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Abstract—Recently, deep neural networks (DNNs) have been
the subject of intense research for the classification of radio
frequency (RF) signals, such as synthetic aperture radar (SAR)
imagery or micro-Doppler signatures. However, a fundamental
challenge is the typically small amount of data available due
to the high costs and resources required for measurements.
Small datasets limit the depth of DNNs implementable, and
limit performance. In this work, a novel method for generating
diversified radar micro-Doppler signatures using Kinect-based
motion capture simulations is proposed as a training database
for transfer learning with DNNs. In particular, it is shown that
together with residual learning, the proposed DivNet approach
allows for the construction of deeper neural networks and offers
improved performance in comparison to transfer learning from
optical imagery. Furthermore, it is shown that initializing the
network using diversified synthetic micro-Doppler signatures
enables not only robust performance for previously unseen target
profiles, but also class generalization. Results are presented for
7-class and 11-class human activity recognition scenarios using
a 4-GHz continuous wave (CW) software-defined radar.

Index Terms—transfer learning, residual learning, deep neural
networks, convolutional neural networks, radar classification,
micro-Doppler simulation

I. INTRODUCTION

DEEP neural networks (DNNs) have recently attracted
great interest in the radar community as a means for

learning fine representations of the underlying data in a
variety of applications, such as static object recognition [1],
synthetic aperture radar (SAR) target classification [2]-[6],
change detection [7] [8], and image registration [9], as well as
airborne phased array radar mode recognition [10], and radar
waveform recognition [11]. DNNs have also been exploited
in micro-Doppler based automatic target recognition studies
relating to recognition of drones [12] [13], human activities
[14]-[18], and hand gestures [19] [20].

A common challenge in all these applications is that the
datasets available are typically quite limited, often on the order
of hundreds of samples for micro-Doppler, while reaching
levels of thousands for SAR imagery, as shown in Table
I. One approach for dealing with low sample support is to
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use sparsely connected layers, as opposed to fully connected
layers, to reduce the total number of parameters in the network
[21]. Convolutional autoencoders (CAE) have been proposed
[22] as a DNN architecture that uses unsupervised pre-training
to mitigate measured data requirements. However, when less
than 550 training samples are available, CAEs have been
outperformed [23] by transfer learning from other domains,
such as optical imagery. Another approach to preventing
overfitting is to limit the depth of the DNNs; however, this
also limits the ability of the DNN to accurately model complex
data representations and, in turn, the classification accuracy
achievable. Another disadvantage of small training datasets is
the network’s inability to generalize to previously unobserved
targets: i.e., classification accuracy plummets if the new person
observed has a significant difference in gait speed, height, body
structure or walking style than the subjects used to form the
training database. As a result, training data should strive to
span possible and broad target signature variations for robust
performance [24].

One way to both increase the amount of training data as well
as in-class variations is to use simulated data. In computer vi-
sion, Generative Adversarial Networks (GANs) [25] have been
proposed as a means to generate highly realistic simulated
images [26]. However, one difficulty in training GANs is the
potential for the generative network to collapse and map all
outputs to the same data [27]. Moreover, the phenomenology
of radar data differs significantly from that of optical imagery.
This difference is attributed to the fact that radar measurements
of human motion are fundamentally a continuous stream of
non-stationary signals. Using spectrograms, these signals are
expressed in the time-frequency domain and, as such, can be
presented as an image to the DNN - a snapshot of one fixed
window in time. But the patterns in this image of the time-
frequency representation have deeper meanings that relate to
the kinematics of the target and physics of electromagnetic
signals. Image-based variations created with GANs can thus be
unrelated to the differences in micro-Doppler signature caused
by physical variations observed in the gait of different people,
thereby generating misleading or outright erroneous training
data.

As a result, physical model-based approaches have been
preferred to simulate radar data. The use of simulated sig-
natures to classify real micro-Doppler measurements was first
proposed in 2015 [28], where video motion capture (MOCAP)
data made available from the Carnegie Mellon University,
Graphics Lab Motion Capture Database [29] was used to clas-
sify measured data with only a 1% difference in performance
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TABLE I: DNN training data size used in recent works.

Application Reference # Classes # Training Data
human µD Jokanovic [16] 4 60
drone µD Mendis [12] 3 210

vehicular radar Parashar [41] 4 300
hand gesture Kim [20] 10 450
human µD Kim [14] 4 756
human µD Seyfioglu [17] 12 864

vehicular radar Lombacher [1] 10 3,397
SAR Lin [5] 10 4,426
SAR Chen[6] 10 5,173
SAR Schwegmann [2] 3 6,384
SAR Wagner [3] 10 6,874

human µD Trommel [15] 6 17,580
drone µD Kim [13] 5 60,000

SAR Li [4] 4 66,120

as when only real data was used for training. Simulations have
also been used to generate training data for classification of
SAR images [30], as well as high resolution range profiles
[31]. More recently, kinematic models [32], or MOCAP data
from low-cost devices, such as Kinect [33], have been utilized
to simulate human radar returns in applications such as human
activity recognition [34]-[39] and fall detection [40].

However, because these MOCAP simulations are tied to ob-
taining real infrared and optical sensor data from test subjects,
as with radar data, the size of the dataset is still limited by the
human effort, time and cost of data collections. In contrast,
this paper demonstrates that just a small sub-set of MOCAP
data can be used to generate a large number of simulated
micro-Doppler signatures that spans the range of human body
sizes and speeds, while also emulating individualized gait
variations. This is accomplished by applying transformations
on the underlying skeletal structure tracked by Kinect, such
as scaling the skeletal dimensions to model different body
sizes, scaling the time dimension to model different motion
speeds, and perturbing the parameters of a parametric model
of time-varying joint positions to model individualized gait
style. Although there is no guarantee that every generated
signature is fully compatible with the kinematic constraints of
human motion, the extent of the discrepancy is much more
limited by the underlying skeletal model in comparison to
GANs and compensated for by using transfer learning - the
diversified signatures are used only as a source for initializing
the DNN. A second stage of training on measured signatures
is still performed to fine-tune network parameters, but due to
the initial pre-training, only a minimal amount of measured
data is required.

Transfer learning has been proposed for applications in
SAR image classification [42], and moving target recognition
[43]. More recently, Park, et al. [44] used transfer learning
from VGGnet [45], a 16-layer convolutional neural network
(CNN), pre-trained with the ImageNet dataset [46] comprised
of 1.5 million RGB images, to classify 5 different types of
swimming. A classification accuracy of 80.3% was achieved
with fine-tuning on 756 micro-Doppler measurements. Our
results show, however, that network initialization using per-
tinent motion data is more effective than conventional random
initialization or pre-training on unrelated optical imagery.

