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Abstract— This paper considers the design of tunable decision
schemes capable of rejecting with high probability mismatched
signals embedded in Gaussian interference with unknown co-
variance matrix. To this end, a sparse recovery technique is
exploited to enhance the resolution at which the target angle
of arrival is estimated with the objective to obtain high-selective
detectors. The outcomes of this estimation procedure are used
to devise detection architectures relying on either the two-
stage design paradigm or heuristic design procedures based
upon the generalized likelihood ratio test. Remarkably, the
new decision rules exhibit a bounded-constant false alarm rate
property and allow for a tradeoff between the matched detection
performance and the rejection of undesired signals by tuning
a design parameter. At the analysis stage, the performance of
the newly proposed detectors is assessed also in comparison
with existing selective competitors. The results show that the
new detectors can outperform the considered counterparts in
terms of rejection of unwanted signals, while retaining reasonable
detection performance of matched signals.

Index Terms— Adaptive radar detection, coherent interferers,
constant false alarm rate, Gaussian interference, likelihood ra-
tio test, mismatched signals, sidelobe signals, sparse recovery,
tunable architectures, two-stage detectors.

I. INTRODUCTION

In the recent years, the design of adaptive detection ar-
chitectures in the presence of mismatched signals has raised
a strong interest in the radar community as corroborated
by the multitude of contributions that can be found in the
open literature [1]–[20]. As a matter of fact, in scenarios
of practical interest, the direction of arrival of the signal
backscattered from a target may be different from the nominal
pointing direction of the mainbeam due to environmental
and/or instrumental factors. For instance, in search mode, radar
operates in situations where a possible target echoes could
come from any arbitrary angle within the beamwidth with a
consequent loss in detection performance and a biased estimate
of the target direction. On the other hand, the presence of a
coherent jammer or a strong target in the sidelobes (namely,
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from a significantly mismatched direction of arrival) could
trigger a detection which deceives the search system. Other
causes of mismatched signals may be imperfect modeling
of the mainlobe steering vector, multipath propagation, array
calibration uncertainties, mutual coupling between the array
elements, etc.

Conventional adaptive detection algorithms, namely those
designed under the assumption of a perfect match between the
nominal and the actual steering vector [21]–[27], behave quite
differently in the presence of mismatched signals. Specifically,
according to their directivity, defined as the capability of
rejecting/detecting mismatched signals, they can be classified
as [13]:

• robust decision schemes which provide good detection
performances in the presence of echoes containing signal
components not aligned with the nominal (transmitted)
signal (see, for instance, the subspace detectors [28]–
[30]);

• selective decision schemes which are capable of rejecting
signals whose signature is unlikely to correspond to that
of interest in order to avoid false alarms (see, for instance,
[15], [18], [24], [31]).

From an operating point of view, selective detectors may
be exploited to face with densely populated environments or
to face with electronic countermeasures (coherent jammers)
[32]. On the other hand, robust architectures are suitable
to cover wide angular sectors by means of a low number
of filters/pointing directions or to detect mismatched signals
within the mainbeam. As corroborated by the numerous anal-
ysis in the presence of mismatched signals, generally speak-
ing, an enhanced selectivity degrades the matched detection
performance, whereas robust architectures can maintain good
matched detection performance [14, and references therein].
Thus, it is clear that a decision scheme capable of modifying
its behavior according to the specific scenario would offer
a relevant flexibility in usage. This requirement has led to
the birth of tunable detectors whose directivity can be set
by means of suitable design parameters. Remarkably, they
are capable of providing a good tradeoff between matched
detection performance and rejection of unwanted signals.

There exist several design paradigms to come up with
tunable architectures. A first approach consists in merging
the decision statistics of existing detectors due to the inher-
ent similarities between them [1]–[4]. As a result, the new
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architecture encompasses the merged decision schemes as
special cases by tuning suitable design parameters. Another
class of tunable architectures can be formed by resorting to
the theory of subspace detection. Specifically, at the design
stage, it is assumed that the possible useful signals belong
to a preassigned subspace of the observables or to a proper
cone with the nominal steering vector as axis [5]–[7]. In these
cases, the directivity can be modified by acting on the subspace
properties or on the cone aperture. Finally, a powerful tool for
the design of tunable architectures is the two-stage approach,
which consists in cascading two decision schemes (usually
with opposite behaviors in terms of directivity) [2], [8]–[13].
The overall detector decides for the alternative hypothesis
if and only if the decision statistic of each stage is above
the respective threshold. This scheme is tantamount to a
logical AND between the two stages and it can be tuned by
modifying the two thresholds. In fact, a preassigned value for
the probability of false alarm (Pfa) can be maintained over
different threshold pairs and, interestingly, each pair returns
a specific directivity and matched detection performance [9],
[10], [14].

In this paper, we focus on the design of tunable adaptive
architectures capable of achieving an enhanced selectivity with
respect to the state-of-the-art selective detectors while keeping
good detection performance for matched signals embedded
in Gaussian interference with unknown covariance matrix. To
this end, we exploit sparse reconstruction techniques in con-
junction with either the two-stage design paradigm or ad hoc
modifications of the generalized likelihood ratio test (GLRT)
[22]. More precisely, at the design stage, we take advantage of
the inherent sparse nature of the signal model due to the fact
that a large part of the angular sector under surveillance does
not contain any signal of interest leading to a sparse scene.
Therefore, we resort to the compressive sensing approach to
estimate target response as well as its angle of arrival (AOA)
[33]–[37] and use such estimates to build up two new classes
of decision schemes. The first class is represented by two-
stage architectures obtained by coupling the sparse amplitude
detector (SAD), defined in Section IV, and classical constant
false alarm rate (CFAR) detectors such as Kelly’s GLRT [21]
or the adaptive matched filter (AMF) [22]. The second class
of receivers is devised applying a heuristic procedure based
upon the GLRT, where some parameters are assumed known
and the others are estimated through the maximum likelihood
approach possibly resorting to training samples collected in
the proximity of the cell under test. Remarkably, it can be
shown that the proposed architectures are bounded-CFAR.

