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High Resolution Radar Waveform Design Based on

Target Information Maximization
Huaping Xu, Member, IEEE, Jiawei Zhang, Student Member, IEEE, Wei Liu, Senior Member, IEEE,

Shuang Wang, Chunsheng Li

Abstract—Although the transmit radar waveform design prob-
lem for maximizing target information has been studied widely
in the past, the resolution requirement is normally ignored
in such designs. Using maximizing target information as a
criterion, a new radar waveform design method meeting the high
resolution requirement is proposed in this paper, which makes
no assumptions on the statistical distribution of target scattering.
The objective function is proposed by maximizing the Pearson
correlation coefficient (PCC) and the design is then transformed
into an optimization problem, which is solved in two steps.
Firstly, a closed-form expression for the discretized waveform
with constant power constraint is derived in the time domain.
Secondly, based on the bandwidth analysis of the optimal solu-
tion, a resolution improvement method considering information
distortion is introduced and a suboptimal waveform is proposed
while satisfying the constant power and resolution requirements.
Finally, performance of the proposed radar waveform in terms of
information acquisition, classification and resolution is analyzed
and compared with the classic high-resolution linear frequency
modulated waveform (LFMW). Simulation results show that the
resolution of the suboptimal waveform is slightly lower than
the LFMW, but more desirable in terms of peak sidelobe ratio
(PSLR), information acquisition and classification.

Index Terms—Information acquisition, radar waveform design,
high resolution, constrained optimization, distortion.

I. INTRODUCTION

RADAR design aims to maximize the acquisition of target

information and thus achieve high-precision detection,

classification and finally recognition [1-3]. Thanks to high-

resolution imaging radar, such as synthetic aperture radar

(SAR), even micro, small and closely spaced targets become

visible and identifiable [3, 4]. The transmitted radar waveform

determines range resolution, and it can be viewed as a channel

for radar to acquire information. Therefore, how to design

a better waveform to maximize the acquired information

from targets and obtain high resolution as well, is of great

significance.

As one of the classic waveforms and widely used in

imaging radar [5-8], the linear frequency modulated waveform

(LFMW) is optimal under the signal to noise ratio (SNR)

maximization criterion for point targets, but it does not ex-

hibit superior information acquisition capability, especially for

extended or spatially spread targets [9].
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As early as 1964, Woodward pointed out that pursuing

SNR blindly can mislead radar design and data processing

because there is no theory which implies that maximizing

SNR can ensure maximal information acquirement [10]. A

similar issue was also raised by Bell in [11]. Therefore, it

would be important and also beneficial to develop some high

resolution waveform design methods under the maximizing

target information criterion (MTIC), so that higher amount

of target information can be acquired for improving target

perception performance.

In the past, the study of waveform design based on the

MTIC was mainly focused on non-imaging radars without

high resolution requirement, and these studies can be classified

into three categories: single waveform radar, multi-input multi-

output (MIMO) radar and cognitive radar. Woodward carried

out a preliminary study by applying information theory to

radar systems soon after the work of the classic information

theory by Shannon [10]. Subsequently, Bell’s seminal work in

[12] explored the connection between information theoretic

tools and waveform design. With the Gaussian assumption

of the scattering signal and mutual information (MI) as an

objective function, they provided a design method for the

amplitude of waveform spectrum under the MTIC with power

limit. Leshem et al. assumed that all targets are taken from a

Gaussian ensemble with known power spectral densities, and

extended Bell’s work to the case of multiple extended targets

[13]. Also with the Gaussian assumption of target, clutter, and

noise, the approach in [9] generalized the information theoretic

water-filling method proposed by Bell to allow optimization

for cluttering problems.

In the past decade, MIMO and cognitive radar developed

rapidly by exploiting waveform diversity [14-22], and the

waveform design methods under the MTIC were further in-

vestigated. In [14], the MI criterion and the mean square

error criterion were employed for MIMO radar waveform

design with Gaussian assumption, and it was shown that the

two different criteria lead to the same result eventually. A

comparison between the MI criterion and the relative entropy

criterion [18, 19] was presented in [20], still assuming that the

MIMO radar signal follows a Gaussian distribution. Combin-

ing the feedback loop in cognitive radar [16] and the MTIC,

some representative results for adaptive waveform design were

provided in [17] and [22].

