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A Fast Labeled Multi-Bernoulli Filter Using Belief
Propagation

We propose a fast labeled multi-Bernoulli (LMB) filter that uses
belief propagation for probabilistic data association. The complexity
of our filter scales only linearly in the numbers of Bernoulli compo-
nents and measurements, while the performance is comparable to or
better than that of the Gibbs sampler-based LMB filter.

I. INTRODUCTION

The aim of multiobject tracking is to estimate the time-
dependent number and states of multiple objects from noisy
and cluttered sensor measurements [1]–[4]. Of particular in-
terest are tracking algorithms that maintain track continuity,
i.e., estimate entire trajectories of consecutive object states
[1]–[3], [5]–[9]. Two noteworthy examples are the labeled
multi-Bernoulli (LMB) filter [9]–[12], which formally in-
cludes track continuity in its basic formulation involv-
ing labels, and a “label-augmented” version of the track-
oriented marginal multi-Bernoulli/Poisson (TOMB/P) fil-
ter [13], which was defined in [14] by heuristically intro-
ducing labels in the formulation of the (originally nonla-
beled) TOMB/P filter. The LMB filter is an approximation
of the more complex generalized labeled multi-Bernoulli
(GLMB) filter [3], [5]–[8]. In particular, the complexity
of a fast implementation of the LMB filter using the Gibbs
sampler [10] scales quadratically in the number of Bernoulli
components and linearly both in the number of measure-
ments and in the number of samples.

Here, we propose a fast LMB filter with linear scaling.
Our filter incorporates a variant of the belief propagation
(BP) scheme for probabilistic data association proposed in
[13], [15]. The use of this BP scheme within the LMB filter
is enabled by a new derivation of the original LMB filter. In
this derivation, the GLMB random finite set (RFS) is refor-
mulated in terms of a joint association distribution, which
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is then approximated by the product of its marginals. The
proposed fast LMB filter—which is different from the origi-
nal LMB filter—is finally obtained by using a fast BP-based
calculation of the marginal distributions. The complexity of
our filter scales only linearly in the numbers of Bernoulli
components, measurements, and BP iterations. Contrary to
traditional LMB filter implementations based on Murty’s
algorithm or Markov chain Monte Carlo techniques, our
BP-based LMB filter avoids the pruning of association in-
formation (GLMB components) in the update step. Thus,
relevant association information that is discarded by tradi-
tional LMB filter implementations is preserved.

We will use the following notation. We denote vectors
by small boldface letters (e.g., x) and finite sets by capital
letters (e.g., X, or, for labeled finite sets, X̃). For random
quantities, we use a sans serif font, such as in x or X. We
write probability density functions (pdfs) as f (·) or s(·) and
probability mass functions (pmfs) as p(·).

This paper is structured as follows. Section II provides
an introduction to RFSs. The system model is described
in Section III, and the original LMB filter is reviewed in
Section IV. In Section V, we present our new derivation of
the original LMB filter. Section VI reviews the BP scheme
and describes the proposed fast LMB filter. Simulation re-
sults are reported in Section VII. A detailed derivation of
the BP-based probabilistic data association algorithm used
in our fast LMB filter is provided in an appendix. We note
that some supplementary material—a pseudocode of our
fast LMB filter algorithm and a comparison of the approx-
imate marginal association probabilities arising in our fast
LMB filter and in the original LMB filter—are available
online [16].

II. RFS FUNDAMENTALS

An RFS X = {x(1), . . . , x(n)} is a random variable whose
realizations X are finite sets {x(1), . . . , x(n)} of vectors
x(i) ∈ R

Nx . An RFS X can be described by its multiobject
pdf f (X) [3]. The Bernoulli RFS with existence probabil-
ity r and “spatial pdf” s(x) is empty with probability 1 − r

and contains one element x ∼ s(x) with probability r . The
multi-Bernoulli RFS is the union of statistically indepen-
dent Bernoulli RFSs. The Poisson RFS has a cardinality
distribution ρ(n) � Pr{|X| = n} that is a Poisson pmf with
mean μ, and its elements x ∈ X are independent and iden-
tically distributed (iid) according to a spatial pdf f (x). The
product λ(x) = μf (x) is referred to as probability hypoth-
esis density (PHD).

In a labeled RFS X̃, each element x̃ is a tuple (x, l) ∈
R
Nx × L, where L is a countable set [5], [6]. The labels

l(j ) of any realization X̃ = {(x(1), l(1)), . . . , (x(n), l(n))} are
distinct. We denote by L(X̃) � {l(1), . . . , l(n)} the set of
all labels of X̃. The LMB RFS is a multi-Bernoulli RFS
where for any realization X̃, each single-vector set {x} cor-
responding to a Bernoulli componentX(j ) is augmented by
a distinct label l ∈ L

∗ ⊆ L. Using the labeling scheme of
[9], the same label l is assigned to each state realization
x of a given Bernoulli RFS X(j ). We will thus index the

Bernoulli RFSs directly by their labels l, i.e., they are de-
noted X(l), l ∈ L

∗, where L
∗ ⊆ L denotes the finite set of

assigned labels [9]. The LMB RFS X̃ is then specified by
the set of existence probabilities and spatial distributions,
{(r (l), s(l)(x))}l∈L∗ . Its multiobject pdf [5], [6] evaluated for
a realization X̃ with label set L(X̃) ⊆ L = {l(1), . . . , l(J )}
and cardinality |X̃| ≤ J is [9]

f (X̃) = �(X̃)

⎛
⎝ ∏
l′∈L∗\L(X̃)

(
1 − r (l′)

)⎞
⎠

×
∏

(x,l)∈X̃
1L∗(l) r (l)s(l)(x). (1)

Here, �(X̃) is one if the labels of X̃ are distinct and zero
otherwise, and 1L∗(l) is one if l ∈ L

∗ and zero otherwise. A
generalization of the LMB RFS is the GLMB RFS [5], which
will be considered in Section IV. A detailed description of
the GLMB RFS and its relation to the LMB RFS can be
found in [3], [5], [9].

III. SYSTEM MODEL

Following [9], we model the object states at dis-
crete time k by an LMB RFS X̃k with parameters {(r (l)

k ,

s(l)(xk))}l∈L
∗
k
, where L

∗
k ⊆ Lk = {1, . . . , k} × N. Follow-

ing [5], the total label space Lk evolves according to
Lk = Lk−1 ∪ L

B
k , where L

B
k = {k} × N and Lk−1 ∩ L

B
k = ∅.

