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A new initial orbit determination (IOD) method using single-site
very short arc radar observations is proposed. The method uses slant
range, azimuth, and elevation angles to determine the position vec-
tor and uses higher order radial measurements (velocity, acceleration,
and jerk) to determine the velocity vector. The IOD accuracy based on
the geometric dilution of precision (GDOP) metric is analyzed using a
linearization approach. Relations between the GDOP and the obser-
vation geometry are investigated under a near-circular constraint and
the optimal observation geometry for determining the velocity vector
is identified. Monte Carlo simulations are presented for a typical low-
Earth orbit satellite under two observation geometry configurations.
The results demonstrate that the proposed method is feasible for very
short arc initial orbit determination.
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I. INTRODUCTION

The term space situational awareness (SSA) refers to the
activities including surveillance of detectable space objects,
identification, and prediction of the locations of natural and
manmade objects that are orbiting the Earth, and prediction
of space events, possible collisions, and threats. Among all
SSA-related techniques, determining the state vector (po-
sition and velocity) or orbit elements of a space object,
which is referred to as orbit determination, is the basis for
other applications. Since the first artificial satellite, namely,
Sputnik I, was launched by the USSR in 1957, the num-
ber of resident space objects (RSOs) has steadily increased.
By July 25, 2018, more than 17 000 space objects were
in catalog, of which approximately 70% were space debris
[1]. When the latest-generation space surveillance facilities
come into full operation, there will be more than millions
of observations per day [2], [3]. However, compared with
the huge number of observable RSOs, the observation re-
sources remain highly limited, the observations for each
object are sparse by nature and the single observation time
can be very short. The availability of an initial orbit deter-
mination technique that uses very short arc observations is
of substantial importance for it can provide the information
for data association and sensor scheduling. As a type of
chief sensor for space surveillance, radar has all-time, all-
weather observation capabilities and can provide precise
radial measurements such as slant range and radial veloc-
ity. Therefore, developing the IOD method based on very
short arc radar measurements is valuable.

The orbit determination problem has a long history and
has been extensively studied. The first works on IOD meth-
ods were carried out by Gauss and Laplace approximately
two centuries ago [4], with the goal of determining the or-
bits of natural celestial bodies such as comets, asteroids,
and planets. With the emergence of general-purpose elec-
tronic computer techniques, many computer-based iterative
orbit determination methods were developed, among which
the double-r iteration technique by Escobal [5] and the ap-
proach by Gooding [6] are typical. These methods are de-
signed for angles-only data and, therefore, are suitable for
optical sensors such as astronomical telescopes. If the ra-
dial range and pointing angles of a target can be obtained
simultaneously, methods such as Gibbs’, Herrick-Gibbs’,
and Lambert’s [5] can be adopted to yield an initial orbit.

In many cases, short-arc observations contain too lim-
ited information to yield a full or physically meaningful
orbit, which is the crux of the too short arc (TSA) problem.
Milani et al. developed a new orbit determination method
for TSA optical observations of heliocentric asteroids [7],
[8]. It used a four-dimensional (4-D) vector that included
angle and angle rate data as an attributable. Then, the range
and range rate were restricted to a specific zone, which was
called the admissible region, by imposing some physical
constraints. Subsequently, the admissible region was sam-
pled to form virtual asteroids (VAs) and these VAs, along
with the covariance matrices that corresponded to the at-
tributables were propagated to a future time to perform
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correlation between different TSA observations. Once two
TSA observations were confirmed to belong to the same ob-
ject, there were sufficiently many observations to determine
its orbit. Tommei et al. [9] extended this method to Earth-
orbiting objects and Fujimoto et al. [10] used this method
to correlate multiple optical observations for Earth-orbiting
objects in Poincaré orbit element space. However, the ad-
missible region approach is designed for underdetermined
problems, where the number of observations is less than
six in a single TSA. Another possible solution to the TSA
problem is to use multisite radar observations, which was
reported in [11] and [12]; however, multisite radar systems
are usually of great complexity and may require the target
to be in a common view field. In addition, Ansalone et al.
[13] developed a new method that uses the genetic algo-
rithm for space-based sensors and subsequently Hinagawa
et al. [14] extended this method to ground-based sensors.
However, these methods require observations in the mid-
dle of the observation arc to construct a fitness function;
thus, the whole observation arc cannot be reduced too far in
length. DeMars et al. [15] presented a method that is based
on the admissible region and multiple-hypothesis filtering
techniques for short-arc initial orbit determination. The au-
thors tested tracking methods using angles-only and angle
and angle-rate observations and proved that including angle
rate data can improve the tracking accuracy and accelerate
the convergence. This clearly reveals that there is addi-
tional information in the angle rate data. Since Abatzoglou
et al. have proved that high-accuracy radar measurements
for radial velocity and acceleration can be obtained with an
extended integration time in [16], it is reasonable to con-
sider whether the higher order radar radial measurements
(velocity, acceleration, and jerk) could be used for orbit
determination.

In this paper, we propose a novel very short arc IOD
method that is based on single-site radar measurements.
This method uses slant range, azimuth, and elevation an-
gles to determine the position vector and higher order ra-
dial measurements (velocity, acceleration, and jerk) to de-
termine the velocity vector. Since the variances of higher
order radial measurements decrease dramatically as the in-
tegration time increases, with approximately 10 s of coher-
ent integration, radar can obtain sufficiently accurate radial
measurements to support the IOD application. Thus, for a
newly found LEO object, the continuous observation time
can be reduced to about 10 s to extract its initial orbit pa-
rameters.

The remainder of this paper is organized as follows:
Section II introduces the observation model and the IOD
method, along with related coordinate systems under the
spherical nonrotating Earth assumption. Then, the correc-
tions for the Earth’s rotation and oblateness are presented.
Section III presents the linearized accuracy analysis that
is based on the GDOP metric. Section IV focuses on the
relations between the observation geometry and the GDOP.
Then, the best observation geometry for the velocity dilu-
tion of precision (VDOP) is obtained under the near-circular
constraint. Section V presents Monte Carlo simulations for

a typical LEO satellite under two observation geometry
configurations. Finally, Section VI draws the conclusion of
this paper.

II. METHOD OF INITIAL ORBIT DETERMINATION

A. Observation Model

First, we introduce the coordinate systems that are used
to describe the radar measurements. The Earth-centered
coordinate systems, including the Earth-Centered Inertial
(ECI) system and the Earth-Centered Fixed (ECF) system,
are extensively used in SSA; their definitions can be found
in [17].

The simplified transformation matrices between ECI
and ECF are

MECF←ECI = R3 (θG) (1a)

MECI←ECF =MT
ECF←ECI (1b)

where R3 (·) denotes the rotation matrix around the Z-axis
and θG is the Greenwich sidereal time. The effects of polar
motion, nutation, and precession are neglected.