It is difficult to obtain a closed-form expression of MI

when the Gaussian assumption is not satisfied and it is even

more difficult to estimate the joint probability density function

of non-Gaussian distributed signals [23]. Therefore, all the
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waveform design problems studied under the MTIC in [9, 11-

14, 17-20 and 22] assume that target, noise and clutter follow

the Gaussian distribution.

Although the MTIC has been employed in various radar

waveform design problems, to our best knowledge, it has not

been investigated in terms of the high resolution requirement

yet. Meanwhile, high resolution needs to be considered in

many different types of radars [24-29]. For example, SAR with

different platforms including spaceborne SAR, airborne SAR

and unmanned aerial vehicle SAR, and many non-imaging

radars, such as surveillance radar [24, 25], tracking radar

[26, 27] and even weather radar [28, 29], all require a high

resolution waveform. Therefore, the design of radar waveform

meeting both high resolution and information acquisition re-

quirements is of great importance in the aerospace field.

In this work, the high resolution waveform design problem

under the MTIC is studied. By maximizing the Pearson corre-

lation coefficient (PCC) for maximum information acquisition,

a new expression for the objective function is derived without

depending on the Gaussian assumption. With the constant

power constraint to the waveform, a time-domain optimal

solution is obtained for the resultant constrained optimization

problem through reformulating the objective function as the

well-known eigenvector problem. Then the resolution of the

optimal waveform is analyzed. An information distortion cri-

terion is defined to derive a suboptimal waveform meeting the

high resolution requirement. The waveform is then evaluated

in comparison with the classic LFMW given the same power

and time-bandwidth product and it is shown that a better

performance is achieved by the proposed design in terms of

the peak sidelobe ratio (PSLR), information acquisition and

classification.

The rest of paper is organized as follows. A system model

is established in Section II for radar information acquisition

and signal characterization, with the preliminary objective

function under the MTIC introduced. In Section III, a Toeplitz

matrix is used to represent the discrete signal model, and the

optimization problem of maximizing the PCC under the con-

stant power constraint is formulated. Then, the time-domain

analytical solution is derived. Analyzing the bandwidth of

the optimal waveform, the concept of information distortion

is introduced and a suboptimal waveform is proposed with

the tradeoff between resolution and information acquisition in

Section IV. In Section V, the performance of the suboptimal

waveform and LFMW is compared, and conclusions are drawn

in Section VI.

II. INFORMATION ACQUISITION MODEL OF

RADAR

The radar information acquisition process can be modeled

with a memoryless channel describing the information flow

shown in Fig. 1. The target scattering characteristic function

G(t) is a random process determining the information source,

and interacts with the waveform function x(t) for spatial

transmission. The modulated signal Z(t) is then corrupted by

additive noise N(t) to form the received signal Y (t) through

an ideal bandpass filter bf (t). As a result, we have

Y (t) = [G(t)⊗ x(t) +N(t)]⊗ bf (t), (1)

where ⊗ denotes the linear convolution operator. Lowercase

letter and uppercase letter are used to represent deterministic

signal and random process, respectively.

( )N t

WaveformTarget

Band-pass

filter

( )G t

( )fb t

( )x t

( )Z t

( )Y t

Transmitter

Receiver

NoiseChannel

Figure 1. Information acquisition model for radar.

Based on the information theory, the mutual information

I[Y (t);G(t)] between G(t) and Y (t) indicates how much

information of target can be obtained by radar from the

observed signal Y (t). Therefore, the MTIC is to maximize

I[Y (t);G(t)], and the objective function is established as

max {I [Y (t);G(t)]} . (2)

Since x(t) is a deterministic signal, max {I [Y (t);G(t)]} is

equivalent to max {I [Y (t);Z(t)]} [12].

However, finding a solution for max {I [Y (t);Z(t)]} is a

notoriously difficult task and infeasible in most realistic cases

[30, 31]. Hence, it is necessary to transform the objective

function in (2) into an equivalent new form.

In many practical problems of engineering optimization,

maximizing PCC
∣

∣ρY (t)Z(t)

∣

∣ is a way to maximize mutual

information [32], no matter what kind of distributions these

random variables follow, i.e.

max
{∣

∣ρY (t)Z(t)

∣

∣

}

=> max {I [Y (t);Z(t)]} . (3)

Therefore, the PCC is introduced to represent the objective

function for waveform design under MTIC in this paper, and

the corresponding constrained optimization problem is written

as

max
x(t)

{∣

∣ρY (t)Z(t)

∣

∣

}

s.t. x(t) ∈ D, (4)

where D denotes the constraint set or feasible set of x(t). Since

the radar waveform must be limited in energy or power and

provide high resolution in most practical applications, constant

power and high resolution constraints are introduced to the

objective function. Therefore, they are included in the set D.