An object with preceding state (xk−1, l) survives with
probability pS(xk−1, l), in which case its new state xk
(without the label) is distributed according to some tran-
sition pdf f (xk|xk−1, l) and the label l is preserved.
The states of different objects evolve independently.
Accordingly, the multiobject state of the survived ob-
jects at time k is an LMB RFS X̃S

k with parameters
{(pS(xk−1, l), f (xk|xk−1, l))}l∈L

∗
k−1

. Newborn objects are

modeled by an LMB RFS X̃B
k that is independent of

X̃S
k , given X̃k−1, and parametrized by {(r (l)

B,k, s
(l)
B (xk))}l∈L

B∗
k

,
where L

B∗
k ⊆ L

B
k and L

B∗
k ∩ L

∗
k−1 = ∅. The overall multi-

object state of all objects, X̃k = X̃S
k ∪ X̃B

k , is again an LMB
RFS. The corresponding new label set is L

∗
k = L

∗
k−1 ∪ L

B∗
k .

The multiobject state transition model just described spec-
ifies the multiobject state transition pdf f (X̃k|X̃k−1) [5,
Section IV-D].

A sensor generates Mk measurements z(1)
k , . . . , z

(Mk)
k ,

which are modeled by an RFS Zk = {z(1)
k , . . . , z

(Mk)
k }. An

object with state (xk, l) is detected by the sensor with prob-
ability pD(xk, l), in which case it generates a measurement
zk according to some conditional pdf (likelihood function)
f (zk|xk, l). Hence, the object-originated measurements are
modeled by a multi-Bernoulli RFS ZO

k parametrized by
{(pD(xk, l), f (zk|xk, l))}l∈L

∗
k
. Clutter-originated measure-

ments are modeled by a Poisson RFS ZC
k that is in-

dependent of ZO
k , given X̃k , and parametrized by some

mean parameter μC and spatial pdf fC(zk) and, thus, PHD
λC(zk) = μCfC(zk). The overall measurement RFS is given
by Zk = ZO

k ∪ ZC
k . The multiobject measurement model
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described above specifies the multiobject likelihood func-
tion f (Zk|X̃k) [5, Section IV-C].

IV. REVIEW OF THE LMB FILTER

The LMB filter propagates the posterior multiobject pdf
f (X̃k|Z1:k), where Z1:k � (Z1, . . . , Zk). In the prediction
step at time k, the preceding posterior pdf f (X̃k−1|Z1:k−1),
which is of LMB form, is converted into a “predicted”
posterior pdf f (X̃k|Z1:k−1). This pdf is again of LMB form,
with parameters {(r (l)

k|k−1, s
(l)
k|k−1(xk))}l∈L

∗
k
. Expressions of

these parameters are provided in [9].
The update step converts f (X̃k|Z1:k−1) into f (X̃k|Z1:k).

Consider the mapping θk : L → {0, 1, . . . ,Mk} with L ∈
F(L∗

k), where F(L∗
k) is the set of all subsets of L

∗
k . Here,

θk(l) = m ∈ {1, . . . ,Mk} indicates that object state (xk, l)
is associated with measurement m and θk(l) = 0 indicates
that it is not associated with any measurement. Let �L

denote the set of all mappings θk that describe admissible
associations, i.e., assigning at most one measurement to the
same object and no measurement to more than one object.
As shown in [5] and [9], f (X̃k|Z1:k) is of GLMB form and
can be expressed as

f (X̃k|Z1:k) = �(X̃k)
∑

L∈F(L∗
k )

∑
θk∈�L

w(L,θk ) δL(L(X̃k))

×
∏

(xk,l)∈X̃k
s(l,θk(l))(xk). (2)

Here, δL(L(X̃k)) is one if L = L(X̃k) and zero otherwise.
Further, up to a normalization factor,

w(L,θk ) ∝
⎛
⎝ ∏
l′∈L

∗
k\L

(
1 − r

(l′)
k|k−1

)⎞
⎠∏

l∈L
r

(l)
k|k−1 η

(l,θk(l)) (3)

for L ∈ F(L∗
k), where η

(l,m)
k equals B

(l)
k �

∫
(1 −

pD(xk, l))s
(l)
k|k−1(xk)dxk for m = 0 and C(l)

k (z(m)
k )/λC(z(m)

k )

with C
(l)
k (z(m)

k ) �
∫
f (z(m)

k |xk, l)pD(xk, l) s
(l)
k|k−1(xk)dxk

for m ∈ {1, . . . ,Mk}. Finally,

s(l,m)(xk)

=

⎧⎪⎨
⎪⎩

(1 − pD(xk, l)
)
s

(l)
k|k−1(xk)/B

(l)
k , m = 0

f (z(m)
k |xk, l)pD(xk, l)s

(l)
k|k−1(xk)/C

(l)
k (z(m)

k ),

m ∈ {1, . . . ,Mk}.
(4)

In the LMB filter [9], the GLMB pdf in (2) is approximated
by an LMB pdf (1) with existence probabilities

r
(l)
k =

∑
L∈F(L∗

k )

∑
θk∈�L

1L(l)w(L,θk) (5)

and spatial pdfs

s(l)(xk) = 1

r
(l)
k

∑
L∈F(L∗

k )

∑
θk∈�L

1L(l)w(L,θk)s(l,θk(l))(xk) (6)

for l ∈ L
∗
k .

V. A NEW DERIVATION OF THE LMB FILTER

We first show that the LMB filter can be derived by
reformulating the GLMB posterior pdf in (2) in terms of
a joint association pmf and approximating that pmf by the
product of its marginals. A similar approach was used for
the TOMB/P filter to obtain a multi-Bernoulli pdf from an
unlabeled multi-Bernoulli mixture pdf [13]. We start by
rewriting (2) as

f (X̃k|Z1:k) = �(X̃k)
∑

θk∈�L(X̃k )

w(L(X̃k ),θk)

×
∏

(xk,l)∈X̃k
1L

∗
k
(l)s(l,θk(l))(xk). (7)

In (2), the factor δL(L(X̃k)) with L ∈ F(L∗
k) ensured that

the labels of X̃k , i.e., L(X̃k), are from the set L
∗
k ; this is

now expressed by
∏

(xk,l)∈X̃k 1L
∗
k
(l). Next, instead of using

the mapping θk to describe the object-measurement asso-
ciations [9], [10], we introduce the association vector ak
with elements a(l)

k ∈ {−1, 0, . . . ,Mk}, where l ∈ L
∗
k . Here,

a(l)
k = m ∈ {1, . . . ,Mk} indicates that object state (xk, l)

is associated with measurement m, a(l)
k = 0 indicates that

it is not associated with any measurement, and a(l)
k = −1

indicates that it does not exist, i.e., (xk, l) /∈ X̃k . Let Ak

denote the set of admissible association vectors ak . Just as
an admissible mapping θk in Section IV, an admissible as-
sociation vector ak assigns at most one measurement to the
same object and no measurement to more than one object.
We can now rewrite (7) as

f (X̃k|Z1:k) = �(X̃k)
∑

ak∈Ak

ϕ(ak, X̃k)wak

×
∏

(xk,l)∈X̃k
1L

∗
k (l)s

(l,a(l)
k )(xk). (8)