The radar measurements are described in the topocentric
horizon system. Its origin is located at the observation point
and the local horizon forms the fundamental plane. The X-
axis points east from the site, the Y-axis points north, and
the Z-axis is normal to the fundamental plane and directed
toward the zenith. This implementation of the topocentric
horizon system is denoted as ENZ while it may be rotated
and used as SEZ in some other applications. The trans-
formation matrices between the ECF and ENZ coordinate
systems are

MECF←ENZ = R3 (−90◦ − λ) · R1 (−90◦ + φ) (2a)

MENZ←ECF =MT
ECF←ENZ (2b)

where φ and λ denote the site geodetic latitude and longi-
tude, respectively, and R1 (·) is the rotation matrix around
the X-axis. The definitions of three rotation matrices R1(·),
R2(·), and R3(·) can be found in [18]. In this coordinate sys-
tem, the azimuth, which is denoted as A, is measured from
north, clockwise to the target position vector, and it has a
value from 0◦ to 360◦. The elevation, which is denoted as
E, is measured from the local horizon to the target position
vector and it takes a value from −90◦ to 90◦. If the value
of E is negative, the target stays below the local horizon,
which makes it invisible.

For simplicity, the Earth is modeled as an ideal sphere
and the Earth’s rotation is neglected initially. Under the
above assumptions, the target motion is modeled as an
unperturbed two-body problem. A ground-based radar
produces six measurements, which are denoted as �Y =
[ρ, A, E, ρ̇, ρ̈,

...
ρ]T , where ρ is the slant range, A and E

are the pointing angles that are defined in the ENZ coordi-
nate system, and ρ̇, ρ̈, and

...
ρ are the target radial velocity,

radial acceleration, and radial jerk, respectively.
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The slant range ρ is the norm of relative position vector
�r− �R:

ρ =
√(
�r− �R

)2
(3)

where �r and �R are the target position vector and the site
position vector in ECI, respectively. Since the Earth is sta-
tionary, �R is a constant vector.

The angle measurements are expressed as follows:

A = arctan

(
ρE

ρN

)
(4a)

E = arctan

⎛
⎝ ρZ√

ρ2
E + ρ2

N

⎞
⎠ (4b)

where �ρENZ = [ρE, ρN, ρZ]T is the relative position vector
in the ENZ system. Note that the value of A may need to
be adjusted to fall in the range of 0◦–360◦.

Differentiating ρ with respect to time yields

ρ̇ =
�̇r ·

(
�r− �R

)
ρ

. (5)

Similarly, ρ̈ and
...
ρ can be expressed as follows:

ρ̈ =
(
v2 − ρ̇2

)+ �̈r · (�r− �R)
ρ

(6)

...
ρ = −3ρ̇ρ̈

ρ
+ 3�̇r · �̈r

ρ
+

...
�r ·

(
�r− �R

)
ρ

(7)

where v = ∥∥�̇r∥∥ is the norm of the velocity vector.
Since the target is driven by the Earth’s central at-

traction only, the acceleration vector of the target can be
expressed as

�̈r = −μe

r3
�r (8)

where μe is the Earth’s gravitational constant and r = ∥∥�̇r∥∥
is the target geocentric distance. Differentiating (8) with
respect to time yields

...
�r = −μe

r3
�̇r+ 3μe

�r · �̇r
r5
�r. (9)

Substituting (8) and (9) into (6) and (7) yields the final
expressions for the radial acceleration ρ̈ and the radial jerk...
ρ :

ρ̈ = 1

ρ

(
v2 − ρ̇2

)− μe

ρr
+ μe

ρr3

(
�r · �R

)
(10)

...
ρ = −3ρ̇ρ̈

ρ
− μe

r3
ρ̇ −

3μe

(
�r · �R

)
ρr5

(�r · �̇r) . (11)

B. Determination of Position and Velocity

If the Earth is stationary, ECF becomes an inertial refer-
ence frame and the rotation angle θG between ECI and ECF
is a constant. Given the slant range ρ and pointing angles

Fig. 1. Illustration of the ENZ and OBS coordinate systems.

A and E, the target position can be obtained directly via a
series of coordinate transformations.

First, a transformation from spherical coordinates to
Cartesian coordinates is performed to yield the relative po-
sition in the ENZ system:

�ρENZ =

⎡
⎢⎣

ρ cos(E) sin(A)

ρ cos(E) cos(A)

ρ sin(E)

⎤
⎥⎦ . (12)

Then, the target position in ENZ is

�rENZ = �ρENZ + �RENZ (13)

where �RENZ is the position vector of the ground radar site
in ENZ.

Finally, the target position in ECI is

�rECI =MECI←ENZ · �rENZ (14)

where MECI←ENZ is the transformation matrix from ENZ to
ECI and it is expressed as

MECI←ENZ =MECI←ECF ·MECF←ENZ. (15)

To determine the velocity vector, at least three indepen-
dent algebraic conditions are needed: the radial velocity ρ̇

provides the projection of the target velocity vector on the
radar line of sight (LOS); the radial acceleration ρ̈ con-
strains the norm of the velocity vector; and the radial jerk

...
ρ

provides another projection of the velocity vector, namely,
the projection on the direction of the target position vector.
Therefore, the velocity vector �̇r can be determined using
another three measurements: ρ̇, ρ̈, and

...
ρ .

Another useful orthogonal coordinate system for deter-
mining the velocity is the observation coordinate system,
which is designated as OBS. As shown in Fig. 1, the origin
coincides with the ENZ origin and the radar-geocenter-
target plane forms the Y–Z plane. The Z-axis is directed
from the site to the target, the X-axis is normal to the Y–
Z plane and directed toward the right-hand side when it
is viewed from the site toward the target, and the Y-axis
is defined by the right-hand rule. Assuming the target has
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an azimuth A and an elevation E, the transformation ma-
trices between ENZ and OBS can be obtained via simple
coordinate rotations as follows:

MOBS←ENZ = R1 (E − 90◦) · R3 (−A) (16a)

MENZ←OBS =MT
OBS←ENZ. (16b)

It is noted that both MOBS←ENZ and MENZ←OBS are
related to measurements. Therefore, they are both affected
by measurement noise. If the target has a 90◦ elevation, the
azimuth is undefined and this coordinate system is singular.

First, we solve for the target velocity vector in OBS.
Then, a series of coordinate rotations are performed to ob-
tain the velocity vector in ECI.

Let �vOBS =
[
vx, vy, vz

]T
denote the target velocity in

OBS and �v⊥ denote the traverse (X–Y) component of �vOBS.
According to the definition of the OBS coordinate system,

vz = ρ̇. (17)

The equation for the norm of �v⊥ can be obtained directly
from (10)

v2
⊥ = v2 − ρ̇2 = ρρ̈ + μe

r
− μe

r3
�r · �R (18)

where v⊥ =
∥∥�v⊥∥∥.

