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On the Impulsive Formation Control of Spacecraft
Under Path Constraints

Amir Shakouri

Abstract—This paper deals with the impulsive formation con-
trol of spacecraft in the presence of constraints on the position
vector and time. Determining a set of path constraints can
increase the safety and reliability in an impulsive relative motion
of spacecraft. Specially, the feasibility problem of the position
norm constraints is considered in this paper. Under assumptions,
it is proved that if a position vector be reachable, then the
reach time and the corresponding time of impulses are unique.
The trajectory boundedness of the spacecraft between adjacent
impulses are analyzed using the Gerschgorin and the Rayleigh-
Ritz theorems as well as a finite form of the Jensen’s inequality.
Some boundaries are introduced regarding the Jordan-Brouwer
separation theorem which are useful in checking the satisfaction
of a constraint. Two numerical examples (approximate circular
formation keeping and collision-free maneuver) are solved in
order to show the applications and visualize the results.

I. INTRODUCTION

THE relative spacecraft dynamics has considerably drawn
the attentions due to its applications both in the formation

flying and the rendezvous missions. In the simplest form,
two spacecraft are considered in which a Chaser Spacecraft
(CS) is the actuated system and a Target Spacecraft (TS)
is located at the origin. The spacecraft are assumed to be
point masses that are governed by a central gravitational force.
In this context, the CS follows a path relative to the TS
which is constrained dynamically and/or geometrically. Some
constraints are essential to make the mission possible, while
some others can be considered in order to raise the safety and
reliability of the mission.

The relative motion of spacecraft can be developed as a
linear time-invariant state-space model as initially proposed
in [1] that is called the Clohessy-Wiltshire (CW) system. The
CW model is straightforward to be implemented and optimized
in the unconstrained cases [2], [3], while the simplification
assumptions are not much away from reality. However, many
different models are proposed for the relative motion of
spacecraft in the presence of perturbations and in the vicinity
of circular or elliptical orbits [4], [5].

Relative control of spacecraft is widely discussed in the
literature and many different schemes are proposed. Optimal
impulsive approaches based on the primer vector solutions
are investigated in [6]– [8]. Gao et al. discussed the robust
H∞ control of relative motion [9], while solutions to the
matrix inequalities are proposed by Tian and Jia [10]. Mesbahi
and Hadaegh studied the formation flying control via graphs,
matrix inequalities, and switching [11].
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Constraints can be applied on the spacecraft state and/or
actuator in different forms. Path constrained problems are
discussed by Taur et al. [12] with impulsive time-fixed ac-
tuation. Soileau and Stern developed some necessary and
sufficient conditions [13]. A method for constrained trajectory
generation for micro-satellite formations is investigated by
Milan et al. [14] and a finite thrust solution for state constraints
is discussed by Beard and Hadaegh [15]. A model predictive
control for handling the constraints is proposed by Weiss et al.
[16] and Chen et al. analyzed the non-holonomic constraints
[17]. For the spacecraft rendezvous with actuator saturation,
a gain scheduled control is developed by Zhou et al. [18].
The global stabilization of CW system by saturated linear
feedback is discussed in [19]. A covariance-based rendezvous
design method is developed in [20] by Shakouri et al. at which
several constraints on the control effort, maximum impulse
value, flight time, and safe zones are taken into account.

The spacecraft actuation can be modeled by impulses in
which the burning duration is negligible with respect to the
time interval between adjacent burning instances. These low
duration accelerations can be modeled by an impulse as a
momentary change in velocity vector [6], [7], [12], [21].
The use of hybrid impulsive-continuous actuation is studied
by Sobiesiak and Damaren [22]. In [23] a multi-objective
optimization is implemented by Luo et al. in order to achieve
safe collision-free trajectories with admissible control efforts.

In this paper, the impulsive behavior of the CS under equal-
ity and/or inequality path constraints are investigated. The im-
pulse times and positions are assumed as the decision variables
instead of impulse values. This point of view has advantages
in considering the path constraints and disadvantages in the
ignorance of the optimal solution. Under certain assumptions,
it is shown that if a position vector is reachable, then the
time of the next impulse and the corresponding reach time are
unique (Theorem 1). Furthermore, using the Gerschgorin circle
theorem and some results from the Rayleigh-Ritz theorem
beside several spectral facts, an upper norm bound for the
CS’s trajectory subject to two-impulse maneuver is found
(Theorem 2) which constructs the primary contribution of
the paper. Afterwards, using the Jensen’s inequality, some
bounding cones are introduced (Theorem 3). The Jordan-
Brouwer seperation theorem is used to show that how an area
can be unreachable for the CS. Two numerical examples are
provided used to show the applications of the results. First,
an approximate Circular Formation Keeping (CFK) problem
is considered in which the CS finds those reachable areas as
its impulse positions such that the keep-out and the approach
circles constraints are not violated. It is shown how the CS
can stay in an approximately circular trajectory just by two
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impulses. The second example is a Collision-Free Maneuver
(CFM) where it is shown that how several impulse positions
can be selected such that the CS do not collide with a keep-
out circle with any times of impulse. This point of view can
result in CFMs which are insensitive to the impulse times.

The rest of the paper is organized as follows: First, the
preliminaries regarding the notations, basic formulations, as-
sumptions, some spectral facts, and the essential definitions are
presented. Then, in Section III the main theoretical results of
the paper are derived. In Section IV two numerical examples
are provided in order to visualize the theoretical results.
Next, some discussions are presented about the consequences
and the applications. Finally, Section VII is dedicated to the
concluding remarks.

II. PRELIMINARIES

A. Notation

This subsection briefly introduces the notations that are used
throughout the paper.

Let Mm,n denote the space of m × n real (or complex)
matrices and Mn its square analog. In addition, let Sn denote
the space of n-dimensional real symmetric matrices, and Rn
denotes the space of n-dimensional real vectors. The (i, j)th
entry of a matrix M ∈ Mm,n is referred to by M(i,j) and
the ith entry of vector r ∈ Rn is referred to by r(i). Upper
and lower case letters are used to denote matrices and vectors,
respectively. Greek letters are used to denote the scalars. For
matrix M , we note by MT its transpose, by M−1 its inverse
(if exists), by null(M) its nullity, and by rank(M) its rank.

The symbol ‖·‖ denotes a norm and specially ‖·‖p denotes
the p-norm of a vector. The boundary of a set S ⊂ Rn is
denoted by ∂S. We use the element-wise inequality x � 0 to
show that x(i) ≥ 0, i = 1, ..., n, and x � y is equivalent to
x − y � 0. The symbol 1 is used to denote a vector with all
elements equal to 1.

