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Abstract—The performance of partial diffusion Kalman fil-
tering (PDKF) algorithm for the networks with noisy links is
studied here. A closed-form expression for the steady-state mean
square deviation is then derived and theoretically shown that
when the links are noisy, the communication-performance trade-
off, reported for the PDKF algorithm, does not hold. Additionally,
optimal selection of combination weights is investigated and
a combination rule along with an adaptive implementation is
motivated. The results confirm the theoretical outcome.

Keywords—Adaptive networks, combination weights, Kalman
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I. INTRODUCTION

Distributed collaborating learning with streaming noisy data
is a challenging problem that appears in a wide range of exist-
ing and emerging applications. Some examples include naviga-
tion, target localization, collaborative spectral sensing, demand
side management, autoregressive modeling and biomedical
signal processing [1]–[4]. So far, different solutions (strategies)
have been developed to solve distributed online learning prob-
lems. However, among the available methods, the diffusion-
based strategies exhibit superior performance compared to
others, e.g. incremental strategies (in terms of robustness to the
link and node failure) and consensus strategies that operate in
a single time-scale (in terms of stability, convergence rate and
steady-state performance) [5]. However, for Kalman filters, it
can be stated that diffusion is an effective and resource efficient
technique, but there are trade-offs when comparing diffusion-
based Kalman filters with their consensus counterparts.

In this paper, the problem of distributed state estimation
for a multi-agent network is tackled. In [4], [6]–[13] different
distributed Kalman filtering algorithms have been reported
that are amenable to distributed implementations. In such
algorithms, nodes cooperate closely through a topology to
estimate the target state precisely. As opposed to the central-
ized estimation, the distributed estimation is more flexible for
topology changes and robust to node/link failures. Diffusion
Kalman filter (DKF) algorithm [9], as a distributed fusion
and estimation method, shows better performance for the state
estimation by diffusing information through a sequence of
Kalman iterations and data-aggregation. In the DKF algorithm
each agent performs an incremental step, to share the data,
followed by a diffusion step, to share the estimate.
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In diffusion strategy, each node (agent) in the network
collaborates and diffuses information in real-time with its
neighbors. Cooperation structure in diffusion-based adaptive
networks makes them scalable and more robust to link/node
failures [14]–[16]. In diffusion strategies, each node commu-
nicates with all other nodes, including itself, being located
in the neighborhood to share intermediate estimate with them
[17]. However, power and bandwidth resources are the major
constraints for realization of a cooperative task in an adaptive
network. They are limited for data transmission through radio
links. Therefore, although the advantages of diffusion strate-
gies are attained by expanding inter-node communications,
they are subject to the communication cost constraints [18].

Reducing the amount of inter-node communications, while
maintaining the benefits of cooperation is of practical im-
portance. There exist some efforts related to reducing the
amount of communication expenditure, such as reducing the
dimension of the estimates [19]–[21], selecting a subset of
entries of the intermediate estimate vectors [22]–[27], set-
membership filtering [28]–[30], and partial updating [31] have
been reported in [32]–[36]. The problem of distributed Kalman
filtering was addressed in [37], where the authors proposed an
efficient algorithm for large-scale systems. Distributed Kalman
filtering with low-cost communication has been proposed
previously in [38], where the decentralized state estimators
of dynamical stochastic processes were derived and analyzed.
Kalman filters with reduced order models have been studied,
in e.g., [39], [40], to address the computation burden posed by
implementing nth order models. Partitioned update Kalman
filter (PUKF) that updates the state using multidimensional
measurements in parts is discussed in [41].

Among these methods, we focus on partial diffusion Kalman
filter (PDKF) algorithm proposed at [26]. The PDKF algorithm
consists of an adaptation phase and a combination phase. In the
adaptation phase, each node applies the Kalman filtering using
recent input-output data and the existing estimate to obtain
an intermediate estimate. In the combination phase, the nodes
share a subset of their intermediate estimate entries (produced
at the adaptation phase) and combine them to update the local
estimates.

The results proposed in [26] are based on the assumption
that the communications among the nodes are ideal, i.e.,
the information transmitted correctly among them. In prac-
tice, however, the performance of the adaptive networks is
strongly affected by the presence of such a link state, where
the communication links are noisy. This issue motivates us
to investigate the performance of PDKF algorithm in such
scenarios. Some useful results dealing with the effects of
noisy links on the performance of diffusion-based strategies
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behavior are presented in [14]–[16], [24], [25]. In this paper,
we figure out how the noisy links affect deterioration of the
network performance during the exchange of weight estimates.
Among other results, our analysis provides some insights in the
communication cost and estimation performance for the PDKF
algorithms under non-ideal links.

In summary, our contributions in this paper are as follows:
(i) The effect of noisy links on the mean and mean-square

stability of the PDKF algorithm under certain statistical
conditions is studied.

(ii) We derive the steady-state behavior of the PDKF algo-
rithm in terms of the MSD metric.

(iii) It is shown theoretically that unlike the ideal case, there
is no clear trade-off between the MSD performance and
the communication cost. We also present the necessary
simulations to support our theoretical findings.

(iv) It is demonstrated how the combination coefficients can
be adjusted efficiently throughout the learning process
to simultaneously lessen the influence of exchanging
information over noisy communication links.

The remainder of this paper is organized as follows. We
briefly introduce the PDKF algorithm in Section II. In Section
III the PDKF algorithm in the presence of noisy links is for-
mulated. We provide our analysis in Section IV. In Section V
we discuss more about the communication-performance trade-
off for the PDKF algorithm with noisy links. In section VI, an
adaptive combination rule is established by an approximate
solution that relies on optimizing an upper bound on the
network MSD. The simulation results are presented in Section
VII. Finally, we conclude in Section VIII.

We adopt small boldface letters for vectors and bold capital
letters for matrices. Normal font letters denote scalars. We use
subscripts to refer to the time-dependence of vector (matrix)
variables, as in yk,i. (·)T denotes transpose for matrices. The
operator tr {·} refers to the trace of its matrix argument and
vec {·} stacks the columns of its matrix argument on top of
each other. We write diag{·} to denote a (block) diagonal
matrix formed from its arguments and and col {·} to denote a
column vector formed by stacking its arguments on top of each
other. Finally, we use ⊗ and 1 to denote Kronecker product
and a column vector with unity entries, respectively.