Specific contributions of the proposed method include

1) development of a model-based approach that exploits
transformations of video motion capture data to generate
arbitrarily large radio frequency (RF) micro-Doppler training
datasets,

2) improved classification accuracy as compared to transfer
learning from optical imagery or training with measured data
only,

3) improved target generalization performance through ap-
plication of transformations on the underlying skeleton to
generate training data that spans the wide range of probable
target signatures,

4) effective accuracy even under class generalization,
5) a significant (10 to 20 fold) decrease in computational

complexity relative to other networks proposed with transfer
learning, e.g. VGGnet and ResNet-50,

6) a reduction in the amount of required measured data, and
7) increase in the depth of DNNs that can be designed for

micro-Doppler classification.
Using residual learning [47] to prevent degradation in

training accuracy as depth increases, the proposed 15
convolutional-layer residual neural network, DivNet-15, is
shown to achieve an accuracy of 98% for 7-classes, and 96%
when generalizing to 11-classes.

In Section II, the methodology for and validation of the
diversified human micro-Doppler simulations, which exploit
video motion capture, is described in detail. In Section III, the
measured data used as the test set is presented. In Section IV,
the design of CNN’s are discussed in consideration of input
dimensionality, depth, the number of neurons per layer and
convolutional filter size. Section V presents a comparison of
specific DNNs, based upon insights gain in Section IV. In
Section VI, the performance of the proposed architecture is
contrasted with that of a randomly initialized CNN and transfer
learning with VGGnet and ResNet. Classification accuracy,
generalization, the impact of noise, as well as sensitivity of
results to time shifting and dwell time are discussed in detail.
Feature visualizations are used to show that the generalized
shapes learned by VGGnet are not as effective in representing
the structure of micro-Doppler signatures as compared with the
proposed simulation-based transfer learning approach. Finally,
in Section VII, key conclusions are presented.

II. SIMULATED RADAR MICRO-DOPPLER DATABASE

There are two main approaches for simulating human micro-
Doppler signatures [48]: kinematic modeling and MOCAP-
based animation. Both methods revolve around the idea of
decomposing the human body into a finite number of parts
modeled as point targets, and summing the radar returns
[49], as modeled from the radar range equation. The most
widely used kinematic model in radar literature is the Boulic-
Thalmann model [50], which is based on experimental studies
of gait analysis and uses equations and charts to represent
the time-varying motion of 17 different joints on the human
body. The main disadvantage of the Boulic model is that it
can be only applied to model walking. Generating full-body
models for other types of non-rhythmic and aided periodic
motions (e.g. walking with a cane and falling) still remains as
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(a) Walking (b) Running (c) Limping

(d) Cane (e) Falling (f) Sitting (g) Walker

Fig. 1: Kinect-based micro-Doppler signatures for a 15 GHz CW radar

a challenge. Thus, more recently, MOCAP-based animations
have gained in prevalence for micro-Doppler simulations.

A. Kinect-Based Micro-Doppler Simulator

In this work, the Kinect sensor is used as a markerless
system for capturing the time-varying coordinate information
of human joints needed for simulation of human micro-
Doppler signatures [33]. First, the radar return from the human
body is represented as the sum of reflected signals from a finite
number (K) of point targets representing various body parts.
A total of 20 points were defined. The Kinect measurements
at these points are used in lieu of the time-varying range
measurements typically obtained from radar. Mathematically,
the return signal from K point targets for a continuous wave
(CW) radar is

sh(t) =

K∑
i=1

at,ie
−j[(2πf0)t+ 4π

λ Rt,i] (1)

where f0 is the transmit frequency, λ is the wavelength, t is
time, Rt,i is the time-varying range of each point target, as
captured from the Kinect sensor, and at,i is the amplitude as
computed from the radar range equation

at,i =
Gλ
√
Piσi

(4π)1.5R2
t,i

√
Ls
√
La
. (2)

Here, G is the antenna gain, Pi is the transmitter power, σi is
the radar cross section (RCS) for each point target, and Ls and
La represent the system and atmospheric losses, respectively.

Once the required ranges are estimated from the Kinect
data, (1) can be computed for any human activity or radar
parameters, such as center frequency, bandwidth, and sampling

frequency. Finally, the simulated micro-Doppler signatures are
computed as the spectrogram (S) – modulus squared of short-
time Fourier Transform (STFT) – of the radar return:

S = |STFT (n, ω)|2=

∣∣∣∣∣
∞∑

m=−∞
s[n+m]w[m]e−jωm

∣∣∣∣∣
2

(3)

where n is discretized time, and w[m] is a window function.
In this work, the data was sampled at 2.4 kHz, while a
Hanning window of length 256 and 128 overlap samples
with 1024 total frequency points is applied in computing the
spectrogram. Simulated spectrograms were generated at 15
GHz and cropped to generate images that showed the internal
structure of the micro-Doppler as clearly as possible for the
initialization of the DivNet. Figure 1 shows the resulting
simulated micro-Doppler signatures for seven different activity
classes. It is important to note that in this paper we only
consider spectrograms as a representative of quadratic time-
frequency distributions (QTFDs). High resolution QTFDs or
members of Cohen’s class can be used to generate the input
images for DNN, but their consideration is outside the scope
of this paper.

B. Diversification Methodology for µD Signatures

In the Kinect-based radar micro-Doppler simulator, the 3-D
coordinate measurements of 17 joints acquired from the Kinect
sensor are used. By changing this coordinate information it
is possible to form a large activity database with sufficient
intra and inter class variations that approximately emulates the
diversity of human signatures caused by differences in height,
speed and individual gait.
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Fig. 2: RCS angle dependency of lower legs with different
dimensions

1) Height and Speed Modifications: The Kinect-based
radar simulator permits modification of subject height and
speed by scaling the time-varying joint position data along
different axes. For example, scaling along the z-axis, while
keeping the x and y axes unchanged, modifies the subject
height which results in different dimensions of body parts.
These changes influence the RCS computations of individual
point scatterers, thus also affecting the received signal power.
The radar range equation defined in (2), requires the RCS of
the individual body parts to compute the radar backscattering.
For a human target, the RCS of each body part is represented
by that of a sphere for the head, and ellipsoid for the torso
and limbs. More specifically, the lower leg is defined as
an ellipsoid and the corresponding RCS can be computed
using radii along each dimension, roll angle and the direction
angle to the receiving radar [51]. Figure 2 presents the aspect
angle dependencies of lower legs simulated with 3 different
dimensions. The RCS of a short lower leg provides a more
dispersed reflection along different aspect angles with a lower
power level. On the other hand, the RCS of a long lower
leg gives a strong reflection around -5 dBm in the case of
a zero aspect angle. Therefore, in micro-Doppler signatures
it is expected to observe an increased power level for taller
subjects.