In the following analysis, without causing confusion and

also due to the stationarity assumption of radar signal and

noise, we will drop the time parameter t in the corresponding

expressions.
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III. OPTIMAL WAVEFORM DERIVATION UNDER THE

MTIC WITH POWER CONSTRAINT

Discrete-time processing of continuous-time signals is com-

monplace in bandlimited systems, such as radar, sonar and

communication systems. To design a discrete radar waveform

directly can circumvent the approximation issue [33, 34]

caused by analog to digital conversion during signal processing

at the receiver, compared with an analog waveform. Therefore,

to facilitate signal processing and simulation on a digital com-

puter, we directly present the waveform design in a discrete-

time formulation of the signal model. The discrete version

of the signals is considered, where g ∈ C
l×1, x ∈ C

n×1,

b ∈ C
n×1, n′ ∈ C

m×1, n ∈ C
m×1 and y ∈ C

m×1 denote

the discretized target scattering, waveform, ideal bandpass

filter, additive noise, bandpass filtered additive noise and the

received signal, respectively. Since bf (t) is supposed to be an

ideal filter, so all signals within the passband of bf (t) can

pass through it without attenuation. Corresponding to (1), the

discrete signal model can be expressed as

y = [g ⊗ x+ n′]⊗ b

= g ⊗ x⊗ b+ n′ ⊗ b

= g ⊗ x+ n = z+ n,

(5)

where g = [g(0), g(1), · · · , g(l − 1)]
T

. The linear convolution

operator can be implemented through a Toeplitz matrix defined

as

G =

































g(0) 0 · · · · · · 0

g(1) g(0)
. . . · · · 0

...
...

. . .
. . .

...

g(l − 1) g(l − 2) · · · g(0) 0
0 g(l − 1) g(l − 2) · · · g(0)
... 0 g(l − 1) · · · g(1)
...

... 0
. . .

...

0 0 · · · 0 g(l − 1)

































(6)

where G ∈ C
m×n is the Toeplitz matrix of g using n = l+1

as an example. Then, (5) is transformed into

y = Gx+ n = z+ n. (7)

Let my and mz represent the mean value of y and z,

respectively, and E [·] represents the expectation operation.

Assume that noise is of zero mean and independent of the

signal associated with the target, so that my = mz. Therefore,

the PCC of y and z can be derived as

ρY Z =
E
[

(y −my)
H
(z−mz)

]

√

E
[

(y −my)
H
(y −my)

]

E
[

(z−mz)
H
(z−mz)

]

=

√

xHE [GHG]x− |my|
2

√

σ2
N + xHE [GHG]x− |my|

2
.

(8)

(8) is further simplified into

|ρY Z |
2
= 1−

σ2
N

σ2
N + xHRGx

, (9)

where σ2
N = E[nHn] and RG = E[GHG]− [E(G)]

H
E(G)

defined as target feature matrix. If both constant power and

high resolution constraints are imposed on the objective func-

tion at the same time, the constrained optimization problem

will become quite complicated. So we first consider the

constant power constraint and present a relaxed version of (4),

leading to the following optimization problem

max
x

{

xHRGx
}

s.t. xHx = 1. (10)

In [35-37], a similar form of constrained optimization for

waveform design is mentioned, i.e.

max
x

{

xHR−1
n x

}

s.t. xHx = 1, (11)

where R−1
n denotes the correlation matrix of colored noise,

and it was derived under the criterion of maximizing signal-to-

interference-plus-noise-ratio (SINR). It can be seen that (10)

and (11) have different physical meanings, because (11) is

focused on whitening colored noise instead of target feature

enhancement in (10).

(10) can be viewed as an eigenvector problem, and the

optimal waveform xopt under the constant power constraint

is the eigenvector associated with the maximum eigenvalue of

RG, i.e.

xopt = eig
max(λ)

(RG) , (12)

where eig
max(λ)

(·) denotes the eigenvector corresponding to the

largest eigenvalue λ.

IV. HIGH RESOLUTION WAVEFORM DESIGN UNDER

MTIC

High resolution is one key requirement for the radar wave-

form [38], especially for imaging radar systems. The results

in Section III indicate that the optimal waveform based on

the MTIC is the eigenvector corresponding to the largest

eigenvalue of RG. Nevertheless, it is necessary to analyze

the spectrum of eigenvectors when considering the resolu-

tion constraint since resolution depends on bandwidth of the

waveform. It is found that the bandwidth of xopt does not

usually meet the resolution requirement. Consequently, a new

parameter called information distortion is defined, to show

the tradeoff between information acquisition and resolution.