Let τ1, τ2 ∈ [0,∞) such that τ1 < τ2, then the following
notation is used to define the time sets:

Tτ1 = {τ ∈ R|0 < τ < τ1}

So, T∞ = {τ ∈ R|0 < τ <∞} and Tτ2 −Tτ1 = {τ ∈ R|τ1 <
τ < τ2}. Subscript i ∈ N is used when referring to the time
steps, and subscript l ∈ N is used to distinct the constraints.

B. System Model and Essentials

In spacecraft relative motion, the Chaser Spacecraft (CS)
is the actuated system and the Target Spacecraft (TS) defines
the final states that needs to be reached. Let introduce several
assumptions that are made in the rest of the paper.

Assumption 1: Let αTS ∈ R denote the semi-major axis of
the TS’s orbit and r ∈ R3 denote the relative position of the CS
with respect to the TS in an arbitrary TS-centered coordinate
system. The following assumptions are made:

(i) The two-body gravitational force is governing and no
perturbations exist.

(ii) The TS is in a circular orbit.
(iii) ‖r‖2/αTS � 1.

Let ri ∈ R3 and vi ∈ R3 denote the position and velocity
vectors at step i ∈ N, respectively. Suppose ri and vi are
relative position and velocity of the CS defined in the RSW
coordinate system of the TS (The RSW coordinate systems is
defined such that its x-axis is in the direction of the position
vector of the associated spacecraft, the z-axis towards the
orbital angular momentum vector, and the y-axis completes
the right-handed coordinate system). Let ti ∈ T∞, denote the
time, ∆ti+1,i = ti+1 − ti ∈ T∞, and Frr(·) : T∞ 7→ M3

(similarly for Frv, Fvr, and Fvv). Considering Assumption 1
holds, the solution of the CW equations are as follows:

ri+1 = Frr(∆ti+1,i)ri + Frv(∆ti+1,i)vi (1)

vi+1 = Fvr(∆ti+1,i)ri + Fvv(∆ti+1,i)vi (2)

in which

Frr =

 4− 3 cosκt 0 0
6(sinκt − κt) 1 0

0 0 cosκt



Frv =
1

κ

 sinκt 2(1− cosκt) 0
−2(1− cosκt) 4 sinκt − 3κt 0

0 0 sinκt



Fvr =
d(Frr)

d(∆ti+1,i)
= κ

 3 sinκt 0 0
6(cosκt − 1) 0 0

0 0 − sinκt



Fvv =
d(Frv)

d(∆ti+1,i)
=

 cosκt 2 sinκt 0
−2 sinκt 4 cosκt − 3 0

0 0 cosκt


where κt = κ∆ti+1,i, κ =

√
µ/α3

TS is the mean motion of
the TS, and µ stands for the central body (Earth) gravitational
parameter. We shall use Fr/v,r/v instead of Fr/v,r/v(·) for
simplicity. Here, another assumption is made to avoid singu-
larities in the matrices defined above.

Assumption 2: The time interval between any two subse-
quent impulses should be less than π/κ, i.e., ∀i ∈ {1, ..., n−
1}, ∆ti+1,i ∈ Tπ/κ.

It is worth mentioning that for a relative motion of space-
craft with a total flight time of ∆ttotal ∈ [0,∞), if the number
of impulses satisfy n ≥ min{floor[∆ttotal/(π/κ)]+1, 2}, then
Assumption 2 can be satisfied.

Let us introduce the position and velocity vectors, r−i and
v−i , in which define the position and velocity vectors before
applying an impulse vector, ∆vi ∈ R3, at ith step. After
applying the impulse vector, the position and velocity vectors
become r+

i = r−i ≡ ri and v+
i = v−i + ∆vi. So, the position

and velocity after ∆ti+1,i are found from (1) as

ri+1 = Frrri + Frvv
+
i = Frrri + Frv(v

−
i + ∆vi) (3)

vi+1 = Fvrri + Fvvv
+
i = Fvrri + Fvv(v

−
i + ∆vi) (4)

Therefore, form (2) knowing ri, ri+1, and v−i , the impulse
vector ∆vi is

∆vi = F−1
rv (ri+1 − Frrri)− v−i (5)



3

Remark 1: For an n-impulse relative motion between known
r1, rn, v−1 , and v+

n , which is usually the case, the decision
variables can be chosen to be one of the following sets:

(i) {ri ∈ R3|i = 2, ..., n − 1} ∪ {∆ti+1,i ∈ Tπ/κ|i =
1, ..., n− 1}

(ii) {∆vi ∈ R3|i = 1, ..., n − 2} ∪ {∆ti+1,i ∈ Tπ/κ|i =
1, ..., n− 1}

(iii) {ri ∈ R3|i = 2, ..., n− 1}∪{‖∆vi‖2 ∈ R3|i = 1, ..., n−
1}

Each of the above sets has 2n − 3 members. So, for an n-
impulse trajectory, a number of 2n−3 decision variables (n−2
vectors and n− 1 scalars) are needed to determine the whole
trajectory.

Consider the following matrices:

F2(t, τ) = Frv(t)F
−1
rv (τ) (6)

F1(t, τ) = Frr(t)− F2(t, τ)Frr(τ) (7)

in which τ ∈ Tπ/κ and t ∈ Tτ . Suppose τ to be fixed, so
we use F1(t, τ) ≡ F1(t) and F2(t, τ) ≡ F2(t) for simplicity.
From (1) to (4) it can be shown that how the CS’s trajectory
behaves in the time domain subjected to fixed initial (ri) and
final positions (ri+1) as well as the total flight time (∆ti+1,i).
Using the forms defined in (6) and (7):

r(t,∆ti+1,i) = F1(t,∆ti+1,i)ri + F2(t,∆ti+1,i)ri+1 (8)

in which we use simply r ≡ r(t,∆ti+1,i) for fixed ∆ti+1,i.