Due to the fact that scaling is performed only along the
z-axis, the stride rate, speed, and style of the motion remain
unmodified in the first step of the diversification methodology.
However, in real scenarios, a tall person typically walks or
runs faster than a shorter person, when all other body structure
factors assumed equal, such as body mass, flexibility, and pro-
portionality. This argument can be also proved kinematically
by using Boulic-Thalmann walking model [50]. In this model,
human motion is defined using kinematic parameters such
as, linear position, linear velocity, linear acceleration, angular
position, angular velocity, and angular acceleration. Moreover,
consistent with the previous argument between height and
speed, the velocity of walking, v, in the model is defined in
terms of thigh height as

v = vr Hthigh (4)

where vr is the relative velocity in units of ”thigh height”
per second. By extending this expression, individual body part
velocities can be computed. Assume that X̃i(τ.vr) denotes the
the position of a joint as a function of relative time τ , and

relative velocity, then the velocity of that individual body part
can be defined as

ṽi(τ, vr) = Hthigh
vr
lc

∂

∂τ
X̃i(τ.vr) (5)

where lc is the cycle length. Because of the relationship
between height and speed, the x-axis distance position data
is also scaled by a small amount relative to the change in
height to alter the speed of the subject. However, this kinematic
relation between leg length and average velocity is only proved
for periodic motions, such as walking, and running. At this
point another analysis is required for non-rhythmic motions
such as, falling and sitting. For falling, upper body (head,
shoulders, spine) and lower body (knee, calf) contain the
most pronounced information in micro-Doppler signatures. A
falling body moves with an increasing speed while it falls,
and suddenly drops when it hits the ground, resulting in a
tornado touching down shape. Sometimes, elderly people try
to mitigate or slow down the fall by holding on the nearby
objects which might extend the falling period. Apart from
these situations, falling motion can be directly parameterized
in a linear representation related to subject’s height [52].
Consider a simple example of falling rod from a vertical
position. Although, in radar data, the effect of the human
upper body is much more complex than the motion of a rod,
this comparison provides an important insight about the effect
of the height. When the rod falls down its potential energy
decreases and this would increase its rotational kinetic energy
about the point of the contact. The angular speed w, and
relative velocity of the rod with a length of L can be defined
as

w =

√
3g

L
cos θ and vr = wL (6)

where g is the acceleration of the gravity and θ is the rotation
angle [53]. Using the angular speed and relative velocity, it is
possible to calculate the radar backscattering from a falling
rod. Firstly, rod is modeled as a circular cylinder for two
different lengths 0.75 and 2 meters as shown in Figure 3-
(a) and (b). The normal backscattered RCS due to a linearly
polarized incident wave from a circular cylinder of radius rc
is computed as

σc =
2πrcL

2

λ
(7)

Then, simulation can be completed by following the steps
provided in Kinect micro-Doppler simulator. Resulting micro-
Doppler signatures for two rods with different lengths are
given in Figure 3-(c) and (d). As it can be easily noticed
from the figures, longer rod has an increased speed compare to
shorter rod. This information is valid for other non-rhythmic
motions such as, sitting or bending.

Snapshots from animations derived from the same subject,
but with different heights, are provided in Figures 4-(a) and
(b). In Figure 4-(a), the subject’s height is scaled down to
1.55 m, while in Figure 4-(b), the height is scaled up to 1.9
m. Corresponding micro-Doppler signatures are depicted in
Figure 4-(e) and (f) for the same deviations. From micro-
Doppler signatures, it may be seen that reflections from the
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(a) (b)

(c) (d)

Fig. 3: Falling animation of (a) A short and (b) A long rod
and corresponding falling micro-Doppler simulations for (c)
A short and (d) A long length

right and left foot are more visually distinguishable for a taller
subject due to the increased lower leg dimensions. Moreover,
speed of the entire motion is relatively increased due to
scaling along y-axis relative to the height change. This same
relationship between height and micro-Doppler signature may
be also observed in simulations based on the Boulic-Thalmann
kinematic model for walking.

A second parameter that greatly influences the micro-
Doppler signature is the speed of the subject. In the Boulic-
Thalmann model, the speed of motion can be varied by simply
changing one parameter, cycle length or duration (dc). These
fundamental spatial and temporal characteristics of a walk are
defined as

lc = 1.346
√
vr and dc =

lc
vr

(8)

The first spatial characteristic formula is obtained from the
normalization formula defined in [54]. Note that, normaliza-
tion constant is determined specifically for human gait by
examining lots of experimental studies. The rest of the pa-
rameters change accordingly through kinematic relationships
between different body parts. However, completing this task
in Kinect-based MOCAP data can be challenging due to
fact that the acquired position data already contains a speed
factor. Therefore, another operation along x-axis (distance) is
required. We start by manipulating the sample frequency of
the raw Kinect data which changes the stride rate and speed
of the motion. In Figure 4-(c) and (d), animations derived

from one sample are provided for two different speeds. It
is evident that a faster subject travels longer distance than
a slower subject within the same time interval. The micro-
Doppler signatures are also depicted in Figure 4-(g) and (h)
for the same derivations. Note that faster subjects exhibit
shortened cycles than slower subjects within the same time
interval.

Another important consideration in our simulation method-
ology is about how to discard extreme cases that lead to
signature overlapping and thus cause confusion, such as those
associated with slow running and fast walking. Variants of
these two motions might possibly reside in the same fre-
quency bands as a consequence of changing the speed of
motion. Therefore, to prevent such unwarranted overlapping,
we determined the highest and slowest speeds as well as the
corresponding Doppler frequencies (15 GHz center frequency)
for 7 different human activities, and then limited the diversified
signatures accordingly.