In the following, a waveform design method is presented to

accommodate the resolution requirement.

A. Bandwidth Analysis of the Optimal Waveform

The eigenvectors u0,u1, · · · ,un−1 of RG can be regarded

as the basis vectors of the space C
n, and the corresponding

eigenvalues are real-valued and sorted as λ0 ≥ λ1 ≥ · · · ≥
λn−1 ≥ 0. Since RG is a semi-positive Hermitian matrix, it

can be eigen-decomposed into

RG =
n−1
∑

i=0

λiuiu
H
i

=
d
∑

i=0

λiuiu
H
i +

n−1
∑

i=d+1

λiuiu
H
i ,

(13)



XXX, VOL. , NO. , X 4

where d is an integer that satisfies 0 ≤ d < n − 1.

For a small positive number δ1, we can find a d, so that
∥

∥

∥

∥

RG −
d
∑

i=0

λiuiu
H
i

∥

∥

∥

∥

2

F

≤ δ1. The superscript ∥·∥
2
F denotes

the Frobenius norm. With the representation

n−1
∑

i=d+1

λiuiu
H
i = e(δ1), (14)

we have

RG =
d
∑

i=0

λiuiu
H
i + e(δ1), (15)

where e(δ1) denotes the error term related to δ1. Applying

discrete Fourier transform (DFT) column-wise to (15) leads

to

WHRG = WH
d
∑

i=0

λiuiu
H
i +WHe(δ1)

=

d
∑

i=0

λi











wH
0

wH
1
...

wH
n−1











uiu
H
i +WHe(δ1)

=
d
∑

i=0

λi











⟨ui,w0⟩
⟨ui,w1⟩

...

⟨ui,wn−1⟩











uH
i +WHe(δ1)

(16)

where ⟨·⟩ is the vector inner product and W is the DFT matrix,

and
W = [w0,w1, · · · ,wn−1]

=











1 1 · · · 1
1 w1 · · · w(n−1)

...
...

. . .
...

1 w(n−1) · · · w(n−1)2











.
(17)

[w0,w1 · · ·wn−1] is the Fourier bases of space C
n, where

w = ej2π/n and wk, 0 ≤ k ≤ n − 1, is the k-th column

vector of W. The contribution of WHe(δ1) in (16) to signal

spectrum is negligible. Then, we have

WHRG ≈

d
∑

i=0

λi











⟨ui,w0⟩
⟨ui,w1⟩

...

⟨ui,wn−1⟩











uH
i . (18)

RG can be viewed as a two-dimensional baseband signal

related to the spectrum of target scattering. The eigenvectors

ui(i = 0, 1, · · · d) corresponding to large eigenvalues have

intense response to the low frequency Fourier bases and very

small projection coefficients on the high frequency bases.

There must exist a v with 0 ≤ v < n − 1 and for all i =
0, 1, · · · , d and j = v, v + 1, · · · , n− 1, max |⟨ui,wj⟩| ≤ δ2
with a small positive number δ2.

All eigenvectors of the target feature matrix RG form the

standard orthogonal bases of space C
n and the spectrum of

them will cover all frequency components of the unitary space.

The spectrum of eigenvectors corresponding to large eigenval-

ues always cover the low frequency range, because RG is a

baseband signal. Since multiple eigenvectors are orthogonal

to each other, their spectra do not overlap completely. So

the single eigenvector u0 can only cover part of the total

spectrum of RG. We use the Monte Carlo method to simulate

an extended target with a certain statistical distribution and

bandwidth πrad, and then calculate RG and u0. The spectrum

of u0 is shown in Fig. 2. It can be observed that the 3dB

bandwidth of u0 is very narrow and only cover 0.0212rad.

−2 −1 0 1 2

2

4
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8

10

ω/rad

A
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p
li

tu
d

e

 

 

u0

Figure 2. The spectrum of eigenvector u0. The amplitude of target scattering
follows the Rayleigh distribution with the parameter 0.5.

From the above spectrum analysis of eigenvectors, it is

concluded that the optimal waveform u0 under the MTIC may

not meet the resolution requirement. Therefore, a suboptimal

waveform design method is proposed below to find a tradeoff

between resolution improvement and information acquisition.