C. Spectral Analysis

The spectral properties of some matrices are needed to
be analyzed to be used further in obtaining the results. Let
λ11(t), λ22(t) ∈ R3 denote the eigenvalues of FT1 (t)F1(t) and
FT2 (t)F2(t), respectively, that are sorted in vectors such that
λii(j)(t) ≤ λii(j+1)(t) for i, j ∈ {1, 2}. Now, consider the
following 6× 6 symmetric block form matrix:

F̂ (t) =

[
FT1 (t)F1(t) FT1 (t)F2(t)
FT2 (t)F1(t) FT2 (t)F2(t)

]
(9)

Denote the eigenvalues of F̂ (t) by λ̂(1)(t) ≤ λ̂(2)(t) ≤ ... ≤
λ̂(6)(t). The following facts are analytically or numerically
evaluated:

Fact 1: Under Assumptions 1 and 2 the following statements
hold for matrices F1 and F2:

(i) rank[FT1 (t)F1(t)] = 3, rank[FT2 (t)F2(t)] = 3, and both
have three real nonzero eigenvalues.

(ii) At any t ∈ Tτ , the following property holds for the
eigenvalues of FT1 F1 and FT2 F2:

λ11(t)− λ22(τ − t) = 0 (10)

(iii) For i ∈ {1, 2}, at any t ∈ Tτ , λii(3) < 1 for 0 < τ <
(π/κ)/2, λii(3) = 1 for τ = (π/κ)/2, and λii(3) > 1 for
(π/κ)/2 < τ < π/κ.

Fact 2: Under Assumptions 1 and 2 the following statements
hold for matrix F̂ :

(i) rank[F̂ (t)] = 3, null[F̂ (t)] = 3, and it has three eigen-
values of zero, i.e., λ̂(1)(t) = λ̂(2)(t) = λ̂(3)(t) = 0.

(ii) At any t ∈ Tτ , the entries of F̂ (t) has the following
property for i = 1, 2, 3:

6∑
j=1

‖F̂(i,j)(t)‖1 − ‖F̂(i+3,j)(τ − t)‖1 = 0 (11)

(iii) The eigenvalues of F̂ (t) are constant over time or they
have a single extremum at t = τ/2.

(iv) At any t ∈ Tτ , λ̂(6) < 1 for 0 < τ < (π/κ)/2, λ̂(6) = 1

for τ = (π/κ)/2, and λ̂(6) > 1 for (π/κ)/2 < τ < π/κ.

D. Definitions

Notation 1: Let Γji (n) denote a trajectory such that n
impulses are used starting from index i and ending in j
such that the first and the last impulses are applied at i and
j, respectively. For example, Γ3

1(2) denotes a two-impulse
trajectory that starts from r1, v−1 at t1, and ends in r3 at t3.

It should be noted that the symbol Γji (n) do not give any
knowledge about the decision variables and the initial/final
states of the trajectory. So, Γji (n) alone cannot define a relative
spacecraft motion trajectory even for two-impulse missions.

Definition 1: Let r ∈ R3 denote the position vector at
t ∈ T∞. Consider the sets T̃l ⊂ T∞ and R̃l ⊂ R3 at
l ∈ {1, 2, ...,m} for m ∈ N. Path Constraints (PCs) are those
constraints that can be stated as follows:

∀t ∈ T̃l : r ∈ R̃l (12)

In this paper we are dealing with a special kind of PCs.
Suppose r̃l ∈ R3, ρ′l, ρ

′′
l ∈ R, and t̃l ∈ T∞ are predefined

parameters at l = 1, ...,m. The general PCs defined in (12)
can be reduced to an inequality form such that:

T̃l = Tt̃l , R̃l =
{
r ∈ R3|ρ′l ≤ ‖r − r̃l‖2 ≤ ρ′′l

}
(13)

Each PC of the form (13) restricts the CS’s path between
two spheres at a time interval. The form of inequality PCs
introduced in (13) can be used for trajectories that avoid
collisions independent from the transfer time. The following
feasibility problem, states the main subject of the paper.

Problem 1: Find the decision variables (discussed in Remark
1) such that satisfies a PC of the form (13).

Remark 2: In (13), assuming ρ′′l → ∞, the PC defines a
forbidden region at t ∈ Tt̃l . This region is bounded by ‖r −
r̃l‖2 = ρ′l. This kind of PCs can be used to define collision-
free trajectories that are robust with respect to actuator fault
and failure.

The inequality form of (13) can turns to equality if T̃l = {t̃l}
and ρ′l = ρ′′l = 0. So, an equality PC can be stated in the
following form:

T̃l = {t̃l}, R̃l = {r̃l} (14)

Remark 3: A spacecraft trajectory with known initial and
final positions, r1 and rn, which is usually the case, essentially
has two PCs of the equality form; the first is ‖r − r̃1‖2 = 0
at t = 0 and the second is ‖r − r̃n‖2 = 0 at t = tn.

A two-point constrained single-impulse reachability (or sim-
ply “reachability”) can be defined in the context of this paper
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which is an impulsive reachability that is constrained in order
to achieve an initial and a final position.

Definition 2: Let tj − ti ∈ Tπ/κ and τ ∈ [ti, tj ]. A position
vector r̃ is called reachable in Γji (2) at t ∈ [ti, τ ] ⊆ [ti, tj ], if
there exists a vi ∈ R3 such that r = r̃ at t ∈ [ti, τ ] subject to
r = ri at t = ti and r = rj at t = tj . A position vector that
is not reachable is called unreachable.

E. Time Uniqueness

In this subsection it is proved that if a point in the space
under Assumptions 1 and 2 is reachable, so the corresponding
total time of flight and the current time are unique. Consider
the following results:

Lemma 1: Let T′,T′′ ⊂ Tπ/κ and Rr,Rv ⊂ R3, then
functions vt(·) : T′ 7→ Rv , rv(·) : T′′ × Rv 7→ Rr, and
rt(·) : T′ × T′′ 7→ Rr are injective such that:

vt(t
′) = F−1

rv (t′) [rj − Frr(t′)ri]− v−i (15)

rv(∆vi, t
′′) = Frr(t

′′)ri + Frv(t
′′)v−i + Frv(t

′′)∆vi (16)

rt(t
′, t′′) =

[
Frr(t

′′)− Frv(t′′)F−1
rv (t′)Frr(t

′)
]
ri

+Frv(t
′′)F−1

rv (t′)rj (17)

Proof: First it should be noted that Frr(t′) and Frv(t′) are
injective maps from T to some subsets of M3. Function vt(t′)
generates an impulse vector to transfer the CS from ri and v−i
at ti to rj at tj . From the physics of the problem, obviously,
each impulse (∀t′ ∈ T∞) has a unique time to transfer and
(15) is injective. To show the uniqueness of (16) consider
rv(∆

¯
vi) = rv(∆v̄i) that leads to Frv(t

′′)(∆
¯
vi − ∆v̄i) = 0.