II. BACKGROUND

A. System Description

We consider a connected network with N nodes, each
labeled as k = 1, 2, . . . , N . Two nodes k and l are neighbors
if they can exchange data with each other, i.e., they are
connected by an edge. Here, the definition of neighborhood
of node k refers to the case in which k itself is included,
i.e. k ∈ Nk. Each node k takes observation yk,i ∈ RP of
a common environment state xi ∈ RM at time instant i with
local observation matrix Hk,i ∈ RP×M . The state-space model
for every node k is of the form:

xi+1 = Fixi + Gini
yk,i = Hk,ixi + vk,i (1)

Algorithm 1 Diffusion Kalman Filter [9]
Initialization: x̂k,0|−1 = 0 and Pk,0|−1 = Π0

For every time instant i, every node k computes
Step1: Incremental Update
ψψψk,i ← x̂k,i|i−1
Pk,i ← Pk,i|i−1
for l ∈ Nk do

Re,i ← Rl,i + Hl,iPk,iH
T
l,i

ψψψk,i ← ψψψk,i + Pk,iH
T
l,iR

−1
e,i [yl,i −Hl,iψψψk,i] (2)

Pk,i ← Pk,i −Pk,iH
T
l,iR

−1
e,i Hl,iPk,i

end for
Step2: Diffusion Update

x̂k,i|i ←
∑
l∈Nk

clkψψψl,i (3)

Pk,i|i ← Pk,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
T
i + GiQiG

T
i

where Fi ∈ RM×M , Gi ∈ RM×M , ni ∈ RM , and vk,i ∈ RP
denote the model matrix, the state noise matrix, the state noise
vector, and the observation noise vector of agent k at time i,
respectively. Now, we can make the following assumptions for
the state-space model represented by (1):

Assumption 1.
(i) (Gaussian processes). The measurement noise, vk,i, the

state noise, ni, and the initial state of the system, x0, are
Gaussian distributed sequences, with

vk,i ∼ N (0,Rk,i),ni ∼ N (0,Qi),x0 ∼ N (0,Π0),

where Rk,i ∈ RP×P , Qi ∈ RM×M , and Π0 ∈ RM×M
are the corresponding covariance matrices. The measure-
ment noise covariance matrix Ri of the global noise vec-
tor vi = col {v1,i, . . . ,vN,i} is block-diagonal matrix,
i.e., Ri = diag {R1,i, . . . ,RN,i} and positive definite,
i.e., Ri > 0

(ii) (Uncorrelated sequences). The measurement noise, the
state noise, and the initial state: {vi,ni,x0} are uncor-
related random vector sequences.

B. Diffusion Kalman Filtering Algorithm
For every node in the network the objective is to estimate

the state vector xi ∈ RM by exploiting its cooperation with
the other nodes. As we mentioned earlier, the DKF algorithm
is an effective tool for performing network-wide distributed
Kalman filtering problem. The DKF algorithm in its time-and-
measurement update form is given in Algorithm 1. Before
proceeding further, we define x̂k,i|j as the local estimator
of xi that node k computes at time i based on the local
observations and information up to and including time j. Then,
the DKF algorithm starts with x̂k,0|−1 = 0 and Pk,0|−1 = Π0,
where Pk,0|−1 ∈ RM×M . The algorithm consists of two
steps, namely the incremental update and diffusion update.
In the incremental update step, first the nodes exchange local
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data {yk,i,Hk,i,Rk,i} with their neighbors and at every time
instant i compute ψψψk,i ← x̂k,i|i−1 and Pk,i ← Pk,i|i−1. Then,
each node performs KF with the available data to obtain the
intermediate estimates ψψψk,i as given by (2).

The symbol ← denotes a sequential assignment. In the
diffusion step, the nodes share intermediate estimates ψψψk,i
and use (3) to compute a convex combination of intermediate
estimates and obtain the local estimate x̂k,i|i. The scalars
{clk} denote nonnegative convex combination coefficients that
satisfy the following conditions:

N∑
l=1

clk = 1, clk = 0 if l /∈ Nk, ∀l, k (4)

The coefficients {clk} are free weighting parameters and
their selection influences the algorithm performance. If all the
coefficients are combined in an N × N matrix C , {clk},
named combination matrix, the condition above conveys that
all the columns of C add up to unity, i.e., 1TC = 1

T , where
1 denotes an N×1 vector with unit entries. This means that C
is left stochastic matrix, i.e., the magnitudes of its eigenvalues
are bounded by one.

C. Partial Diffusion Kalman Filtering
The PDKF algorithm proposed in [26] is shown by Al-

gorithm 2. For every agent k, the objective of PDKF im-
plementation is to recursively estimate the unknown state
xi ∈ RM , while sharing a subset of its intermediate estimate
vector with its neighbors l ∈ Nk. To further reduce the
communication costs in PDKF algorithm, the nodes do not
share their local information {yk,i,Hk,i,Rk,i}. Therefore, this
algorithm particularly depends on communication of chosen
entries of ψψψk,i.

To reduce the communication burden (by means of reducing
the internode communications) every node k at any time instant
i is allowed to select and propagate a subset of its intermediate
state estimate vector (say L out of M , 0 ≤ L ≤M , entries). In
the partial diffusion algorithm, at time instant i the nodes need
to know which elements of their neighbors intermediate esti-
mates have diffused. Consequently, the address, i.e., position
in the vector of communicated elements should be transmitted
as well. In the next section, we present two partial diffusion
schemes that bias the need for addressing. The selecting and
scattering task can be realized by a diagonal selection matrix,
Tk,i ∈ RM×M which has L ones and M − L zeros on its
diagonal. The positions of the ones determine which entries
of the intermediate state estimate of node k are selected to be
diffused at time i. It is obvious that multiplication of ψψψk,i by
Tk,i gives a vector whose non-selected entries (determined by
Tk,i) are zero.

Remark 1. Note that in practice L is fixed and pre-specified
by the designer [22].

At every time instant i, the agents run Kalman filtering
algorithm for diffusion step and communicate to their neigh-
bors the intermediate estimate for aggregation step. Equation
(6) is utilized to aggregate the partially received intermediate

Algorithm 2 Partial Diffusion Kalman Filter [26]
Initialization: x̂k,0|−1 = 0 and Pk,0|−1 = Π0

For i ≥ 0, every node k computes

Step1: Adaptation phase
Pk,i ← Pk,i|i−1

Re,i ← Rk,i + Hk,iPk,iH
T
k,i

ψψψk,i ← x̂k,i|i−1 + Pk,iH
T
k,iR

−1
e,i [yk,i −Hk,ix̂k,i|i−1] (5)

Pk,i ← Pk,i −Pk,iH
T
k,iR

−1
e,i Hk,iPk,i

Step2: Combination Phase

x̂k,i|i = ψψψk,i +
∑

l∈Nk/{k}
clkTl,i(ψψψl,i −ψψψk,i) (6)

Pk,i|i ← Pk,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
T
i + GiQiG

T
i

estimates. The combination coefficients {clk} in (6) are the
same as those in (4).