It is important to notice that conversely to existing con-
tributions on AOA estimation by means of sparse recovery,
which focus on estimation aspects only and assume that the
estimation algorithms are triggered by a preliminary detec-
tion stage [38]–[43], the newly proposed architectures jointly
perform detection and estimation. In addition, the present
approach allows us to tune the directivity of the proposed
architectures through a design parameter used by the sparse
estimation procedure leading to enhanced rejection capabilities
of unwanted signals. The above issues appear for the first time
(at least to the best of the authors’ knowledge) in this paper

and represent the main technical contribution.
The performance analysis is conducted over simulated data

by comparing the proposed techniques with Kelly’s GLRT
(which is considered as benchmark detector for matched
signals), the AMF, and well-known selective architectures
as the whitened adaptive beamformer orthogonal rejection
test (W-ABORT) [15], the Rao test (RAO) [23], and the
adaptive coherence estimator (ACE) [31] (also known as
the adaptive normalized matched filter (ANMF) [44]). The
illustrative examples point out that, at least for the considered
simulation parameters, the newly proposed architectures are
capable of exhibiting an increased selectivity with respect to
the considered competitors and, at the same time, an excellent
matched detection performance.

The remainder of the paper is organized as follows: Section
II is devoted to the problem formulation. Section III describes
the sparse recovery procedure. The proposed decision schemes
based on the sparse estimates are devised in Section IV, while
the performance of the new detectors is assessed in Section
V. Finally, concluding remarks and future research tracks are
given in Section VI.

A. Notation

Vectors and matrices are denoted by boldface lower-case
and upper-case letters, respectively. The symbols det(·), Tr (·),
(·)T , and (·)† denote the determinant, trace, transpose, and
conjugate transpose, respectively. As to numerical sets, R is
the set of real numbers, RN×M is the Euclidean space of
(N ×M)-dimensional real matrices (or vectors if M = 1), C
is the set of complex numbers, and CN×M is the Euclidean
space of (N×M)-dimensional complex matrices (or vectors if
M = 1). The Euclidean norm of a generic vector x is denoted
by ‖x‖. IN stands for the N ×N identity matrix, while 0 is
the null vector or matrix of proper size. Finally, given a vector
a, diag (a) indicates the diagonal matrix whose ith diagonal
element is the ith entry of a.

II. PROBLEM FORMULATION AND MOTIVATION

Let us consider a search radar system which exploits a
uniform linear array with N spatial channels and illuminates
with its beam a given azimuth direction. The radar collects data
from multiple range cells and tests whether or not the returns
(from a specific range bin) contain a mainbeam target. In the
positive case, it provides the AOA and the range measurement
of the detected target. The classical detection procedure is
implemented by testing range cell by range cell and it is often
assumed that the actual target AOA coincides with the nominal
steering angle (namely, the steering vector corresponding to
the boresight). In this case, the detection problem at hand
for a specific range bin, whose returns are collected in the
vector z ∈ CN×1, can be formulated in terms of the following
hypothesis test {

H1 : z = αv(θp) + n,

H0 : z = n,
(1)

where α ∈ C accounts for transmitting antenna gain,
the two-way path loss, and radar cross-section of the
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(slowly-fluctuating) target, n ∈ CN×1 represents the
interference (clutter plus noise) component, modeled as
a circular, zero-mean, complex Gaussian random vector
with unknown positive-definite covariance matrix R ∈
CN×N , θp is the nominal AOA of the target (which co-
incides with the beampointing direction), and v(θp) =[
1, ej2π(d/λ) sin(θp), . . . , ej(N−1)2π(d/λ) sin(θp)

]T ∈ CN×1 is
the nominal (spatial) steering vector with d the interelement
spacing and λ the operating wavelength. When H1 is declared,
the range associated with z and θp are returned as target
parameter estimates. However, as mentioned in the previous
section, in practice there exist several factors that would make
the perfect match assumption between the signature of the
received echoes and the nominal steering vector no longer
valid. As a consequence, instead of problem (1), it would be
more plausible to consider the following alternative{

H1 : z = αv(θt) + n,

H0 : z = n,
(2)

where θt is the unknown AOA of the structured returns
generated by an object in the surveillance area which may
be different from the nominal pointing direction θp. Notice
that such model is more general than (1) since it accounts
for situations where the structured component of the col-
lected vectors may be generated by noninterest objects as,
for instance, a signal transmitted by a coherent jammer and
entering from the sidelobes to inject false information into
the radar processor [45]–[47]. Another example is represented
by target-rich environments where an object within the 3 dB
mainbeam but not aligned with the antenna boresight may
trigger a detection [48]. In these operating scenarios, it would
be desirable that the radar processor does not declare H1 (see
also antenna-based sidelobe blanking techniques [14], [45],
[49]). Otherwise stated, the decision rules incorporated in the
radar processor should be more inclined to decide for H0

when the AOA of the coherent component is different from the
nominal pointing direction on the basis of a mismatch degree
decided by the user according to the specific application and
the system operating requirements.

A viable strategy to cope with the above situations could be
a sequential test of different mainbeam azimuth positions. In
this context, assuming the availability of a secondary data set
zk ∈ CN×1, k = 1, . . . ,K, free of useful signal components
but sharing the same spectral properties as the interference in z
(homogeneous environment), some classic decision rules can
be used such as Kelly’s GLRT [21] and the AMF [22], which
ensure excellent matched detection performance. Specifically,
for an angular position θ, the decision schemes for Kelly’s
GLRT and the AMF are given by

ΛGLRT =
|v†(θ)R̂

−1
z|2(

v†(θ)R̂
−1
v(θ)

)(
K + z†R̂

−1
z
) H1

>
<
H0

ηGLRT, (3)

ΛAMF =
|v†(θ)R̂

−1
z|2

v†(θ)R̂
−1
v(θ)

H1
>
<
H0

ηAMF, (4)

where R̂ = 1
K

∑K
k=1 zkz

†
k is the sample covariance matrix

(SCM) over the training data, ηGLRT and ηAMF are the thresholds
set in order to ensure a given Pfa. The relationships between
the thresholds and the given Pfa are given by

Kelly’s GLRT: ηGLRT = 1− P
1

K−N+1

fa ; (5)

AMF: Pfa =

∫ 1

0

fβ(ρ;L+ 1, N − 1) (1 + ηAMFρ/K)
−L

dρ,

(6)
where L = K −N + 1 and

fβ(x;n,m) =
(n+m− 1)!