2) Parameterization of Individual Joints: The last step
of the diversification methodology complements scaling and
focuses on the individual joint data, such as left and right leg,
right and left arm, and head. The main idea is to parameterize
the Kinect raw distance data of the different joints separately.
Then, by just perturbing the coefficients of the constructed
models, it is possible to create class variations. Limited
alterations of the model parameters manifest itself in the style
of how the motion is performed.

Parameterization of the joint can be done in several ways,
most easily using curve fitting models. To this end, we
employed different types of curve fitting models, such as
sinusoidal, Fourier series (harmonic), polynomial, linear in-
terpolation, and so forth. Given the periodic nature of the
joint data and by examining the goodness of the constructed
models, the Fourier series was determined to be the best
suited parameterization model for the underlying problem.
This model also provides a good fit for non-period range
trajectories, which are mostly encountered in non-rhythmic
motions, such as falling and sitting. The Fourier series model
describes the given Kinect range data, x defined between 1
to m, as a sum of sine and cosine functions. Resulting model
can be represented in the trigonometric form as

f(x, aj ,bj) = a0 +

n∑
j=1

aj cos(jwx) + bj sin(jwx), (9)

where a0 models a constant term in the data and is associated
with the cosine term for j = 0, w is the fundamental
frequency of the signal, and n (0 < n < 9) is the number
of terms (harmonics). Non-linear least squares method is
employed using Levenberg-Marquardt algorithm [55] to find
the coefficients that gives the best fitting curve and objective
function is defined as

{ãj, b̃j} = argmin
m∑
k=1

‖xk − f(xk, aj , bj)‖2 (j = 1, 2, ..., n)

(10)
The Fourier series model in (10), provides 2n coeffi-

cients, which we can alter depending on the number of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Kinect-based animation results derived from one data for (a) A short subject (b) A tall subject (c) Subject with a slow
stride rate, (d) Subject with a fast stride rate and resulting micro-Doppler signatures for 15 GHz CW radar (e) Short (f) Tall
(g) Slow, and (h) Fast

Fig. 5: Original trajectory of the left arm and perturbed
trajectories

harmonics used. To prevent demolishing the joint trajec-
tory entirely, and preserve the underlying information of the
joint data, we only changed the n-dual harmonic coefficients
[(a1, b1), ..., (an, bn)], one pair at a time, and within a 10%
range value.

Note that, depending on the motion that we put into the
parameterization model, the number of Fourier coefficients
that algorithm decides upon would change. Initially, we would
like to use as many coefficients as possible in our model
because that would provide a better fit to the variations. Param-
eterization starts with 8 Fourier coefficients. Then, depending
on the goodness of the fit and the value of the coefficients,
the algorithm automatically increases or decreases the number

of coefficients. Afterwards, it again computes the goodness of
the fit and checks the values. This process is repeated until a
pre-determined fit goodness is met.

Figure 5 depicts the original trajectory of the left arm and
the perturbed trajectories for walking. It may be observed
that perturbation does not completely demolish the underlying
structure of the trajectory information. Some constraints are
also imposed to make the methodology more consistent with
the kinematics of different motions. For example, when a
harmonics’s dual coefficient pair is changed for different
joints, the algorithm automatically compares the altered arm
and leg lengths with the original lengths to determine whether
alteration is kinematically possible. We again emphasize that
Fourier-series-based modeling and parameter adjustments do
not provide exact representations of possible kinematic mo-
tions, but rather approximate them with different degrees.

C. Validation of the Proposed Methodology

Validation of the diversification algorithm is accomplished
by visually examining the output animations of the extreme
examples and computing the structural similarity index (SSI)
for intra- and 2-D correlation coefficients for inter-class sam-
ples [56]. For visual observations, we determined the maxi-
mum and minimum speeds and height values of the subjects
so as to remove any extreme samples from the diversified
database. The animations and micro-Doppler signatures were
then examined to ascertain the physical feasibility of the
motion, specifically at high scaling and perturbation values.
Since it is not possible to conduct the visual observations for
numerous variants of each motion, the SSI and 2D correlation
coefficients are computed to measure the similarity between
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inter- and intra-class samples, respectively. Whereas the former
represents similarities among members of the same class, the
latter pertains to samples of different classes.

First, the 2D correlation coefficients can be computed to
obtain the inter-class similarity map of the ground truth
samples as depicted in Figure 6-(a). Note that, each class has
their unique cluster in this map. However, falling and sitting
samples seem to receive similar correlation values, which is
anticipated due to the similar kinematic structure of these two
motions. Other than falling and sitting, only a few samples in
the overall map receive higher similarity indices for samples
from different classes.

The SSI can be viewed as a quality metric for images being
compared, provided the other image is regarded as of original
quality. This index is based on the computation of three terms,
namely the luminance term, the contrast term and the structural
term. The overall index is a multiplicative combination of the
three terms:

SSI(x, y) =
2(µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(11)

where µx, µy , σx, σy , and σxy are the local means, standard
deviations, and cross-covariance for images x, y. Also, C1

and C2 are defined as the regularization constants for the
luminance and contrast, respectively. We examined the simi-
larities between the original micro-Doppler signatures and the
variants generated through our diversification algorithm. To
generate variance from the limited number of original samples,
the similarity between the original and variant images must
assume a value less than 1. Too low of a value, however,
can indicate a large divergence and have an adverse effect on
classification accuracy. SSI is computed for the original images
and generated variants as depicted in Figure 6-(b) for three
classes (walking, running, and limping). For each iteration
involving height, each class exhibits patterns in SSI that are
unique to its class, indicating that the variants generated are
consistent with overall class characteristics.

III. EXPERIMENTAL TEST DATASET

The test set used in this work comprises entirely real radar
measurements conducted in an indoor laboratory at TOBB
University. An NI-USRP 2922 model software-defined radio,
mounted 1 meter above the ground, was used to transmit a 4
GHz CW signal. Two SAS-571 horn antennas were placed on
either side of the USRP to yield an approximately monostatic
configuration. Test subjects conducted seven different human
activities at a range from the radar varying between 1 meter
and 5 meters. All experiments were conducted in alignment
with the radar line-of-sight.

Two datasets were formed for testing the proposed transfer
learning approach: a 7-class data set, and an 11-class dataset.
For the 7-class dataset, the activities enacted along with total
number of measurements per class are as follows: walking
(71), jogging (72), limping (104), walking while using a cane
(123), walking while using a walker (121), falling forward
from a standing position (53), and sitting (50). This data set
was augmented with data from four additional classes to form
the 11-class data set; namely, creeping (56), crawling (74),

using a wheelchair (149), and walking with crutches while
one leg is bent at the knee (74).