Here, ϕ(ak, X̃k) = 1 for all ak with a
(l)
k = −1 for l ∈

L
∗
k \ L(X̃k) and a

(l)
k ∈ {0, . . . ,Mk} for l ∈ L(Xk), and

ϕ(ak, X̃k) = 0 otherwise; this factor reduces the sum over
all ak ∈ Ak in (8) to the sum over all corresponding map-
pings θk ∈ �L(X̃k) in (7). Furthermore, the weights wak can
be expressed as

wak ∝
∏
l∈L

∗
k

β
(l,a(l)

k )
k , ak ∈ Ak (9)

where the “association weights” β
(l,a(l)

k )
k are defined as

r
(l)
k|k−1η

(l,a(l)
k ) for a(l)

k ∈ {0, . . . ,Mk} and as 1 − r
(l)
k|k−1 for

a
(l)
k = −1 [cf. (3)]. Finally, s(l,a(l)

k )(xk) in (8) equals
s(l,θk(l))(xk) (with θk(l) replaced by a(l)

k ) because s(l,−1)(xk)
does not occur in (8) (recall that a(l)

k = −1 implies (xk, l) /∈
X̃k). In contrast to the weights w(L,θk) in (2), the wak
do not depend on L(X̃k). They are normalized in that∑

ak∈Ak
wak = 1. Expressions (5) and (6) can now be
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reformulated in terms of ak as

r
(l)
k =

∑

ak∈A(l)
k

wak (10)

s(l)(xk) = 1

r
(l)
k

∑

ak∈A(l)
k

wak s
(l,a(l)

k )(xk) (11)

where A(l)
k � {ak ∈ Ak : a(l)

k ∈ {0, . . . ,Mk}}. This is possi-
ble because (5) and (6) contain only terms involvingw(L,θk )

with L such that l ∈ L; this can be expressed via ak by
removing all ak with a(l)

k = −1 from Ak , which results
in A(l)

k .
With this reformulation, we can interpret the weights

wak as the pmf of the association vector ak . More precisely,
we define the pmf of ak as p(ak) = wak for ak ∈ Ak and
p(ak) = 0 otherwise. We can then rewrite (8) as

f (X̃k|Z1:k) = �(X̃k)
∑

ak∈M
|L∗
k
|

k

ϕ(ak, X̃k)p(ak)

×
∏

(xk,l)∈X̃k
1L

∗
k
(l)s(l,a(l)

k )(xk) (12)

with Mk � {−1, 0, . . . ,Mk}. Note that
∑

ak∈Ak
in (8)

can be replaced by
∑

ak∈M
|L∗
k
|

k

since p(ak) = 0 for ak ∈
M|L∗

k |
k \ Ak . Next, we approximate p(ak) by the product of

its marginals, i.e.,

p(ak) ≈
∏
l∈L

∗
k

p
(
a

(l)
k

)
, ak ∈ M|L∗

k |
k (13)

where

p
(
a

(l)
k

) =
∑

a∼l
k ∈M|L∗

k
|−1

k

p(ak). (14)

(Here, a∼l
k denotes the vector ak with the lth component,

a
(l)
k , removed.) Inserting (13) into (12) yields

f (X̃k|Z1:k) ≈ �(X̃k)
∑

ak∈M
|L∗
k
|

k

⎛
⎝ ∏
l′∈L

∗
k

p
(
a

(l′)
k

)
⎞
⎠ϕ(ak, X̃k)

×
∏

(xk,l)∈X̃k
1L

∗
k
(l)s(l,a(l)

k )(xk). (15)

Using
∑

ak∈M
|L∗
k
|

k

= ∑
a

(1)
k ∈Mk

· · · ∑
a

(|L∗
k
|)

k ∈Mk

, splitting
∏
l′∈L

∗
k
p(a(l′)

k ) as (
∏
l′∈L

∗
k\L(X̃k) p(a(l′)

k ))
∏
l∈L(X̃k) p(a(l)

k ),

evaluating ϕ(ak, X̃k), and grouping terms, we obtain

f (X̃k|Z1:k) ≈ �(X̃k)P (X̃k)
∏

(xk,l)∈X̃k
1L

∗
k
(l)

×
Mk∑

a
(l)
k =0

p
(
a

(l)
k

)
s(l,a(l)

k )(xk) (16)

with P (X̃k) �
∏
l∈L

∗
k\L(X̃k) p(a(l)

k = −1). Comparing ex-
pression (16) with (1), we conclude that it is an LMB pdf

with existence probabilities

r
(l)
k = 1 − p(a(l)

k = −1) =
Mk∑

a
(l)
k =0

p(a(l)
k ) (17)

and spatial pdfs

s(l)(xk) = 1

r
(l)
k

Mk∑

a
(l)
k =0

p(a(l)
k )s(l,a(l)

k )(xk). (18)

Finally, we show that (17) and (18) are identical to (5) and
(6), respectively. Inserting (14) into (17), we obtain

r
(l)
k =

Mk∑

a
(l)
k =0

∑

a∼l
k ∈M|L∗

k
|−1

k

p(ak) =
∑

ak∈A(l)
k

wak (19)

where the last expression follows because p(ak) equalswak
for ak ∈ Ak and 0 otherwise. Thus, (17) is identical to (10)
and, hence, to (5). Similarly, it can be verified that (18) is
identical to (11) and, hence, to (6). This shows that our LMB
approximation (15) of the GLMB posterior pdf f (X̃k|Z1:k)
in (2) is equivalent to the LMB approximation underlying
the original LMB filter [9].

VI. A NEW FAST LMB FILTER

We now leverage the new formulation of the LMB filter
derived above for a reduction of complexity. More specif-
ically, slightly adapting the algorithm of [15], we present
a fast BP-based approximate calculation of the marginal
association probabilities p(a(l)

k ) involved in (17) and (18).
First, we review the general framework of factor graphs and
BP [17].

A. Review of Belief Propagation

Consider J discrete random variables aj , j = 1, . . . , J .
We would like to calculate the marginal pmfs p(aj ) from
the joint pmf p(a) with a = [a1 · · · aJ ]T. However, often a
direct marginalization is computationally infeasible.