(n− 1)!(m− 1)!
xn−1(1− x)m−1 (7)

is the complex central Beta probability density function (pdf)
[21], [22]. Both Kelly’s GLRT and the AMF ensure the CFAR
property with respect to the interference covariance matrix.
However, even though the performance in the case of matched
signals is excellent, their azimuth discrimination as well as
their capability of rejecting mismatched signals is limited. As
a matter of fact, a target from directions that are different
from the nominal pointing direction might trigger multiple
detections (see [14] and references therein).

In order to circumvent this drawback, we devise two new
classes of tunable architectures which take advantage of sparse
reconstruction techniques to achieve an enhanced selectivity.
More precisely, let us partition the angular region including
the antenna mainbeam plus the relevant sidelobes into M
uniformly spaced azimuth bins with separation ∆θ. Now,
denoting by θl, l = 1, . . . ,M, the angle corresponding to the
center of the lth azimuth bin, we model the returns from a
given range cell as follows

z =

M∑
l=1

αlv(θl) + n = V α+ n, (8)

V = [v(θ1), · · · ,v(θM )] ∈ CN×M denotes the (so-called)
dictionary matrix and α = [α1, · · · , αM ]T ∈ CM×1 is the
vector whose entries are the responses of prospective targets.

Two remarks are now in order. First, note that α is a sparse
vector where the nonzero entry is that corresponding to the
actual AOA of the target, whereas the other components are
zero. Thus, (8) highlights the inherent sparse nature of the
model under H1 which allows to apply sparse reconstruction
techniques [33]–[37], [50] to estimate α. Finally, as shown in
what follows, it is important to underline that in this context,
∆θ can be viewed as a tuning parameter by which it is
possible to control the angular estimation resolution and the
estimation quality. As a matter of fact, given ∆θ (N ), high
values of N (∆θ) allow for a low dictionary coherence leading
to high quality estimation for the sparse recovery technique.
In addition, under the above conditions, the inner product
between adjacent columns of V decreases and, consequently,
the spillover of target energy between consecutive azimuth
bins takes on low values. However, high values of ∆θ de-
crease the angular resolution for the AOA estimation. Thus,
establishing the range of values for ∆θ is not an easy task
and requires a preliminary analysis to find a good compromise
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between estimation resolution and quality also accounting for
the specific application and the system operating requirements.

In the next section, we describe the sparse recovery al-
gorithm used to estimate α assuming that secondary data
are available for the estimation of the interference covariance
matrix and that N < M in order to obtain an overdetermined
model. Then, the above estimates are suitably exploited in
Section IV to build up adaptive detection architectures with
enhanced rejection capabilities of unwanted signals.

III. USER PARAMETER FREE BIC BASED SLIM (BSLIM)
ALGORITHM

This section provides the description of the specific sparse
recovery algorithm used to estimate α. Such algorithm relies
on the sparse learning via iterative minimization (SLIM)
method of [36]. This design choice is dictated by the fact
that SLIM approach exhibits a computational cost similar
to the widely used compressive sampling matching pursuit
(CoSaMP) [51] but more accurate estimates than the latter,
the iterative adaptive approach (IAA) [52], and matched filter
techniques as shown in [36]. Moreover, the interested reader
is referred to [53]–[58] for further applications/extensions of
the SLIM.

In order to apply the SLIM method, we enforce a sparsity
constraint on α using the same sparsity promoting prior pdf
as in [36]:

f(α) =
1

C

M∏
l=1

exp

{
−2

q
(|αl|q − 1)

}
, 0 < q ≤ 1, (9)

where C is a normalization constant which, without loss of
generality, will be neglected in the sequel and q is a user
parameter controlling the sparsity of α. In general, smaller
q leads to sparser estimates in the framework of Bayesian
inference [36]. The SLIM algorithm is based on a maximum
a posteriori (MAP) approach, and thus given z and R, the
estimate of α can be written as

α̂ = arg max
α

f(z|α;R)f(α), (10)

where

f(z|α;R) =
1

πM det(R)
exp

{
−
∥∥∥R−1/2 (z − V α)

∥∥∥2
}
(11)

is the conditional pdf of z given α. After some algebra, it is
possible to show that (10) is tantamount to

α̂ = arg min
α

gq(α,R), (12)

where

gq(α,R) =
∥∥∥R−1/2 (z − V α)

∥∥∥2

+

M∑
l=1

2

q
(|αl|q − 1) . (13)

Before proceeding towards the solution of the above prob-
lem, we focus on the interference covariance matrix R, that in
practice is unknown. For this reason, the radar system collects
training samples in proximity of that under test [59] and that
are representative of the interference affecting the cell under
test. Thus, in what follows, we estimate R by means of the

SCM based on secondary data, namely R̂. As a consequence,
after replacing R with the considered estimate, problem (13)
becomes

α̂ = arg min
α

gq(α, R̂). (14)

The last equation can be solved by setting to zero the first
complex derivative of gq(α, R̂) with respect to α to obtain

− V †R̂
−1
z + V †R̂

−1
V α+ P−1α = 0, (15)

where P = diag
([
|α1|2−q, . . . , |αM |2−q

])
. Note that com-

puting closed-form solution of the above equation is a difficult
task because P is a nonlinear function of α and, hence, we
resort to an iterative method. Specifically, suppose that the
estimate of α at the ith iteration, α̃(i) say, is available, then
P in (15) can be computed as

P = P̃
(i)

= diag
([
|α̃(i)

1 |2−q, . . . , |α̃
(i)
M |

2−q
])
. (16)

Now, the estimate of α at the (i + 1)th iteration is obtained
as follows

α̃(i+1) =

[
V †R̂

−1
V +

(
P̃

(i)
)−1

]−1

V †R̂
−1
z. (17)

As for the starting point of the above iterative procedure,
we exploit the unconstrained ML estimate of the lth entry of
α, namely

α̃
(0)
l =

v†(θl)R̂
−1
z

v†(θl)R̂
−1
v(θl)

, l = 1, . . . ,M. (18)

Simulation results, not reported here for brevity, have high-
lighted that for this specific problem, the SLIM algorithm
almost shows no improvement after 15 iterations. For this
reason, otherwise stated, all the next numerical examples are
obtained using this number of iterations.

