
  

Abstract—Land vehicle navigation based on inertial navigation 

system (INS) and odometers is a classical autonomous navigation 

application and has been extensively studied over the past several 

decades. In this work, we seriously analyze the error 

characteristics of the odometer (OD) pulses and investigate three 

types of odometer measurement models in the INS/OD integrated 

system. Specifically, in the pulse velocity model, a preliminary 

Kalman filter is designed to obtain accurate vehicle velocity from 

the accumulated pulses; the pulse increment model is accordingly 

obtained by integrating the pulse velocity; a new pulse 

accumulation model is proposed by augmenting the travelled 

distance into the system state. The three types of measurements, 

along with the nonhonolomic constraint (NHC), are implemented 

in the standard extended Kalman filter. In view of the motion-

related pulse error characteristics, the multiple model adaptive 

estimation (MMAE) approach is exploited to further enhance the 

performance. Simulations and long-distance experiments are 

conducted to verify the feasibility and effectiveness of the proposed 

methods. It is shown that the standard pulse velocity measurement 

achieves the superior performance, whereas the accumulated 

pulse measurement is most favorable with the MMAE 

enhancement. 

 
Index Terms—Land vehicle navigation, Odometer, Kalman 

filtering, Pulse measurement, Multiple model adaptive estimation 

 

I. INTRODUCTION 

HE strapdown inertial navigation system (INS) either 

works independently or complementarily with other 

sensors, e.g., the global positioning system (GPS) in case of 

possible signal loss and interference [1]-[13]. Under special 

scenarios, such as the military applications [3], the underground 

mining [4], and the pipeline surveying [7], the GPS signal might 

be not available. To fulfill autonomous navigation in GPS-

denied situations, the inertial measurement units (IMU) are 

commonly integrated with wheel encoders/odometers (OD) to 

mitigate the land vehicle’s navigation error drift caused by 

sensor biases, scale factor errors, and random walks [8], [9]. 

Specifically, high-precision IMUs are indispensable in order to 

ensure the long-distance and long-time stability of the 

navigation performance [13]. 

 
The paper was supported in part by National Key R&D Program of China 

(2018YFB1305103) and National Natural Science Foundation of China 

(61673263). A short version was presented at International Conference on 

Integrated Navigation Systems, Saint Petersburg, Russia, 2020. 

W. Ouyang and Y. Wu are with Shanghai Key Laboratory of Navigation and 

Location-based Services, School of Electronic Information and Electrical 

Engineering, Shanghai Jiao Tong University, Shanghai 200240, China (email: 

The INS/OD integrated system has been exhaustively 

investigated for decades as a typical enhancement of the 

strapdown inertial navigation system (SINS). Table I gives a 

summary of the relevant papers on the INS/OD integrated 

system in the last two decades. Odometers are ubiquitous in 

land vehicles and very convenient to be used as external 

measurements, but only a few studies have seriously studied the 

measurement model. In [1], the authors proposed to use the 

odometer velocity together with the vehicle motion constraints 

as the measurement information. However, the raw outputs of 

odometers are pulses that are proportional to the travelled 

distance and the indirectly-derived velocity outputs from the 

odometer pulses by approximate difference are severely 

corrupted by noise. To overcome this problem, the distance 

increments travelled over a small time period are frequently 

taken as measurements, which are formulated as the time 

integration of the velocity [8], [10]. Although the distance 

increment measurements are helpful to smooth out errors, more 

rigorous error modeling is desired to further improve the 

estimation accuracy. Besides, the laser doppler velocimeter 

(LDV), a more accurate and stable velocity sensor, has been 

used in lieu of the odometer for direct velocity measurement [8], 

[11]. Unfortunately, the LDV is vulnerable to dusty/muddy and 

watering roads [12]. Our team initially exploited the filtered 

pulse velocity as measurements [13], whereas the technical 

details were not disclosed and the achieved performance was 

unsatisfactory to us.  

Researchers have also delved into studying various adaptive 

filtering methods to improve the INS/OD navigation 

performance. Leopoldo et al. [14] proposed an adaptive 

filtering technique based on the innovation sequence to account 

for inaccurate process and measurement covariance matrices in 

the localization of mobile robots. The algorithms in [15], [16], 

and [17] also fall into this type of the adaptive covariance 

matrix methods. The strong tracking Kalman filter (STF) [18] 

was used to keep track of the variation of the odometer scale 

factor error in [19] and [20]. The ‘strong tracking’ of parameters 

was realized by introducing a scaling matrix/factor into the 

covariance prediction process of EKF. Nevertheless, STF is 
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only sensitive to significant change of model parameters, which 

is inappropriate for the INS/OD system that comprises 

minutely-changing parameters such as the odometer scale 

factor. As pointed out in [21], STF fails to detect the maneuver 

when the magnitude of the impulsive maneuver is small. 