Using BP (or, equivalently, the sum-product algorithm
[17]), the marginalizations yielding the pmfs p(aj ), j =
1, . . . , J can be performed—at least approximately—in an
efficient manner if p(a) factorizes according to

p(a) ∝
Q∏
q=1

ψq(a(q)). (20)

Here, each argument a(q) comprises certain variables aj .
The factorization (20) can be represented by a factor graph,
in which each variable aj is represented by a variable node,
each factor ψq(·) is represented by a factor node, and vari-
able node “aj” and factor node “ψq” are adjacent, i.e., con-
nected by an edge, if the variable aj is an argument of the
factor ψq(·) and, thus, part of a(q). Fig. 1 considers the case
where a = [a1 a2]T and shows the factor graph representing
the factorization

p(a) ∝ ψ1(a1)ψ2(a1, a2)ψ3(a2). (21)
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Fig. 1. Factor graph representing the factorization of the pmf
p(a) ∝ ψ1(a1)ψ2(a1, a2)ψ3(a2), with a = [a1 a2]T. Variable nodes are

depicted as circles and factor nodes as squares.

BP is a message passing algorithm where each node
in the factor graph passes messages to the adjacent nodes.
More specifically, consider a variable node “aj” and an
adjacent factor node “ψq”, i.e., the variable aj is part of the
argument a(q) of ψq(a(q)). Then, the message passed from
factor node “ψq” to variable node “aj” is given by

φ(ψq→aj )(aj ) =
∑
a∼j

ψq(a(q))
∏

j ′∈Jq\{j}
η(aj ′→ψq )(aj ′) (22)

where Jq denotes the neighborhood set of factor node
“ψq” (i.e., the set of indices j of all variable nodes
“aj” that are adjacent to factor node “ψq”),

∑
a∼j de-

notes summation with respect to all variables aj ′ , j ′ ∈
Jq except aj , and η(aj ′→ψq )(aj ′) is the message passed
from variable node “aj ′” to factor node “ψq” (to be
explained presently). For example, the message passed
from factor node “ψ2” to variable node “a2” in Fig. 1
isφ(ψ2→a2)(a2) = ∑

a1
ψ2(a1, a2)η(a1→ψ2)(a1). The message

η(aj→ψq )(aj ) passed from variable node “aj” to factor node
“ψq” is given by the product of the messages passed to
variable node “aj” from all adjacent factor nodes except
“ψq”, i.e.,

η(aj→ψq )(aj ) =
∏

q ′∈Qj \{q}
φ(ψq′→aj )(aj ) (23)

where the neighborhood set Qj comprises the set of indices
q of all factor nodes “ψq” that are adjacent to variable
node “aj”. For example, in Fig. 1, the message passed from
variable node “a2” to factor node “ψ3” is η(a2→ψ3)(a2) =
φ(ψ2→a2)(a2). This message passing process is started at
variable nodes with only one edge, which pass a constant
message, and/or factor nodes with only one edge, which
pass the corresponding factor. We note that BP can also
be applied to functions involving continuous variables; the
only difference is that in (22) the respective summations
are replaced with integrations.

When all messages have been passed as described
above, then for each variable node “aj”, a belief p̃(aj ) is
calculated as the product of all incoming messages (passed
from all adjacent factor nodes) followed by a normalization
such that

∑
aj
p̃(aj ) = 1. For example, in Fig. 1,

p̃(a2) ∝ φ(ψ2→a2)(a2)φ(ψ3→a2)(a2). (24)

If the factor graph is a tree, then the obtained belief p̃(aj )
is exactly equal to the marginal pmf p(aj ). On the other
hand, if the factor graph contains cycles (loops), BP is usu-

ally applied in an iterative manner, and the beliefs p̃(aj )
are only approximations of the respective marginal pmfs
p(aj ). In these iterative “loopy BP” schemes, there is no
canonical order in which the messages should be calculated,
and different orders may lead to different beliefs. For each
node, the outgoing message can be calculated as soon as the
incoming messages involved in (22) or (23) are available.
The choice of an order (schedule) of message calculation
provides a certain flexibility in the design of BP-based in-
ference algorithms.

B. BP-Based Probabilistic Data Association

We now present a fast BP-based algorithm for calculat-
ing approximations of the marginal association probabili-
ties p(a(l)

k ), l ∈ L
∗
k involved in (17) and (18). This algorithm

is a variant1 of the BP scheme for probabilistic data associ-
ation proposed in [15]. We recall that ak ∈ M|L∗

k |
k and, fur-

ther, that p(ak) = wak for ak ∈ Ak⊆ M|L∗
k |

k and p(ak) = 0
otherwise. Using (9), we can then express the joint associ-
ation pmf p(ak) as

p(ak) ∝ 
(ak)
∏
l∈L

∗
k

β
(l,a(l)

k )
k , ak ∈ M|L∗

k |
k (25)

where 
(ak) = 1 if ak ∈ Ak and 
(ak) = 0 otherwise.
Note that 
(ak) enforces the admissibility (defined in
Section V) of the association described by ak . Without

(ak), (25) would describe the probability of “indepen-
dent” single-object associations, and in the resulting algo-
rithm, each object would be tracked without taking into
account the presence of other objects. This would produce
track losses when objects are in close proximity.

Following [15], we introduce the alternative associa-
tion vector bk with elements b(m)

k , m ∈ {1, . . . ,Mk}, where
b(m)
k = l ∈ L

∗
k indicates that measurement m is associated

with object state (xk, l) and b(m)
k = 0 indicates that mea-

surement m is not associated with any object state. We
can reformulate the joint association pmf p(ak) in terms of
both ak and bk . Indeed, analogously to (25), we can express
p(ak, bk) as

p(ak, bk) ∝ 
(ak, bk)
∏
l∈L

∗
k

β
(l,a(l)

k )
k . (26)

Here, the admissibility of ak and bk is enforced by the factor


(ak, bk) =
∏
l∈L

∗
k

Mk∏
m = 1


l,m(a(l)
k , b

(m)
k ) (27)

where
l,m(a(l)
k , b

(m)
k ) = 0 if either a(l)

k = m and b(m)
k �= l or

a
(l)
k �= m and b(m)

k = l, and 
l,m(a(l)
k , b

(m)
k ) = 1 otherwise.

1The algorithm in [15] is not suited in our context because it presupposes
that the number of objects is known. The related algorithm in [13] is
not suited either because it combines the association weights for object
nonexistence,β(l,−1)

k , and those for a missed detection,β(l,0)
k , into common

association weights and also includes association weights for objects that
are detected for the first time.
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Fig. 2. Factor graph representing the factorization (26), (27). The

following short notations are used: βj � β
(l′,m′)
k , aj � a

(l′)
k , bm � b

(m)
k ,


j,m � 
l′,m(a(l′)
k , b

(m)
k ), M � Mk , and J = |L∗

k |, with l′ � l(j ) and

m′ � a
(l(j ))
k . Here, l(j ) ∈ L

∗
k = {l(1), . . . , l(J )}.