For simplicity but without loss of generality, assuming
that the radar site is located at the surface of the Earth,
which means the altitude of the site is zero. Then, r and
�r · �R satisfy

r =
√

ρ2 + R2
e + 2ρRe sin(E) (19)

�r · �R = R2
e + ρRe sin(E). (20)

From (11), we obtain

�r · �̇r = −ρ
...
ρr5 + 3ρ̇ρ̈r5 + μeρρ̇r2

3μe

(
�r · �R

) . (21)

Since the position vector �r has already been determined,
another expression for �r · �̇r can be obtained:

�r · �̇r = −Re cos(E)vy + (ρ + Re sin(E)) ρ̇. (22)

Combining (21) and (22) yields

vy = ρ
...
ρr5 + 3ρ̇ρ̈r5 + μeρρ̇r2

3μe

[
R2

e + ρRe sin(E)
]
Re cos(E)

+ (ρ + Re sin(E)) ρ̇

Re cos(E)
. (23)

Finally,

vx = ±
√

v2
⊥ − v2

y. (24)

Note that there are two ambiguous values for the ve-
locity and additional information is needed to resolve the
ambiguities. For instance, the angle change rates obtained
from the radar servo system can be used to eliminate the
ambiguities. If E = 90◦, the denominator of (23) is zero,
which is the singular case. Furthermore, if the site posi-
tion vector lies in the orbital plane, which is referred to as

the coplanar case, vx is always zero because the X-axis of
the OBS coordinate system is perpendicular to the orbital
plane. In this case, small measurement noise could lead to a
complex-valued solution for the velocity vector. Therefore,
we treat the whole visible arc in the coplanar case to be
singular even if E �= 90◦. The above singular cases should
be avoided when using the proposed method.

Once �vOBS has been determined, the velocity in the ECI
coordinate system can be obtained via rotations as follows:

�vENZ =MENZ←OBS · �vOBS (25a)

�vECI =MECI←ENZ · �vENZ. (25b)

C. Corrections for the Earth’s Rotation and Oblateness

So far, the initial orbit determination method has been
developed based on a nonrotating spherical Earth. How-
ever, the Earth’s rotation and oblateness must be taken into
consideration in practice. In this section, IOD corrections
are made to account for the Earth’s rotation and oblateness.

Due to the Earth’s rotation, the site position vector �R
becomes a time-dependent vector. Let �� be the Earth’s
angular velocity vector. The site velocity, acceleration, and
jerk vectors can be expressed as follows:

�̇R = ��× �R (26a)

�̈R = ��× �̇R = ��×
(
��× �R

)
(26b)

...
�R = ��× �̈R = ��×

[
��×

(
��× �R

)]
. (26c)

Then, the target radial range ρ, velocity ρ̇, acceleration
ρ̈, and jerk

...
ρ become

ρ =
√(
�r− �R

)2
(27)

ρ̇ =
(�̇r− �̇R) ·

(
�r− �R

)
ρ

(28)

ρ̈ =

[
(�̇r− �̇R)

2 − ρ̇2

]

ρ
+

(�̈r− �̈R) ·
(
�r− �R

)
ρ

(29)

...
ρ = −3ρ̇ρ̈

ρ
+ 3(�̇r− �̇R) · (�̈r− �̈R)

ρ
+

(
...
�r −

...
�R) ·

(
�r− �R

)
ρ

.

(30)

If we only consider the J2 perturbation that is introduced
by the Earth’s oblateness, the target acceleration �̈r and jerk...
�r must be corrected as follows:

�̈r = �̈r2B + �̈rJ2 = −
μe

r3
�r+ �̈rJ2 (31)

...
�r =

...
�r 2B +

...
�r J2 = −

μe

r3
�̇r+ 3μe

�r · �̇r
r5
�r+

...
�r J2 (32)

where �̈r2B and
...
�r 2B are the two-body acceleration and jerk

and �̈rJ2 and
...
�r J2 represent the J2 perturbation acceleration

and jerk, respectively. Concrete expressions for �̈rJ2 and
...
�r J2

are presented in Appendix A.
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The target geocentric distance change rate ṙ is expressed
as

ṙ

r
= �r · �̇r

r2
. (33)

The Earth’s rotation and oblateness do not affect the
process of solving for the target position �r. The key is to
determine the target velocity �̇r. Suppose we know the site

position vector �R accurately; then, �̇R, �̈R, and
...
�R could be

determined immediately via (26). Once the target position
�r has been obtained, �̈r can also be determined via (31).
Inspecting (28)–(30), we can conclude the following:

1) Equation (28) is a simple first-order equation for ẋ, ẏ,
and ż.

2) The only unknown term in (29) is (�̇r− �̇R)
2
; thus, (29)

is an second-order equation for ẋ, ẏ, and ż.

3) The unknown terms in (30) are (�̇r− �̇R) and
...
�r , both of

which are first-order equations for ẋ, ẏ, and ż.

Theoretically, since (28)–(30) constitute three algebraic
equations for ẋ, ẏ, and ż for which the highest order is two,
the solution for �̇r = [ẋ, ẏ, ż]T can be expressed analyt-
ically using all known quantities. However, the forms of
these equations are highly complex; hence, a numerical
method such as Newton–Raphson iteration is more advis-
able in practice. The initial velocity guess, which is de-
noted as �̇rini , can be obtained by following the steps that
are described in Section II-B under the nonrotating Earth
assumption.

III. ACCURACY ANALYSIS BASED ON GDOP

Since the analytical solution is only available for the
nonrotating Earth, in this paper, we will only analyze the
IOD accuracy under the nonrotating Earth assumption. Sup-
pose that the radar has been elaborately calibrated and all
system biases in the radar measurements have been re-
moved. Thus, the measurements are corrupted by random
noise only. The covariance matrix of the measurement noise
is denoted as CY.

Let �X = [�rT , �̇rT
]
T

be the determined target state from
the radar measurements in the ECI system, its covariance
matrix is designated as CX. For linearized accuracy analy-
sis, CX is

CX = ∂ �X
∂ �YT
· CY · ∂

�XT

∂ �Y . (34)

The position dilution of precision (PDOP) and the ve-
locity dilution of precision (VDOP) are defined as follows:

PDOP =
√

CX(1, 1)+ CX(2, 2)+ CX(3, 3) (35a)

VDOP =
√

CX(4, 4)+ CX(5, 5)+ CX(6, 6). (35b)

A. Measurement Noise Model

Suppose a monopulse radar with the linear frequency
modulation pulse train waveform is used to observe the tar-
get. Since the signal-to-noise ratio (SNR) for a single pulse

may be too low to perform a reliable detection, generally
a period of time of signal integration is needed. The mea-
surements are obtained at a reference time t0. The target
range ρ is derived directly from the time delay; the az-
imuth A and elevation E are acquired using the amplitude-
comparison monopulse technique. The three higher order
radial measurements

[
ρ̇, ρ̈,

...
ρ
]T

are estimated from the
echo phases based on the target kinematic model. Because
the measurements [ρ, A, E]T are irrelevant to the signal
phase, [ρ, A, E]T and

[
ρ̇, ρ̈,

...
ρ
]T

are mutually indepen-
dent. Thus, the covariance matrix can be partitioned as
follows:

CY =
[

CρAE 0

0 Cρ̇ρ̈
...
ρ

]
. (36)

The measurement noise for [ρ, A, E]T is modeled as
a zero-mean Gaussian random vector with a diagonal co-
variance matrix diag

{
σ 2

ρ , σ 2
A, σ 2

E

}
. The standard deviation

of ρ is typically several meters and the angle accuracy is
typically one-tenth of the radar beam width for a monopulse
radar [19].