Recently, deep learning techniques and Gaussian processes 

have also been applied to learn the inertial sensor error statistics 

or to predict the measurement residuals of the wheel odometry 

[22], [23]. In general, the biases of high-precision gyroscopes 

and accelerometers, and the odometer scale factor can be 

regarded as noised constants. However, the error characteristics 

of the odometer measurements are unknown and largely 

unstable [24], predictably related to vehicle motions. In this 

regard, the multiple model adaptive estimation technique 

(MMAE) [26], [25] is potentially promising to address this 

problem by running a bank of filters that respectively take 

different statistical parameters of the measurement error. The 

MMAE approach has been successfully applied to deal with 

maneuvering target tracking [27], fault detection [28] and Mars 

entry navigation [29], etc, in which varying parameters were 

involved. 

Given the aforementioned problems, this article starts by 

analyzing the error characteristics of the odometer pulses and 

then three kinds of odometer measurement models are 

investigated. The travelled distance up to the odometer scale 

factor is augmented into the system state so that the 

accumulated pulses can be used as measurements. Furthermore, 

similar to the traditional distance increment method [8], [10], a 

counterpart is developed using the incremental pulses as 

measurements. The third measurement model is developed 

based on the pulse-derived velocity, for which a preliminary 

Kalman filter is formulated by assuming a constant acceleration 

of the vehicle forward motion in a short time interval [30], [31]. 

Finally, the multiple model adaptive estimation (MMAE) 

approach is applied to further ameliorate the performances of 

these methods, by exploiting the analyzed pulse error 

characteristics in the MMAE design process. Simulations and 

long-distance land vehicle experiments are conducted to 

validate the effectiveness of the proposed methods. Comparing 

with previous works, the main contributions of this article 

include: 

1)  The error characteristics of odometer pulse measurements 

are studied, which are conducive to the Kalman filter and 

the MMAE model design. 

2)  A new system scheme is proposed by augmenting the 

traditional state model with the travelled distance. In doing 

so, the accumulated odometer pulses could be directly used 

as the measurement.  

3)  A linear time-invariant system is used to model the pulse 

change over short intervals and a preliminary Kalman filter 

is exploited to acquire accurate velocity information. The 

pulse-derived velocity is shown to be quite effective in 

improving the navigation performance.  

4)  Multiple model adaptive estimation algorithms are used to 

even further improve the performance by accounting for the 

motion-dependent error characteristics of the odometer 

pulses. 

 

The remaining content is organized as follows. Section II 

gives some preliminaries and backgrounds of INS/OD 

integrated navigation. Section III develops three types of 

measurement models and the corresponding error 

characteristics are investigated. Subsequently, the MMAE 

method is introduced in Section IV. Simulations are conducted 

in Section V and the results of land vehicle experiments are 

given in Section VI. Finally, Section VII concludes this article. 

