3m×0.3m (original) 0.4m×0.4m 0.5m×0.5m 0.6m×0.6m 0.7m×0.7m 

Example 

     

ASC 97.58 96.50 93.90 91.50 85.90 

NMF 96.00 94.80 92.00 88.00 84.50 

EFS 94.00 90.00 84.00 76.00 68.00 

Zernike 96.00 92.00 86.00 82.00 74.00 

PCA 95.00 94.00 91.00 87.00 84.00 

l1-2-SC only 96.40 93.68 94.24 85.05 91.66 

CCNN only 98.64 98.22 95.50 94.48 91.45 

l1-2-CCNN 99.33 99.32 97.78 93.63 94.77 

 

TABLE VI 

10-CLASS ATR ON SOC-1 (%) 

method 
Chen’s [8] 

MtCS 

[28] 

Bayesian 

CS [14] 

SAE 

[18] 

DNN 

[15] 

A-ConvNet 

[5], [30] 

AdaGrad 

[7] 
SGD [7] l1-2-SC only CCNN only l1-2-CCNN 

avg (%) 84.70 84.00 92.60 95.40 96.00 99.1 97.4 97.1 98.20 96.65 99.86 
 

TABLE VII 

10-CLASS ATR ON SOC-2 (%) 

method DNN 

[15] 

IGT 

[61]  

Morgan’s 

[13] 

BMO 

[23] 

KM 

[20] 

ASC 

[24] 

EFS 

[62] 

Zernike 

[63] 

PCA 

[59] 

NMF 

[19] 

Wagner’s 

[64] 

DCNN 

[6] 
l1-2-SC only CCNN only l1-2-CCNN 

avg (%) 95.00 95.00 92.30 95.74 84.58 95.41 94.10 93.46 90.24 93.76 99.50 99.50 97.83 96.19 99.50 
 

 

and SOC-2 MSTAR subsets. In both cases, the suggested l1-2-

CCNN achieves top ATR performance, which is 99.86% for 

SOC-1 and 99.50% for SOC-2. In addition, Fig. 6 shows the 

corresponding confusion matrix per SOC subset. For better 

readability, we present only the confusion matrix of l1-2-

CCNN. 

F. 10-class ATR at various noise levels 

In this trial, we evaluate the robustness of current proposals 

to various noise levels. Trials are on the SOC-1 subset and the 

noise simulation is consistent with [5], [11] i.e. we randomly 

select a percentage of pixels in the target scene and replace 

their values with samples generated from a uniform 

distribution. It should be noted that template images both for 

the SC and CNN module are the original ones. Table VIII 

presents the performance achieved for noise levels varying 

from 1% up to 15%. From Table VIII it is evident that the l1-2-

norm SC is extremely robust to noise levels due to its adaptive 

nature. Therefore, the l1-2-CCNN via its effective decision 

fusion process takes advantage of the high performing l1-2-

norm SC module and outperforms with a great margin current 

solutions on SOC-1 with additive noise. 

G. Extending to other CNNs 

From all trials it can be concluded that l1-2-SC and CCNN 

perform equally well for the 3-class and 10-class scenarios 

that do not have nuisance factors. The advantage of the fused 

l1-2-CCNN is apparent because it preserves and even increases 

in quite a few cases, the robustness of CCNN in the depression 

angle variation scenario and of l1-2-SC in the additive noise 

scenarios. 

Driven by the results achieved, we extend our layer-

clustering strategy to VGG-16, GoogleNet and ResNet CNNs 

by utilizing their MatConvNet [56] implementations. As a 

reminder, similarly to AlexNet, all three CNNs are pre-trained 

on ImageNet [50]. The clustering methodology is similar to 

the one used for C-AlexNet, i.e. we cluster their layers so that 

the first layer of a cluster is a convolutional and the last layer 

is either a pooling or a ReLU layer. Based on the tuning 

process of Section III-B the optimum activation layer for the 

Clustered-VGG-16 (C-VGG-16) is l=2 that ends with the 

MaxPool_2 layer, while for the Clustered-GoogleNet (C-

GoogleNet) is l=2 that ends with the Pool_2 layer. Finally, the 

Clustered-ResNet (C-ResNet) is l=3 that ends with the 

res2a_branch2b layer.   

The first comparison among the clustered CNNs is on the 

SOC-1. Table IX shows that all clustered CNN variants 

perform equally well with C-VGG offering the lowest 

processing time per scene image, C-ResNet the highest CCNN 

ATR performance and C-AlexNet the smallest template 

storage requirement. Even though all CNNs perform quite 

well, C-AlexNet achieves the highest overall ATR 

performance fully exploiting the SC – CCNN fusion scheme.  
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(a) (b) 

Fig. 6.  Confusion matrices (%) of l1-2-CCNN (a) SOC-1 (b) SOC-2 (rows are input classes and columns output classes) 

 