Micro-Doppler signatures are represented as spectrograms,
computed using a hamming window with length of 2048
samples, 4096 FFT points, and 128 samples overlap. Each
spectrogram was then cropped to a duration of 4 seconds,
converted to grayscale and saved as an image. To reduce
dimensionality, the resulting images were then downsampled
from a size of 656x875 pixels to 90x120 pixels or 327x436.

IV. CNNS TRAINED ON MEASURED RADAR DATA

CNNs [57] have recently gained in popularity as the state-
of-the-art in image classification, blossoming in the fields
of computer vision and natural language processing, where
millions of data samples are easily obtained. Within the CNN
architecture, there are perhaps thousands of hyperparameters
that may be adjusted to find the right combination leading
to the best representation of the data; e.g., dimensionality of
input (size of image), the number of layers in the network
(depth), number of neurons per layer, number of filters per
layer (width), spatial size of filters, type of activation function,
and size of pooling operation.

When pooling layers are utilized, the greater the input
dimensionality, the deeper a CNN may be constructed. In-
creasing dimensionality, however, does not necessarily imply
greater performance, while it does increase the overall compu-
tation time for the network. Filter size and output feature map
size quadratically increase the time complexity [58], while the
depth and the input dimension results in a linear increase.
Increasing the depth, however, has a much greater benefit
to performance than other DNN parameters. In feedforward
neural networks, it has been theoretically shown [59] that
increasing depth by just 1 is exponentially more valuable than
increasing the number of neurons per layer, and that deeper
networks can also have lower errors than wider but shallower
counterparts [60]. In CNNs, depth has been shown to be more
significant than width or filter size [58].

Thus, in this work, we focused on the impact of depth
and input dimensionality on performance using the 7-class
measured dataset described in Section III. The measured data
is separated into subsets of 80% for training and 20% for
testing using 5-fold cross-validation. The validation test set is
derived from random selection of 20% of the training dataset.
The classification results attained are shown in Table II, and
were generated using a randomly initialized CNN with 32
filters on each layer with a size of 3x3, a rectified linear unit
(ReLU) activation function and two fully connected layers
with 150 neurons in each layer. A 2x2 max pooling was
used for all CNN depths except that with 11-layers. After
the first fully connected layer, a dropout operation is applied
with a probability of 50% to mitigate overfitting. Note that
in Table II, the maximum validation accuracies are typically
observed much sooner than the final 500th epoch, while a
tell-tale sign of overfitting is divergence between training and
validation accuracies. Thus, in many cases, overfitting can be
thus prevented by early stopping the training process.

Cases that exhibited problems of overfitting are highlighted
in Table II. While overfitting was observed at greater network
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(a) (b)

Fig. 6: Validation of the proposed signature diversification methodology: (a) Inter-Class comparison between ground-truth
examples (1-9 Walking, 9-18 Running, 18-27 Limping, 27-36 Falling, 36-45 Sitting, 45-51 Cane, and 51-55 Walker) and (b)
Intra-class similarity comparison (x-axes depicts the height iterations: 1-114 first, 114-228 second, 228-342 third, 342-456
fourth, and 456-570 fifth)

TABLE II: Validation accuracy (VA) and test accuracy (TA) as a function of DNN parameters for 7-class case for a CNN
trained on measured data and on diversified data (overfitting cases highlighted)

Trained with Measured Data Only Trained with Diversified Data
90 x 120 Pixel Input 327 x 436 Pixel Input 90 x 120 Pixel Input

No. of Conv. Layers VA Max@Epoch VA @500 TA VA Max@Epoch VA @500 TA Train Acc. VA TA
2 86% @ 30 83% 84% 85% @ 30 79% 80% 99% 95% 93%
4 86% @ 65 86% 87% 85% @ 25 84% 83% 100% 94% 94%
7 81% @ 151 81% 77% 85% @ 40 84% 79% 99% 96% 96%

11 83% @ 132 79% 80% 82% @ 60 82% 81% 95% 90% 91%
15 80% @ 116 76% 74% 72% @13 64% 70% 88% 84% 85%
20 74% @ 97 68% 67% 65% @ 30 61% 61% 100% 78% 80%
25 64% @74 52% 49% 69% @21 43% 42% 100% 63% 64%
30 14% 14% 14% 14% 14% 14% 100% 14% 14%

depths for the larger input size 437x436, we found that the
validation and test accuracies using the larger input size were
low than that of the smaller image, given the same network
depth. Thus, an input dimension of 90x120 was selected.

Through comparison of validation and test accuracies, the
generalization performance of the DNN may also be assessed.
Significant differences between the validation and test accura-
cies, such as incurred in the 7 convolutional-layer CNN, are an
indication that the network cannot generalize to new test cases;
i.e., individual gate or body type. For the 7-class problem, a
4-convolutional layer CNN, taking inputs of 90x120 pixels
yields the highest test accuracy with no generalization loss.

V. DNNS TRAINED ON DIVERSIFIED DATA

A. CNNs

The limitations in classification accuracy and network depth
may be overcome by using a larger dataset spanning the
in-class variations expected from different target profiles.
In this work, such a diversified dataset of 32,000 samples
is generated using the methodology outlined in Section II
from 55 original Kinect-based MOCAP measurements of 5
test subjects collected in the Radar Imaging Laboratory at
Villanova University. The diversified signatures are used for
initial pre-training of CNN weights, while subsequently 474
measured micro-Doppler signatures are used for fine-tuning.

The remaining 120 measured signatures are used for the test
dataset. Note that the test subjects from Villanova University
used in acquiring MOCAP measurements are entirely different
from those used in collection of real measurements at TOBB
University. The training, validation, and test accuracy achieved
for CNNs with different depths and an input image size of
90x120 pixels are given in Table II.

Comparing the results for measured and diversified training
data given in Table II, it may be observed that use of the
proposed diversified dataset in the training process has in
general resulted in higher classification accuracies - a 9% im-
provement when comparing the best performing architectures.
Moreover, overfitting does not become significantly large until
greater depths, e.g. 20 convolutional layers. However, it is
important to notice that at 11 and 15 layers - before any
overfitting has been observed - a drop in training accuracy,
which parallels a similar drop in validation accuracy, occurs.
Degradation in training accuracy (increased training error) is
a problem that has been observed as network depth increases:
first classification accuracy is saturated, followed by a rapid
decrease. To remedy this problem, utilization of residual units
have been recently proposed [47] as a means to improve
optimization, and, thus, accuracy as a function of depth.
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TABLE III: Classification performance for 7-class case of
residual DivNet pre-trained on 90x120 pixel diversified data.