II. PRELIMINARIES AND BACKGROUND 

This section provides an overview of the INS/OD integrated 

navigation system. The land vehicle is equipped with a 

navigation-grade IMU, and the odometer is mounted on the 

TABLE I 

PREVIOUS RELATED RESEARCHES 

Year Author Technical Merits Measurement Type* 

1996 Borenstein et al. [24] Measurement and correction of odometry errors. DI 

2001 Dissanayake et al. [1] Odometer velocity and NHC measurements. OV 

2009 Wu et al. [30] Self-calibration and observability analysis. PV 

2010 Wu et al. [31] Calibration of misalignment angles. PV 

2012 Wang et al. [10] Comparison of loosely and tightly coupled mode. DI 

2014 Wu [13] Self-calibration, in-motion alignment and positioning. PV 

2016 Zhao et al. [19] Adaptive two-stage Kalman filter. OV 

2017 Gao et al. [12] Accurate calibration method for Laser Doppler Velocimeter. OV 

2017 Chang et al. [2] Attitude estimation-based in-motion initial alignment. OV 

2017 Hidalgo-Carrió et al. [23] Gaussian process estimation of odometry error. OV 

2018 Fu et al. [8] Laser Doppler Velocimeter and observability analysis. SOV 

2018 Gao et al. [3] Single-Axis Rotational INS/OD integrated navigation system. OV 

2019 Brossard et al. [22] Learning wheel odometry and IMU errors. OV 

2019 Chen et al. [7] Pipeline Surveying System and experiment tests. OV 

2019 Wang et al. [6] Precise positioning of shearer based on closing path. DI 

2019 Wang et al. [9] State transformation method and SINS/OD integration. OV 

* DI: Distance increment measurement is the output of the odometer. OV: Odometer velocity is computed by differencing the distance increment w.r.t. the 

sampling interval. PV: Pulse-derived velocity by using the Kalman filter. SOV: Summed odometer velocity. 
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non-steering wheel. As shown in Fig. 1, the center of the vehicle 

frame Om is situated at the middle point of the rear non-steering 

axle of the vehicle. The xm axis points forward, ym axis points 

upward, and zm axis is along the right direction. The odometer 

measures the forward motion in terms of accumulated pulses, 

i.e., the number of pulses generated from the very start of the 

vehicle motion, and we assume that the measurement frame is 

coincided with the vehicle frame for simplicity. The IMU frame 

is misaligned with the vehicle frame by mounting angles 𝜑, ψ, 

θ. The displacement between the IMU center Ob and the vehicle 

center Om is the lever arm lb, which is expressed in the body 

frame. The navigation frame is defined as north, up and east.  
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Figure 1. IMU installed on a vehicle, with definitions of the body frame, the 

vehicle frame, and the navigation frame. 

 

In current INS/OD integrated navigation system, the 

dynamic model that includes the rate equations of the attitude, 

velocity and position are given as blow [13]. 

 ( ) ,n n b b b b n

b b nb nb ib g n in=  = − −C ω ω ω b C ωC   (1) 

 ( ) ( )2n n b n n n n

b a ie en= − − +  +v C f b ω ω v g   (2) 

 
n

c=p R v   (3) 

where 
n

bC  is attitude matrix from the body frame to the 

navigation frame. 
n

v  is the velocity relative to the earth. 
b

ibω  

and 
b

f  denote the error-contaminated body rate measured by 

the gyroscopes and the specific force measured by the 

accelerometers, respectively. 
n

ieω  is the earth rotation rate 

relative to the inertial frame, and 
n

enω  is the rotation rate of the 

navigation frame relative to the earth frame. 
n

g  is the 

gravitational vector. 

The vehicle’s position  
T

L h=p  includes the 

longitude λ, latitude L, and height h. Thus, the local curvature 

matrix in (3) is 

 

( )0 0 1 cos

1 0 0

0 1 0

E

c N

R h L

R h

+ 
 

= + 
 
 

R   (4) 

where RE denotes the transverse radius of curvature and RN 

denotes the meridian radius of curvature of the reference 

ellipsoid. 

Besides, the odometer scale factor K is defined as the number 

of pulses generated when the 1-m distance is travelled. The 

mounting angle, the lever arm, and the scale factor K are 

regarded as random constants. For a navigation-grade IMU, the 

biases bg, ba for gyroscopes and accelerometers can be modeled 

as constants as well.  

The transformation matrix from the IMU body frame b to the 

vehicle frame m, by the 2-3-1 rotation sequence, is given as 

 ( ) ( ) ( )1 3 2
m
b =C M M M     (5) 

where ( )i M  denotes the elementary rotation matrix along the 

i-th axis. According to the observability analysis [30], the 

mounting angle along the forward direction is unobservable and 

only the mounting angles along the yaw and the pitch directions 

can be estimated. 

Therefore, the parameters involves in the navigation system 

can be modeled as 

 0 =   (6) 

 0 =   (7) 

 0K =   (8) 

 b =l 0   (9) 

 
g

a

=

=

b 0

b 0
  (10) 

The indirect Kalman filter is used to estimate the system error 

states [32]. The attitude error is defined as 

 ( )( )b b n

n n= + C C I    (11) 

where 
n denotes the attitude error angles, and ( )  represents 

the skew-symmetric operation.  

The error format of other states are defined as the estimate 

subtracting the true state, i.e., ˆ = −x x x . Therefore, the 21-

dimension error state is  

 ( ) , , , , , , , ,
T

nT nT T T T bT
g at K        =

 
x v p b b l (12) 

More details about the error state Kalman filter for SINS can 

be readily found in textbooks, e.g., [32]. 