The vector bk does not carry any additional association
information compared to the vector ak . However, as dis-
cussed in [14] and [15], the redundant formulation of the
joint association pmf using ak and bk in parallel, as given
by (26) and (27), enables a fast method for BP-based proba-
bilistic data association. On a more general level, the intro-
duction of additional random variables that are redundant
in that they deterministically depend on existing random
variables (such as bk , which deterministically depends on
ak) is a common means of expanding factor graphs [17]. In
many cases, using BP on the expanded graph is more com-
putationally efficient than using BP on the original graph.
In our case, the introduction of the redundant association
vector bk results in the expression (27) of the admissi-
bility constraint, which has the important property that it
completely factorizes into individual components indexed
by (l, m) ∈ L

∗
k × {1, . . . ,Mk}. As we will show next, this

complete factorization allows us to devise a fast algorithm
for probabilistic data association.

The factorization (26), (27) can be represented by the
factor graph [17] shown in Fig. 2. Then, still following [15],
approximations of the marginal association pmfsp(a(l)

k ) and
p(b(m)

k ) can be obtained via iterative BP message passing.2

In BP iteration i ∈ {1, . . . , I }, a message ζ [i](l→m)
k is passed

from variable node “a(l)
k ” via factor node “
l,m(a(l)

k , b
(m)
k )”

to variable node “b(m)
k ”, and a message ν[i](m→l)

k is passed
from variable node “b(m)

k ” via factor node “
l,m(a(l)
k , b

(m)
k )”

to variable node “a(l)
k ”. Using (22) and (23), it is shown in

2We note that, as studied in [18], approximations of the p(a(l)
k ) can also be

calculated by running the BP algorithm on a factor graph containing only
the variable nodes “a(l)

k ” and a factor node representing the admissibility
constraint factor ψ(ak). However, these approximations are inferior to
those obtained by running the BP algorithm on the factor graph of Fig. 2
[18].

the appendix that these messages are given by

ζ
[i](l→m)
k = β

(l,m)
k

β
(l,−1)
k + β

(l,0)
k + ∑Mk

m′=1
m′ �=m

β
(l,m′)
k ν

[i−1](m′→l)
k

(28)

ν
[i](m→l)
k = 1

1 + ∑
l′∈L

∗
k\{l} ζ

[i](l′→m)
k

(29)

for l ∈ L
∗
k and m ∈ {1, . . . ,Mk}. The recursion established

by these two equations is initialized by ν[0](m→l)
k = 1. After

the final iteration i = I , approximations of the marginal
association pmfs p(a(l)

k ), l ∈ L
∗
k are provided by the beliefs

at the respective variable nodes “a(l)
k ” in Fig. 2. As shown

in the appendix, these beliefs are obtained as

p̃(a(l)
k = m) =

{
β

(l,m)
k /D

(l)
k , m ∈ {−1, 0}

β
(l,m)
k ν

[I ](m→l)
k /D

(l)
k , m ∈ {1, . . . ,Mk}

(30)

where D
(l)
k � β

(l,−1)
k + β

(l,0)
k + ∑Mk

m′=1 β
(l,m′)
k ν

[I ](m′→l)
k .

Similarly, an approximation of p(b(m)
k = 0)—to be used in

Section VII—is obtained as

p̃(b(m)
k = 0) = 1

1 + ∑
l∈L

∗
k
ζ

[I ](l→m)
k

. (31)

The proposed fast LMB filter is finally obtained by
using the BP-based approximate calculation of the p(a(l)

k )
according to (28)–(30) in the update equations (17) and
(18). We emphasize that our fast LMB filter is different
from the LMB filters in [9], [10] because the underlying BP-
based approximation is different from the approximations
employed in [9] or [10]. A pseudocode of our LMB filter
is provided in [16], and a MATLAB implementation is
available at https://github.com/ThoKro/BP-LMB.git

C. Complexity Analysis

The complexity of the fast Gibbs sampler-based LMB
filter recently proposed in [10] is O(P |L∗

k |2Mk), where P is
the number of samples used in the Gibbs sampler and, as be-
fore, |L∗

k | andMk are the numbers of Bernoulli components
and measurements, respectively. By contrast, the complex-
ity of our proposed LMB filter is O(I |L∗

k |Mk), where I
is the number of BP iterations. The linear scaling in |L∗

k |
improves on the quadratic scaling exhibited by the Gibbs
sampler-based LMB filter. The second difference is that P
is replaced by I . A typical value of I (to be used in our
simulations in Section VII) is 20. As we will demonstrate
in Section VII, for scenarios with a high clutter rate and/or
a large number of objects, P has to be chosen much higher
than 20 in order for the tracking performance of the Gibbs
sampler-based LMB filter to be similar to that of our BP-
based LMB filter.

Some algorithmic aspects affecting the complexity and
performance of the BP-based and Gibbs sampler-based
LMB filters are discussed in Section VII-B.
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Fig. 3. Example of true trajectories for parameter setting PS1 (blue
lines; starting points indicated by blue crosses), as well as of trajectories
estimated by the proposed BP-LMB filter (red lines) and measurements

acquired at time k = 100 (green dots). The black circle indicates the
sensor position.

VII. NUMERICAL STUDY

A. Simulation Setup

We consider a two-dimensional tracking scenario [19],
where a sensor is located at p = [p1 p2]T = [0 150]T. The
sensor has a measurement range of 300 and the region of
interest (ROI) is equal the sensor’s field of view, which is
the disk determined by the sensor’s measurement range.
We consider two different parameter settings dubbed PS1
and PS2. Ten (PS1) or twenty (PS2) objects appear before
k = 30 and disappear after k = 140. The object states con-
sist of position and velocity, i.e., xk = [x1,k x2,k ẋ1,k ẋ2,k]T.
They evolve according to the nearly constant velocity model
[20, Section 6.3.2] with an iid Gaussian driving process of
variance σ 2

u = 10−4. We employ the trajectory generation
scheme of [19], according to which all objects move toward
the point (0,0), come close to each other there around time
k = 60, and separate again afterwards. A detailed descrip-
tion of this trajectory generation scheme can be found in
[19], and a realization of the object trajectories is shown in
Fig. 3. The sensor is characterized by the nonlinear range-
bearing measurement model

zk = [ρ(xk) φ(xk)]T + vk. (32)

Here, ρ(xk) � ‖x′
k − p‖, where x′

k � [x1,k x2,k]T denotes
the position of an object, and φ(xk) � tan−1( x1,k−p1

x2,k−p2
). Fur-

thermore, vk is iid Gaussian measurement noise with in-
dependent components and component standard deviations
σρ = 2 and σφ = 1◦. The clutter pdf fC(zk) is uniform (in
polar coordinates) on the ROI, and the mean parameter μC

is 10 (PS1) or 50 (PS2). Objects are detected by the sensor
with probability pD = 0.5.