No. of Conv. Layers Train Acc. VA TA
5 100% 96% 96%

10 100% 95.6% 96%
15 100% 98% 97%
20 100% 95% 94%
25 100% 78% 73%
30 100% 14% 14%

B. Residual Learning

Deep residual networks are comprised of building blocks,
which rather than computing the original mapping of yl(x) :=
h(xl), compute the residual mapping of

yl = h(xl) + F (xl,Wl), (12)

xl+1 = f(yl), (13)

where xl is the input to the lth residual unit (RU), Wl =
Wl,k|1≤k≤K is a set of weights and biases for the lth RU,
K is the number of layers in a RU; F is a residual function,
e.g. a stack of two convolutional layers; h(xl) = xl is an
identity mapping that is performed by using a shortcut path,
and f is an activation function (e.g., ReLU). In addition,
batch normalization (BN) layers are used, where batches are
standardized (zero mean/unit variance) throughout the network
to reduce the interval co-variance shift, which allows larger
learning rates to be used [61]. Shortcut connections can thus be
created within the network by simply implementing an identity
mapping. By driving subsequent layers with the residual (i.e.,
the input x as well as output of previous layer), the network is
forced to effectively learn something new beyond that already
embodied by previous layers. Thus, another advantage of
residual learning is that very deep networks can be constructed
without worrying about whether the network is ”too deep” -
if adding layers gives no benefit, residual blocks can learn the
identity mapping and thus do no harm to performance.

In this work, we utilize a modified RU [62], which is
more easily trainable and possesses improved generalization
properties. In the modified RU, the activation function is now
placed before the final addition, as opposed to afterwards.
The resulting overall residual transfer learning network (called
DivNet), which we propose to be trained on diversified micro-
Doppler signatures, includes 7 residual units and is comprised
of a total of 32 layers (with 15 convolutional) layers, as shown
in Figure 7.

The improvement in training and classification accuracy
attainable using residual transfer learning on the diversified
dataset is shown in Table III. With the utilization of residual
units, the problem in training accuracy degradation has been
resolved, and overfitting is not observed until a depth of 25
convolutional layers. Validation accuracy has also been further
improved by 1% to 97% for 15 convolutional layer DivNet
(a.k.a. DivNet-15, in short). Note that the performance gains
achieved by using the diversified data (an improvement of 9%
for CNNs, as shown in Table II) significantly surpasses the
accuracy improvement caused by residual learning for this
particular dataset; in combination, however, DivNet has the

ability to offer the construction and training of arbitrarily deep
neural networks for micro-Doppler classification.

VI. ADVANTAGES OF DIVNET

In this section, a closer look at the benefits offered by initial
pre-training on diversified, simulated data will be made. In
particular, the proposed approach will be compared to using
the current conventional approach of training with a small set
of measured data, and a recently proposed approach of using
transfer learning with initial pre-training on optical imagery,
such as the ImageNet database.

Transfer learning is a technique that has been proposed for
domain adaptation when a little or no labeled data is available
relating to the targeted classes. The network is first initialized
using labeled data from a different source domain; then, the
small set of task-related labeled data is used to fine tune
initialized parameters prior to classification of the test set. In
radar micro-Doppler literature, the 16-layer VGGnet [45] has
been pre-trained on the ImageNet [46] database, comprised
of 1.5 million RGB images, while fine-tuned with just 625
measurements to yield a classification accuracy of 80.3% in
distinguishing 5 different types of swimming [44]. However,
DNNs that perform well on optical imagery, do not necessarily
have the comparable level of performance on radar data. For
example, on ImageNet, the 22-layer CNN named GoogleNet
[63] yielded surperior performance than VGGnet - yet in a
recent study [64] comparing performance on micro-Doppler
data, VGGnet was found to consistenly outperform GoogleNet.
Thus, in this section we compare the performance of DivNet-
15 with transfer learning from optical imagery using VGGnet
and a 50-layer version of the deepest, most advanced network
constructed to date, Microsoft’s residual neural network named
ResNet [65], and a 4-layer CNN trained on 474 samples of
measured data (described in Section IV).

A. Bottleneck Feature Performance Comparison

To evaluate the differences in network initialization offered
by the different networks (VGGnet, ResNet-50 and proposed
DivNet-15) and transfer domains (optical versus simulated,
diversified RF), the classification performance of bottleneck
features alone is examined. Bottleneck features refer to the last
activation maps before the full-connected layers. In order to
examine the performance of bottleneck features, the previously
trained fully-connected layers are removed from the network
and, instead, two randomly-initialized fully-connected layers,
each containing 150 neurons are added, followed by a softmax
classifier with 7 neurons. Each layer up to the fully-connected
layers is frozen; thus, weights of the convolutional blocks do
not change by back-propagation. With fixed activation maps,
the randomly-initialized fully-connected layers are trained
with measured micro-Doppler data by using stochastic gra-
dient descent with a learning rate of 0.001 and batch size of
50. Using this procedure allows us to isolate the impact of
initial pre-training of network weights on performance.

The results for validation accuracy with bottleneck features
are given in Figure 8(a) for VGGNet, ResNet-50, and the
proposed DivNet-15 for the classification of the 7-class human
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Fig. 7: Proposed 15-convolutional layer residual learning DivNet architecture.

micro-Doppler data. ResNet-50 is found to give roughly a 15%
performance improvement over VGGnet. This improvement
may be attributed to the impact of residual learning and its
facilitation of deeper, better optimized neural networks. How-
ever, the proposed DivNet-15 trained on diversified data, which
is also a residual network, offers an additional accuracy of
15% over ResNet-50 and 30% over VGGnet. This represents
a substantial improvement and is a testament to the benefits
of pre-training on diversified simulations of micro-Doppler
instead of optical imagery.