Given that ∀t′′ ∈ Tπ/κ, rank[Frv(t
′′)] = 3, according to the

rank-nullity theorem null[Frv(t′′)] = 3. So, the only solution
to Frv(t

′′)(∆
¯
vi − ∆v̄i) = 0 is ∆

¯
vi = ∆v̄i. Function rt(·)

is rv(·) composed with the injective function ?
vt(t
′, t′′) =

[vTt (t′) t′′]T , i.e., rt = rv ◦
?
vt. The composition of injective

functions is injective, so rt(·) is injective.
Lemma 2: Let i, j ∈ N, Ri,j(t) ⊂ R3, and ti, tj , t ∈ T∞

where ti < t < tj and ∆tj,i ∈ Tπ/κ + Tti − Tt, such that

Ri,j(t) =
{
r ∈ R3|∀∆tj,i ∈ Tπ/κ + Tti − Tt : r =

F1(t− ti,∆tj,i)ri + F2(t− ti,∆tj,i)rj} (18)

then rj is reachable in Γji (2) at t ∈ [ti, tj ] if and only if
r ∈ Ri,j(t)

Proof: It can be directly concluded from (8) that if r ∈
Ri,j(t) then ∃∆ti,j ∈ Tπ/κ such that the CS reaches r at t.
For the other direction, we know that if r /∈ Ri,j(t) then the
CS cannot reach r at t, ∀∆ti,j ∈ Tπ/κ.

Remark 4: In Lemma 2, the elements of set Ri,j(t) are the
outputs of a nonlinear mapping from Tπ/κ+Tti−Tt ⊂ R to a
higher dimension in R3. In fact, the locus of the elements of
Ri,j(t) is a three-dimensional curve that starts from r → rj
(at ∆tj,i → t) and ends in some infinite r (at ∆tj,i → π/κ).

Proposition 1: Let τ1, τ2 ∈ Tπ/κ, then R1,2(τ1) ∩
R1,2(τ2) 6= ∅ if and only if τ1 = τ2.

Proof: The necessity is obvious. For sufficiency, a proof
by contradiction is used. Suppose τ1 6= τ2 and R1,2(τ1) ∩
R1,2(τ2) 6= ∅, then there exists a position rt and two time

intervals ∆t′21 and ∆t′′21 such that rt(∆t′21, τ) = rt(∆t
′′
21, τ).

Thus, from Lemma 1 if ∆t′21 6= ∆t′′21, then no equality exists
and if ∆t′21 = ∆t′′21, then τ1 = τ2 which demonstrates a
contradiction.

Theorem 1: Suppose Assumptions 1 and 2 hold. If the
position vector r is reachable in Γi+1

i (2) at t ∈ [ti, ti+1], then
the corresponding t and ∆ti+1,i are unique.

Proof: From the result of Lemma 2, the reachability of
r in Γi+1

i (2) at t ∈ [ti, ti+1] is guarantied if and only if
there exist a t and ∆ti+1,i such that r = rt(∆ti+1,i, t). From
Lemma 1, rt(·) is injective. Therefore, having the output, the
corresponding inputs are unique.

Theorem 1 individually concludes that a two-impulse ren-
dezvous maneuver which is restricted to reach a point in the
space (except of initial and final locations), has a unique
solution. This can be used for cases that we need to hit a
target between initial and final locations. Furthermore, Theo-
rem 1 can be used for an initial relative orbit determination
using three vectors (similar to the Gibbs method in two-body
problem) which can be a subject for the future researches.

Regarding Theorem 1, the reader can refer to the work done
by Wen et al. in [24] at which the reachability problem of
impulsive maneuvers for nonlinear unperturbed problems is
investigated through analytic geometry.

III. MAIN RESULTS

A. Trajectory Boundedness

In this subsection an upper bound on the CS’s trajectory
subjected to fixed initial and final positions are presented. It is
shown that for a 2-impulse transfer between ri at ti and ri+1

at ti+1 the trajectory has upper bounds on the norm of the
position vector, depending on the initial (ri) and final positions
(ri+1) as well as the total flight time (∆ti+1,i). The results of
this section can be directly used for the design of the decision
variables in a constrained formation of spacecraft. First we
need two lemmas:

Lemma 3 (Gerschgorin): Let M ∈ Mn, with associated
eigenvalues of µi, i = 1, ..., n, and let

ρi(M) =

n∑
j=1,j 6=i

‖M(i,j)‖1, 1 ≤ i ≤ n (19)

denote the deleted absolute row sums of M . Then all the
eigenvalues of M are located in the union of n circles (i.e.,
∀i ∈ 1, ..., n : µi ∈ G(M)):

G(M) =

n⋃
i=1

{z ∈ R|‖z −M(i,i)‖1 ≤ ρi(M)} (20)

Proof: A proof can be found in [25], pp. 344.
Lemma 4 (Rayleigh-Ritz): Let M ∈ Mn be Hermitian and

x ∈ Rn. Let µmax and µmin denote the maximum and the
minimum eigenvalue of M , respectively. Then

µmin‖x‖22 ≤ xTMx ≤ µmax‖x‖22 (21)

Proof: A proof can be found in [25], pp. 176.
Theorem 2: Suppose Assumptions 1 and 2 hold. The 2-

impulse trajectory of the CS subject to ri at ti and ri+1 at
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ti+1 is bounded by a sphere centered at the origin with a
radius of δi+1,i, i.e., ∀t ∈ Tti+1 − Tti : ‖r‖2 ≤ δi+1,i, such
that:

δi+1,i = σ(∆ti+1,i)
√
‖ri‖22 + ‖ri+1‖22 (22)

σ(t) =

{
1 t ∈ (0, 0.5π/κ]

0.5
√

2 sec(0.5κt) t ∈ [0.5π/κ, π/κ)
(23)

Proof: The two-impulse trajectory subjected to fixed
initial (ri) and final (ri+1) positions with a fixed time of
flight (∆ti+1,i), has a position vector r at t that is introduced
previously in (10). From (10), the squared 2-norm of r can be
written as

‖r‖22 = rT r =

[
ri
ri+1

]T
F̂

[
ri
ri+1

]
(24)

From Lemma 4 the above identity has the following upper
bound:

λmax(t)