We study the performance of the proposed BP-based
LMB filter (briefly termed BP-LMB filter) in comparison
to the Gibbs sampler-based LMB filter [10] (briefly Gibbs-
LMB filter) and the fast BP-based version of the label-
augmented TOMB/P filter [13]–[15] (briefly BP-TOMB/P
filter). All filters use particle implementations [9], [21].
They represent the spatial pdf of each Bernoulli compo-

nent by 1000 particles, prune components with existence
probability below 10−3, declare an object as detected if its
existence probability exceeds 0.5, and use pS(xk−1, l) =
pS(xk−1) = 0.99 and pD(xk, l) = pD(xk) = 0.5. With re-
gard to the newborn objects, the Gibbs-LMB filter gen-
erates a new Bernoulli component for each measurement
observed at the preceding time k − 1 [10]; the existence
probability of that Bernoulli component is initialized as
μB/Mk−1 with μB = 0.1. By contrast, the BP-LMB fil-
ter generates new Bernoulli components only for mea-
surements m ∈ {1, . . . ,Mk−1} with p̃(b(m)

k−1 = 0) > 0.5 (cf.
(31)), i.e., for measurements that are considered not to
be generated by an already existing object. The existence
probabilities of these Bernoulli components are chosen
as (μB/Mk−1)p̃(b(m)

k−1 = 0), l ∈ L
B∗
k , with μB = 0.1. Here,

each l ∈ L
B∗
k is associated with a measurementm for which

p̃(b(m)
k−1 = 0) > 0.5. Both the Gibbs-LMB filter and the BP-

LMB filter choose the spatial pdf of new Bernoulli compo-
nents as

s
(l)
B (xk) ∝

∫
f (xk|xk−1)f (zk−1|x1,k−1, x2,k−1)

× fv(ẋ1,k−1, ẋ2,k−1)dxk−1 (33)

for l ∈ L
B∗
k , where f (zk−1|x1,k−1, x2,k−1) is the likelihood

function corresponding to our measurement model (32) and
fv(ẋ1,k−1, ẋ2,k−1) is the pdf of independent, zero-mean,
Gaussian random variables ẋ1,k−1, ẋ2,k−1 with variance
0.25. The number P of samples used by the Gibbs sam-
pler in the Gibbs-LMB filter is 100 or 1000; the resulting
Gibbs-LMB filters will be referred to as Gibbs-LMB-100
and Gibbs-LMB-1000, respectively. In the BP-TOMB/P fil-
ter, the Poisson RFS modeling newborn objects has mean
parameter μB = 0.3 and its spatial pdf is uniform on the
ROI; furthermore, the PHD of the Poisson RFS of “un-
detected objects” is chosen as a k-dependent constant on
the ROI, which is updated as discussed in [21] and ini-
tialized as μUfU(x0) with μU = 0.01 and uniform fU(x0).
The BP-TOMB/P filter generates a new Bernoulli compo-
nent for each measurement at time k. The BP-LMB and
BP-TOMB/P filters use I = 20 BP iterations to calculate
the approximate marginal probabilities.

B. Simulation Results

The example shown in Fig. 3 suggests that the proposed
BP-LMB filter has excellent detection and estimation per-
formance. For a quantitative evaluation of the average per-
formance of the three filters, we use the Euclidean distance-
based optimal subpattern assignment (OSPA) metric with
cutoff parameter c = 20 and order p = 1 [22]. The OSPA
metric penalizes both a deviation between the estimated
and true numbers of objects and deviations between the
estimated and true object states [22].

Fig. 4 shows the mean OSPA (MOSPA) error—
averaged over 1000 simulation runs—versus time k for
PS1 (10 objects, μC = 10) and PS2 (20 objects, μC = 50).
For PS1, the BP-LMB, BP-TOMB/P, and Gibbs-LMB-1000
filters perform best and almost identically, closely followed
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Fig. 4. MOSPA error versus time. (a) PS1. (b) PS2.

by the Gibbs-LMB-100 filter. For the more challenging
setting PS2, the BP-LMB and BP-TOMB/P filters perform
best and almost identically, whereas both Gibbs-LMB filters
perform substantially worse: already the Gibbs-LMB-1000
filter has a significantly larger MOSPA error during a long
time interval, and the Gibbs-LMB-100 filter has an even
larger MOSPA error at almost all times. If the number of
samples is increased beyond 1000 (not shown in Fig. 4), the
MOSPA error of the Gibbs-LMB filter decreases, but this
comes at the cost of a higher complexity.

The performance difference between the BP-LMB filter
and the Gibbs-LMB filter for PS2 can be explained as fol-
lows. The Gibbs-LMB filter reduces complexity by pruning
GLMB components with low weights in (2). As a conse-
quence, the summations in the update equations (5) and (6)
are performed only over the remaining (nonpruned) com-
ponents. The pruning performed by the Gibbs-LMB filter
can be equivalently formulated in terms of the association
vector ak introduced in Section V. In this formulation, the
pruning is based on drawing samples ãk from the pmfp(ak),
where each ãk corresponds to one GLMB component. After
sampling, all GLMB components that do not correspond to
a sample ãk are pruned. In PS2, the large numbers of ob-
jects and clutter measurements lead to a large number of
relevant GLMB components with significant pmf values.
As a consequence, if the number of samples is small, some
of the relevant GLMB components are necessarily pruned,
which means that relevant association information is ig-
nored by the Gibbs-LMB filter. This results in a reduced
tracking performance of the Gibbs-LMB filter in PS2. By
contrast, in the BP-LMB filter, the approximate calculation
of the marginal association probabilities using BP com-
pletely avoids the pruning of components.

We conclude from Fig. 4 that for both PS1 and PS2, the
proposed BP-LMB filter performs better than or similarly
to the other filters. An interesting observation is the simi-
larity of performance relative to the BP-TOMB/P filter. In-
deed, a deeper analysis—which is beyond the scope of this
work—shows that despite the differences in the underlying
state and system models, the BP-LMB and BP-TOMB/P
filters are quite similar algorithmically. The BP-TOMB/P
filter differs from the BP-LMB filter mainly in that it mod-

TABLE I
Total Runtime and AP Runtime for PS2

els undetected objects by a Poisson RFS. This results in a
higher complexity but, in the scenarios considered, does not
yield a better tracking performance. However, we note that
a more general (nonuniform) PHD representation of unde-
tected objects in the BP-TOMB/P filter, e.g., using particles,
may lead to a faster detection of newborn objects and, thus,
a lower OSPA metric in scenarios with a nonuniform de-
tection probability and/or a nonuniform birth process. On
the other hand, this would result in a further increase in
computational complexity.