So far we have neglected the impact of q on α̃, which clearly
depends on the former and, hence, we denote this estimate by
α̃q . The number of non-zero entries of α̃q is generally larger
than the actual number of targets, especially for large q. To
further improve the sparsity of α̃q , the model-order selection
Bayesian information criterion (BIC) can be incorporated into
the procedure [60], [61]. Precisely, the BIC rule selects the
order which minimizes the following objective function

BICq(h) = −2 ln f(z|α̃q(h); R̂) + 3h log(2N)

≈ 2

∥∥∥∥R̂−1/2
(z − V α̃q(h))

∥∥∥∥2

+ 3h log(2N), (19)

where h is an integer denoting the number of selected non-zero
entries in α̃q (the model order), α̃q(h) is obtained from α̃q
setting to zero all the entries of α̃q except the largest h values,
and the coefficient 3 represents the number of unknown real-
valued target parameters (complex amplitude and angle). Pa-
rameter h is assumed to belong to the finite set {1, . . . , hmax},
where hmax ≤ M is the maximum number of targets that are
supposed to be present in the operating scenario. The specific
h leading to the lowest BIC value is selected as an estimate of
the actual number of targets for a given q. As a consequence,
for each q, the amplitude vector estimate incorporating the
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BIC algorithm and the corresponding BIC objective value are
given by

α̂q = α̃q(ĥ),

BICq = BICq(ĥ),
(20)

respectively, where ĥ = arg min
h

BICq(h). Summarizing, for
a given q, the pseudocode of the BIC based SLIM (BSLIM)
procedure is reported in Algorithm 1.

Algorithm 1 : Pseudocode of the BSLIM procedure

Input: Primary datum (cell under test) z, SCM R̂, and
dictionary matrix V ;
Output: Amplitude vector estimate α̂q , and corresponding
BIC objective value BICq;

1: Initialize the amplitude vector using (18), denoted as α̃(0)
q ;

2: Implement the iterative procedure according to (17) for
Niteration times and denote the output as α̃q;

3: Compute BIC values for different h ∈ {1, . . . , hmax} using
(19) and select the one leading to the lowest BIC value,
denoted as ĥ;

4: Update the amplitude vector estimate α̂q and the corre-
sponding value BICq resorting to (20).

As to the parameter q, we follow the lead of [36] by
sampling the interval (0, 1] to come up with a cardinality-Q
set of admissible values for q, which is denoted as Ω. Then,
for each q ∈ Ω, the BSLIM procedure is carried out to obtain
Q BIC values indicated as BICq, q ∈ Ω. The optimal q value
is then obtained as

q̂ = arg min
q∈Ω

BICq. (21)

Finally, the user parameter free amplitude vector estimate is
given by

α̂ = α̂q̂. (22)

The pseudocode of the user parameter free BSLIM algorithm
is summarized in Algorithm 2.

Algorithm 2 : Pseudocode of the user parameter free BSLIM
algorithm

Input: Primary datum (cell under test) z, SCM R̂, and
dictionary matrix V ;
Output: Final sparse amplitude estimate α̂;

1: Sample the interval (0, 1] to come up with a cardinality-
Q set of admissible values for q, denoted as Ω =
{q1, . . . , qQ};

2: For each element of Ω, implement the BSLIM procedure
to get the amplitude vector estimate α̂q and the corre-
sponding BIC objective value BICq;

3: Select the specific q leading to the lowest BIC objective
value and denote it as q̂;

4: Choose α̂q̂ as the final sparse amplitude estimate and
denote it as α̂.

IV. DECISION SCHEMES USING SPARSE AMPLITUDE
ESTIMATION

This section addresses the design of decision strategies
exploiting the sparse amplitude estimate. In this respect, a
simple and intuitive way to perform the detection is to check
the presence of a non-zero amplitude estimate indexed by m
which, in turn, corresponds to the nominal pointing direction.
To be more definite, denoting by α̂m the entry of α related to
the nominal steering angle, if |α̂m| > 0, then H1 is declared.
In the following, this decision strategy is referred to as SAD.
However, due to the effect of estimation errors, the sparse
amplitude estimate might be inaccurate and some of the non-
zero elements might not represent the location of true targets.
Besides, the SAD provides no control on the false alarm rate,
which is an issue of primary concern in radar. In order to solve
this problem, two classes of architectures are introduced in the
following.

A. Decision Architectures Based on the Two-Stage Paradigm

The first class of architectures relies on the two-stage
paradigm [14], [19]. Accordingly, the proposed detector is
formed cascading two decision schemes and the final decision
is taken by means of a logic AND between the two stages. In
this context, we combine the SAD with classic CFAR detectors
such as Kelly’s GLRT and the AMF to obtain

SAD-GLRT :

{
H0 : |α̂m| = 0 or ΛGLRT,m < ηGLRT

H1 : |α̂m| > 0 and ΛGLRT,m > ηGLRT

,

(23)

SAD-AMF :

{
H0 : |α̂m| = 0 or ΛAMF,m < ηAMF

H1 : |α̂m| > 0 and ΛAMF,m > ηAMF

, (24)

where we recall that m is the integer indexing the nominal
pointing direction, ΛGLRT,m and ΛAMF,m are Kelly’s GLRT
and AMF decision statistics, respectively, evaluated using the
nominal steering vector v(θm), whereas ηGLRT and ηAMF are
the detection thresholds for Kelly’s GLRT and the AMF,
respectively.