The noise distribution for
[
ρ̇, ρ̈,

...
ρ
]T

is closely related
to the target kinematic model and the estimation method.
Suppose that a polynomial model is used to describe the
radial motion of the target and the popular maximum-
likelihood (ML) estimator is used to extract the coefficients
of the polynomial model. One of the many good properties
of the ML estimator is that it is asymptotically efficient [20],
which means its output is unbiased, achieves the Cramér–
Rao lower bound (CRLB) and has a Gaussian probability
density function when the sample volume is very large. As
a result, we model the measurement noise for

[
ρ̇, ρ̈,

...
ρ
]T

as a zero-mean Gaussian random vector with a covariance
Cρ̇ρ̈

...
ρ equals the inverse of the Fisher information matrix.
For a three-order polynomial target kinematic model,

the CRLBs for the three higher order radial measurements
are as follows [21]:

σ 2
ρ̇ ≥

75λ2
0

32π2T 2
DSNRint

(37a)

σ 2
ρ̈ ≥

45λ2
0

2π2T 4
DSNRint

(37b)

σ 2...
ρ ≥

3150λ2
0

π2T 6
DSNRint

(37c)

where TD is the integration time and SNRint is the integrated
SNR. λRF, λRMS, and λ0 are expressed as follows:

λRF = c

fc

(38a)

λRMS ≈ c

B/
√

12
(38b)

λ0 = λRFλRMS√
λ2

RF + λ2
RMS

(38c)

where c is the light speed, fc is the carrier frequency, and
B is the signal bandwidth.
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TABLE I
Radar System Parameters

Table I shows the radar parameters used for the subse-
quent analysis and simulation.

If the reference time t0 is chosen to be the exact middle
point of the integration time interval, the covariance matri-
ces CρAE and Cρ̇ρ̈

...
ρ corresponding to the parameters shown

in Table I are as follows [21]:

CρAE =

⎡
⎢⎣

0.4000E+1 0 0

0 0.1313E− 1 0

0 0 0.1313E− 1

⎤
⎥⎦ (39a)

Cρ̇ρ̈
...
ρ =

⎡
⎢⎣

0.7499E− 7 0 − 0.2520E− 7

0 0.0720E− 7 0

− 0.2520E-7 0 0.1008E− 7

⎤
⎥⎦

(39b)

in which the units for angle, length, and time are degree,
meter, and second, respectively. Note that only the two
measurements ρ̇ and

...
ρ are mutually correlated.

B. PDOP Analysis

Let �rENZ and Cpos
ENZ represent the determined position

vector and its covariance matrix, respectively, in the ENZ
system. Similarly, let �rECI and Cpos

ECI represent the corre-
sponding vector and covariance matrix in ECI. Since �rENZ

and �rECI are related by a linear transformation given by
(14), the relation between Cpos

ENZ and Cpos
ECI should satisfy

Cpos
ECI =MECI←ENZ · Cpos

ENZ ·MT
ECI←ENZ. (40)

Because the transformation matrix MECI←ENZ is orthog-
onal, the traces of Cpos

ENZ and Cpos
ECF must be equal. Therefore,

studying the PDOP in the ENZ system is sufficient.
In the ENZ system, the position vector is given by (12)

and (13). Taking partial derivatives of �rENZ with respect to
ρ, A, and E yield

∂�rENZ

∂ρ
= ∂ �ρENZ

∂ρ
=

⎡
⎢⎣

cos(E) sin(A)

cos(E) cos(A)

sin(E)

⎤
⎥⎦ (41a)

∂�rENZ

∂A
= ∂ �ρENZ

∂A
=

⎡
⎢⎣

ρ cos(E) cos(A)

−ρ cos(E) sin(A)

0

⎤
⎥⎦ (41b)

∂�rENZ

∂E
= ∂ �ρENZ

∂E
=

⎡
⎢⎣
−ρ sin(E) sin(A)

−ρ sin(E) cos(A)

ρ cos(E)

⎤
⎥⎦ . (41c)

Then, the Jacobian matrix Jpos is expressed as

Jpos =
[
∂�rENZ

∂ρ
,

∂�rENZ

∂A
,

∂�rENZ

∂E

]
. (42)

The covariance matrix Cpos
ENZ is

Cpos
ENZ = Jpos · diag

{
σ 2

ρ , σ 2
A, σ 2

E

} · JT
pos. (43)

The PDOP is the square root of the trace of Cpos
ENZ:

PDOP =
√

tr
(
Cpos

ENZ

)
(44)

where tr (·) is the trace operator.
Substituting (41)–(43) into (44) yields

PDOP =
√

σ 2
ρ + ρ2cos2(E)σ 2

A + ρ2σ 2
E. (45)

Since the slant range standard deviation σρ is small com-
pared with the whole PDOP, a reasonable approximation of
(45) is

PDOP ≈
√

ρ2cos2(E)σ 2
A + ρ2σ 2

E. (46)

Suppose the radar has the same angle accuracy in az-
imuth and elevation, namely, σ 2

A = σ 2
E = σ 2

ANG. Then, (46)
can be further simplified to

PDOP ≈
√

ρ2
[
1+ cos2(E)

]
σ 2

ANG. (47)

Therefore, we conclude that in a single pass, if the orbit
is an ideal circle, the highest accuracy for the position is
always attained when the target is overhead because the
target has minimum range ρ and maximum elevation E

simultaneously.

C. VDOP Analysis

According to the process of velocity determination, we
conclude that the determined velocity �vENZ is affected by
all six measurements. Since �vENZ and �vOBS are related via
(25a), to obtain the Jacobian matrix ∂�vENZ/∂YT , first the
Jacobian Matrix ∂�vOBS/∂YT is obtained and the concrete
expression for each term in ∂�vOBS/∂YT is presented in Ap-
pendix B. Due to the fact that the transformation matrix
MENZ←OBS is affected by the angle measurements, the par-
tial derivatives of �vENZ are as follows:

∂�vENZ

∂ρ
=MENZ←OBS · ∂�vOBS

∂ρ
(48a)

∂�vENZ

∂A
= ∂MENZ←OBS

∂A
· �vOBS

+MENZ←OBS · ∂�vOBS

∂A
(48b)
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∂�vENZ

∂E
= ∂MENZ←OBS

∂E
· �vOBS

+MENZ←OBS · ∂�vOBS

∂E
(48c)

∂�vENZ

∂ρ̇
=MENZ←OBS · ∂�vOBS

∂ρ̇
(48d)

∂�vENZ

∂ρ̈
=MENZ←OBS · ∂�vOBS

∂ρ̈
(48e)

∂�vENZ

∂
...
ρ
=MENZ←OBS · ∂�vOBS

∂
...
ρ

(48f)

where

∂MENZ←OBS

∂A
=⎡

⎢⎣
− sin(A) cos(A) sin(E) cos(A) cos(E)

− cos(A) − sin(A) sin(E) − sin(A) cos(E)

0 0 0

⎤
⎥⎦ (49a)

∂MENZ←OBS

∂E
=⎡

⎢⎣
0 sin(A) cos(E) − sin(A) sin(E)

0 cos(A) cos(E) − cos(A) sin(E)

0 sin(E) cos(E)

⎤
⎥⎦ . (49b)

These two terms account for the error that is introduced
by the coordinate transformation.