From equation (6), it is obvious that the unavailable ele-
ments are replaced by their equivalent ones in each node’s
own intermediate estimate vector.

III. THE PDKF WITH ADDITIVE NOISE

In this paper, we investigate the performance of PDKF al-
gorithm in a more realistic condition, when the data exchanges
are corrupted by additive noise. This will be developed further
in a later section which describes the performance analysis
both in mean and mean-square senses. Doing so, we model the
noisy data received by node k from its neighbor l as follows:

ψψψlk,i = ψψψl,i + wlk,i (7)

where wlk,i (M × 1) is the noise vector that perturbs the
exchanged data over the link lk. The subscript lk is used to
designate node l as the source and node k as the sink.

To proceed further, we start by imposing the assumptions
on the link noise as follows.

Assumption 2.
(i) (Independent Noise Sequence). The additive noises
{wlk,i}1≤l,k≤N,i≥0 ∈ RM are temporally white and
spatially independent random processes with zero mean
and variances σ2

w,lk so that

E [wlk,i] = 0, ∀1 ≤ l, k ≤ N, i ≥ 0,

E
[
wlk,iw

T
lk,i

]
= Zlk = σ2

w,lkIM

(ii) (Independent Sequences). The link noise processes are
independent of noise and state sequences {vi,ni,xi}.

Thus, using the perturbed data (7), the PDKF algorithm with
imperfect exchange can be described by (5) as its adaptation
phase and the following equation as its combination phase:

x̂k,i|i = ψψψk,i +
∑

l∈Nk/{k}

clkTl,i(ψψψlk,i −ψψψk,i) (8)
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Fig. 1. Partial diffusion Kalman filter update at node k and time i.

This process is also demonstrated schematically in Fig. 1.
Equation (8) can be written as:

x̂k,i|i = ψψψk,i +
∑

l∈Nk/{k}

clkTl,i(ψψψl,i −ψψψk,i) + wk,i (9)

where in (9), wk,i ∈ RM denotes the aggregate link noise
signal given by:

wk,i =
∑

l∈Nk/{k}

clkTl,iwlk,i (10)

This noise term represents the total impact on agent k of all the
selected exchange noises from its neighbors while exchanging
the estimates {ψψψl,i, l ∈ Nk/{k}} during the aggregation phase.
wk,i is zero mean with covariance matrix of Zk.

A. Entry Selection Methods
To reduce the internode communications, it is permitted

to transmit L-subset of a set on M elements containing
exactly L elements of the intermediate estimate vectors from
each node k at each iteration i. Doing so, we employ two
different schemes called coordinated and uncoordinated partial
diffusion, presented in [23]. These schemes need less memory
and are significantly easier to implement in comparison with
the schemes proposed in [22], called sequential and stochastic
partial diffusion. Let us define M × M the entry-selection
matrix of node k at time instant i as

Tk,i = diag {t1k,i, t2k,i, . . . , tMk,i}

and update it via a circular shift as

Tk,i = UMTk,i−1U
T
M

= diag
{
tMk,i−1, t1k,i−1, . . . , t(M−1)k,i−1

}
where UM is an M×M lower shift matrix with ones below the
main diagonal and zeros elsewhere. The initial entry-selection
matrix of node k, Tk,1 has L ones and M − L zeros on its
main diagonal. As mentioned earlier, the ones on the diagonal
of Tk,i indicate the selected entries of local estimate at node

k for the transmission at iteration i. Again, ψψψk,i by Tk,i that
has L ones and M −L zeros on its diagonal replaces its non-
selected entries with zero.

Remark 2. The transmission probability for every entry at any
node k is

ρ =
L

M

This implies that each entry is communicated L times within
each M consecutive iteration.

If all nodes utilize the same initial entry-selection matrices,
i.e.,

T1,1 = T2,1 = . . . = TN,1

the partial diffusion scheme is named coordinated scheme. On
the other hand, different initial entry-selection matrices for
every node leads to uncoordinated partial diffusion scheme.
We do this because the nodes need to know which entries of
their neighbors intermediate estimates have been transmitted
at each iteration. These schemes bypass the need for any
addressing procedure.

IV. PERFORMANCE ANALYSIS

In this section, we examine the performance of the PDKF al-
gorithm in terms of mean and mean-square senses considering
both coordinated and uncoordinated partial diffusion schemes.
We also provide an expression for its steady-state MSD. For
every node k, the MSD metric is defined as follows:

MSDk,i = E
[
‖xi − x̂k,i|i‖2

]
(11)

In the analysis, we need to consider the fact that the input
data is stochastic in nature and utilize the energy conservation
argument to analyze the stability of algorithms in mean and
mean square senses.

A. Network Update Equation
To proceed with the analysis, we derive the network update

equation in the following section. Let ψ̃ψψk,i = xi − ψψψk,i
denote the estimation error at the end of adaptation phase and
x̃k,i|i−1 = xi − x̂k,i|i−1 denote the estimation error at node k
at the end of aggregation phase. Subtracting (5) from xi and
using model (1) gives

ψ̃ψψk,i = x̃k,i|i−1 −Pk,i|i−1H
T
k,iR

−1
e,i (Hk,ix̃k,i|i−1 + vk,i)

= (IM −Pk,i|i−1H
T
k,iR

−1
e,iHk,i)x̃k,i|i−1

−Pk,i|i−1H
T
k,iR

−1
e,ivk,i (12)

Using the matrix inversion lemma (see appendix A for details),
we obtain Pk,iH

T
k,iR

−1
k,i = Pk,i|i−1H

T
k,iR

−1
e,i and conclude

ψ̃ψψk,i = (IM −Pk,iSk,i)x̃k,i|i−1 −Pk,iH
T
k,iR

−1
k,ivk,i (13)

where Sk,i , HT
k,iR

−1
k,iHk,i. Using the state-space model (1)

we have

x̃k,i|i−1 = Fi−1x̃k,i−1|i−1 + Gi−1ni−1 (14)
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Substituting (14) into (13) gives

ψ̃ψψk,i = (IM −Pk,iSk,i)Fi−1x̃k,i−1|i−1

+ (IM −Pk,iSk,i)Gi−1ni−1 −Pk,iH
T
k,iR

−1
k,ivk,i

(15)

To derive the network update equation, we define the aug-
mented state-error vectors X̃ i|i and Ψ̃i, measurement noise
vector vi, the aggregate link noise signals wi and block-
diagonal matrices Hi, Pi|i, Si and Bi as follows

X̃ i|i = col
{
x̃1,i|i, x̃2,i|i, . . . , x̃N,i|i

}
Ψ̃i = col

{
ψ̃ψψ1,i, ψ̃ψψ2,i, . . . , ψ̃ψψN,i

}
vi = col {v1,i, . . . ,vN,i}
wi = col {w1,i, . . . ,wN,i}
Hi = diag {H1,i,H2,i, . . . ,HN,i}
Pi = diag {P1,i,P2,i, . . . ,PN,i}
Si = diag {S1,i,S2,i, . . . ,SN,i}

Bi =

B1,1,i · · · B1,N,i

...
. . .