It is important to underline here that the actual Pfa of SAD-
GLRT and SAD-AMF is given by

Pfa,SAD-GLRT = P (|α̂m| > 0,ΛGLRT,m > ηGLRT|H0)

≤ P (ΛGLRT,m > ηGLRT|H0),
(25)

Pfa,SAD-AMF = P (|α̂m| > 0,ΛAMF,m > ηAMF|H0)

≤ P (ΛAMF,m > ηAMF|H0),
(26)

and, hence, the SAD-GLRT and SAD-AMF are bounded
CFAR since Kelly’s GLRT and AMF are CFAR detectors.

B. Decision Architectures Based on the Likelihood Ratio Test

Another approach leading to detectors capable of controlling
the false alarm rate consists in exploiting ad hoc modifications
of the GLRT, where only some parameters are assumed
unknown and estimated through the maximum likelihood ap-
proach, whereas the other parameters are replaced by suitable
estimates. In this case, we can exploit the sparse amplitude
estimates returned by the previously described estimation
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procedure. To be more definite, let us denote by m the integer
indexing the nominal steering direction, then the likelihood
ratio test (LRT) is given by

ΛLRT,m =
f(z, z1, · · · , zK ;αm,R, H1)

f(z, z1, · · · , zK ;R, H0)

H1
>
<
H0

η, (27)

where

f(z, z1, · · · , zK ;αm,R, H1) =

{
exp

[
−Tr (R−1T 1)

]
πN det(R)

}K+1

(28)
and

f(z, z1, · · · , zK ;R, H0) =

{
exp

[
−Tr (R−1T 0)

]
πN det(R)

}K+1

(29)
with

T 1 =
1

K + 1

[
(z − αmv(θm))(z − αmv(θm))† +KR̂

]
(30)

and
T 0 =

1

K + 1

(
zz† +KR̂

)
(31)

are the joint pdfs of the vectors z, z1, · · · , zK under H1 and
H0, respectively. Note that by (27), the LRT for the nominal
angular position is dependent on two unknown quantities,
namely the target amplitude αm and the interference covari-
ance matrix R.

1) Case A (BSLIM-AMF): If we replace αm and R in (28)-
(31) with the sparse estimate α̂m and the SCM R̂, respectively,
then the logarithm of (27) can be written as

ΛBSLIM-AMF,m = − (z − α̂mv(θm))
†
R̂
−1

(z − α̂mv(θm))

+ z†R̂
−1
z
H1
>
<
H0

η,

(32)

which will be referred to in the following as BSLIM-AMF.
To gain some insight in (32), let us denote the unconstrained

ML estimate of αm for the single target scenario as

α̂ML,m =
v†(θm)R̂

−1
z

v†(θm)R̂
−1
v(θm)

, (33)

the decision statistic of (32) can be recast as

ΛBSLIM-AMF,m

= − (z − α̂mv(θm))
†
R̂
−1

(z − α̂mv(θm)) + z†R̂
−1
z

= −
(
v†(θm)R̂

−1
v(θm)

) ∣∣∣∣∣α̂m − v†(θm)R̂
−1
z

v(θm)†R̂
−1
v(θm)

∣∣∣∣∣
2

+
|v†(θm)R̂

−1
z|2

v†(θm)R̂
−1
v(θm)

= ΛAMF,m −
(
v†(θm)R̂

−1
v(θm)

)
|α̂m − α̂ML,m|2

= ΛAMF,m

(
1− |α̂m − α̂ML,m|2

|α̂ML,m|2

)
.

(34)

where ΛAMF,m is the AMF decision statistic evaluated with
the steering vector v(θm). The only difference between the
decision statistics of BSLIM-AMF and AMF lies on the mul-
tiplier

(
1− |α̂m − α̂ML,m|2/|α̂ML,m|2

)
. For matched or slightly

mismatched signals and high signal-to-interference-plus-noise-
ratio (SINR), both of α̂m and α̂ML,m approach the true ampli-
tude, and thus the BSLIM-AMF tends to the AMF. In contrast,
for highly mismatched signals, α̂m normally equals to zero
(namely, ΛBSLIM-AMF,m = 0) whereas ΛAMF,m might be large. This
observation suggests that the BSLIM-AMF should outperform
AMF in terms of rejecting unwanted signals.

2) Case B (BSLIM-GLRT): Following the lead of Kelly’s
GLRT, it is possible to show that

max
R

ΛLRT,m =

{
det(T 0)

det(T 1)

}K+1

=

{
K + z†R̂

−1
z

K + (z − αmv(θm))
†
R̂
−1

(z − αmv(θm))

}K+1

.

(35)

Using the sparse estimate α̂m in place of αm and taking the
(K + 1)st root, we obtain the following decision rule

K + z†R̂
−1
z

K + z†R̂
−1
z − ΛBSLIM-AMF,m

H1
>
<
H0

η, (36)

which is statistically equivalent to

ΛBSLIM-GLRT,m =
ΛBSLIM-AMF,m

K + z†R̂
−1
z

= ΛGLRT,m

(
1− |α̂m − α̂ML,m|2

|α̂ML,m|2

) H1
>
<
H0

η.

(37)

The above architectures is referred to as BSLIM-GLRT. Sim-
ilarly, the BSLIM-GLRT differs from Kelly’s GLRT only by
the multiplier

(
1− |α̂m − α̂ML,m|2/|α̂ML,m|2

)
.

As a final remark, note that the left hand side of (32)
and (37) are upper bounded by the AMF and Kelly’s GLRT
decision statistics, respectively, the BSLIM-AMF and BSLIM-
GLRT are also bounded CFAR.

The block-schemes of the proposed decision architectures
are depicted in Fig. 1.