Table I lists the average runtimes of the different filters
per time (k) step, referred to as “total runtimes,” as well as
the average runtimes used for calculating one approximate
marginal association probability, referred to as “AP run-
times.” The approximate marginal association probabilities
are given by p̃(a(l)

k = m) in (30) for the proposed BP-LMB
filter and similarly for the BP-TOMB/P filter, and analogous
quantities are computed by the Gibbs-LMB filter using the
Gibbs sampling algorithm. The runtimes were obtained for
PS2, using a MATLAB implementation on an Intel quad-
core i7-6600U CPU. The results for the total runtimes show
that the proposed BP-LMB filter is here less complex than
the BP-TOMB/P filter and the Gibbs-LMB-100 filter, and
significantly less complex than the Gibbs-LMB-1000 filter.
Furthermore, the AP runtimes of the BP-LMB and BP-
TOMB/P filters are significantly lower than those of the
Gibbs-LMB filter. Finally, as may be expected, the total
and AP runtimes of the Gibbs-LMB filter increase with the
number of Gibbs samples.

The observed lower runtimes of the BP-LMB filter com-
pared to the Gibbs-LMB-1000 filter reflect also the lin-
ear scaling behavior of the BP algorithm compared to the
quadratic scaling behavior of the Gibbs sampler-based cal-
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culation (cf. Section VI-C). On the other hand, the Gibbs-
LMB filter employs a smaller number of Bernoulli com-
ponents than the BP-LMB filter; this is a consequence of
the reduction of the number of summation terms in (5)
and (6) caused by the Gibbs sampling. However, this ef-
fect is counteracted by the fact that the complexity of the
Gibbs-LMB filter scales quadratically in the number of
Bernoulli components. This, together with the fact that the
number P of samples used by the Gibbs sampler is consid-
erably larger than the number I of BP iterations, causes the
Gibbs-LMB filter to be more complex than the BP-LMB
filter. Finally, the higher runtime of the BP-TOMB/P fil-
ter results from additional operations related to an explicit
modeling of undetected objects and a different strategy for
generating Bernoulli components.

We also simulated the BP-LMB, Gibbs-LMB, and BP-
TOMB/P filters in scenarios with less clutter, fewer objects,
and a higher detection probability. Our results (not shown
here) demonstrate that in these scenarios, the number P
of samples used by the Gibbs-LMB filter can be reduced
without increasing the MOSPA error. This can result in
an almost identical performance of the three filters and a
similar complexity (runtime) of the BP-LMB and Gibbs-
LMB filters, which is lower than that of the BP-TOMB/P
filter. However, in challenging scenarios with a high clutter
rate and/or a large number of (closely spaced) objects and/or
a low detection probability, our results in Fig. 4 suggest that
for a similar performance of the Gibbs-LMB filter to that
of the BP-LMB filter, P has to be chosen much larger than
I . This implies a larger number of summation terms in the
approximations of (5) and (6) employed by the Gibbs-LMB
filter, and explains why the resulting runtime is higher than
that of the proposed BP-LMB filter.

VIII. CONCLUSION

We presented a new derivation of the LMB filter via
an approximation of the joint association distribution by
the product of its marginals. This derivation enabled the
use of a belief propagation algorithm for calculating ap-
proximations of the marginal association distributions and,
in turn, led to a new fast LMB filter. The computational
complexity of the proposed filter scales only linearly in the
number of Bernoulli components and the number of mea-
surements. Furthermore, our simulation results showed that
the proposed filter outperforms the Gibbs sampling-based
LMB filter in scenarios with a high clutter rate and a large
number of (close) objects.

APPENDIX

We derive the BP-based probabilistic data association
algorithm presented in Section VI-B, more specifically the
message and belief expressions (28)–(31). The derivation is
analogous to that in [15], where approximate marginal as-
sociation probabilities are calculated for a slightly different
association problem.

A. Message Expressions (28) and (29)

At message passing iteration i ∈ {1, . . . , I }, first a mes-

sage η
[i](a(l)

k →
l,m)
k (a(l)

k ) is passed from each variable node
“a(l)
k ” to the adjacent factor node “
l,m(a(l)

k , b
(m)
k )” in Fig. 2.

Let us write ν[i−1](
l,m→l)
k (a(l)

k ) for φ
[i−1](
l,m→a

(l)
k )

k (a(l)
k ), i.e.,

for the message passed from factor node “
l,m(a(l)
k , b

(m)
k )”

to the adjacent variable node “a(l)
k ” at message passing

iteration i − 1. According to (23), we obtain

η
[i](a(l)

k →
l,m)
k (a(l)

k ) = β
(l,a(l)

k )
k

Mk∏
m′=1
m′ �=m

ν
[i−1](
l,m′→l)
k (a(l)

k ). (34)

Then, a message φ
[i](
l,m→b

(m)
k )

k (b(m)
k ) is passed from each

factor node “
l,m(a(l)
k , b

(m)
k )” to the adjacent variable node

“b(m)
k ”. Let us write ζ [i](
l,m→m)

k (b(m)
k ) forφ

[i](
l,m→b
(m)
k )

k (b(m)
k ).

According to (22), this message is given by

ζ
[i](
l,m→m)
k (b(m)

k ) =
Mk∑

a
(l)
k =−1


l,m(a(l)
k , b

(m)
k )

× η
[i](a(l)

k →
l,m)
k (a(l)

k ). (35)

Inserting (34) in (35) results in

ζ
[i](
l,m→m)
k (b(m)

k ) =
Mk∑

a
(l)
k =−1

β
(l,a(l)

k )
k 
l,m(a(l)

k , b
(m)
k )

×
Mk∏
m′=1
m′ �=m

ν
[i−1](
l,m′→l)
k (a(l)

k ) (36)

for l ∈ L
∗
k andm ∈ {1, . . . ,Mk}. In a similar manner, we ob-

tain the following expression of the message that is passed
from factor node “
l,m(a(l)

k , b
(m)
k )” to the adjacent variable

node “a(l)
k ”:

ν
[i](
l,m→l)
k (a(l)

k ) =
∑

b
(m)
k ∈{0}∪L

∗
k


l,m(a(l)
k , b

(m)
k )

×
∏

l′∈L
∗
k\{l}

ζ
[i](
l′,m→m)
k (b(m)

k ) (37)

for l ∈ L
∗
k and m ∈ {1, . . . ,Mk}.