...
BN,1,i · · · BN,N,i

 .
where

Bp,q,i =


IM −

∑
l∈Np\{p} clpTl,i if p = q

cqpTq,i if q ∈ Np/ {p}
OM otherwise

Using the above definitions, we can express (9) and (15) in a
global form that captures the evolution of entire network:

X̃ i|i = BiΨ̃i −wi (16)

Ψ̃i = (IMN −PiSi) [(IN ⊗ Fi−1) X̃ i−1|i−1

+ (IN ⊗Gi−1) (1⊗ ni−1)]−PiHT
i R−1

i vi (17)

Equation (17) can be rewritten in a more compact form as

Ψ̃i = F iX̃ i−1|i−1 + Gi (1⊗ ni−1)−Divi (18)

where

F i = (IMN −PiSi) (IN ⊗ Fi−1)

Gi = (IMN −PiSi) (IN ⊗Gi−1)

Di = PiHT
i R−1

i

Substituting (18) into (16) gives the following recursion for
the update of the network state-error vectors:

X̃ i|i = BiF iX̃ i−1|i−1 + BiGi (1⊗ ni−1)

−BiDivi −wi (19)

Equation (19) shows how the network weight error vector X̃ i|i
evolves in time. In the sequel, we will use this recursive equa-
tion to investigate the convergence and steady-state behavior
of PDKF algorithm with noisy links.

In order to analyze the mean-square steady-state perfor-
mance, we introduce the following assumptions:

Assumption 3.
(i) (Time Dependency). The matrices F, G, H, R and Q

described in model (1) are time invariant.
(ii) (Stability) we assume that matrix F = limi→∞F i is

stable, i.e., its eigenvalues locate inside the unit disc.
(iii) (Ergodicity). The matrices {F,Hk} are detectable for

every k and {F,GQ
1
2 } is stabilizable [26].

Under Assumption 3-(iii), Pk,i|i−1 converges to P−k and
Pk,i|i converges to Pk, for all k. Under these assumptions,
the matrices F i, Gi and Di also converge in steady-state, and
their steady-state values are given by

P , lim
i→∞

Pi = diag {P1, . . . ,PN}

P− , lim
i→∞

Pi−1 = diag
{
P−1 , . . . ,P

−
N

}
F , lim

i→∞
F i = (IMN −PS) (IN ⊗ F)

G , lim
i→∞

Gi = (IMN −PS) (IN ⊗G)

D , lim
i→∞

Di = PHTR−1

where S and H are used instead of Si and Hi since these
matrices are now time-invariant.

B. Mean Performance
Proposition 1 summarizes the mean performance of the

PDKF algorithm over a network with noisy links.

Proposition 1. Under Assumptions (1)-(2) the PDKF algo-
rithm over a network with noisy links is convergent in the
mean sense and asymptotically unbiased.

Proof: In view of Assumptions (1) and (2), we can find
that after tacking the expectation on both sides of (19), the
mean error vector evolves according to the following recursion

E
[
X̃ i|i

]
= MF iE

[
X̃ i−1|i−1

]
(20)

where M = E [Bi]. To guarantee the convergence of (20), the
coefficient matrix MF i must be stable. As stated in Appendix
A of [23], all entries of M = E [Bi] are real non-negative and
each of the rows sums to unity, i.e., M1 = 1. This implies
that M is a right-stochastic matrix. The Perron-Frobenius
theorem ensures that the spectral radius (the eigenvalue with
the largest absolute value) of a stochastic matrix is equal to one
[42]. Therefore, as i→∞, the mean stability and asymptotic
unbiasedness of the algorithm is achieved if matrix F is stable.
It can be shown that the matrix F is stable under Assumptions
(3) (see [9], for details). Therefore, we have

lim
i→∞

E
[
X̃ i|i

]
= OMN

where OMN ∈ RMN denotes zero vector. This means at
the presence of disturbances during information exchange,
the PDKF algorithm, is convergent in the mean sense and
asymptotically unbiased.
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C. Mean-square Performance

Let PX̄ ,i = E
[
X̃ i|iX̃

T

i|i

]
denote the covariance matrix of

estimation errors of the PDKF algorithm, X̃ i|i. From (16) and
Assumptions (1) and (2) the following relation can be obtained:

E
[
X̃ i|iX̃

T

i|i

]
=E

[
BiF iX̃ i−1|i−1X̃

T

i−1|i−1F
T
i B

T
i

]
+ E

[
BiGi (1⊗ ni−1) (1⊗ ni−1)

T GTi B
T
i

]
+ E

[
BiDiviv

T
i D

T
i B

T
i

]
+ E

[
wiw

T
i

]
(21)

Employing vectorization operator and using the properties of
Kronecker product1

vec
{
PX̄ ,i

}
= B (F i ⊗F i) vec

{
PX̄ ,i−1

}
+ Bvec

{
Gi
(
11

T ⊗Qi−1

)
GTi + DiRiDT

i

}
+ vec {Z} (22)

where Z = E
[
wiw

T
i

]
= diag {Z1, . . . ,ZN}, and B =

E [Bi ⊗Bi]. We also use the fact that the expectation and
vectorization operations commute.

Let PX̄ denote the steady-state values of matrix PX̄ ,i. We
can solve (22) to obtain the steady-state covariance matrix of
PX̄ ,i (i.e. PX̄ ) as:

vec {PX̄ } = [IM2N2 −B (F ⊗F)]
−1

Bvec {L + K}
+ [IM2N2 −B (F ⊗F)]

−1
vec {Z}

(23)

where L = G
(
11

T ⊗Q
)
GT and K = DRDT . The matrix

covariance PX̄ can be recovered from vec {PX̄ }. It is note-
worthy to state that as F is stable [IM2N2 −B (F ⊗F)]

−1

is invertible.
The MSD at node k can be obtained by weighting PX̄ with

a single-entry block matrix, IkNM ∈ RMN×MN , with block
of size M ×M , which its elements are all zeros, except block
(k, k) which is an identity matrix. So, the MSD at node k can
be expressed as:

MSDk = lim
i→∞

E
[∥∥xi − x̂k,i|i

∥∥2
]

= lim
i→∞

E
[
X̃ i|iX̃

T

i|iI
k
NM

]
= tr

{
PX̄IkNM

}
(24)

Remark 3. In order to better clarify (24), and discuss in
more detail the extraction of MSD expression, we note that
the kth block on the main diagonal of PX̄ is E

[
x̃k,i|ix̃

T
k,i|i

]
.