∥∥∥∥[ ri
ri+1

]∥∥∥∥2

2

= λmax(t)(‖ri‖22 + ‖ri+1‖22) (25)

in which λmax(t) is the maximum eigenvalue of F̂ at t ∈
T∆ti+1,i . Let us determine an upper bound for λmax(t) in
order to make the formulas independent from time. Suppose:

σ2 = sup
t∈T∆ti+1,i

λmax(t) (26)

So, using (24) to (26):

‖r‖22 ≤ σ2(‖ri‖22 + ‖ri+1‖22) = δ2
i+1,i (27)

From Facts 1 and 2 it can be concluded that σ2 = 1 at
∆ti+1,i ≤ (π/κ)/2, since at the initial and final positions all
of the positive eigenvalues reach unity which is the solution
of (26). At (π/κ)/2 < ∆ti+1,i < π/κ, σ2 > 1 and is equal
to its extremum value at t = ∆ti+1,i/2. Lemma 3 provides
an upper bound on the eigenvalues at t = ∆ti+1,i/2 in which
from Fact 2, the upper boundary of Gershgorin circle has also
an extremum at t = ∆ti+1,i/2 and is equal to the following
equation:

max
k=1,...,6

{
F̂(k,k)(∆ti+1,i/2) + ρk

[
F̂ (∆ti+1,i/2)

]}
=

1

2
sec2

(
κ∆ti+1,i

2

)
(28)

Thus, at (π/κ)/2 < ∆ti+1,i < π/κ, σ(∆ti+1,i) =
0.5
√

2 sec(0.5κ∆ti+1,i), and the theorem can be proved con-
sidering this result by taking the square root of (27).

Eq. (23) of Theorem 2 checks that even if the true anomaly
of the TS has been changed less than 90◦ or more. Note that
the TS can be just a reference for the coordination of the CS
and can be assumed a virtual point of reference. Thus, without
loss of generality, one can assume ‖ri+1‖ = 0 in which
concludes that for a spacecraft rendezvous under Assumption
1, if the decision variable ∆ti+1,i be considered less than
0.5π/κ, then the spacecraft will not increase its distance from
the destination. If Assumption 1 approximately holds for real
case applications, this kind of maneuver can assure that the
approximation error would not grow.

Remark 5: The trajectory bound of Theorem 2 becomes
more tight by decreasing the norm of the initial and final
positions (i.e., making the impulses closer to the TS at the
origin). The bound is time-independent and for ∆ti+1,i ≤
(π/κ)/2 it is also independent from the total flight time. For
(π/κ)/2 < ∆ti+1,i < π/κ the bound increases by increasing
the total flight time and approaches infinity at ∆ti+1,i → π/κ.

A geometric interpretation of the 2-norm bounds defined
in Theorem 2 is illustrated is Fig. 1. This figure shows the
bound for ∆ti+1,i ≤ (π/κ)/2. For ∆ti+1,i > (π/κ)/2 the
solid sphere becomes bigger. Fig. 2 shows the behavior of σ
as a function of ∆ti+1,i.

 

 

 

 

 
 
 

 

 

 

 

Fig. 1. The dashed spheres show the location of CS at steps i and i+ 1. The
solid sphere shows the boundary of CS’s trajectory for ∆ti+1,i ≤ (π/κ)/2. 

 
 
 

 

Fig. 2. Behavior of σ as a function of ∆ti+1,i.

Theorem 2 provides an upper bound for the 2-norm of the
CS’s trajectory which is useful in the design of the impulse
positions. It can be concluded that for a multiple impulse
relative motion with uncertain impulse positions, if it is known
that each impulse position at i is bounded by a sphere with a
radius of ρi, and the time interval between adjacent impulses
be bounded as ∆ti+1,i < (π/κ)/2, then the whole trajectory
is bounded in a sphere with a radius of

ρ =
√

2(max
i
{ρi}) (29)

The CS’s trajectory can be bounded by the use of a cone,
i.e., some bounds for the scalar parameter sT r which s ∈ R3

is a known and probably fixed (and unit) vector. Both upper
and lower bounds for sT r can restrict the CS’s trajectory to
lie inside or outside a cone with the apex on the origin. First,
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consider a special finite form of the Jensen’s inequality [26]
in which the proof is omitted:

Lemma 5 (Jensen): Let s, r ∈ Rn and s � 0. Consider a
real function f : R 7→ R. If f is convex [27] then

f

(
sT r

1T s

)
≤
∑
s(i)f(r(i))

1T s
(30)

and if f is concave (−f is convex) then the above inequality
holds with a change in its direction.

From the Jensen’s inequality in Lemma 5, upper and/or
lower bounds can be found for sT r by choosing any convex
(or concave) function f . Suppose f be a convex nondecreasing
invertible function (for example f(x) = yx, y ≥ 1). Then
inequality (30) simplifies to

sT r ≤ (1T s)f−1

[∑
s(i)f(r(i))

1T s

]
(31)

Inequality (31) defines an upper bound for sT r, if some
priory knowledge about the r exists. For example, suppose
it is known that the elements of r are bounded above, i.e.,
r � r+. So, from the nondecreasing property of f we have
f(r(i)) ≤ f(r+

(i)). Thus,

sT r ≤ (1T s)f−1

[∑
s(i)f(r+

(i))

1T s

]
(32)

For concave nondecreasing invertible functions (for example
f(x) = logy(x), y ≥ 1) a similar result is obtainable in which
the lower bound of r should be used, as r � r−. If only the
direction of s = ‖s‖2es (‖es‖2 = 1) is important, without
loss of generality, s can be defined as s = (

∑
e
i
)es, so we

can eliminate the terms of 1T s in the previous inequalities.
Therefore, (31) can be reduced to

sT r ≤ f−1
[∑

s(i)f(r(i))
]

(33)

Considering f(x) = ‖x‖ as a convex function, Lemma 5
leads to the following theorem:

Theorem 3: Let s ∈ R3 be a unit vector such that es � 0.
Assume that in the time interval of T , it is known that the
2-norm of the CS’s trajectory is bounded below such that
ρ− = inft∈T (‖r‖2). Moreover, assume that the maximum
distance of an element of r from the origin is bounded above
by ρ+

(i) = supt∈T (‖r(i)‖1). Then, θ = ∠(s, r) is restricted by
the following inequality

‖ cos θ‖1 ≤ min

{
1,
eTs ρ

+

ρ−

}
(34)

Proof: From the result of Lemma 5, considering f to be
any norm function f(x) = ‖x‖, since x is a scalar variable,
the function equivalently reduces to f(x) = ‖x‖1. Thus, we
have ∥∥∥∥ eTs r1T es

∥∥∥∥
1

≤
∑
es(i)‖r(i)‖1

1T es
(35)

The denominators are non-negative (1T es ≥ 0), so (35)
reduces to

‖eTs r‖1 ≤
∑

es(i)‖r(i)‖1 (36)

The left-hand side of (36) is equal to ‖eTs r‖1 = ‖r‖2‖ cos θ‖1.
Therefore, taking ‖r‖2 into the denominator of the right-hand
side of (36) and considering the upper bound of the right-hand
side by replacing the supremum of nominator and the infimum
of denominator over time, inequality (34) is proved.