V. NUMERICAL EXAMPLES

In this section, we focus on the performance assessment
of the SAD-AMF, SAD-GLRT, BSLIM-AMF, and BSLIM-
GLRT, also in comparison with well-known selective decision
schemes. Since closed-form expressions for the Pfa and the
probability of detection (Pd) are not available for the new
detectors, we evaluate them resorting to standard Monte Carlo
techniques based on 1000/Pfa and 104 independent trials,
respectively. The interference is modeled as an exponentially-
correlated complex Gaussian vector with one-lag correlation
coefficient ρ, namely the (i, j)th element of the covariance
matrix R is given by ρ|i−j|, i, j = 1, · · · , N , with ρ = 0.95.
Finally, the interelement spacing, namely d, is set to λ/2,
h ∈ {1, . . . ,M}, and q ∈ Ω = {0.01, 0.1, 0.2, . . . , 1}.
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(d)

Fig. 1: Block schemes of the proposed decision architectures.
(a) Two-stage detector based upon Kelly’s GLRT. (b) Two-
stage detector based upon the AMF. (c) One-stage detector
based upon the GLRT. (d) One-stage detector based upon the
AMF.

A. Pfa analysis

In Figs. 2 to 4, the Pfa behavior of the new decision
schemes is studied assuming that N = 8 and the nominal
pointing direction is 0◦. The angular region corresponding to
the dictionary ranges from −48◦ to 48◦ in order to include
the mainbeam (whose 3 dB beamwidth is about 8.66◦ and
four sidelobes (two sidelobes on the left and two sidelobes
on the right). Exploiting the bounded CFAR property, the
thresholds in (23), (24), (32) and (37) are set equal to those
of the AMF and Kelly’s GLRT, respectively. Precisely, the
thresholds in (23) and (37) are set equal to ηGLRT, which is
calculated according to (5) whereas the thresholds in (24)
and (32) are set to ηAMF, which is computed resorting to (6).
Besides, Pfa is set to 10−3 in order to limit the computational
burden. Fig. 2 shows the actual Pfa versus the number
of iterations Niteration used in the BSLIM procedure for
K = 32 and ∆θ = 3◦ (namely, M = 33). The curves
confirm that all the new decision rules possess the bounded
CFAR property. Moreover, for the chosen parameters, the Pfa
value of them almost keeps unaltered when Niteration ≥ 11.
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Fig. 2: Actual Pfa versus Niteration for N = 8, K = 32, and
∆θ = 3◦.
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Fig. 3: Actual Pfa versus K for N = 8, ∆θ = 3◦, and
Niteration = 15.

The Pfa values versus Niteration for other parameters have
been also evaluated. Such simulations, not reported here for
brevity, highlight that the Pfa value for the considered decision
schemes almost shows no changes when Niteration ≥ 15. The
bounded CFAR property of the new decision architectures is
further validated in Fig. 3, where the actual Pfa versus K is
plotted for ∆θ = 3◦ and Niteration = 15. The plot shows
that larger K generally leads to Pfa values closer and closer
to the nominal Pfa value and the Pfa behavior shows small
changes when K is sufficiently large. Furthermore, for a given
K, the Pfa value of the SAD-GLRT is the closest to the
nominal one among the considered detectors while that of
the BSLIM-AMF exhibits the greatest deviation. Fig. 4 plots
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Fig. 4: Actual Pfa versus ∆θ for N = 8, K = 32, and
Niteration = 15.
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the actual Pfa versus ∆θ for K = 32 and Niteration = 15.
The curves point out that the estimated Pfa value approaches
the nominal Pfa value as ∆θ increases. It is worth noticing
that the Pfa deviation is generally smaller than one order of
magnitude, i.e., 0.1× nominal Pfa value. As a consequence,
in practical applications, the angular separation ∆θ could be
properly selected in order to ensure that the Pfa deviation is
smaller than the maximum tolerable value.

B. Pd analysis

In the sequel, the Pd behavior of the proposed decision
schemes is analyzed for both matched and mismatched signals
assuming Pfa = 10−3, the nominal pointing direction is 0◦

and Niteration = 15, also in comparison with the AMF [22],
Kelly’s GLRT [21], the Rao detector (RAO) [23], the W-
ABORT [15], and the ACE [31], [44]. For the reader ease,
the expressions of the RAO, the W-ABORT, and the ACE are
given by

ΛRAO =

∣∣∣v†(θm)Ŝ
−1

1 z
∣∣∣2

v†(θm)Ŝ
−1

1 v(θm)
, (38)

ΛWA =

(
K + z†R̂

−1
z
)−1

1−

∣∣∣∣v†(θm)R̂
−1

z
∣∣∣∣2(

v†(θm)R̂
−1

v(θm)

)(
K+z†R̂

−1

z
)
2 , (39)

and

ΛACE =

∣∣∣v†(θm)R̂
−1
z
∣∣∣2(

v†(θm)R̂
−1
v(θm)

)(
z†R̂

−1
z
) , (40)

respectively, where Ŝ1 = zz† + KR̂. According to the
decision rules (23), (24), (34) and (37), the detection perfor-
mance is affected by the sparse amplitude estimate. The latter
is dependent on the following parameters: the dictionary V
(including the number of columns M , the size of each column
N and the angular separation between adjacent columns ∆θ),
the interference covariance matrixR, the number of secondary
data K, the true target angle θt, and the SINR, which is defined
as

SINR = |α|2v(θt)
†R−1v(θt), (41)

where we recall that θt is the actual AOA of the target.
Moreover, for a specific target, the Pd value obtained using the
SAD-AMF and BSLIM-AMF is smaller than or equal to that
of the AMF, whereas the upper bound for the Pd of SAD-
GLRT and BSLIM-GLRT is represented by that of Kelly’s
GLRT.