Multiplying PX̄ by IkNM gives the kth block of PX̄ . There-
fore, the trace of PX̄IkNM is the steady-state variance value

1For any arbitrary matrices {X, Y, Z,W} of compatible dimensions: we
have the following recursion

(X⊗Y) (Z⊗W) = (XZ)⊗ (YW)

vec {XYZ} =
(
ZT ⊗X

)
vec {Y}

tr
{

XT Y
}

= vecT {X} vec {Y}

limi→∞E‖x̃k,i|i‖2. It is easy to generalize this for the network
MSD in the same way. Thus, the network steady-state MSD,
expressed as the average steady-state MSD of all the agents,
is

MSDnetwork =
1

N
tr {PX̄ } (25)

Applying transpose to both sides of (23) and multiplying it
by vec {IMN} yields the following relation:

tr {PX̄ } =
(

vecT {L + K}BT + vecT {Z})
)
×(

IM2N2 − (FT ⊗FT )BT
)−1

h (26)

where h = vec {IMN}. We summarize the steady-state perfor-
mance of the PDKF algorithm with noisy links in the following
Proposition.

Proposition 2. Let Assumptions (1)-(3) hold. Then, for the
PDKF algorithm over a network with noisy links it holds that

lim
i→∞

1

N

N∑
k=1

E
[∥∥xi − x̂k,i|i

∥∥2
]

=

1

N

(
vecT {L + K}BT + vecT {Z})

)
×(

IM2N2 − (FT ⊗FT )BT
)−1

h

Now, we use recursion (22) to derive the required conditions
for mean-square convergence as in the following proposition.

Proposition 3. Under the Assumptions (1)-(3), the recursion
(22) is stable and convergent if and only if, the matrix
B (F i ⊗F i) is stable.

Proof: All the entries of B are real and non-negative.
Moreover, we have

B1M2N2 = E [Bi ⊗Bi]1M2N2

= E [Bi1MN ⊗Bi1MN ] = 1M2N2

This means that the elements of each row of B adds up to one.
Since the block matrix B is right-stochastic matrix, as a result
of Perron-Frobenius theorem [42], it has unit spectral radius
(see Appendix B of [23] for more details on how B right-
stochastic). In steady-state, as i→∞, the PDKF algorithm is
stable in the meas-square sense if, and only if, (F ⊗ F) is
stable. Moreover, the eigenvalues of A⊗ A are square of the
eigenvalues of A [43]. Therefore, the stability of (F⊗F) has
the same conditions as the stability of F . this means that, as
F is stable (see [9], for details) then, the partial diffusion KF
algorithm under imperfect information exchange is convergent
and stable in mean-square sense, and the steady-state network
MSD is given by (25).

V. DETAILED DISCUSSION ON THE COMMUNICATION
TRADE-OFF

A. Comparison with Ideal Links
As we mentioned earlier, when connecting links among the

nodes are ideal, there is a trade-off between the estimation
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performance and the communication cost. In other words,
increasing the number of selected entries improves the esti-
mation performance, but the communication load increases as
well. In the sequel, we explicitly show that in the presence of
noisy links the mentioned communication-performance trade-
off does not hold. To this end, we consider the coordinated
scheme in our analysis, but the analysis can be easily extended
to include the uncoordinated partial diffusion. Moreover, to
make the analysis more tractable we consider the following
assumptions.

Assumption 4.
(i) During any M consecutive iterations, each node’s inter-

mediate estimate vector does not change considerably.
(ii) The matrix C is doubly stochastic.

Under first item on Assumption 4, at every M successive
time iterations, all the entries of node’s intermediate estimate
vectors are scattered at any L iterations. This translates to
approximate of coordinate partial diffusion scheme by periodic
diffusion. In light of Appendix C at [22] , for periodic diffusion
scheme, we have

B = (1− ρ) IM2N2 + ρC⊗ C (27)

where C = C⊗ IM .
To proceed, let’s denote the average steady-state network

MSD of the PDKF algorithm (with L selected entries) under
ideal and noisy links conditions by ήL and ηL, respectively.
The following proposition indicates that when the communi-
cation links are noisy, the stated communication-performance
trade-off for the PDLF algorithm reported in [26] does not
hold.

Proposition 4. Under Assumptions 1-4, the following inequal-
ities hold for the steady-state network MSD of the PDKF
algorithm:

´ηM < · · · < ήL < · · · < ή1 < η1 < · · · < ηL < · · · < ηM
(28)

Proof: The network MSD can be expressed in an al-
ternative series expansion form. Since

(
FT ⊗FT

)
BT is

stable when the algorithm is mean-square stable, the term(
IM2N2 − (FT ⊗FT )BT

)−1

can be expanded as(
IM2N2 − (FT ⊗FT )BT

)−1

=

IM2N2 + (FT ⊗FT )BT +
(

(FT ⊗FT )BT
)2

+ . . .

=
∞∑
j=0

[(
FT ⊗FT

)
BT

]j
which means that we can express the network MSD as follows:

ηL =
1

N
vecT {Ω}BT

∞∑
j=0

[(
FT ⊗FT

)
BT

]j
h

+
1

N
vecT {Z}

∞∑
j=0

[(
FT ⊗FT

)
BT

]j
h (29)

where Ω = L + K. Substituting (27) to (29) gives

ηL =
1

N

∞∑
j=0

(1− ρ)j+1vecT {Ω}
[
(FT )j ⊗ (FT )j

]
h

+
1

N

∞∑
j=0

ρj+1vecT {Ω}
[
CT (FTCT )j ⊗ CT (FTCT )j

]
h

+
1

N

∞∑
j=0

(1− ρ)jvecT {Z}
[
(FT )j ⊗ (FT )j

]
h

+
1

N

∞∑
j=0

ρjvecT {Z}
[
(FTCT )j ⊗ (FTCT )j

]
h

=
1

N

∞∑
j=0

(1− ρ)j+1tr
{

(F)jΩ(FT )j
}

+
1

N

∞∑
j=0

ρj+1tr
{

(CF)jCΩCT (FTCT )j
}

+
1

N

∞∑
j=0

(1− ρ)jtr
{

(F)jZ(FT )j
}

+
1

N

∞∑
j=0

ρjtr
{

(CF)jZ(FTCT )j
}

(30)