The Jacobian matrix Jvel is

Jvel = ∂�vENZ

∂ �YT
. (50)

Then, the covariance matrix of �vENZ is

Cvel
ENZ = Jvel · CY · JT

vel. (51)

Finally, the VDOP is the square root of the trace of
Cvel

ENZ:

VDOP =
√

tr
(
Cvel

ENZ

)
. (52)

D. Approximation of VDOP

Although (52) is rigorous, it lacks the necessary sim-
plicity to support the observation geometry analysis. In this
section, the approximation for VDOP is presented. Recall
the process of velocity determination: we solve for the ve-
locity in the OBS system, convert it to ENZ, and perform
a series of rotations to obtain the velocity in ECI. Both the
first step and the second step introduce errors, while the
third step is error-free. The main strategy for approxima-
tion is to separate the VDOP into two parts: the error that
is contained in �vOBS and the error that is introduced by the
coordinate transformation.

First, we consider the error that is contained in �vOBS =[
vx, vy, vz

]T
. In this vector, vz is just the radial velocity

and its variance is small compared to the variances of other
components. Therefore, only the error that is contained in

Fig. 2. VDOP in the X–Y plane of the OBS coordinate system.

the X–Y plane component, namely, �v⊥ =
[
vx, vy

]T
, needs

to be considered.
As depicted in Fig. 2, in the X–Y plane,

−→
OA is the

true velocity and
−→
OC is the determined velocity. The error

vector
−→
AC is synthesized from the norm error

−→
BC and the

direction error
−→
AB. If the angle error 	θ is small,

−→
AB is

approximately perpendicular to
−→
BC. We can treat the three

error vectors
−→
AB,
−→
BC, and

−→
AC as random variables and the

norms of these vectors as their standard deviations. Since−→
AB and

−→
BC are approximately orthogonal, the following

relation can be established:

VDOPXY ≈
√

σ 2
N + σ 2

D (53)

where VDOPXY denotes the VDOP that corresponds to
the X-Y components of the determined velocity and σ 2

N

and σ 2
D denote the variances of the norm error and the

direction error, respectively, for the X–Y components of the
determined velocity.

1) Norm Error of �v⊥: Monte Carlo simulation demon-
strates that v⊥ is mostly affected by the elevation angle
noise. Taking the partial derivative of v⊥ with respect to E

yields

∂v⊥
∂E
= 1

2v⊥

∂v2
⊥

∂E
(54)

where ∂v2
⊥/∂E is given by (84). Thus, the norm error is

approximated as follows:

σ 2
N ≈

(
∂v⊥
∂E

)2

σ 2
E. (55)

2) Direction Error of �v⊥: Let θ be the angle between
�v⊥ and the positive direction of the OBS X-axis. It follows
that

θ = arcsin

(
vy

v⊥

)
. (56)

Monte Carlo simulation demonstrates that θ is affected
by the elevation and radial jerk noise significantly, while
other measurement noise can be neglected. The partial
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derivatives of θ with respect to E and
...
ρ are given by

∂θ

∂E
= 1

vx

(
∂vy

∂E
− vy

v⊥

∂v⊥
∂E

)
(57)

∂θ

∂
...
ρ
= 1

vx

(
∂vy

∂
...
ρ
− vy

v⊥

∂v⊥
∂

...
ρ

)
≈ 1

vx

∂vy

∂
...
ρ

(58)

where all the involved partial derivatives are given in Ap-
pendix B.

The variance of θ is

σ 2
θ ≈

(
∂θ

∂E

)2

σ 2
E +

(
∂θ

∂
...
ρ

)2

σ 2...
ρ . (59)

The variance of the direction error is

σ 2
D ≈ v2

⊥σ
2
θ . (60)

The VDOP in the X–Y plane is the square root of the
sum of σ 2

N and σ 2
D:

VDOPXY ≈
√

σ 2
N + σ 2

D. (61)

Finally, the VDOP in the OBS coordinate system is

VDOPOBS =
√

VDOP2
XY + σ 2

ρ̇ ≈ VDOPXY. (62)

3) Coordinate Transformation Error: Let
VDOPENZ←OBS be the coordinate transformation er-
ror. It satisfies

VDOP2
ENZ←OBS

= �vT
OBS ·

(
∂MENZ←OBS

∂A

)T

·
(

∂MENZ←OBS

∂A

)
· �vOBS · σ 2

A

+ 2�vT
OBS ·

(
∂MENZ←OBS

∂A

)T

· (MENZ←OBS) · ∂�vOBS

∂A
· σ 2

A

+ �vT
OBS ·

(
∂MENZ←OBS

∂E

)T

·
(
∂MENZ←OBS

∂E

)
· �vOBS · σ 2

E

+ 2�vT
OBS ·

(
∂MENZ←OBS

∂E

)T

· (MENZ←OBS) · ∂�vOBS

∂E
· σ 2

E.

(63)
Suppose σ 2

A = σ 2
E = σ 2

ANG. Substituting (16), (48), and
(49) into (63) yields

VDOP2
ENZ←OBS =

∥∥�vOBS

∥∥2
σ 2

ANG

+
[(

vz cos(E)+ vy sin(E)
)2−2vz

∂vy

∂E

]
σ 2

ANG. (64)

For a target with a near-circular orbit, vy ≈ 0 and vz ≈ 0
when the target is overhead; hence, (64) can be further
simplified to

∥∥�vOBS

∥∥2
σ 2

ANG at that time.
Finally, the approximated VDOP is

VDOP ≈
√

VDOP2
OBS + VDOP2

ENZ←OBS. (65)

IV. RELATIONS BETWEEN GDOP AND OBSERVATION
GEOMETRY

The observation geometry is described in the orbit co-
ordinate system, which is designated as OBT. As depicted
in Fig. 3, the origin is located at the geocenter (O) and the

Fig. 3. Illustration of the OBT coordinate system.

orbital plane forms the fundamental plane. The X-axis is
extended through the projection point of the radar site (P),
the Z-axis is normal to the orbital plane, and the Y-axis is
determined by the right-hand rule. In this coordinate sys-
tem, r is the geodistance of the target, α represents the angle
between the site position vector, and the orbital plane and
its value is between−90◦ and 90◦, whereas β represents the
angle between the target position vector and the X-axis and
its value is between −180◦ and 180◦. The angle between
the radar site and the target is denoted by γ , which is fully
determined by α and β, and it takes a value from 0◦ to
180◦. The three numbers, namely, [r, α, β]T , are referred to
as observation geometry quantities. Both PDOP and VDOP
are closely related to the observation geometry. Since most
RSOs in low-Earth orbits have small eccentricities, in this
part, the linkage between GDOP and the observation geom-
etry is investigated under the near-circular constraint and
the optimal observation geometry is identified. These anal-
yses are all based upon a nonrotating Earth. The results
could be used as a guide for the IOD epoch selection, for
example.