 

III. ODOMETER PULSE ERRORS AND MEASUREMENT MODELS 

In this section, three types of measurement models are 

presented by means of different odometer pulse usage. 

Comparing with traditional forward velocity and distance 

increment measurements, the current models are directly based 

on the output of the odometer, i.e., the number of pulses. 

Specifically, we propose a new pulse accumulation model, in 

which the system state is augmented with the accumulated 

pulses. Similar to the traditional state-of-the-art distance 

increment model, the pulse increment model is then derived. At 

last, we report the details of the pulse-derived velocity 

measurement model, which have not been given in our previous 

work [30].  

We start this section by analyzing the error characteristics of 
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the accumulated pulses and the incremental pulses. The 

odometer is in nature an encoder that counts the number of 

pulses generated by the movement of the vehicle [34]. The 

odometer encoder of the land vehicle usually comprises of a 

detector and a number of pulse-generating physical nodes (e.g., 

magnetic material nodes) uniformly fixed on the rotating wheel 

hub. When the vehicle wheel rotates, the nodes pass in turns by 

the detector and a sequence of pulses are generated. Under 

normal scenarios without tire slips, all odometer pulses should 

be evenly situated across the travelled distance and the gap 

between two pulses is 1/K m, namely, one pulse corresponds to 

a distance increment of 1/K m.  

As illustrated in Fig. 2(a), it is not uncommon that the 

detector misaligns with the pulse-generating nodes at the 

sampling time. However, the encoder can only count the 

number of pulses in integers, therefore, we define the pulse 

round-off error as the distance between the detector’s location 

and the last pulse-generating node. Upon initiation, the round-

off error is denoted by 
0p  (see Fig. 2(a)). Predictably, at each 

sampling time the detector’s location relative to the pulse-

generating nodes depends on the vehicle motions. In other 

words, the odometer pulse round-off error 
kp  is related to the 

vehicle motions.  

Assume Nk accumulated pulses have been detected at the k-

th sampling time 
kt . The accumulated pulse error 

ke  can be 

defined as the accumulated pulse counts subtracting the true 

pulse counts 

 
( )1

1

1

1
0 0

1

k k k

k

k

k

t t t

k k k k
t

t

k k
t

e N s dt N N s dt s dt

e N s dt

−

−

−

−

−

= − = +  − +

= +  −

  


 (13)  

in which kN  is the measured pulse increment in the sampling 

time interval right before kt , and s  denotes the vehicle’s 

forward speed in pulse/s. Especially, if the vehicle moves 

forward with a constant speed, we turn to have identical pulse 

increments 
kN  (depending the detector’s location relative to 

the pulse-generating nodes at both ends of the sample interval). 

As a result, any two consecutive accumulated pulse errors are 

approximately related by a constant kN sT − , where 

1k kT t t −= − . In general, however, the statistical characteristics 

of the accumulated pulse errors are impossible to model without 

the knowledge of the vehicle motion. 

In order to make the problem mathematically tractable, we 

make an assumption below to decouple the odometer pulse 

measurement error with the vehicle motion and then account for 

their connection by using the MMAE approach in next section. 

Assumption 1: The pulse measurement error kp  ( 0k   ), is 

uniformly distributed over [0, 1) with variance 1/12. In addition, 

the pulse measurement error is statistically independent, i.e., 

  0,T
k iE p p i k  =  . 

A. Pulse Accumulation Measurement  

Lemma 1: The accumulated pulse measurement error is 

subject to the uniform distribution, namely, 

( )0 01,ke U p p − . 

Proof: Assume Nk accumulated pulses have been detected at 

the k-th sampling time 
kt . As shown in Fig. 2(b), if the 

sampling time 
kt  approaches the next pulse-generating time 

1kNT
+

 from left, i.e., 
1kk Nt T

+

−→ , the true pulse counts 

corresponding to the travelled distance are 
01kN p+ − . 