The same argument that was used to obtain the network MSD,
ηL, then leads to

ήL =
1

N

∞∑
j=0

(1− ρ)j+1tr
{

(F)jΩ(FT )j
}

+
1

N

∞∑
j=0

ρj+1tr
{

(CF)jCΩCT (FTCT )j
}

(31)

Obviously, it holds that

tr
{

(CF)jCΩCT (FTCT )j
}
< tr

{
(CF)jCΩCT (FTCT )j

}
+tr

{
(CF)jZ(FTCT )j

}
(32)

Afterward, we obtain

tr
{

(CF)jCΩCT (FTCT )j
}

= tr
{

(CT )j+1Cj+1
}

× tr
{

(F)jΩ(FT )j
}

(33)

where tr
{

(CT )j+1Cj+1
}

=
∑N
k=1 ‖ck,j+1‖2 ∀j ≥ 0 and

ck,j+1 is the kth row of Cj+1. Since C is doubly-stochastic,
Cj+1, j ≥ 0, is also doubly-stochastic. In addition, in a
connected network we have

‖ck,j+1‖2 ≤ 1, j ≥ 0, ∀k

This implies that the following inequalities hold for M =
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{1, . . . , L− 1} , (0 < ρ < 1):

tr
{

(CF)jCΩCT (FTCT )j
}
< (1− ρ)j+1tr

{
(F)jΩ(FT )j

}
+ρj+1tr

{
(CF)jCΩCT (FTC)j

}
< (1− ρ)j+1tr

{
(F)jΩ(FT )j

}
+ρj+1tr

{
(CF)jCΩCT (FTCT )j

}
+(1− ρ)jtr

{
(F)jZ(FT )j

}
+ρjtr

{
(CF)jCZCT (FTCT )j

}
< tr

{
(CF)jCΩCT (FTCT )j

}
+tr

{
(CF)jCZCT (FTCT )j

}
(34)

Moreover, for the cases of full-diffusion under ideal and noisy
links (L = M,ρ = 1) algorithms, we have

´ηM =
1

N

∞∑
j=0

tr
{

(CF)jCΩCT (FTCT )j
}

(35)

ηM =
1

N

∞∑
j=0

tr
{

(CF)jCΩCT (FTCT )j
}

+
1

N

∞∑
j=0

tr
{

(CF)jZ(FTCT )j
}

(36)

respectively. Summing (34) for all j ≥ 0 alongside considering
(30), (31), (35), and (36), we arrive at (28), which completes
the proof.

It is noteworthy to mention that the performance degradation
incurred by noisy links depends not only on the link noise
variances, σ2

w,lk, but also on the other parameters of the
network, i.e., the measurement and state noise variances, the
network topology, and combination weights.

B. Comparison with Non-cooperative Algorithm

Here, we compare the performance of PDKF algorithm (30)
with that of non-cooperative processing (37), (L = 0, ρ = 0),
where the nodes act independently.

η0 =
1

N

∞∑
j=0

tr
{

(F)jΩ(FT )j
}

(37)

We establish a procedure to determine the minimum per-
missible link noise variances in which the communica-
tion/performance trade-off collapses. This comparison is mean-
ingful only when the communications among agents are re-
stricted to noisy exchange. In other words, because of im-
perfect information exchange, the PDKF algorithm does not
always fall behind the non-cooperative operation modes. The
following theorem states the desired claim.

Proposition 5. Let Assumptions 1-4 hold. In order to guaran-
tee

η0 < ηL, ∀ L ≥ 1 (38)

The noise variances across communication links, σ2
w,lk, should

be lower bounded;

σ2
w,lk >

[
1− (1− ρ)

j+1 − ρj+1
∑N
k=1 ‖ck,j+1‖2

]
[
(1− ρ)

j
+ ρj

∑N
k=1 ‖ck,j‖

2
]

×
tr
{

(F)iΩ(FT )j
}

∥∥F j
∥∥2

f

(39)

where
∥∥F j

∥∥
f

is the Frobenius norm of matrix F j .

Proof: The inequality (38) implies that

tr
{

(F)jΩ(FT )j
}
< (1− ρ)j+1tr

{
(F)jΩ(FT )j

}
+ρj+1tr

{
(CF)jCΩCT (FTCT )j

}
+(1− ρ)jtr

{
(F)jZ(FT )j

}
+ρjtr

{
(CF)jZ(FTCT )j

}
(40)

Subsequently, we obtain

tr
{

(CF)jCΩCT (FTCT )j
}

= tr
{

(CT )j+1Cj+1
}

× tr
{

(F)jΩ(FT )j
}

(41)

and

tr
{

(CF)jZ(FTCT )j
}

= tr
{

(CT )jCj
}

× tr
{

(F)jZ(FT )j
}

(42)

where tr
{

(CT )j+1Cj+1
}

=
∑N
k=1 ‖ck,j+1‖2 ∀j ≥ 0.

Since C is doubly stochastic, Cj+1, j ≥ 0, is also doubly
stochastic. Moreover, in a connected network it holds that

‖ck,j+1‖2 ≤ 1, j ≥ 0, ∀k

Using (41) and (42), we have

tr
{

(F)jΩ(FT )j
}
< (1− ρ)j+1tr

{
(F)jΩ(FT )j

}
+ρj+1

N∑
k=1

‖ck,j+1‖2 tr
{

(F)jΩ(FT )j
}

+(1− ρ)jtr
{

(F)jZ(FT )j
}

+ρj
N∑
k=1

‖ck,j‖2 tr
{

(F)jZ(FT )j
}

(43)
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Under Assumption 2-i, we have[
1− (1− ρ)

j+1 − ρj+1
N∑
k=1

‖ck,j+1‖2
]

tr
{

(F)jΩ(FT )j
}

< σ2
w,lk

[
(1− ρ)

j
+ ρj

N∑
k=1

‖ck,j‖2
]

tr
{

(F)j(FT )j
}

(44)

It is very easy to prove the remaining parts of this proposition.
Accordingly, it follows from (44) that (39) holds.

Remark 4. Proposition 5 demonstrates that the PDKF al-
gorithm with noisy links cannot always outperform the non-
cooperative DKF algorithm unless the variances of link noise
are bounded as in (39)

VI. ADAPTIVE COMBINATION WEIGHTS

In this section, we firstly formulate the selection of optimal
combination weights and obtained a closed-form solution for
it. Then, an adaptive scheme is developed to obtain the
optimal weights which runs in real-time along with the learning
process. To begin with, we formulate the selection of optimal
combination weights {clk} as follows

min
C

MSD

subject to 1
TC = 1

T , clk = 0 if l /∈ Nk, ∀l, k (45)

Minimizing the MSD expression (25) for the PDKF algorithm
over left-stochastic C is generally non-trivial. Here, however, a
different approximate technique is proposed which leads to one
adaptive solution that acts equally well in practice. It inspired
by [16] and depends on optimizing an upper bound to the
MSD.