B. Classification Accuracy and Target Generalization

The classification accuracy given by using the baseline 4-
layer CNN conventionally trained with measured data only,
transfer learning from optical imagery, and the proposed
DivNet-15 trained on diversified data is compared in Figure
8(b). The weights of all networks have been fine-tuned with
474 samples of measured data spanning 7 target classes sub-
sequent to initial pre-training. Notice that this second training
stage yields a significant improvement over the initial pre-
training offered with optical imagery - increasing accuracy
to to 94% for VGGnet and 95% for ResNet. Meanwhile,
conventional training on a small set of measured data alone
with the 4-layer baseline CNN results in the worst performance
with an accuracy of 86%. In contrast, the proposed DivNet-15
pre-trained on diversified data outperforms all other methods
with 97% test accuracy.

This result is significant not only in that it substantially
reduces the amount of human resources required to procure the
training dataset, but also in that it enables high performance
even when the test subject has never yet been observed before:
i.e., good target generalization. The Kinect-based MOCAP
measurements are collected at Villanova University on a com-
plete distinct set of test subjects than the test data set, which
was collected at TOBB University. The ability to generalize
to previously unobserved targets is an important result when
considered that this situation is typical in security applications
and that conventional classifiers have been known to exhibit
significant losses on the order of tens of percent in accuracy
when the subjects comprising the test data differ from that of
the training data [66].

Finally, a confusion matrix showing the classification per-
formance of DivNet-15 for each activity is given in Table IV. It
may be observed that the primary source of confusion occurs

between the classes of walking with a cane versus using a
walker, while all other classes have been correctly identified
with at least 97% accuracy. Reasons for this confusion may
be the inherent similarity between classes, and that the current
simulations of micro-Doppler include only reflections due to
the human body, not due to walking aides.

C. Performance Under Noise

First, the classification performance for each method under
varying levels of noise is considered for the 7-class problem.
The validation accuracies attained as a function of epoch are
shown in Figure 9 for three different signal-to-noise ratios
(SNRs): 40 dB, 30 dB and 15 dB. Notice that the proposed
DivNet approach exhibits much more consistency during the
training process, as well as rapid convergence near about
40 epochs at a validation accuracy that surpasses all other
methods at high SNR (30 dB and 40 dB). When noise is
relatively high, such as at 15 dB SNR, all transfer learning
methods perform roughly the same, greatly surpassing the
baseline CNN by about 15%. Thus, in general, it may be
observed that transfer learning approaches are more robust
against noise than CNNs using only real data for training.
However, despite being a much deeper network, ResNet-
50 offers close to the same performance as VGGNet - an
indication of the limitations incurred due to training on a
transfer domain substantially different in phenomenology of
the target domain (i.e. optical versus radio frequency). In
essence, the proposed method offers the best of both worlds:
reaping the benefits of transfer learning from a training set that
may be made arbitrarily large, while maintaining the physical
relevance and similarities between training and test sets. Test
accuracies achieved at different SNRs for all methods are
tabulated in Table V. The proposed method surpasses other
methods at high SNR. At low SNR, all transfer learning
approaches clearly surpass the performance attained by the
baseline CNN.

D. Class Generalization Performance

Another benefit of the diversified data on training is its po-
tential to improve the initialization of DNNs when classifying
a greater number of classes than for which MOCAP-based
training data exists. For example, consider the classification
of 11 activities, where in addition to the 7 activities consid-
ered before, measured data for creeping, crawling, using a
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Fig. 8: Validation accuracy for each method taking 90x120 pixel inputs: (a) bottleneck feature performance for 7-class case,
(b) performance after fine-tuning for 7-class case, and (c) performance after fine-tuning for generalization to 11-class case.

TABLE IV: Confusion matrix for DivNet with overall test accuracy of 97% at 40 dB SNR.

% Walking Jogging Limping Falling Sitting Cane Walker
Walking 100 0 0 0 0 0 0
Jogging 0 100 0 0 0 0 0
Limping 0 0 97.2 0 0 2.8 0
Falling 0 0 0 100 0 0 0
Sitting 0 0 0 0 100 0 0
Cane 0 0 0 0 0 96.4 3.6

Walker 0 0 0 0 0 15.41 84.59
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Fig. 9: Validation accuracy for classification of 7 activities with 90x120 pixel inputs.

TABLE V: 7-class test accuracy for all methods.

Method 40 dB 30 dB 15 dB
Proposed DivNet-15 97% 89% 85%

ResNet-50 95% 88% 85%
VGGnet 94% 87% 86%

Baseline CNN 86% 70% 69%

wheelchair and walking with crutches has also been acquired.
However, suppose that MOCAP data for only the original 7-
classes has been acquired. Using the proposed methodology,
we will thus initially pre-train on 7-classes of diversified data,
while fine-tuning on 11-classes of measured data.

Table VI shows the classification performance achieved as
a function of DNN depth. In this case, overfitting is not ob-
served until a depth of 20 convolutional layers. The maximum
accuracy is achieved with 15 layers, as in the 7-class case;
hence, in Figure 8(c), we next compare the performance of

DivNet-15 to that achieved using VGGnet and ResNet trained
on optical imagery, as well as the baseline 4-layer CNN trained
on measured data only. The proposed approach again yields
the highest accuracy of 95.7%, significantly higher than the
conventionally trained baseline CNN that gives 87% accuracy,
as well as transfer learning from optical imagery: VGGnet and
ResNet both yield an accuracy of 91%.

A confusion matrix showing the classification performance
of DivNet-15 for the 11-class activity recognition problem
is given in Table VII. As before, a significant source of
confusion is cane versus walker usage. But now the primary
confusion is observed between creeping and crawling. This is
not unexpected due to the similarity between classes, and the
tendency for subjects to push-off on the knees when trying to
perform a military style creep. All other classes, however, are
correctly identified with at least 96% accuracy.

These results show that simulated MOCAP data for each
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TABLE VI: Classification performance for 11-class case for
residual DivNet pre-trained on 7-classes of 90x120 pixel
diversified data (overfitting cases highlighted)

No. of Conv. Layers Train Acc. VA TA
5 100% 93% 91%

10 100% 94.5% 95%
15 100% 96% 96%
20 100% 90% 91%
25 100% 80.5% 76%
30 100% 9% 9%

class is not necessarily required - if MOCAP data for a given
class is for any reason unavailable or not acquirable, pre-
training on diversified data from similar classes can still be
used to minimize measured data requirements through fine-
tuning.