Still following [15], the vector-valued messages (36)
and (37)—vector-valued in the sense that there is one mes-
sage value for each value of b(m)

k or a(l)
k —can be simplified

to scalar ones. Because of the admissibility constraint ex-
pressed by 
l,m(a(l)

k , b
(m)
k ), each message comprises actu-

ally only two different values. Indeed, we have

ζ
[i](
l,m→m)
k (b(m)

k ) =
{
ζ

[i]
k,l,m, b

(m)
k = l

ζ
[i]′
k,l,m, b

(m)
k �= l

(38)
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where

ζ
[i]
k,l,m = β

(l,m)
k

Mk∏
m′=1
m′ �=m

ν
[i−1](
l,m′→l)
k (m) (39)

ζ
[i]′
k,l,m =

Mk∑

a
(l)
k =−1

a
(l)
k �=m

β
(l,a(l)

k )
k

Mk∏
m′=1
m′ �=m

ν
[i−1](
l,m′→l)
k (a(l)

k ) (40)

and similarly

ν
[i](
l,m→l)
k (a(l)

k ) =
⎧⎨
⎩
ν

[i]
k,l,m, a

(l)
k = m

ν
[i]′
k,l,m, a

(l)
k �= m

(41)

where

ν
[i]
k,l,m =

∏
l′∈L

∗
k\{l}

ζ
[i](
l′,m→m)
k (l) (42)

ν
[i]′
k,l,m =

∑

b
(m)
k ∈({0}∪L

∗
k )\{l}

∏
l′∈L

∗
k\{l}

ζ
[i](
l′,m→m)
k (b(m)

k ). (43)

We next normalize the messages according
to ζ̄

[i](
l,m→m)
k (b(m)

k ) � ζ
[i](
l,m→m)
k (b(m)

k )/ζ [i]′
k,l,m and

ν̄
[i](
l,m→l)
k (a(l)

k ) � ν
[i](
l,m→l)
k (a(l)

k )/ν[i]′
k,l,m, which yields

ζ̄
[i](
l,m→m)
k (b(m)

k ) =
⎧⎨
⎩
ζ

[i]
k,l,m/ζ

[i]′
k,l,m, b

(m)
k = l

1, b
(m)
k �= l

(44)

and

ν̄
[i](
l,m→l)
k (a(l)

k ) =
⎧⎨
⎩
ν

[i]
k,l,m/ν

[i]′
k,l,m, a

(l)
k = m

1, a
(l)
k �= m.

(45)

Let us consider ζ̄ [i](
l,m→m)
k (b(m)

k ) for b(m)
k = l. Inserting

(39) and (40) into (44) yields

ζ̄
[i](
l,m→m)
k (l)=

β
(l,m)
k

∏Mk

m′=1
m′ �=m

ν
[i−1](
l,m′→l)
k (m)

∑Mk

a
(l)
k =−1

a
(l)
k �=m

β
(l,a(l)

k )
k

∏Mk

m′=1
m′ �=m

ν
[i−1](
l,m′→l)
k (a(l)

k )
.

(46)

Substituting ν
[i−1](
l,m→l)
k (a(l)

k ) = ν̄
[i−1](
l,m→l)
k (a(l)

k ) ν[i−1]′
k,l,m ,

expression (46) becomes

ζ̄
[i](
l,m→m)
k (l)=

β
(l,m)
k

∏Mk

m′=1
m′ �=m

ν̄
[i−1](
l,m′→l)
k (m)

∑Mk

a
(l)
k =−1

a
(l)
k �=m

β
(l,a(l)

k )
k

∏Mk

m′=1
m′ �=m

ν̄
[i−1](
l,m′→l)
k (a(l)

k )
.

(47)

Finally, using the fact that according to (45),
ν̄

[i−1](
l,m′→l)
k (a(l)

k ) = 1 for a
(l)
k �= m′, expression (47)

simplifies to

ζ̄
[i](
l,m→m)
k (l)

= β
(l,m)
k

β
(l,−1)
k + β

(l,0)
k + ∑Mk

m′=1
m′ �=m

β
(l,m′)
k ν̄

[i−1](
l,m′→l)
k (m′)

. (48)

We also recall from (44) that ζ̄ [i](
l,m→m)
k (b(m)

k ) = 1 for
b

(m)
k �= l.

Analogously, by inserting (42) and (43) into (45), we
obtain for ν̄[i](
l,m→l)

k (a(l)
k ) with a(l)

k = m

ν̄
[i](
l,m→l)
k (m) = 1

1 + ∑
l′∈L

∗
k\{l} ζ̄

[i](
l′,m→m)
k (l′)

. (49)

Furthermore, ν̄[i](
l,m→l)
k (a(l)

k ) = 1 for a(l)
k �= m.

Finally, using the shorthands ζ [i](l→m)
k � ζ̄

[i](
l,m→m)
k (l)

and ν[i](m→l)
k � ν̄

[i](
l,m→l)
k (m), the two equations (48) and

(49) are seen to be equivalent to the recursion given by (28)
and (29).

B. Belief Expressions (30) and (31)

According to the general rule described in Section VI-
A, the belief p̃(a(l)

k ) is obtained after the final iteration i = I

by calculating the product of all the incoming messages at
variable node “a(l)

k ” in Fig. 2 and normalizing the resulting
function. Thus

p̃(a(l)
k = m) ∝ β

(l,m)
k

Mk∏
m′=1

ν
[I ](
l,m′→l)
k (m) (50)

form∈{−1, 0, 1, . . . ,Mk}. Substituting ν
[I ](
l,m′ →l)
k (a(l)

k ) =
ν̄

[I ](
l,m′→l)
k (a(l)

k ) ν[I ]′
k,l,m′ , we obtain further

p̃(a(l)
k = m) ∝ β

(l,m)
k

( Mk∏
m′′=1

ν
[I ]′
k,l,m′′

) Mk∏
m′=1

ν̄
[I ](
l,m′→l)
k (m)

∝ β
(l,m)
k

Mk∏
m′=1

ν̄
[I ](
l,m′→l)
k (m). (51)

Since by (45) ν̄
[I ](
l,m′→l)
k (m) = 1 for allm′ �= m, expression

(51) simplifies to

p̃(a(l)
k = m) ∝

⎧⎨
⎩
β

(l,m)
k , m ∈ {−1, 0}
β

(l,m)
k ν̄

[I ](
l,m→l)
k (m), m ∈ {1, . . . ,Mk}.

These expressions still need to be normalized,
which amounts to division by β

(l,−1)
k + β

(l,0)
k +∑Mk

m=1 β
(l,m)
k ν̄[I ](
l,m→l)(m). Finally, using the shorthand

ν
[I ](m→l)
k � ν̄

[I ](
l,m→l)
k (m), we obtain (30).

Similarly, the belief p̃(b(m)
k ) is obtained after the final

iteration i = I as the normalized product of all the incoming
messages at variable node “b(m)

k ” in Fig. 2. A derivation
analogous to the one above leads to (31).
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