B. High Resolution Waveform Design Under the MTIC

In order to overcome the limited bandwidth of the opti-

mal waveform u0, a combination of multiple eigenvectors

associated with large eigenvalues is employed. Although the

bandwidth is increased by introducing more eigenvectors,

information acquisition will be reduced, due to the influence

of the eigenvectors of small eigenvalues. In consequence, this

combination is expected to guarantee that resolution satisfies

the requirement while the information acquisition ability does

not degrade too much.

In the following, information distortion is defined to give

a tradeoff between information acquisition and resolution as

follows

∆ =
uH
0 RGu0 − xH

soptRGxsopt

uH
0 RGu0

= 1−
xH
soptRGxsopt

λ0

(19)

where xsopt ∈ C
n×1 denotes the suboptimal waveform that

satisfies power and resolution constraints simultaneously. It is

clear that the distortion of u0 is 0. Since any n-dimensional

vector can be projected onto the whole set of eigenvectors, it

follows that

xsopt =
n−1
∑

i=0

qiui (20)
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where qi ∈ C represents the projection coefficient for ui.

Substituting (20) into (19), we have

∆sopt = 1−

n−1
∑

i=0

λi|qi|
2

λ0
. (21)

Therefore, the most dominant factor affecting the distortion

is the projection coefficient or weight. Different weight will

generate different distortion leading to a different suboptimal

waveform. Following this idea, a suboptimal waveform design

method is given below.

The eigenvalues are used to weight the corresponding

eigenvectors directly, i.e. qi = λi/

√

n−1
∑

i=0

λ2
i , leading to a

suboptimal waveform, given by

xsopt =

n−1
∑

i=0

qiui =
1

√

n−1
∑

i=0

λ2
i

n−1
∑

j=0

λjuj . (22)

According to the objective function and the distortion, the

larger the eigenvalue of RG, the larger the amount of in-

formation obtained by the corresponding eigenvector and

accordingly the smaller the distortion. The magnitude of each

eigenvalue reflects the information acquisition capability of the

corresponding eigenvector serving as the chosen waveform.

Using the eigenvalues as weighting factors is consistent with

this observation.

The distortion of xsopt is

∆xsopt
= 1−

1

λ0

n−1
∑

i=0

λi|qi|
2
= 1−

1

λ0

n−1
∑

i=0

λ2
i

n−1
∑

j=0

λ3
j . (23)

∆xsopt
in (23) is possible to exceed the maximum distortion

allowed by system. Distortion reduction can be achieved by

removing several insignificant eigenvectors associated with

small eigenvalues. Let x̃sopt denote the modified waveform; it

can be expressed as

x̃sopt =
1

√

K−1
∑

i=0

λ2
i

K−1
∑

j=0

λjuj

=
1

√

K−1
∑

i=0

|qi|
2

K−1
∑

j=0

qjuj , 1 ≤ K < n− 1.

(24)

Its information distortion is

∆x̃sopt
= 1−

1

λ0

K−1
∑

i=0

|qi|
2

K−1
∑

j=0

λj |qj |
2
= 1−

1

λ0

K−1
∑

i=0

λ2
i

K−1
∑

j=0

λ3
j .

(25)

Comparing (23) and (25), the difference is given by

∆xsopt
−∆x̃sopt

=
1

λ0

K−1
∑

i=0

|qi|
2

K−1
∑

j=0

λj |qj |
2
−

1

λ0

n−1
∑

i=0

λi|qi|
2
.

(26)

Because λ0 ≥ λ1 ≥, · · · ,≥ λn−1 ≥ 0, we have

λ0

(

∆xsopt
−∆x̃sopt

)

≥
1

K−1
∑

i=0

|qi|
2

K−1
∑

j=0

λj |qj |
2
−

(

K−1
∑

i=0

λi|qi|
2
+λK

n−1
∑

i=K

|qi|
2

)

=
K−1
∑

j=0

λj









|qj |
2

K−1
∑

i=0

|qi|
2

− |qj |
2









− λK



1−
K−1
∑

j=0

|qj |
2



 .

(27)

With
K−1
∑

i=0

|qi|
2
≤ 1, (27) changes to

K−1
∑

j=0

λj









|qj |
2

K−1
∑

i=0

|qi|
2

− |qj |
2









− λK



1−

K−1
∑

j=0

|qj |
2





≥ λK











K−1
∑

j=0

|qj |
2

K−1
∑

i=0

|qi|
2

−

K−1
∑

j=0

|qj |
2











− λK



1−

K−1
∑

j=0

|qj |
2



 = 0.