It is now worth to underline that as claimed in [62],
typically, to obtain a satisfactory sparse amplitude estimate
exploiting sparse recovery algorithms, under the additive white
Gaussian noise assumption, the dictionary is required to meet
some requirements such as the restricted isometry property
(RIP) or low coherence. The signal model (8) in Section II can
be transformed by whitening with respect to the interference
covariance matrix, namely

zw = V wα+ nw, (42)

where V w = R−1/2V and nw = R−1/2n represent the
whitened dictionary and interference component, respectively.
As a consequence, the coherence of the dictionary is given by
[62]

µ(V w) = arg max
1≤i,j≤M,i6=j

∣∣∣∣∣ v†w,ivw,j

‖vw,i‖‖vw,j‖

∣∣∣∣∣
= arg max

1≤i,j≤M,i6=j

∣∣∣∣∣ v†iR
−1vj

‖R−1/2vi‖‖R−1/2vj‖

∣∣∣∣∣ ,
(43)

where vw,i and vi, i = 1, · · · ,M, denote the ith column
of V w and V , respectively. In addition, the coherence corre-
sponding to the mth azimuth bin can be defined as

µ(V w, θm) = arg max
1≤i≤M
vi 6=v(θm)

∣∣∣∣∣ v†iR
−1v(θm)

‖R−1/2vi‖‖R−1/2v(θm)‖

∣∣∣∣∣ .
(44)

In order to obtain a good estimate of αm, m = 1, . . . ,M ,
µ(V w, θm) should be small.
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Fig. 5: Pd behavior and µ(V w, 0
◦) versus ∆θ for N = 8,

K = 32, SINR = 14 dB, and θt = 0◦. (a) Pd. (b) µ(V w, 0
◦).
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Fig. 6: Pd behavior and µ(V w, 0
◦) versus ∆θ for N = 24,

K = 96, SINR = 14 dB, and θt = 0◦. (a) Pd. (b) µ(V w, 0
◦).

Figs. 5 to 8 study Pd under the perfect matching condition,
namely, the true target angle coincides with the nominal
pointing direction. In particular, Fig. 5 plots Pd versus ∆θ
for N = 8, K = 32, and SINR = 14 dB. The coherence
corresponding to the nominal pointing angle µ(V w, 0

◦) com-
puted according to (44) is also provided. The plots highlight
that, for the considered parameters, the best performance is
achieved by the AMF, Kelly’s GLRT and RAO and their Pd
value is approximately 1 whereas the Pd values for W-ABORT
and ACE are 0.89 and 0.83, respectively. In contrast, the Pd
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value of the new detectors increases as ∆θ increases. This
is due to the fact that the lower the coherence, the more
accurate the sparse amplitude estimate and thus improved
Pd performance can be achieved. Moreover, the SAD-AMF,
SAD-GLRT, BSLIM-AMF and BSLIM-GLRT almost share
the same performance1. In Fig. 6, Pd and coherence are plotted
versus ∆θ for N = 24, K = 96, and SINR = 14 dB. In
this situation, the selected angular region, again including the
mainbeam (whose 3 dB beamwidth is now about 2.88◦) and
four sidelobes, ranges from −15◦ to 15◦. The plots highlight
that for a fixed ∆θ, a larger value of N leads to a smaller
value of µ(V w, 0

◦). Besides, for this specific case, Pd loss
of the proposed strategies (the loss of the new detectors as
compared to their respective counterparts, i.e., AMF for SAD-
AMF and BSLIM-AMF, Kelly’s GLRT for SAD-GLRT and
BSLIM-GLRT) approximately reaches 0 when ∆θ ≥ 1.5
(namely, µ(V w, 0

◦) ≤ 0.4909). Additional experiments have
been conducted for other parameter settings, whose results
are not reported here for brevity, and the results confirm that
when µ(V w, 0

◦) ≤ 0.5 and K ≥ 4N , the SAD-AMF, SAD-
GLRT, BSLIM-AMF and BSLIM-GLRT almost ensure the
same performance as their respective counterparts.
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Fig. 7: Pd versus K for N = 8, SINR = 14 dB, θt = 0◦ and
different ∆θ values. (a) ∆θ = 1◦. (b) ∆θ = 2◦.
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Fig. 8: Pd versus SINR for N = 8, K = 32, θt = 0◦ and two
values of ∆θ. (a) ∆θ = 1◦. (b) ∆θ = 2◦.

In Fig. 7, the effects of K on Pd are analyzed, to this end,
Pd versus K is plotted for N = 8 and SINR = 14 dB. Two
values of ∆θ are considered: (a) ∆θ = 1◦; (b) ∆θ = 2◦.
The plots highlight that for all the detectors, the larger the K,

1This is not a general case. Simulations highlight that the behavior of the
four considered decision schemes might exhibit a significant gap when K is
small (see, for instance, Fig. 7).

the better the Pd. Moreover, for K ≥ 4N , the AMF, Kelly’s
GLRT and RAO approximately share the same performance
whereas SAD-AMF, SAD-GLRT, BSLIM-AMF and BSLIM-
GLRT curves are clustered together. Finally, for the SAD-
AMF, SAD-GLRT, BSLIM-AMF and BSLIM-GLRT, when
the coherence is high (case (a)), the Pd loss is generally non
negligible. In contrast, when the coherence is sufficiently low
(case (b)), the performance degradation is usually acceptable.
As a consequence, to ensure a good detection performance for
matched signals, the coherence should be low. This property is
further confirmed in Fig. 8, where Pd versus SINR for N = 8,
K = 32, and two values of ∆θ: (a) ∆θ = 1◦; (b) ∆θ = 2◦ is
plotted.
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Fig. 9: Pd versus K for N = 8, ∆θ = 2◦, SINR = 14 dB and
two θt values. (a) θt = 0.5◦. (b) θt = 2◦.
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Fig. 10: Pd versus SINR for N = 8, K = 32, ∆θ = 2◦, and
two θt values. (a) θt = 0.5◦. (b) θt = 2◦.