Conic bounds introduced in Theorem 3 particularly may be
applicable in spacecraft formation flying as restricts the CS
in a special TS’s field of view in which can be considered as
a beneficial property for missions equipped by vision-based
relative navigation sensors.

Remark 6: Theorem 3 defines a restricting cone which is
also a function of es. In order to obtain the smallest set for
θ, the vector es in the inequality (34) should be selected
in order to minimize the term

∑
es(i)ρ

+
(i). Let i∗ be the

nontrivial solution of mini(ρ
+
(i)) = mini[supt∈T (‖r(i)‖1)]

(supposing ρ+
(i∗) 6= 0). Then, the vector es that is constructed

as es(i=i∗) = 1 and es(i 6=i∗) = 0 yields the smallest set for θ
(and consequently for r).

B. Impulse Design Under Path Constraints

In this subsection it is shown that how the impulse positions
and times can be determined in order to satisfy the PCs
subject to the CW system. Some boundaries are introduced
regarding the Jordan-Brouwer seperation theorem, in which
the satisfaction of the constraints is guaranteed by considering
those boundary sets.

The two-impulse trajectory of the CS subject to the initial
and final positions is determined by two parameters of t and
∆ti+1,i that is formulated in (8). The set Ri,i+1(t) contains
all position vectors which can be reached at t ∈ T∆ti+1,i

by
any ∆ti+1,i ∈ Tπ/κ. Now, consider the following set which is
used further:

Qi,i+1 =
⋃

t∈Tπ/κ

Ri,i+1(t) (37)

Set Qi,i+1 is a three dimensional surface in which subject
to r = ri at ti and r = ri+1 at ti+1 as the trivial constraints
(using two impulses), r ∈ Qi,i+1 at ∀t ∈ ∆ti+1,i. Roughly
speaking, the CS’s trajectory entirely lies in the set Qi,i+1.

Lemma 6 (Jordan-Brouwer): Let ∂S be a connected surface
that is closed as a subset of R3. Then R3−∂S has exactly two
connected components (S and its complement R3 \ S) whose
common boundary is ∂S.

Proof: See proof of Theorem 4.16 in [28].
A result of Lemma 6 is that every continuous path connect-

ing a point in S to a point in R3\S intersects somewhere with
∂S. Thus, the following proposition can be directly concluded.

Proposition 2: Let t ∈ Tπ/κ and rs ∈ R3 be reachable in
Γji (2) at a t ∈ Tπ/κ. Let S ⊂ R3 be a set of position vectors
with ∂S ⊂ R3 as a boundary such that ∂S is a connected
closed surface and rs /∈ S. If the boundary of S is unreachable
in Γji (2) at any t ∈ Tπ/κ, then any member of S is unreachable
in Γji (2) at any t ∈ Tπ/κ, i.e.:

∂S ∩ Qi,i+1 = ∅⇒ S ∩Qi,i+1 = ∅ (38)

Proof: The set Qi,j is a continuous surface in which the
assumption rs /∈ S states that the surface has at least one point
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in R3\S. So, according to Lemma 6, if there exists a t ∈ Tπ/κ
in which ∂S ∩ Ri,j(t) 6= ∅ then the curve intersects by ∂S
somewhere. Therefore, its contrapositive is equivalently true.

The above-mentioned results can be subjected to the in-
equality PCs of type (13) to conclude the following corollary.

Corollary 1: Suppose Assumptions 1 and 2 hold. Assume it
is known that a position vector rs ∈ {r ∈ R3|ρ′l ≤ ‖r− r̃l‖2 ≤
ρ′′l } is reachable in Γji (2) at ∀t ∈ Tt̃l . An inequality PC of
type (13) is satisfied in Γji (2) if any r ∈ {r ∈ R3|‖r− r̃l‖2 =
ρ′l ∨ ‖r − r̃l‖2 = ρ′′l } is unreachable in Γji (2) at ∀t ∈ Tt̃l .

Proof: It can be simply proved by substituting S = {r ∈
R3|ρ′l ≤ ‖r − r̃l‖2 ≤ ρ′′l } and consequently ∂S = {r ∈
R3|‖r − r̃l‖2 = ρ′l ∨ ‖r − r̃l‖2 = ρ′′l } in Proposition 2.

Remark 7: A direct result from the above corollary can
be presented for special kinds of inequality PCs. Suppose
Assumptions 1 and 2 hold. Assume it is known that a position
vector rs ∈ {r ∈ R3|ρ′l ≤ ‖r − r̃l‖2} is reachable in Γji (2)
at ∀t ∈ Tt̃l . Consider an inequality PC of type (13) such that
ρ′′l → ∞ and t̃ = π/κ. Then, the PC is satisfied in Γji (2) if
∀r ∈ {r ∈ R3|‖r − r̃l‖2 = ρ′l}, r is unreachable in Γji (2) at
∀t ∈ Tt̃l .

Remark 8: As an example, the vector rs that is used in
Corollary 1 can be selected to be the position at t1 = 0,
rs = r1, if r1 is located inside R̃l. This condition checks that
if the CS is initially located inside or outside the set R̃l.

Another result can be obtained from Lemma 6 in which
helps to find those impulse times (associated with fixed
impulse positions) that the corresponding trajectory satisfies
the constraints.