TABLE VIII 

10-CLASS SOC-1 ATR WITH AT VARIOUS NOISE LEVELS 

Gaussian noise level 0% 1% 5% 10% 15% 

Example 

     
A-ConvNet [5], [30] 99.13 91.76 88.52 75.84 54.68 

l1-2-SC only 98.24 95.68 95.38 95.42 94.51 

CCNN only 99.65 95.81 92.55 77.78 60.32 

l1-2-CCNN 99.86 98.68 96.53 92.01 87.43 
 

TABLE IX 

PERFORMANCE ANALYSIS OF CCNN VARIANTS ON 10-CLASS SOC-1 ATR 

Method C-VGG C-GoogleNet C-AlexNet C-ResNet 

CCNN storage 

(KB/template) 
186.6 602.1 43.3 200.1 

CCNN time 

(ms/image) 
6.35 14.65 17.50 45.9 

CCNN only (%) 97.86 95.08 96.65 98.07 

l1-2-CCNN (%) 99.58 99.53 99.86 99.57 
 

TABLE X 

3-CLASS ATR WITH VARIOUS CCNN VARIANTS (%) 

Method BMP2 BTR70 T72 

CCNN 

only 

(avg.) 

l1-2-CCNN 

C-VGG 22.83 10.71 95.38 52.19 94.32 

C-GoogleNet 0.33 44.93 95.72 47.51 89.21 

C-AlexNet 98.30 98.48 98.64 98.47 99.33 

C-ResNet 10.23 81.12 92.29 61.21 91.71 
 

 

We continue our trials by evaluating the ATR performance for 

the 3-class recognition case of Section III. Table X reveals that 

C-AlexNet outperforms C-VGG, C-GoogleNet and C-ResNet. 

This can be explained as:  

a. Both C-VGG and C-AlexNet have the same internal 

layer construction up to the activated l=2 cluster but with 

different parameters i.e. convolutional filter and stride sizes. In 

fact, C-VGG has two 3x3 convolutional filters with stride one 

while C-AlexNet a 11x11 filter size with stride four and a 5x5 

with stride two. By comparing the performance on the10-class 

SOC-1 and 3-class trials, we conclude that the filter size of C-

VGG does not capture the intra-class spatial content of the 

target scenes as it is quite small. Even though the 3x3 

convolutional kernel size is sufficient for RGB imagery 

because it has high-level features (and where VGG is trained 

for), our trials show that the SAR type data and the capability 

for intra-class ATR as in the 3-class ATR problem requires 

larger receptive filters to provide discriminative responses. 

GoogleNet mainly uses inception modules rather than a 

standard deep network construction. The tuning process of C-

GoogleNet provided as optimum cluster the l=2 ending with 

the Pool_2 layer and thus, a quite shallow part of the original 

GoogleNet is exploited even before the inception modules are 

applied. For the activated layer l=2, the two convolutional 

filters involve a 7x7 and a 3x3 kernel size and thus similarly to 

the C-VGG these are too small to encapsulate the intra-class 

SAR imagery information and bridge the original training with 

the testing modality gap i.e. visual vs. SAR imagery. 

b. ResNet uses residual blocks. Each residual block 

encloses a convolutional filter of 3x3, which similarly to the 

C-VGG and C-GoogleNet, does not encapsulate efficiently the 

intra-class target variations. 

By extending our architecture to facilitate the mainstream 

CNNs, we can draw the following conclusions. First, our 

concept is validated since in the SOC-1 ATR problem all 

CNNs have a similar performance. Second, the size of the 

convolutional filter plays an important role in the intra-class 

ATR performance. This is obvious from the 3-class scenario, 
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which highlights that the CNNs with a small filter size fail to 

classify correctly the target.  

IV. CONCLUSION 

Deep learning techniques for ATR of SAR imagery aim at 

extracting deep features that can uniquely describe a target 

within a SAR image. Instead of a single-discipline solution, 

we fuse a Convolutional Neural Network module with a 

Sparse Coding module. For the former, we extend the 

effectiveness of the AlexNet CNN to operate from the visual 

to the SAR domain by introducing a layer-clustering concept. 

In order to bridge the visual-SAR modality gap, the clustered-

CNN is combined with a multi-class SVM classification 

scheme. The latter module (Sparse Coding), extends Sparse 

Coding theory to facilitate a proposed adaptive elastic net 

optimization concept that balances the advantages of 

1l norm  and 
2l norm optimization based on the scene SAR 

imagery. Finally, the Clustered CNN and the adaptive Sparse 

Coding module are innovatively fused under a decision level 

scheme that adaptively alters the fusion weights based on the 

scene characteristics. 

Experimental results on the MSTAR data set under various 

configurations such as the 10-class ATR problem with and 

without target variants, the 3-class ATR problem, and affected 

by several nuisance factors such as noise, large depression 

angle variation and resolution variation, illustrate the 

effectiveness of our suggested architecture against current 

ATR techniques. In fact, on the MSTAR dataset, our 

architecture yields the highest ATR performance reported yet 

in the literature, which is 99.33% and 99.86% for the 3 and 

10-class problems respectively. Finally, we also demonstrate 

that among current CNNs used by the computer vision 

community, AlexNet has the unique characteristics to host this 

data modality extension. 
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