Therefore, the accumulated pulse measurement error is 

 0 0( 1 ) 1k k ke N N p p → − + − = −   (14) 

Similarly, as
kk Nt T +→ , the true pulse counts corresponding to 

the travelled distance are 0kN p− . The accumulated pulse 

measurement error becomes 

 0 0( )k k ke N N p p → − − =   (15) 

The probability that the sampling time 
kt  happens between 

two pulse-generating nodes is uniform. Hence, the 

measurement error of the accumulated pulses is

( )0 01,ke U p p − . Besides, the variance is correspondingly 

computed as 

 ( ) ( )
2

0 0var 1 12=1 12ke p p = − −     (16) 

■ 

0p
( )1 0

0

1 2

1

e p

p





 − −

= −

( )1 0

0

1 1e p

p





 − −

=

( )0

0

1

1

k k ke N N p

p





 − + −

= −

( )0

0

1 1k k ke N N p

p





 + − + −

=

(a)

(b)

Pulse-generating nodes

 

0p

( )0

0

1 1k k k k

k

e N N p p

p p

 

 

= − − + + −

= −

kp

Detector's location at the sampling time
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Figure 2. Definitions of round-off error and accumulated pulse measurement 

error on the distance line. (a) Pulse round-off error, defined as the distance 

between the odometer detector’s location and the last pulse-generating node. (b) 

Upper bound and lower bound of accumulated pulse measurement error. 

The time rate of travelled distance (in terms of odometer 

pulse s) is related to the system states as [30] 

 ( )1

T m b n b b

b n ebs K= + e C C v ω l   (17) 

where 
b

ebω  is the angular velocity of the vehicle body frame 

w.r.t. the earth frame. 
1e  is the 3 dimensional unit vector with 

the i-th element being 1. 

In order to use the accumulated pulses as the measurement 

directly, the error of the travelled distance s is augmented to the 

system error state  

 
T

T
a s =

 
x x   (18) 

In the error-state Kalman filter, the kinematics of the pulse 
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error should be derived and added into the dynamical model of 

the integrated navigation system. Specifically, we need to 

consider (17) with error terms, which is given as 

 ( )1

T m b n b b

b n ebs K= + e C C v ω l   (19) 

 K K K= +   (20) 

 ( )m m

b b= − C I α C   (21) 

 b b b= +l l l   (22) 

where the IMU-vehicle misalignment angles is denoted by

 , ,
T

   =α .  

In (19), 
b

ebω  can be further expanded as 

 
b b b n

eb ib n ie= −ω ω C ω   (23) 

 
b b

ib ib g= +ω ω b   (24) 

 ( )( )( )b n b n n n

n ie n ie ie= +  +C ω C I ω ω   (25) 

where 
n

ieω  reflects the influence of the position error. 

 

0 sin 0

0 cos 0

0 0 0

n

n ie

ie ie

L

L   

− 
  

= =
 
  

ω
ω p p

p
  (26) 

in which ie  is the rotational rate of the Earth. 

Substitute (20)-(26) into (19), the kinematics of the pulse 

error is obtained 

 s s s = −   (27) 

The Jacobian matrices are obtained by calculating the partial 

derivative of (27) w.r.t. error states, which are given in 

Appendix A. 

 

Accompanied with the NHC constraint [13], the complete 

measurement model is  

 
( )2

3

s T

m b n b b

nhc b n ebT

s
y

 
   

=     +     
  

e
y C C v ω l

e

  (28) 

The corresponding measurement matrix is then computed as 

 
 1 21 1

s

nhc

 
=  

 

0
H

H
  (29) 

Note that the Jacobian matrices w.r.t. the NHC are similarly 

computed as the method given in Appendix A. The difference 

is that e1 should be replaced with e2 and e3, respectively.  

 

The measurement prediction of accumulated number of pulse 

counts requires the integration of (17) 

 ( ) ( ) ( )
1

1 1

k

k

t
T m b n b b

k k b n eb
t

s s K t t t dt
+

+ = + + e C C v ω l   (30) 

The integral involved can be expanded using (23) 

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

1

k

k

k

k

t
b n b b

n eb
t

t
b n b b b n b

n ib n ie
t

t t t dt

t t t t dt

+

+

+ 

= +  − 





C v ω l

C v ω l C ω l

  (31) 

An accurate calculation of (31) is provided in Appendix B.  

B. Pulse Increment Measurement  

The second type of measurement is the pulse increment in 

time intervals of interest. The dynamical model is the same as 

in Section II. The pulse increment measurement model is 

 

( ) ( ) ( )

1

1

1

1

1

k

k

k

k

N t

t
k

N t
T m b n b b

b n eb
t

k

s s dt

K t t t dt

+

+

=

=

 =

= + 



 e C C v ω l

  (32) 

Note that the pulse increment is related to all states during 

the considered interval, instead of the state at a fixed time. This 

violates the basic assumption of the standard Kalman filter that 

the measurement is simply a function of the current state. 