Let i be the inclination and  be the right ascension of
ascending node. Then, the angle α satisfies

sin(α) = sin(φ) cos(i)+ cos(φ) sin(i) sin (− λ− θG) .

(66)

If the Earth is stationary, α remains constant during a single
pass.

A. Condition of Small Eccentricity

When a target’s orbit has sufficiently small eccentricity,
it is reasonable to treat the visible arc as part of a circle in a
single pass. In this section, we investigate the condition for
conducting such an approximation.

As depicted in Fig. 4, O is the geocenter; P is the
projection point of the radar site on the orbital plane; S

is the intersection of the extension of OP and the target’s
elliptical orbit (the solid blue line), which is referred to
as the collinear point; and f is the true anomaly of S.
The solid black ellipse is the projection of the great circle
containing the site and the dashed black line is the projection
of the local horizon of the site. We approximate the visible
arc (the portion above the dashed black line) as part of a
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Fig. 4. Approximation of the visible arc with a circular arc.

Fig. 5. VDOP relative error for the collinear point. The maximum
relative error occurs at the perigee.

circular orbit (the solid red line) with a radius r̄ , which is
the geodistance of the collinear point.

For the approximated circular visible arc, both the
PDOP and VDOP obtain their minimum values simultane-
ously at the collinear point S, which is justified by Figs. 8
and 9. If the eccentricity is small, we can expect that the
minimum PDOP and VDOP for the true elliptical visible
arc are obtained when the target is close to S. Thus, we pay
special attention to the GDOP at the collinear point. Since
the elliptical orbit and the approximated circular orbit are
fully coincided at the collinear point, the PDOPs for both
must be the same. However, the VDOP for the approxi-
mated circular orbit differs from the one for the original
elliptical orbit at the collinear point.

Define εclp as the VDOP relative error between the cir-
cular arc and the elliptical arc at the collinear point

εclp =

∣∣∣VDOPcir
clp − VDOPell

clp

∣∣∣
VDOPell

clp

(67)

where the subscript clp denotes the collinear point and the
superscripts cir and ell indicate the circle and the ellipse,
respectively.

The collinear point S could locate at any point of the
whole orbit. Fig. 5 shows a typical group of curves of εclp

versus the true anomaly and various eccentricities using
the covariance matrix given by (36) and (39). Here, the
semimajor axis a is chosen to be 7378 km and the site-
orbital plane angle α is selected to be 8◦. We find that
εclp attains its maximum value at the perigee. For a fixed

Fig. 6. Tolerable eccentricity as a function of a and α.

Fig. 7. Illustration of the OBS and OBT coordinate systems.

semimajor axis, εclp at the perigee tends to zero as the
eccentricity tends to zero.

Let tol be a predefined threshold for εclp. For a fixed α

angle, given a value of semimajor axis a, we can get the
value of the eccentricity leading to εclp = tol at the perigee.
This eccentricity is referred to as the tolerable eccentricity,
which means that any orbit with an eccentricity smaller
than this one can be treated as a near-circular orbit given
the corresponding (α, a) pair, and we can approximate any
visible arc contained in this elliptical orbit using a circular
arc described above.

Set tol = 0.01, for the measurement covariance matrix
given by (36) and (39), the corresponding tolerable eccen-
tricities versus the semimajor axes and the site-orbital plane
angles are depicted in Fig. 6.

B. GDOP for Near-Circular Orbits

Suppose that the target has a near-circular orbit, for
the approximated circular visible arc, the target position
and velocity vectors can be determined completely from
the observation geometry quantities [r̄ , α, β]T and only the
angle β changes with time.

In the OBT coordinate system, the site position vector
is expressed as

�R = [
Re cos(α), 0, Re sin(α)

]T
. (68)
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Fig. 8. GDOP versus orbit altitude. Both PDOP and VDOP are monotonically decreasing functions of the orbit altitude. (a) PDOP versus orbit
altitude. (b) VDOP versus orbit altitude.

Fig. 9. GDOP versus site-orbital plane angle. Note that there is an optimal α angle that minimizes the VDOP. (a) PDOP versus site-orbital plane
angle. (b) VDOP versus site-orbital plane angle.

The target position and velocity vectors are expressed
as

�r = [
r̄ cos(β), r̄ sin(β), 0

]T
(69)

�v ≈ [−√μe/r̄ sin (β) ,
√

μe/r̄ cos (β) , 0
]T

. (70)

The site-geocenter-target angle γ satisfies

cos(γ ) = cos(α) cos(β). (71)

By calculation, the elevation E satisfies

sin(E) = r̄

ρ
cos(α) cos(β)− Re

ρ
= r̄

ρ
cos(γ )− Re

ρ
(72a)

cos(E) = r̄

ρ

√
1− cos2(α)cos2(β) = r̄

ρ
sin(γ ). (72b)

According to the cosine law, ρ satisfies

ρ =
√

r̄2 + R2
e − 2r̄Re cos(γ ). (73)

As shown in Fig. 7, the three axial unit vectors of the
OBS system are

ẑOBS = ρ̂ = �r− �R∥∥∥�r− �R
∥∥∥ (74a)

x̂OBS = �r× �R∥∥∥�r× �R
∥∥∥ (74b)

ŷOBS = ẑOBS × x̂OBS. (74c)

The three velocity components in the OBS system are

vx = �v · x̂OBS (75a)

vy = �v · ŷOBS (75b)

vz = �v · ẑOBS. (75c)

Using these relations, all of the six measurements can
be expressed as functions of [r̄ , α, β]T at any time except
for the azimuth A, which is a free variable determined
by a pair values of inclination i and right ascension of
ascending node . However, due to the symmetry of the
spherical nonrotating Earth, any combination of i and 

that satisfies (66) should be equivalent for evaluating the
GDOP. Thus, the PDOP and VDOP can also be expressed
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as functions of [r̄ , α, β]T . Since the final expressions are
extremely complex, we will study their properties via their
images later.

C. Effects of Observation Geometry on GDOP

Out of the three observation geometry quantities, r̄ and
α are free variables, while the range of values for β is
constrained by the target visibility: given a pair (r̄ , α), the
visible arc is determined under the restriction of E > 0
and different values of (r̄ , α) correspond to different visible
arcs. Based upon this, in each run, we choose a typical value
for either r̄ or α and vary the value of the other to examine
its influence on the GDOP. The measurement covariance
matrix used in this section is given by (36) and (39).