(28)

Finally, we have

∆xsopt
−∆x̃sopt

≥ 0. (29)

The above equations show that the distortion is reduced as

K decreases. Therefore, the adjustment of K is a way to find

the suitable tradeoff between distortion and resolution in the

design of xsopt. However, a quantitative relationship between

bandwidth, distortion and K cannot be found in a closed-form.

So a numerical method is proposed.

Step 1: Using the a priori knowledge of targets to obtain

RG, and then its eigenvalues and eigenvectors are obtained

by eigen-decomposition.

Step 2: The eigenvalues are used to weight the correspond-

ing eigenvectors, generating xsoptK which represents a set of

suboptimal waveforms with respect to each value of K, and

then draw a figure to show the bandwidth and distortion with

respect to the value of K from 0 to n− 1.

Step 3: Based on the requirements for certain bandwidth

and distortion, find a suitable K from the figure given in Step

2.

Without loss of generality, if the largest eigenvalue is much

larger than the others, then the eigenvectors corresponding to

very small eigenvalues would make little contribution to the

final suboptimal waveform and fail to broaden the bandwidth

of the waveform. Therefore, we could consider the logarithm

of corresponding eigenvalues as the weight.

V. SIMULATION RESULTS AND ANALYSIS

In this section, Monte Carlo simulations are performed to

verify the theoretical analysis and assess the performance of

the suboptimal waveform. Firstly, the theoretical analyses in

Section III and Section IV are validated by comparing the

information acquisition capability of different eigenvectors,
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Table I
EXPERIMENTAL PARAMETERS

Parameter Symbols Numerical Value

Rayleigh: f (|g|) =
|g|

σ2
exp

(

−
|g|2

2σ2

)

σ 0.5

Weibull: f (|g|) =
c|g|c−1

bc
exp

(

−
(

|g|
b

)c) b 1
c 1.5

Phase: f(θ) = 1

θ2−θ1
, θ ∈ [θ1, θ2]

θ1 −π
θ2 π

The mean of G(t) mG 0

Sample frequency fS 100MHz

LFMW duration τ 1.28µ s
Waveform bandwidth B 30MHz

and presenting the distortion and bandwidth with respect to

the value of K. Then, the proposed waveform is evaluated

in comparison with the classic LFMW given the same power

and time-bandwidth product. The PCC, misclassification prob-

ability, ambiguity function and correlation function are used as

performance indexes for information acquisition, classification

and resolution, respectively. In practice, most targets cannot

be considered as point targets and point targets are also

a special case of extended targets. Therefore, we evaluate

the performance based on extended targets whose scattering

amplitude follows Rayleigh [39] and Weibull distributions [40,

41], respectively, and phase1 is uniformly distributed. The

main parameters are listed in Table I.

Details of the simulation process are given below:

1) Setting n = 128, l = 106 target scattering samples as

one group for estimating RG and designing the waveform are

generated randomly obeying Rayleigh and Weibull distribu-

tions as listed in Table I, respectively. RG is calculated by

RG = E[GHG] − [E(G)]
H
E(G) and its eigenvalues and

eigenvectors are obtained, which are then used to find xsopt

with K determined by Steps 1-3 in Section IV. B.

2) Using the same parameters as in 1), N = 500 groups of

target scattering samples are generated to serve as testing sets

to verify the theoretical analysis and evaluate the performance,

where u0, u5, u10, xsopt and LFMW cP act as transmitting

waveforms respectively. The echo is formed after the target is

observed and noise according to different SNR requirements

is added.

3) Afterwards, performances of the proposed suboptimal

waveform and the LFMW are compared and analyzed using

the echo of different waveforms and filtering results.

A. Theoretical Analysis Verification

First of all, the result in (12) is validated, while showing

the amount of information |ρY Z |
2

acquired by waveforms u0,

u5 and u10 with different SNRs and statistical distributions.

u0 is the optimal waveform under MTIC and chosen as the

benchmark, then u5 and u10 are chosen arbitrarily. |ρY Z |
2

of the three waveforms under the SNR from -10 to 10dB

is given below. Fig. 3(a) shows the value of |ρY Z |
2

for

Rayleigh distribution, and the corresponding simulation result

of Weibull distribution is shown in Fig. 3(b).