A. An Upper Bound on MSD
Let ‖Θ‖† denote the trace norm of matrix Θ [44], defined

as the sum of singular values of Θ. When Θ is Hermitian and
non-negative definite (Θ ≥ 0), we have

‖Θ‖† = tr {Θ}
From (28), we conclude that ηL, (30), is bounded from above
by ηM , (36). Therefore, we need to upper bound ηM instead
of ηL. If ‖Θ‖b,∞ denotes the block maximum norm of matrix
Θ, then we have

tr
{

(CF)j
(
CΩCT + Z

)
(FTCT )j

}
=
∥∥∥(CF)j

(
CΩCT + Z

)
(FTCT )j

∥∥∥
†

≤
∥∥(CF)j

∥∥
† .
∥∥∥CΩCT + Z

∥∥∥
†
.
∥∥∥(FTCT )j

∥∥∥
†

≤ κ2.
∥∥(CF)j

∥∥2

b,∞ .tr
{
CΩCT + Z

}
≤ κ2. ‖(CF)‖2jb,∞ .tr

{
CΩCT + Z

}
(a)

≤ κ2.
(
‖(C)‖b,∞ ‖(F)‖b,∞

)2j

× tr
{
CΩCT + Z

}
= κ2.ρ (F)

2j
.tr
{
CΩCT + Z

}
(46)

where κ is some finite positive constant such that ‖Θ‖† ≤
κ ‖Θ‖b,∞ [45]. To justify step (a), we use results of Appendix
A at [16]. Thus, the network MSD can be upper bounded as
follows

ηM ≤
1

N

∞∑
j=0

κ2.ρ (F)
2j
.tr
{
CΩCT + Z

}
=

κ2

N.
(

1− [ρ (F)]
2
) .tr{CΩCT + Z

}
(47)

Expression (47) illustrates that the norm of series (36) is
bounded by a scaled multiple of tr

{
CΩCT + Z

}
and the

scaling constant is independent of the combination matrix C.

B. Minimizing the Upper Bound

We therefore replace (45) with the simpler optimization
problem:

min
C

tr
{
CΩCT + Z

}
subject to 1

TC = 1
T , clk = 0 if l /∈ Nk, ∀l, k (48)

Let Q = σ2
QIM and Rk = σ2

v,kIP . Because matrix C is
assumed left-stochastic, the cost function in (48) can be written
in terms of the combination coefficients as follows

tr
{
CΩCT + Z

}
=

N∑
k=1

∑
l∈Nk

c2lk[σ2
Qtr

{
GlG

T
l

}
+ σ2

v,ltr
{
PlSlS

T
l PT

l

}
+ tr {Zlk}] (49)

where Gl = (IM −PlSl) G. We can therefore decouple the
problem (48) into N separate optimization problems as follows

min
{clk}Nl=1

∑
l∈Nk

c2lk[σ2
Qtr

{
GlG

T
l

}
+ σ2

v,ltr
{
PlSlS

T
l PT

l

}
+ tr {Zlk}], k = 1, . . . , N

subject to∑
l∈Nk

clk = 1, clk ≥ 0, clk = 0 if l /∈ Nk, ∀l, k (50)

Introducing the following as non-negative variance product
measure

µ2
lk , σ2

Qtr
{
GlG

T
l

}
+ σ2

v,ltr
{
PlSlS

T
l PT

l

}
+ tr {Zlk} , k ∈ Nl (51)

the solution of problem (50) is given by

clk =


µ−2
lk∑

m∈Nk
µ−2
mk

if l ∈ Nk
0 otherwise

(52)

Referring to this combination rule as the relative-variance
combination rule [46], it results in a left-stochastic matrix C.
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C. Adaptive Solution
To evaluate the relative variance combination rule (52),

the nodes need to know the variance products,
{
µ2
lk

}
, of

their neighbors, which are often not available beforehand.
Therefore, an adaptive combination rule is desirable, where
individual nodes learn their combination coefficients (52) using
the available data. We Refer to the Kalman recursion (5) and
(7) and use the output equation (1) to write for node l

ψψψlk,i = x̂l,i|i−1 + Pl,iH
T
l,iR

−1
e,i [Hl,ix̃l,i|i−1 + vl,i] + wlk,i

(53)

so that we obtain in limit as i→∞
E
[∥∥ψψψlk,i − x̂l,i|i−1

∥∥2
]
≈ µ2

lk, ∀l ∈ Nk (54)

As the algorithm approaches steady-state, all the estimates{
x̂k,i|i

}
tend close to xi. Using this fact, it is straightforward

to estimate µ2
lk for node k by using instantaneous realizations

of
∥∥ψψψlk,i − x̂k,i|i−1

∥∥2
, where x̂l,i|i−1 is replaced by x̂k,i|i−1.

Thus, let µ̂2
lk denote an estimator for µ2

lk computed by node
k at time i. Then, one way to evaluate µ̂2

lk is through the
recursion:

µ̂2
lk (i) = (1− τk) µ̂2

lk (i− 1) + τk
∥∥ψψψlk,i − x̂k,i|i−1

∥∥2
(55)

where τk ∈ (0, 1) is a positive coefficient smaller than one. In
this way, we can replace the weights (52) by those adaptively
computed as

clk (i) =


µ̂−2

lk (i)∑
m∈Nk

µ̂−2
mk(i)

if l ∈ Nk
0 otherwise

(56)

VII. SIMULATIONS

Consider an adaptive network, randomly generated and has
a total of N = 10 with topology shown in Fig. 2. Each node
is, on average, connected to two other nodes. The size of the
unknown parameter of the system is M = 4. We apply the
PDKF algorithm to the problem of estimating and tracking the
position of a projectile. This could be useful in places where
a certain projectile is in the proximity of an adaptive network
and a set of nodes are sensing the position of the projectile.
They are subject to noisy links. The state of the system is
an unknown 2-dimensional location vector of an object, i.e.
(x, y), where x and y are first and second entries, respectively.
In our simulation example, the position, the velocity and the
acceleration of projectile, respectively, are

d =

[
dx
dy

]
,v =

[
vx
vy

]
,a =

[
ax
ay

]
,

For a projectile motion we have

v = ḋ, a = v̇, ax = 0, ay = −g
where g = 10 denotes the gravity constant. The state x of
the system is formed by stacking the position and velocity of
projectile. Therefore, the state equation is described as follows:[

ḋ
v̇

]
=

[
0 I2

0 0

] [
d
v

]
+

 0[
0
−g

]