1) GDOP Versus r̄: The angle α is selected to be
8◦, which is a typical value for observing LEO targets.
Assuming that the orbit eccentricity is zero and the orbit
plane is aligned with the Earth’s equatorial plane. The radar
site is located at (8◦, 0◦, 0 m). Due to the symmetry, such
a configuration can be viewed as a representative of all the
possible configurations. A series of values of orbit radius r̄

are chosen to cover the entire LEO altitude (approximately
400 km–1500 km). For each value of the orbit radius, the
visible arc is generated and the corresponding PDOP and
VDOP are calculated based on our theory. The results are
shown in Fig. 8.

From Fig. 8, we conclude that both PDOP and VDOP
attain their minimum values when β = 0◦, which is the
overhead time. A larger orbital radius corresponds to a
longer visible arc and both the minimum PDOP and VDOP
increase with the orbital radius monotonically.

2) GDOP Versus α: A circular orbit is selected for
testing. The orbit altitude is set to be 750 km and the orbit
plane is aligned with the Earth’s equatorial plane. A series
of values of α are chosen to test the effects of them on
the GDOP. Note that the exact zero value of α is excluded
because this indicates the coplanar case and the VDOP
is undefined according to (93), where the vx term in the
denominator equals zero. For each α angle, the latitude of
the site is chosen to be equal to α and both the longitude
and altitude of the site are assigned with zeros. Then, the
visible arc for that virtual site is generated, and the PDOP
and VDOP are calculated via our proposed method. The
results are shown in Fig. 9.

As depicted in Fig. 9, the length of the visible arc in-
creases as α decreases. For PDOP, the minimum value
is attained when the target has maximum elevation. The
minimum achievable PDOP decreases monotonically as α

decreases. This is because a smaller value of α leads to
a smaller minimum slant range ρmin and a larger maxi-
mum elevation angle Emax. According to (47), this corre-
sponds to a smaller PDOP value. However, for VDOP, the
rule becomes complex: although the minimum VDOP still
occurs at the maximum elevation time in a single pass,
the minimum achievable VDOP is no longer a monotonic
function of α.

D. Optimal Observation Geometry for VDOP

From previous analysis, we conclude that there must
be an optimal value of α that minimizes the VDOP and it
should be related to both the orbit characteristics and the
sensor measurement accuracy. Under the near-circular orbit
condition, for a specified mean geocentric distance r̄ and a
radar measurement covariance matrix CY, the optimal value
of α can be determined uniquely. Suppose σ 2

A = σ 2
E = σ 2

ANG
and at the maximum elevation time, the following relations
can be established:

vx ≈ ±
√

μe/r̄ , vy ≈ 0, vz ≈ 0, v⊥=|vx | ≈
√

μe/r̄ .

(76)
Substituting (76) into (54)–(55) yields the approxima-

tion for σ 2
N :

∂v2
⊥

∂E
≈ μeRe [3 cos (α) Re − 2r̄] sin (α)

r̄3
(77a)

σ 2
N ≈

μeR
2
e [3 cos (α) Re − 2r̄]2sin2 (α)

4r̄5
σ 2

ANG. (77b)

Substituting (76) into (57)–(60) yields the approxima-
tion for σ 2

D:

∂θ

∂E
≈ 0 (78a)

∂θ

∂
...
ρ
≈ r̄7/2

[
r̄2 − 2r̄ cos (α) Re + R2

e

]
3μ

3/2
e R2

e sin (α) cos (α)
(78b)

σ 2
D ≈

r̄6
[
r̄2 − 2r̄ cos (α) Re + R2

e

]2

9μ2
eR

4
e sin2 (α) cos2 (α)

σ 2...
ρ . (78c)

The minimum VDOP in a single pass is expressed as

VDOPmin ≈
√

σ 2
N + σ 2

D +
μe

r̄
σ 2

ANG. (79)

Then, the optimal value of α, which is denoted as αopt,
satisfies

∂VDOPmin

∂α

∣∣∣∣
α=αopt

= 0. (80)

However, (80) is too complex for its root to be deter-
mined analytically. Instead, the Newton iteration method
can be used to find the root numerically. For the covariance
matrix given by (36) and (39), the optimal value of α and its
corresponding VDOP versus the orbit altitude are plotted
in Fig. 10.

As can be seen in Fig. 10, the optimal value of α is
symmetric about zero due to the symmetry of the obser-
vation geometry. The absolute value of α increases as the
orbit altitude increases. The optimal value of α for an orbit
altitude that corresponds to 750 km is approximately 6.25◦,
which well agrees with Fig. 9(b).

V. SIMULATION RESULTS

A typical satellite of 750 km altitude in low Earth orbit
is considered for the simulation purpose and the radar site
is located at the Earth’s equator. Monte Carlo experiments
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Fig. 10. Optimal site-orbital plane angle for the VDOP as a function of
the orbit altitude.

TABLE II
Orbit Elements

TABLE III
Geodetic Coordinates of Radar Sites

with 100 000 runs are used to verify the validity of the pro-
posed IOD method and the derived formulas for PDOP and
VDOP. Two scenarios that correspond to two observation
geometries are considered: one has a moderate maximum
elevation angle of approximately 35◦, while the other has
a maximum elevation angle of approximately 65◦, which
is the nearly singular situation. In each scenario, a spheri-
cal nonrotating Earth is considered initially and the effects
of the Earth’s rotation and oblateness are subsequently ex-
amined. The radar parameters are shown in Table I and
the measurement covariance matrix is given by (36) and
(39). The orbital elements of the selected target are listed in
Table II and the radar site coordinates are listed in Table III.

A. Nonsingular Case

In Fig. 11, the changes in the radar measurements over
time are shown. We select the overhead time for the nonro-
tating Earth as the reference time. In each subplot, “NROT”
is an abbreviation for the nonrotating Earth case and “ROT”
is an abbreviation for the rotating Earth case. The target
minimum slant range is approximately 1200 km and the
maximum elevation angle is approximately 35◦. Fig. 12 de-
picts the visible arc and the changes in the observation
geometry over time. Due to the very small eccentricity
(0.0001492), the target geocentric distance r varies less
than 2 km over the whole visible arc. Therefore, assuming
r̄ is constant during a single pass is reasonable for the ob-

Fig. 11. Radar measurements for scenario 1. (a) Radial range.
(b) Azimuth angle. (c) Elevation angle. (d) Radial velocity. (e) Radial

acceleration. (f) Radial jerk.

Fig. 12. Observation geometry for scenario 1. The α angle for the
nonrotating Earth is about 8◦, which is the nonsingular case. (a) Visible

arc. (b) Geocentric distance. (c) α angle. (d) β angle.

servation geometry analysis. If the Earth is stationary, the
site-orbital plane angle α remains unchanged.

Fig. 13 shows the approximation for the �v⊥ error in the
X–Y plane of the OBS system. In both subfigures, the legend
“Full” means the error curve is obtained using all of the six
noisy measurements. In Fig. 13(a), the legend “Part” means
the error curve is obtained using the noisy elevation E only
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Fig. 13. Error approximation of �v⊥ for scenario 1. The accuracy of the
approximation using partial noisy observations is high. (a) Norm error of

�v⊥. (b) Direction error of �v⊥.