Along with the NHC measurements, the complete 

measurement model is given as 

 
( )2

3

s T

m b n b b

nhc b n ebT

s
y

 
   

=     +     
  

e
y C C v ω l

e

  (33) 

Here, we need to derive the measurement matrix of the pulse 

increment measurement. Similar to the method used in 

Appendix A, the error format for (32) is  

 

1

1

1

1

|

1

|0 0|

1

k

k

k

k

k

k

N t

k k
t

k

N t

k k N N
t

k

N t

k k N N
t

k

s dt

dt

dt

 





+

+

+

=

=

=

 



 
=  

 







M x

M Φ x

M Φ Φ x

  (34) 

where 
kM  denotes the Jacobian matrix of pulse velocity w.r.t. 

state x at kt . | 1k k −Φ  denotes the state transition matrix from 

1kt −
 to 

kt  that is assumed to be constant during the small time 

interval T. The integration of 
kM  in (34) is denoted as 

kH , and 

its derivation is provided in Appendix C. Therefore, the 

complete measurement matrix for pulse increment 

measurement is 

 
|0 0|

1

N

k k N

ks

nhc

=

  
  

=   
  

H Φ Φ
H

H

  (35) 

If the vehicle is driven mildly, kM  can be regarded as 

constant over the small interval of length T. In addition, if no 

fast turns exist in the interval of length NT, the state transition 

matrices can be further approximated by an identity matrix. In 

this case, (35) can be further approximated as 

 1

N

k

ks

nhc

T
=

 
 =
 
  

M
H

H

  (36) 

Additionally, the measurement prediction of (32) is 

computed following the Appendix B.  

Lemma 2: The pulse increment measurement error 
ki  

satisfies  1 1 12T

k kE i i − = −  and ( )var 1 6ki = . 

Proof: The accumulated pulse measurement error is 
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computed as  

 ( ) ( )1 1 1k k k k k k ki s s s s p p − − −= − − − = −   (37) 

Since ( )0,1kp U , according to Assumption 1 and (16), 

 
  ( )( ) 1 1 1 2

1 12

TT

k k k k k kE i i E p p p p− − − −= − −

= −

   
  (38) 

which means that the increment measurement errors are not 

independent.  

In addition, the variance of the incremental measurement 

error is computed as 

 
( )   ( )( ) 1 1var

1 6

TT

k k k k k k ki E i i E p p p p− −= = − −

=

   
 (39) 

■ 

C. Pulse Velocity Measurement  

The pulse velocity information is usually calculated from the 

pulse increment over the sampling interval by 

 k k

k

N i
s

T

 +
=   (40) 

where 
kN  is the measured incremental pulse counts and 

ki  is 

the corresponding pulse increment measurement error. 

If the wheel slipping and skidding are not considered, the 

pulse increment error satisfies the property given in Lemma 2. 

Unfortunately, even in normal situations (40) will still 

introduce severe noise into the velocity as the sampling interval 

T is quite short. For instance, if ik = 0.5 and T = 0.02s, then the 

velocity error is 25 pulse/s, which is too inaccurate to be used.  

To circumvent this problem, a preliminary Kalman filter is 

adopted to derive the velocity by using the accumulated pulses 

as observations. Specifically, we assume a constant acceleration 

rate of the vehicle forward motion, namely, 

 

0 1 0 0

0 0 1 0

0 0 0 1

ds dt s

ds dt s w

ds dt s

       
       

= +
       
              

  (41) 

 k k ky s e= +   (42) 

where w is the dynamic model error and ke  is the accumulated 

pulse measurement error. Note that the error characteristics of 

the estimated pulse velocity is influenced by the vehicle 

motions that have not been modeled in (41). 

Upon obtaining the pulse velocity information, the complete 

measurement model is constructed as 

  ( ) ( )1 1 m b n b b

b n eb

nhc

s
diag K

 
= +  

 
C C v ω l

y
  (43) 

The corresponding measurement matrix is 

 
k

s
nhc

 
=  

 

M
H

H
  (44) 

where the pulse velocity measurement matrix kM  has been 

developed in (34). 