Proposition 3: Suppose Assumptions 1 and 2 hold. Assume
it is known that a point rs ∈ S is reachable in Γi+1

i (2) at ts ∈
[ti, ti+1] corresponding to ∆ti+1,i = ∆ts. Consider two time
intervals of ∆ta and ∆tb such that ∆ta < ∆tb and any point in
S is unreachable in Γi+1

i (2) at ∀t ∈ [ti, ti+1] corresponding to
both ∆ti+1,i = ∆ta and ∆ti+1,i = ∆tb. Then, the following
statements hold:

(i) If ∆ts ∈ [∆ta,∆tb] then any r ∈ S is unreachable in
Γi+1
i (2) at any t ∈ [ti, ti+1] corresponding to ∆ti+1,i ∈

[0,∆ta] ∪ [∆tb, π/κ].
(ii) If ∆ts ∈ [0,∆ta] ∪ [∆tb, π/κ] then any r ∈ S is

unreachable in Γi+1
i (2) at any t ∈ [ti, ti+1] corresponding

to ∆ti+1,i ∈ [∆ta,∆tb].
Proof: Denote the set Ri,i+1(t) corresponding to

∆ti+1,i = ∆ts/a/b by Rs/a/b(t). From Theorem 1 (the time
uniqueness property), we know that Ra(t) and Rb(t) do not
intersect, unless at ∆ti+1,i = 0. The union ofRa(t) andRb(t)
can construct a boundary for a set of position vectors in Qi,i+1

which we refer to it by ∂R̃a∪b(t) ⊂ Qi,i+1 (and its interior by
R̃a∪b ⊂ Qi,i+1). According to Proposition 2, since Ra(t) and
Rb(t) do not intersect by S, the set R̃a∪b have no intersections
by S, i.e., R̃a∪b ∩ S = ∅, if rs /∈ R̃a∪b (and S ⊂ R̃a∪b if
rs ∈ R̃a∪b). Item (i) can be proved by considering the fact that
if ∆ta ≤ ∆ts ≤ ∆tb, then Rs(t) ⊂ R̃a∪b. Roughly speaking
R̃a∪b is the set of those trajectories that ∆ti+1,i ∈ [∆ta,∆tb].
Item (ii) can be proved similarly by considering the fact that
if ∆ts ≤ ∆ta or ∆tb ≤ ∆ts, then Rs(t) ∩ R̃a∪b = ∅.

It is worth mentioning that an n-impulse mission can be
divided into a number of n − 1 two-impulse missions and
consequently any result about the two-impulse trajectories can
be used for n-impulse cases just by reusing the result for n−1
times.

IV. NUMERICAL EXAMPLES

A. Approximate Circular Formation Keeping

In this subsection the impulsive approximate CFK problem
is analyzed by the use of numerical analysis. The CFK
problem seeks for control solutions in order to keep the CS on
a circular path around the TS. The term “approximate” is used
to show that the CS is not going to lie on an exact circle (since
is impossible with finite number of impulses), but should lie
in a ring that is restricted by two circles; the approach circle
(‖r‖2 = ρ′′) and the keep-out circle (‖r‖2 = ρ′).

A finite number of polar grids are used for numerical com-
putations, see Fig. 3. The time is also approximated by discrete
time instances. The numerical analysis decreases the accuracy
of results based on how many nodes are used. However,
increasing the number of nodes confronts the problem with
the curse of dimensionality.

 

 

 

 

CS 

𝜌′ 

𝜌′′ 
TS 

Fig. 3. Schematic grids for numerical analysis of impulsive approximate CFK.

A two dimensional problem in x-y plane is used as an
example. The time step in the simulation is 10 s and the TS is
located at a circular orbit with an altitude of 400 km. The ra-
dius of the approach and the keep-out circles are ρ′ = 0.9 km
and ρ′′ = 1.1 km, respectively. The position vectors for the
impulses are considered to be ri = [cosβi sinβi 0]T ,
i = 2, 3, ..., n− 1. It is assumed that βi ∈ N, 0◦ ≤ βi ≤ 360◦,
and β1 = βn = 0. In Fig. 4 those values of β2 and t2 in
which the CS’s trajectory in Γ2

1(2) satisfies the constrained
problem is highlighted in gray. The area between dashed lines
contains those positions that are unreachable in Γ2

1(2) at any
t ∈ Tt2 corresponding to any t2 ∈ Tπ/κ subject to the problem
constraints. Therefore, the positions that are located between
the dashed lines cannot be reached by two impulses and may
become reachable by three impulses or more. Fig. 5 shows
Four typical trajectories corresponding to the points that are
specified in Fig. 4.

Fig. 6 shows those values of β2 that are reachable from i =
1 such that the β3 = βn = 0 is reachable from i = 2 subject
to the problem constraints. The highlighted areas of Fig. 6 can
be divided into two categories. Consider the first category to
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Fig. 4. Reachable region for the second impulse (highlighted in gray) and
the unreachable area.

 

 

 

Fig. 5. Geometry of four sample trajectories from the first to the second
impulse and the problem constraints.

be the union of two separated areas with ∆t3,2 ≤ 740 s at the
left side (up and down) of the figure, and the second category
to be the area with 1570 s ≤ ∆t3,2 ≤ 1860 s at the middle
of the figure. The first category contains those trajectories that
satisfy the constraints of the problem while the CS do not visit
all values of the polar angles 0◦ ≤ β ≤ 360◦ with respect to
the TS. The second category includes those trajectories that
the CS visits all values of β and satisfy the constraints of the
problem.

Two unreachable areas are distinguished in Fig. 6; the
unreachable two- and three-impulse area, and the unreachable
two- impulse area. The former includes the same unreachable
points that are defied in Fig. 6, and the latter contains the
new results. The two and three-impulse unreachable points
are those values of β2 that cannot be reached from i = 1.
The two-impulse unreachable area are those values of β2 that
β3 = βn = 0 becomes unreachable from i = 2. Fig. 7 shows
three typical trajectories corresponding to the points that are
specified in Fig. 6.

B. Collision-Free Maneuver

In this subsection the impulsive CFM is analyzed numer-
ically. The CFM is achieved by implementing those impulse

 

Fig. 6. Valid region for the second impulse (highlighted in gray) and the
unreachable area.

 

 

 

Fig. 7. Geometry of three sample trajectories from the first to the second
and from the second to the third impulse in which the problem constraints
are satisfied.

positions at i and i + 1 such that a sphere area (problem
constraint) do not be violated for every value of ∆ti+1,i. In
this example fixed impulse positions is found such that the
CS accomplish its mission while the constraints be satisfied
independent from the transfer times. From Propositions 2 and
3, we know that if ri and ri+1 be considered such that the CS’s
trajectory corresponding to ∆ti+1,i = 0 and ∆ti+1,i = π/κ
do not collide with the the constraint sphere, then the CFM is
solved as well.