Fig. 14. Theoretical and simulated GDOP for scenario 1.
(a) Nonrotating Earth PDOP. (b) Nonrotating Earth VDOP. (c) Rotating

Earth PDOP. (d) Rotating Earth VDOP.

while in Fig. 13(b), the legend “Part” means the curve is
obtained using the noisy elevation E and radial jerk

...
ρ . The

results show that the approximation for the error contained
in �v⊥ is accurate, which justifies the use of (55) and (59).

Fig. 14 depicts the theoretical GDOP and the simulated
GDOP. The approximation accuracy is sufficiently high;
hence, in all subplots, the solid line almost coincides with
the dashed line. For the nonrotating Earth scenario, the con-
sistency between the simulated GDOP and its theoretical
counterpart demonstrates the validity of our derived formu-
las. The minimum values for PDOP and VDOP occur at
the closest approach time or the maximum elevation time if
the differences between these two times are neglected. The
more the IOD epoch deviates from the overhead time, the
lower the IOD accuracy will be. Hence, the lowest accuracy
occurs when the target elevation angle is close to zero. In
this scenario, the largest PDOP is approximately three times
the smallest PDOP, while this number is approximately 2
for VDOP. For the rotating Earth scenario, the simulated
PDOP well coincides with the theoretical PDOP because
the Earth’s rotation does not affect measurements ρ, A, and
E. However, for the VDOP, there is a notable deviation
between the theoretical value and the simulated value, es-
pecially when the target is just above the horizon. Since α

Fig. 15. Radar measurements for scenario 2. (a) Radial range.
(b) Azimuth angle. (c) Elevation angle. (d) Radial velocity. (e) Radial

acceleration. (f) Radial jerk.

varies, the observation geometry is asymmetric. As a con-
sequence, the theoretical VDOP becomes asymmetric. The
error analysis for the rotating Earth scenario remains to be
further investigated.

B. Near-Singular Case

In Scenario 2, the target has a maximum elevation angle
of approximately 65◦, which corresponds to a site-orbital
plane angle of approximately 3◦ for the stationary Earth.
The radar measurements, the observation geometry, and the
approximation for �v⊥ are depicted in Figs. 15–17, respec-
tively. Since the site-orbital plane angle is close to zero,
which is the singular case, the velocity accuracy should
be lower than that in Scenario 1. Fig. 18 shows the the-
oretical GDOP and the simulated GDOP. As in Scenario
1, the optimal IOD epoch is the closest approach time/the
maximum elevation time. The shape of the PDOP curve
in Fig. 18(a) closely resembles the one in Fig. 14(a) ex-
cept for a smaller minimum PDOP value due to a smaller
minimum slant range. However, the VDOP curve differs
from that in Scenario 1. As the time deviates from the ref-
erence time, the VDOP increases sharply and the largest
VDOP is approximately 80 m/s, which is almost 5.5 times
the smallest VDOP. This demonstrates the degradation in
velocity accuracy when α is small. Like in Scenario 1, if
the Earth’s rotation is considered, the theoretical PDOP fits
the simulated result well, while the theoretical VDOP is to-
tally unreliable. However, the minimum VDOP value still
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Fig. 16. Observation geometry for scenario 2. The α angle for the
nonrotating Earth is about 3◦, which is the near-singular case. (a) Visible

arc. (b) Geocentric Distance. (c) α angle. (d) β angle.

Fig. 17. Error approximation of �v⊥ for scenario 2. (a) Norm error of
�v⊥. (b) Direction error of �v⊥.

Fig. 18. Theoretical and Simulated GDOP for scenario 2. The
deterioration of the VDOP is notable. (a) Nonrotating Earth PDOP.

(b) Nonrotating Earth VDOP. (c) Rotating Earth PDOP. (d) Rotating
Earth VDOP.

occurs around the maximum elevation time and our theo-
retical value well agrees with the simulated value at that
time.

VI. CONCLUSION

In this paper, a new initial orbit determination method
is proposed. The main feature of this method is that it uses
high-accuracy radar radial measurements (velocity, accel-
eration, and jerk) to determine the target velocity vector.
Linearized accuracy analysis is conducted and analytical
expressions for PDOP and VDOP are derived. The relations
between the above GDOP and the observation geometry are
also investigated under the near-circular constraint. The re-
sults demonstrate that for objects that have near-circular
orbits, the optimal observation time is always close to the
maximum elevation time and there is an optimal angle be-
tween the site and orbital plane that minimizes the VDOP.
These results could be used as a guide for observation arc
selection. The method is verified with a typical LEO satel-
lite via Monte Carlo experiments. The results demonstrate
that for a typical integration time of approximately 10 s,
the standard deviations for the determined position and ve-
locity are several kilometers and several tens of meters per
second, respectively.

Due to the fact that the CRLBs of radar radial measure-
ments are reciprocal to the power of the integration time
with an exponent that is greater than one, from a theoretical
viewpoint, typically approximately 10 s of integration time
is sufficient to yield a meaningful initial orbit, whereas the
traditional IOD methods, such as Gauss’, tend to yield un-
reasonable results under such a short time span. Because
the high-accuracy radar radial measurements are derived
from the phase information, this method can only be used
for attitude-stable objects since a fast-changing attitude will
destroy the phase relations between radar echoes.

APPENDIX A
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where J2 is the Earth’s J2 coefficient, μe is the Earth’s grav-
itational constant, and Re is the Earth’s equatorial radius.

APPENDIX B
JACOBIAN MATRIX OF THE DETERMINED VELOCITY IN
THE OBS SYSTEM

To obtain the Jacobian matrix, which is denoted as
∂�vOBS/∂YT , the following partial derivatives are obtained
step by step:

1) Partial derivatives of r

∂r

∂ρ
= ρ + Re sin(E)

r

∂r
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∂r
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= ρRe cos(E)

r

∂r
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∂r

∂ρ̈
= 0

∂r

∂
...
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2) Partial derivatives of v2
⊥
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3) Partial derivatives of vz
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4) Partial derivatives of vy .
Let

N1 = ρ
...
ρr5 + 3ρ̇ρ̈r5 + μeρρ̇r2

D1 = 3μe

[
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Re cos(E)

N2 = (ρ + Re sin(E)) ρ̇

D2 = Re cos(E). (86)

Then,

vy = N1
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D2
. (87)

Partial derivatives of N1 are
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Partial derivatives of D1 are
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Partial derivatives of N2 are

∂N2

∂ρ
= ρ̇

∂N2

∂A
= 0

∂N2

∂E
= Reρ̇ cos(E)

∂N2

∂ρ̇
= ρ + Re sin(E)

∂N2

∂ρ̈
= 0

∂N2

∂
...
ρ
= 0. (90)

Partial derivatives of D2 are
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where Yi can be any of the six radar measurements.
5) Partial derivatives of vx

∂vx
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. (93)
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