 

IV. ACCOUNTING FOR VEHICLE MOTION DEPENDENCE BY 

MMAE METHOD  

Considering that the error characteristics of three types of 

measurements are varying with the motion, the multiple model 

method is selected from a wealth of adaptive algorithms to deal 

with this problem. In this work, the standard deviation of the 

odometer measurement error is taken as the modeling 

parameter and the theoretical characteristics of pulse 

measurement errors in Section III are exploited to guide the 

design of the candidate models. 

The rationale behind the MMAE method is the adaptive 

selection of model parameters according to the probability 

density function (pdf) [36]. Assume that the model set includes 

M models and each model is parameterized with 
( )j

p .Initially, 

each model is assigned with equal weight, and then gradually 

updated based on the measurement residual and residual 

covariance. The process of weight updating and normalizing is 

given as 

 

( )( ) ( ) ( )

1

( )

( )

( )

1

|j j j

k k k k

j

j k

k M
j

k

j

w w p

w
w

w

−

−

=

=





y x

  (45) 

in which ←  denotes replacement, and M is the number of 

models. 

And, the pdf of each residual is computed as  

( )
( )

( )
1

( ) ( ) ( ) ( )

1/2
( )

1 1
| exp

2det 2

j j T j j

k k k k k
j

k

p



−
−  

= − 
  

 

x ey S e

S

 

 (46) 

where 
( )j

ke and 
( )j

kS  are respectively the residual and the 

corresponding covariance matrix of the j-th model.  

The state and covariance matrix estimated from the MMAE 

method are computed by 

 

( )( )

( ) ( )

1

( ) ( ) ( ) ( )

1

ˆ ˆ

ˆ ˆ ˆ ˆ

M
j j

k k k

j

M
T

j j j j

k k k k k k k

j

w

w

+ +

=

+ + + + + +

=

=

 = − − +
  





x x

P x x x x P

  (47) 

where 
( )ˆ j

k

+
x  and 

( )j

k

+
P  are the estimated state and covariance 

matrix in terms of the j-th model, respectively. Here, 

superscripts ‘－’ and ‘＋’ denote the predicted and updated 

values, respectively. 

The adapted model parameter is calculated by 

 ( ) ( )

1

ˆ
M

j j

k k

j

w
=

=  pp   (48) 

The MMAE method performs well as long as one model uses 

the correct or nearly correct parameters [37]. As a result, the 

theoretical analysis and empirical knowledge could assist the 

design of the model set for practitioners. 

V. SIMULATION RESULTS 

This section conducts simulations to verify the feasibility and 

effectiveness of proposed methods. The vehicle is equipped 
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with a navigation-grade IMU, which includes a triad of 

gyroscopes (bias 0.005 / h , noise 0.001 / sqrt(h) ) and 

accelerometers (bias 30 g , noise 5 g / sqrt(Hz) ). The 

odometer scale factor is 59.8 p/m. The IMU mounting angles 

are 3 deg in the yaw direction and 2 deg in the pitch direction. 

The lever arm is set to  1,0.5,0.8
Tb =l m. The vehicle goes 

forward with four kinds of moving patterns: constant 

acceleration or deceleration, turns, constant velocity, and 

varying acceleration or deceleration. The simulation time is 

5000 seconds and the IMU update interval T = 0.02s. The 

trajectory is illustrated in Fig. 3(a). It can be seen that five turns 

are conducted and the route is ended with a long straight line. 

Periodic acceleration/deceleration are performed when the 

vehicle drives forward. Fig. 3 (b) shows the 

acceleration/deceleration history in the first two periods, i.e., 

240 seconds. Specifically, in addition to the acceleration and 

deceleration, the vehicle moves forward with constant speeds 

during the intervals 0~10s, 20~80s, and 90~120s of each period. 

Note that a sine function is applied to simulate the varying 

acceleration/deceleration, and the initial pulse round-off error 

0p  is set as zero. 

 
Figure 3: The vehicle trajectory and acceleration history. (a) A trajectory of 

about 76 km with five turns. (b) Acceleration and deceleration profile in the 

first 240 seconds. The subfigure shows the sine-form acceleration/deceleration 

in detail. 