1Using a random variable θ to represent the phase of G(t) and it is
uniformly distributed on [θ1, θ2] [1,12].
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Figure 3. Information acquisition comparison of the three eigenvectors with
different distributions: (a) Rayleigh distribution; (b) Weibull distribution.

The relative value of |ρY Z |2 is converted into decibel by considering u0

corresponding to the Rayleigh distribution as the benchmark.

It can be seen that information acquisition by u0 is better

than the other two eigenvectors. Moreover, it is found that

the results for Rayleigh and Weibull distributions are almost

identical. As mentioned above, |ρY Z |
2

is mainly determined

by xHRGx, and RG depends on the second-order statistics

of G(t). So if the second-order statistics of scattering charac-

teristic are the same, then the value of |ρY Z |
2

will not show

much difference.

In order to verify the design of suboptimal waveform given

in (19)-(29), the relationship between bandwidth, distortion

and the number of eigenvectors K defined in (24) is presented

in Fig. 4.
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Figure 4. The relationship between bandwidth, distortion and the number of
eigenvectors K.

It can be found that the distortion and bandwidth are both

increased with the increase of K, which is consistent with
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our analysis. Using Steps 1-3 in Section IV. B, the value of

K is determined as K = 39 for both Rayleigh and Weibull

distributions. Then xsopt is generated with the corresponding

K, and its energy spectrum density (ESD) is shown in Fig. 5.
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Figure 5. The ESD of xsopt and the LFMW cP with x
H
sopt

xsopt =

c
H
P
cP = 1: (a) Rayleigh distribution; (b) Weibull distribution.

B. Performance Assessment

Next, under the condition of constant power and same time-

bandwidth product, information acquisition, classification and

resolution are evaluated for the suboptimal waveform and

LFMW.

1) Information Acquisition: First, the information acquisi-

tion performance of xsopt and cP is compared with similar

parameters to Fig. 3. The values of |ρY Z |
2

for these waveforms

are shown in Fig. 6.
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Figure 6. Information acquisition evaluation result for Rayleigh and Weibull

distributions. The relative value of |ρY Z |2 is converted into decibel by
considering u0 corresponding to the Rayleigh distribution as the benchmark.

It can be seen that xsopt with both Rayleigh and Weibull dis-

tributions has achieved better result than LFMW cP . Referring

to Fig. 3, although the value of |ρY Z |
2

for xsopt is not as good

as that of u0, this suboptimal waveform still acquire higher

amount of information than cP . By contrast, the maximum gap

of |ρY Z |
2

between cP and xsopt with the Rayleigh distribution

is about 0.5893dB, and 0.6057dB for Weibull distribution.

2) Classification: Fano’s inequality provides a mathemati-

cal means to relate the mutual information between NC types

of targets t and system output p to a lower bound on the

probability of misclassification PE and can be written as an

equality [2]

H(t)− I(t;p) = ε+H(PE) + PE log(NC − 1) (30)

where H(·) denotes entropy, and ε is a bias offset. Therefore,

the probability of misclassification PE can also measure the

information acquisition performance.

In order to further assess the performance of xsopt, we

consider the problem of target classification. Referring to Fig.

1, a radar classification system can be simplified into Fig. 7.

Here the signal r is processed by matched filtering to suppress

noise and achieve a high resolution.

t z y r p

Encoded

Source
Echo Decision

r

Processing

Figure 7. Radar classification system.

Two types of extended targets with the same statistical

distribution are illuminated by the transmitted waveforms

respectively, and the probability of misclassification is cal-

culated. The two types of extended targets have different

variances (1 and 2), but their other parameters are the same. It

is assumed that there are two radar systems with exactly the

same parameters except for the employed waveform, which is

xsopt and cP , respectively. Classification is performed based

on r after pulse compression.

Before classification is performed, it is necessary to deter-

mine the decision threshold. xsopt is taken as an example

to show the process. N sets of samples of the first and the

second types of targets form two different scenes, respectively

(called Scene 1 and Scene 2). The suboptimal waveform xsopt

is designed only for the first type of targets. Observing Scene

1 and Scene 2 separately without noise, N groups of power

signals |r|2 for each scene, can be obtained after filtering. The

average of the mean values of the two scenes power signal |r|2

is considered as the threshold.