The last part of the analysis focuses on the case of
mismatched signals, where the actual angle of the coherent
component is not aligned with the (nominal) angle under test.
The next numerical examples are aimed at showing that the
proposed architectures can ensure an enhanced selectivity. As
in the case of matched targets, the influence of K and SINR
is assessed. Specifically, in Fig. 9, Pd versus K is plotted for
N = 8, ∆θ = 2◦, SINR = 14 dB and two values of θt: (a)
θt = 0.5◦ (the angle of the target is not aligned with any
value of θm, m = 1, · · · ,M , where θm is the mth angular
position among the discretized antenna beam); (b) θt = 2◦ (the
angle of the target coincides with a specific value of θm but
is not equal to the nominal angle). The plots highlight that for
the chosen parameters, the SAD-AMF, SAD-GLRT, BSLIM-
AMF, and BSLIM-GLRT significantly outperform the AMF
and Kelly’s GLRT in terms of rejecting mismatched signals
for a mismatch of 2◦. Moreover, the Pd difference between
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the proposed four decision schemes and the AMF and Kelly’s
GLRT grows as K increases for case (b). Precisely, for case
(b), the Pd value of the SAD-AMF, SAD-GLRT, BSLIM-AMF
and BSLIM-GLRT is always smaller than 0.1 for all the values
of K. In contrast, the Pd values of the AMF and Kelly’s GLRT
are 0.32 and 0.15 respectively when K = 16, whereas 0.77
and 0.6 respectively when K = 40.

The improved capability of rejecting mismatched signals
for the proposed four detectors is further confirmed in Fig.
10, where Pd versus SINR is plotted for N = 8, K = 32,
∆θ = 2◦, and the same values of θt as in Fig. 9. The plots
highlight that for the AMF and Kelly’s GLRT, the Pd value
increases as SINR increases. On the other hand, for SAD-
AMF, SAD-GLRT, BSLIM-AMF, and BSLIM-GLRT, the Pd
value increases as SINR increases for case (a) whereas shows
small changes for case (b). This is due to the fact that for
case (b), the estimated target angular position (i.e., the non-
zero element in α̂) exploiting the user parameter free BSLIM
procedure is with high probability not aligned with the nominal
angle.
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Fig. 11: Pd versus θt for N = 8 and K = 32. (a) ∆θ = 1◦

and SINR = 14 dB. (b) ∆θ = 2◦ and SINR = 14 dB. (c)
∆θ = 1◦ and SINR = 20 dB. (d) ∆θ = 2◦ and SINR = 20
dB.

Fig. 11 provides the Pd curves as functions of θt, namely
the actual azimuthal angle θt of the coherent component,
assuming N = 8, K = 32, two values of SINR and ∆θ.
The curves show that the ACE and W-ABORT outperform
the AMF, Kelly’s GLRT and RAO in terms of selectivity,
whereas the new decision schemes can provide an excellent
capability of rejecting undesired signals by properly selecting
the value of ∆θ as shown in subfigures (a) and (c). The
mismatched signal detection performance of SAD-GLRT and
BSLIM-GLRT in comparison with those of the ACE and
the W-ABORT are also analyzed in Fig. 12 for ∆θ = 1◦,
wherein the contours of constant Pd are represented as a
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Fig. 12: Contours of constant Pd for N = 8, K = 32, and
∆θ = 1◦. (a) ACE, SAD-GLRT and BSLIM-GLRT. (b) W-
ABORT, SAD-GLRT and BSLIM-GLRT.
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Fig. 13: Pd versus θt for N = 24, K = 96, SINR = 14 dB
and two values of ∆θ. (a) ∆θ = 0.5◦. (b) ∆θ = 1◦.

function of the mismatch angle, plotted vertically, and the
SINR, plotted horizontally2. It is noted that the SAD-AMF
and BSLIM-AMF almost exhibit the same performance as the
SAD-GLRT and BSLIM-GLRT, whose curves are not shown
here for clarity. The figure highlights that the SAD-GLRT,
BSLIM-GLRT, ACE, and W-ABORT share approximately the
same performance for θt = 0◦, but the contours of SAD-
GLRT and BSLIM-GLRT are more compressed towards zero
with respect to those of the ACE and the W-ABORT. The
quid pro quo for this enhanced selectivity is a performance
degradation for matched signals with respect to Kelly’s GLRT,
the AMF, and RAO as shown in Fig. 8. Nevertheless, the other
selective architectures share more or less the same matched
detection performance as the new decision schemes. Moreover,
increasing ∆θ reduces the selectivity but restores the matched
detection performance. As a matter of fact, for ∆θ = 2◦

(subfigures (b) and (d) in Fig. 11), the new architectures are
slightly less selective than the ACE and the W-ABORT, but
the latter experience a nonnegligible loss in matched detection
performance with respect to the former as corroborated by Fig.
8. This behavior is further confirmed in Fig. 13, where Pd
versus θt is plotted for N = 24, K = 96, SINR = 14 dB and
two values of ∆θ. Comparing Fig. 11 and Fig. 13, it is clear
that for a given SINR, the capability of distinguishing targets
whose angles are close each other improves as N increases.

Summarizing, a suitable selection of ∆θ for the SAD-AMF,
SAD-GLRT, BSLIM-AMF and BSLIM-GLRT allows for a

2Similar 2-dimensional plots were introduced in [18], where they are
referred to as mesa plots.
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tradeoff between the detection of matched targets and rejection
of undesired signals.

VI. CONCLUSION

In this paper, we have considered the design of tunable
detectors based on sparse recovery techniques in order to
achieve an enhanced selectivity assuming colored Gaussian
interference with unknown covariance matrix. In this context,
we have introduced a user parameter free sparse recovery
algorithm inspired by the SLIM method [36]. Then, the
estimates provided by the latter procedure have been used to
devise two classes of detectors resorting to either the two-
stage detection theory (leading to the SAD-AMF and the SAD-
GLRT) or heuristic modifications of the GLRT (giving rise to
the BSLIM-AMF and the BSLIM-GLRT). Moreover, we have
proved that the new decision architectures exhibit a bounded-
CFAR behavior. Simulation results have validated that the new
detectors can outperform the conventional decision schemes
in terms of selectivity by properly choosing the value of the
tuning parameter ∆θ. Possible future research directions might
concern the extensions of the proposed framework to range-
spread targets as well as to non-Gaussian interference. Finally,
it would be interesting to test the proposed detectors also on
real recorded data.
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