This can be rewritten in a compact form of ẋ = θθθx +ννν. Note
that for the θθθ matrix

eθθθδ = I + δθθθ and
∫ t0+δ

t0

eθθθ(t0+δ−τ)dτ

Therefore, the state satisfies the following equation

x (t+ δ) = [I + δθθθ] x (t) +
[
δI− δ2θθθ/2

]
ννν

For a given time-step δ, and u can be denoted as follows

F , I + δθθθ and u ,
[
δI− δ2θθθ/2

]
ννν

We presume that each node measures the position of the
unknown object in the two, i.e. x and y, dimensions. So, we
have Hk,i as the following matrix

Hk,i =

[
1 0 0 0
0 1 0 0

]
,

Let us denote xi = x (iδ) and take into account the effect of
state and measurement noises, which results in the following
discrete state-space model:

xi+1 = Fxi + Gini + u

yk,i = Hk,ixi + vk,i

where yk,i are the individual measurements obtained by node
k at time i, ni accounts for modeling errors, and vk,i is the
measurement noise at node k. It is noteworthy to mention that
this model has the same form as the biased model presented
in [9] and can therefore be reduced to a model similar to (1).
The state-space model matrices in (1) are:

F =

1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

 ,Gi = 0.625I4,Qi = 0.001I4.

The measurement noise covariance matrix at agent k is,
Rk,i = σ2

k,iI2, where the noise variance σ2
k,i across the agents

is selected randomly in the range [0 0.5]. The experimental
results are obtained by taking the ensemble-average over 200
independent trials and the steady-state values are calculated by
averaging over 1000 steady-state iterations.

We also use the uniform combination rule [17] at the
aggregation step and the estimate vectors are initialized to zero.
The state noise covariance matrix traces, observation noise
variances at all the nodes and the variance profile for the link
noises are generated randomly and shown in Fig. 3. We use
white Gaussian link noise signal such that Zlk = σ2

w,lkIM . To
assign the link number we employ the same approach used in
[16].

The learning curves of PDKF algorithm with noisy links
(in terms of network MSD) for different values of L are
shown in Fig. 4. The MSD curves for both coordinated and
uncoordinated partial diffusion schemes are considered in Fig.
4. Experimental and theoretical steady-state MSDs of all nodes
for different numbers of entries propagated at each time instant
i, are illustrated in Fig. 5. The steady-state network MSD as a
function of communicated entries at each iteration for different
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Fig. 2. Network Graph with N = 10 nodes.

values of σ2
w,lk using both coordinated and uncoordinated

schemes are demonstrated in Fig. 6. We examine the PDKF
algorithm over noisy information exchange under two different
combination rules, the uniform weighting and the adaptation
rule in (56) with {τk = 0.05}. From Fig. 7, we see that
the adaptive rule attains lower MSD level at steady-state,
compared to the uniform rules. The global MSD, in terms of
σ2
w,lk for different values of L are shown in Fig. 8. We can see

that as σ2
w,lk increases, the non-cooperative solution performs

better than the cooperative solution.
From the results above, we summarize the main conclusions

as follows:
• As expected, the presence of noisy links deteriorates the

performance of PDKF algorithm.
• Unlike ideal communication case, there is not a clear

trade-off between the communication load and estima-
tion performance. Increasing the number of communi-
cated entries at each iteration does not result in any better
steady-state network MSD performance.

• The convergence of PDKF algorithm in a network with
noisy links is possible provided that the required condi-
tions for mean and mean-square are satisfied.

• One can see from Figs. 4-6 that the theoretical results
agree well with the simulation ones.

• Simulation results, Fig. 7 illustrate that the PDKF al-
gorithm with proposed adaptive combiners outperforms
those with existing static combiners.

VIII. CONCLUSIONS

In the PDKF algorithm, every node is permitted to share
only a subset of its intermediate estimate vectors at each
iteration among its neighbors, which reduces the amount of
inter-node communications. In this paper, the performance of
PDKF algorithm in a more practical scenario is investigated,
where the exchange of weight estimates among the neighbor-
ing nodes is subject to noise. To show the deterioration of
network performance, we considered the MSD as steady-state
performance metric and derived a theoretical expression for
it. We further analyzed the convergence behavior of PDKF
algorithm in both mean and mean-square senses. We illustrated
that unlike the established statements on PDKF scheme under
ideal links, the trade-off between MSD performance and the
number of selected entries of the intermediate estimate vectors
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Fig. 3. Observation noise variances, the state noise covariance matrix traces
at all nodes and the variance profile for link noises.

as a sign of communication cost is mitigated. To reduce the
effect of channel noise in the aggregation phase, we consider
the problem of optimal selection of combination weights. We
presented some numerical examples to verify our theoretical
findings. More importantly, the simulation findings reveal that
the proposed combination coefficients can greatly improve the
performance of diffusion adaptation with noisy communication
links.

APPENDIX A
By applying the matrix inversion lemma, we can express

Pk,iH
T
k,iR

−1
k,i = Pk,i|i−1H

T
k,iR

−1
e,i . This equality can be

approached as follows

Pk,i|i−1H
T
k,iR

−1
e,i = Pk,i|i−1H

T
k,i

(
Rk,i + Hk,iPk,iH

T
k,i

)−1

= Pk,i|i−1H
T
k,i

[
R−1
k,i

−R−1
k,iHk,i

(
P−1
k,i|i−1 + HT

k,iR
−1
k,iHk,i

)−1
HT
k,iR

−1
k,i

]
Applying the matrix inversion lemma to the therm

(
P−1
k,i|i−1 +

HT
k,iR

−1
k,iHk,i

)−1
leads to

Pk,i|i−1H
T
k,iR

−1
e,i = Pk,i|i−1

[
IM −HT

k,iR
−1
e,iHk,iPk,i|i−1

]
HT
k,iR

−1
k,i

=
[
Pk,i|i−1 −Pk,i|i−1H

T
k,iR

−1
e,iHk,iPk,i|i−1

]
HT
k,iR

−1
k,i

= Pk,iH
T
k,iR

−1
k,i
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reduced-communication diffusion LMS algorithm,” Signal Processing,
vol. 117, pp. 355–361, 2015.

[19] M. O. Sayin and S. S. Kozat, “Single bit and reduced dimension
diffusion strategies over distributed networks,” IEEE Signal Processing
Letters, vol. 20, no. 10, pp. 976–979, 2013.

0 1 2 3 4

x 10
−4

−55

−50

−45

−40

−35

−30

−25

−20

Link noise vaiance, σ2
w,lk

G
lo

ba
l M

SD
 (

dB
)

 

 
η0
η1
η2
η3
η4
ή1
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