E. Class Visualization Comparison

To better understand the internal workings of the DNNs
considered in this work, a technique for visualizing learned
class representations is utilized. The approach is based on re-
constructing an image x from its representation Φ(x) through
minimization of the following objective function:

x∗ = argmin
x

RTV β (x) + ‖x‖αα +− 1

Z
〈Φ(x),Φ0〉 (14)

where x∗ is the reconstructed image, and Z is a normalization
constant. The term ‖x‖αα regularizes the objective function
by forcing the intensity of the pixels to stay within a fixed
boundary, while the term RTV β (x) denotes the total variation
of an image x:

RTV β (x) =
1

HWV β

∑
uvk

(
(x(v, u,+1, k)− x(v, u, k))2

+ (x(v + 1, u, k)− x(v, u, k))2
) β

2

(15)

where H and W refers to the number of rows and columns of
an image x, respectively, and V is the norm of the gradient.
Also u represents the image columns, v represents the image
rows and k represents the color channels. The TV regular-
ization term has the effect of penalizing the gradients for
large values. It also explicitly forces the representation to have
piece-wise constant patches to enable a clean representation
[67]. The last term denotes the loss function, which compares
the class representation Φ(x) with the target image Φ0 using
an inner product.

To visualize what the network thinks best represents a cer-
tain class, the network is supplied a randomly generated image,
while each class is assigned a score, and the optimization in
Eq. 14 done so that the score of other classes is minimized
[68]. In this work, this is done by using a linear activation
function (by replacing the softmax function), and choosing
the values of parameters β and V as 3 and 20, respectively,
while α is selected as 6. The Equation 14 is solved with a
gradient based solver for 500 iterations with a learning rate of
0.01 for the class of falling. The representations obtained are
shown in Figure 10(a) for each model.

From Figure 10(a), it may be observed that the proposed Di-
vNet approach yields the class representation that best matches
a spectrogram for falling. VGGnet also captures the initial
burst of energy in the image corresponding to the fall, while
neither CNN nor ResNet produce intuitive representations.

We have also investigated how training data size affects the
class visualizations. In that regard, Figure 10(b) is obtained
for falling class by training the DivNet architecture with
2500, 10000, 20000 and 30000 simulated training samples.
It can be seen that the learned class visualizations are getting
more representative as the number of training data increases.
However, even 2500 samples are seen to be producing relevant
results.

VII. IMPLEMENTATION CONSIDERATIONS

A. Computational Complexity

The proposed DivNet-15 architecture for residual transfer
learning from diversified micro-Doppler signatures has signif-
icantly less computational complexity in comparison to other
transfer learning networks, while offering better performance.
Consider the comparison of computational time and network
parameters given in Table VIII, where all computations are
done on a NVIDIA Tesla K80 GPU which has a 24 GB
of VRAM. With the smallest number of convolutional pa-
rameters, the baseline CNN is fastest in terms of time per
epoch, but worst in terms of accuracy. Among transfer learning
methods, the proposed DivNet architecture not only has the
greatest accuracy, but also implements a less complex network
(fewer total parameters and convolutional parameters) with
fastest time per epoch. We attribute the performance gains
with less complexity to training on signatures that are more
closely related to target domain - the network is able to learn
more quickly the more relevant features to the underlying
classification problem.

B. Diversified Database Size

The amount of training data utilized can not only limit the
depth of DNNs, but can also affect the overall accuracy of
the network when there is no overfitting. Table IX shows how
the validation and test accuracies depend upon the number
of diversified samples used in pre-training. When the size of
training sample support is low, such as for the cases of 7500
or fewer, note that there is a significant degradation in test
accuracy from the maximum achievable with ample sample
support (e.g. 30,000 samples). For the 7-class and 11-class
cases, the difference in having 30,000 samples versus just
2,500 samples is as much as 13% and 14%, respectively. These
results also show, however, that once a minimum critical size
has been reached, generating an even large training database
offers minimal gains. For example, increasing the training
sample support from 15,000 to 30,000 samples results in only
a 1% increase in test accuracy.

VIII. CONCLUSION

This work proposed a new method for training deep neural
networks for radar micro-Doppler classification. This method
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TABLE VII: Confusion matrix with DivNet-15 for 11-class case with overall test accuracy of 95.7%.

% Walking Jogging Limping Falling Sitting Cane Walker Crutches Wheelchair Crawling Creeping
Walking 100 0 0 0 0 0 0 0 0 0 0
Jogging 0 100 0 0 0 0 0 0 0 0 0
Limping 0 0 100 0 0 0 0 0 0 0 0
Falling 0 0 0 100 0 0 0 0 0 0 0
Sitting 0 0 0 0 100 0 0 0 0 0 0
Cane 0 0 0 0 0 100 0 0 0 0 0

Walker 0 0 0 0 0 13.14 86.86 0 0 0 0
Crutches 0 0 0 0 0 0 0 100 0 0 0

Wheelchair 0 0 4 0 0 0 0 0 96 0 0
Crawling 0 0 0 0 0 0 0 0 0 88.4 11.6
Creeping 0 0 0 0 0 0 0 0 0 18.47 81.53

(a) (b)

Fig. 10: Class visualizations: (a) Falling class, after fine tuning with measured data, for each compared method; and (b) falling
class for different numbers of diversified samples used in pre-training.

TABLE VIII: Computational complexity for all methods.

CNN VGGnet ResNet DivNet
Time / Epoch 0.4 s 9 s 20 s 1 s
Total Params 124,525 15,200,000 23,866,253 4,814,000
Conv. Params 28,064 14,700,000 23,587,712 1,614,091

TABLE IX: Performance vs. training sample support size.

7-class Case 11-class Case
Sample # VA@500th epoch TA VA@500th epoch TA

2500 84% 84% 84.5% 81%
5000 92% 90% 88% 89%
7500 91% 90% 88% 88%
15000 96% 95.5% 96% 95%
30000 98% 97% 97% 96%

generates possible variants of human motions by exploiting
MOCAP simulations to diversify Kinect-based measurements.
The approach not only allows the generation of unlimited
training data, but also enables these data to span a wide
range of micro-Doppler signatures that are closely resembling
or accurately representing those corresponding to the ground
truth. This was done by accounting for variations in body
size, speed, and individual gait style. Residual transfer learning
was proposed with initial pre-training on diversified signatures
to construct deeper neural networks with increased accuracy.
The proposed approach minimizes the requirement for a large
number of measured samples; instead, just 474 measured
samples were needed to fine-tune the network and achieve
a high classification accuracy of 97% for a 7-class activity
recognition problem. Additionally, it was shown that the
proposed approach yields high target and class generalization
performance, outperforming conventional training on small

measured data sets and transfer learning from optical imagery.
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