N random numbers containing only 0 and 1 are generated

to form a target sequence t randomly, where 0 represents the

first type of targets and 1 represents the second. According to

the sequence t, N sets of scattering samples containing two

types of targets are generated and recorded as Scene 0. The two

radars observe Scene 0 at the same time, and the classification

results p are obtained respectively. Then, each element of p

and t is compared, and the misclassification probabilities for

the two waveforms are computed and shown in Fig. 8.
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Figure 8. The misclassification probability of the two waveforms. The
decision thresholds of xsopt and cP following the Rayleigh distribution
are 44.543 and 22.255, respectively, and they are 41.0357 and 22.0075
corresponding to Weibull distribution.
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It can be seen that the misclassification probability for xsopt

is smaller than that for cP under the two different distributions.

So xsopt has a superior noise suppressing performance for

extended targets. When the SNR decreases to 0dB, the above

two types of targets following the Rayleigh or Weibull dis-

tribution can still be distinguished correctly by xsopt, but the

LFMW cP does not work well for discrimination. Moreover,

it can be found that the misclassification probability of cP
reaches a turning point when the SNR is increased to 4dB,

which is roughly 4dB higher than xsopt. In summary, the

probability of misclassification further indicates that xsopt has

better information acquisition capability than cP .

3) Resolution Evaluation: The same bandwidth is set for

all waveforms to compare their resolution performance. The

three dimensional (3D) and two dimensional (2D) ambiguity

function (AF), and correlation function (CF) are shown, re-

spectively, in Figs. 9 and 10. The ambiguity function of xsopt

for both statistical distributions is approximated as a pin shape

with a single peak at zero delay and zero Doppler as shown

in Fig. 9(a)-(d). Hence, xsopt has nearly ideal range-Doppler

ambiguity properties. By contrast, the ambiguity function of

cP in Fig. 9(e) and (f) looks like a blade, and there is coupling

between range and Doppler due to the oblique triangle shape.
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Figure 9. Partial 3D and 2D ambiguity function of xsopt with different
distributions and LFMW cP : (a) 3D AF of xsopt (Rayleigh); (b) 2D AF
of xsopt (Rayleigh); (c) 3D AF of xsopt (Weibull); (d) 2D AF of xsopt

(Weibull); (e) 3D AF of LFMW; (f) 2D AF of LFMW. ∆t, D and τ represent
time delay, Doppler frequency shift, and duration, respectively.

To further compare spatial resolution of the three wave-

forms, the zero Doppler slice of the ambiguity function is
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Figure 10. Correlation function of xsopt with different distributions and
LFMW cP : (a) CF with the Rayleigh distribution; (b) CF with the Weibull
distribution; (c) CF of LFMW cP .

chosen as shown in Fig. 10. Besides, their 3dB mainlobe width

and PSLR are listed in Table II.

Table II
RESOLUTION INDEXES

waveform
Index

3dB Mainlobe Width (µs) PSLR(dB)

Rayleigh
xsopt 0.0174 -14.77
cP 0.0141 -13.26

Weibull
xsopt 0.0174 -14.38
cP 0.0141 -13.26

It is observed that the two suboptimal waveforms xsopt

corresponding to Rayleigh and Weibull distributions have a

slight loss of 0.0033µs in resolution, compared with the same

time-width product cP . But the suboptimal waveform has

obtained a better PSLR. The PSLRs of xsopt (-14.77dB and

-14.38dB) are both better than -13.26dB of cP . Although

the suboptimal waveform experiences a decrease in mainlobe

width to some extent, xsopt has a better ambiguity function

and PSLR.

In summary, the waveforms designed by the proposed

method under the MTIC can acquire higher amount of in-

formation and ultimately achieve a better classification result

than the classic LFMW with the same power and time-

bandwidth product. Results based on the resolution evaluation

indexes indicate that the suboptimal waveform also has a high

resolution.

VI. CONCLUSION

In this paper, a method of high resolution radar waveform

design based on the MTIC for extended targets has been pre-

sented. A suboptimal transmit sequence with high information

acquisition and resolution ability is obtained, and it is not lim-

ited by the Gaussian assumption on target statistics. An explicit

objective function was first established by introducing PCC

and the discrete-time analytical waveform under the constant
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power constraint was derived; then the resolution requirement

was considered in the constrained optimization problem and

a suboptimal waveform design method was proposed based

on the concept of information distortion; finally, performance

of the suboptimal waveform and the LFMW was evaluated in

terms of information acquisition, classification and resolution

under the same time-bandwidth product and power. Numerical

results have shown that the suboptimal waveform has better

information acquisition, classification and a lower PSLR with

a slightly degraded resolution than LFMW.
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