The trajectory of the CS corresponding to ∆ti+1,i = 0 is a
straight line from ri to ri+1. The trajectory of the CS assuming
∆ti+1,i = π/κ becomes singular, therefore, we approximate
its locus by ∆ti+1,i = π/κ − ε, such that ε > 0 is a small
value to be determined.

As an example consider a two dimensional problem in
x-y plane. Suppose the CS is located initially at r1 =
[1 0 0]T km. The problem asks to find those values of ri,
i ≥ 2, in which a CFM can be accomplished such that the
CS observes all the polar angles with respect to the TS and
a keep-out circle with a radius of ρ′ = 0.5 km be satisfied.
Assuming ε = 1 s, Fig. 8 shows two different chooses of
r2 = −[0 1 0]T km and r2 = [0 1 0]T km beside the
reachable area in Γ2

1(2) starting from r1 and ending in r2.
In Fig. 8 it is shown that r2 = −[0 1 0]T km leads to
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a CFM since both trajectories corresponding to ∆ti+1,i = 0
and ∆ti+1,i = π/κ − ε ' π/κ do not collide with the keep-
out circle. Instead, selecting the second impulse position to be
r2 = [0 1 0]T km the CFM cannot be constructed.

Fig. 9 shows four impulse positions that can be considered
as a solution to our CFM problem. Taking these four positions,
for any time intervals ∆ti+1,i ∈ Tπ/κ, i = 1, 2, 3, the keep-out
circle is not violated and a periodic motion around the TS can
be accomplished as well.

 

 

 

 

 

Fig. 8. Two choices for r2 and the corresponding trajectory sets which are
bounded by Traj. i-a and Traj. i-b.

 

Fig. 9. Four impulse positions which are a solution to the CFM problem.

C. Discussions

In this section some relations between Theorems 2 and 3
with the numerical examples of Section IV are discussed in
more detail.

Theorem 2 introduces an upper norm bound for CS’s trajec-
tory. This upper norm bound is tabulated for every trajectory
example of Section IV in Table I. In Figs. 5, 7, 8, and 9,
the impulse positions are located on a unit circle, therefore if
∆ti+1,i < (π/κ)/2 ' 1428 s then the upper bound (according
to Theorem 2) is simply

√
2 (such as Nos. 1-8 and 11-14 in

Table I). If ∆ti+1,i > (π/κ)/2 ' 1428 s then the upper bound
exceeds

√
2 and is computed by (22) and (23) (such as Nos.

9 and 10 in Table I).

Theorem 3 introduces conic bounds on the CS’s trajectory.
Using the optimal index value i∗ (which is discussed in
Remark 6), the conic bounds for every trajectory example of
Section IV is presented in Table II. Each no. corresponds to
a two-impulse trajectory which is previously defined in Table
I. For Nos. 3, 4, and 9-14, the upper bound of ‖ cos θ‖1 (i.e.,
cθ) are equal to 1 that are obtained using (34). Therefore, the
conic bound of Theorem 3 is useless for these scenarios. For
Nos. 1, 2, and 5-8, the upper bound has a value less than unity
which restricts the CS’s trajectory to lie outside a double cone
with an obtuse aperture.

TABLE I
THE UPPER NORM BOUNDS, δi+1,i (OBTAINED FROM THEOREM 2), FOR

THE TWO-IMPULSE NUMERICAL EXAMPLES OF SECTION IV.

No. Example
δi+1,i (km)Fig. βi (deg.) βi+1 (deg.) ∆ti+1,i (s)

1

5 0

20
200

√
2

2 340
3 260

10004 200
5

7

0
20

200
6 340
7 20

08 340
9 0 180

1700 ' 1.19
√

210 180 0
11

8,9

0 270
< (π/κ)/2 √

2
12 270 180
13 180 90

. 142814 90 0
Note: ri = [cos βi sin βi 0]T

TABLE II
CONIC BOUNDS, ‖ cos θ‖1 ≤ cθ (OBTAINED FROM THEOREM 3), FOR THE

TWO-IMPULSE NUMERICAL EXAMPLES OF SECTION IV.

No. Example
cθeTs (deg.) ρ̂− (km) (ρ̂+)T (km)

1
[0 1 0]

0.9 [1 0.5 0] 5/92
3 0.5 [1 0.9 0]

14 [1 0 0]

0.9

[1 1.1 0]
5

[0 1 0] [1 0.5 0] 5/9
6
7
8
9

[1 0 0]

[1 1.1 0]

1

10
11

≤ 1 [1 ≥ 1 0]
12
13
14

Note: ρ̂+ and ρ̂− are the estimated values of ρ+ and ρ−.

In Fig. 10 a three dimensional example is used for the
numerical evaluation of the trajectory upper-bound found in
Theorem 2. The TS is located at the origin with an altitude of
400 km above Earth. The initial location of the CS is formu-
lated as r1 = ‖r1‖2[cos(φ) cos(ψ) cos(φ) sin(ψ) sin(φ)]T

in which the simulations are done for φ ∈ [−π, π], ψ = [0, 2π],
and t = [0, t2], and the maximum reached distance defined
as maxφ,ψ,t(‖r‖2) is evaluated for each amount of ‖r1‖2
from 0.1 to 5. This method is accomplished separately for
t2 = 0.5π/κ and t2 = 0.75π/κ.
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Fig. 10. Comparison of the maximum reached distance of the CS in the
numerical simulation with the theoretical results as a function of the initial
distance.

V. CONCLUSIONS

The relative spacecraft motion has been analyzed under
path constraints using the Clohessy-Wiltshire (CW) equations.
Initially, the time uniqueness of the spacecraft’s trajectory is
analyzed under assumptions and the main result is proved
in a theorem. The spectral analysis of the CW equations
demonstrates some facts which are used to determine upper
norm bounds for the spacecraft position between adjacent
impulses. Moreover, a finite form of the Jensen’s inequality
is implemented to develop a conic bound for the spacecraft
path in which needs additional priory estimations about the
position time-history. Furthermore, it is shown that the un-
reachability of a set of continuous position vectors can be
proven by considering the unreachability of some boundary
positions. Finally, two numerical examples in the x-y plane
are presented. The first example is an approximate circular
formation keeping where seeks for those impulse positions and
times such that the chaser spacecraft’s trajectory lie in a ring.
The second example is a collision-free maneuver in which the
impulse positions are found such that the chaser spacecraft do
not violate a keep-out circle with any choice of impulse times,
i.e., attaining a set of trajectories that are robust in terms of
impulse times.
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