 

We first examine the accumulated pulse error and the pulse 

increment error under different moving patterns. As shown in 

the first row of Fig. 4, the distribution of accumulated pulse 

errors is not strictly uniform in contrast to Lemma 1. When the 

vehicle moves with constant speeds (0~10s, 20~80s, 90~120s), 

two arbitrary consecutive accumulated pulse errors are roughly 

related with a constant. In the middle row of Fig. 4, it can be 

seen that the pulse increment error is neither normally nor 

uniformly distributed. With uniform speeds, the pulse 

increment errors are situated at 0.2−  and 0.8 due to the 

correlation between two consecutive errors as discussed in 

Lemma 1 and Lemma 2. It should be stressed that in the context 

of practical vehicle movement the error characteristics of 

accumulated pulses and incremental pulses will be much more 

complicated than what we have observed in Fig. 4. 

The accuracy of the pulse velocity obtained by the 

preliminary Kalman filter is also examined. The third row of 

Fig. 4 shows that satisfactory accuracy can be achieved other 

than the time when varying acceleration and deceleration are 

experienced. These large errors are caused by the inaccurate 

modeling of pulse in (41), in which the varying acceleration rate 

is not considered. It also indicates that the pulse velocity errors 

are almost surely smaller than 0.5 p/s during the time with 

constant acceleration rates. However, varying acceleration and 

deceleration are common in normal vehicle movement. Large 

pulse velocity errors will be encountered frequently in practice, 

and of course the error characteristics also depend on the 

vehicle motions. In addition, we also notice that the pulse 

velocity error is also influenced by the magnitude of the 

odometer scale factor. The encoder with higher resolution tends 

to generate larger pulse velocity errors during the time with 

changing acceleration and deceleration. This is because the 

magnitude of pulse velocity becomes larger with higher 

odometer resolution, and the estimation error will be 

accordingly enlarged when varying acceleration and 

deceleration are experienced.  

 
Figure 4: Error characteristics of three types of pulse measurements. Top row: 

accumulated pulse errors; middle row: pulse increment errors; bottom row: 

pulse velocity obtained from the Kalman filter. Note that the bottom right figure 

only shows the pulse velocity errors smaller than 2 p/s. 

 

As shown in Fig. 5, the position estimation errors of three 

measurement types are about 0.01% of the travelled distance, 

which are satisfactory for this application and much better than 

the acceptable maximum error ratio 0.1%. In contrast, the pulse 

velocity type slightly outperforms the other two types. However, 

the pulse velocity type significantly relies on the detection of 

large measurement errors, which is fulfilled by setting a 

threshold on the EKF innovation. Subsequently, the standard 

deviation is appropriately enlarged in the Kalman filter. 

According to Fig. 4, the initial standard deviation is set to 0.5 
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and the innovation threshold is set to 1.5. Measurements out of 

the innovation threshold are treated with a larger standard 

deviation of 5. By contrast, the measurement errors of the pulse 

accumulation and pulse increment are relatively smaller and the 

standard deviation is set to 1 for both of them. Note that the 

standard deviation of the measurement in the navigation filter 

should be compatible with the resolution of the odometer. For 

example, the standard deviation should be set as larger values 

while using the odometer with higher resolutions. 

 
Figure 5: Horizontal position estimate errors. 

 

The system parameter estimation results are shown in Fig. 6-

7. As shown in Fig. 6, the results are similar for three 

measurement types; however, the odometer scale factor and 

mounting angles are slightly more accurate using the pulse 

accumulation measurements. The lever arm results in Fig. 7 

reveal that the pulse velocity measurement performs the best 

whereas the pulse increment method is biased in the forward 

lever arm estimate. We found that this was caused by the 

negligence of the correlation in pulse increment measurement 

errors, which can be fixed by using the Stochastic Cloning 

Kalman filter (SCKF) [33]. The position estimation accuracy of 

SCKF is nearly equivalent to EKF, therefore, we still adopted 

it in the current work. The estimated IMU parameters are shown 

in Fig. 8. The results are similar for three measurement types, 

and the accelerometer bias is apparently more observable than 

the gyroscope bias.  

 
Figure 6: Odometer scale factor and mounting angle errors.  

 
Figure 7: Lever arm errors. 

 

 
Figure 8: Gyroscope and accelerometer biases errors. 

 

In order to highlight the effectiveness of MMAE, noises with 

different magnitude of standard deviations are added to the true 

measurements. As the theoretical analysis shows, the ideal 

standard deviation for pulse accumulation and increment errors 

is sqrt(1/12) ≈ 0.3p and sqrt(1/6) ≈ 0.41p. Therefore, the noises 

with standard deviations 0.5p (0~1000s), 2p (1000~3000s), and 

5p (3000~5000s) are added to the accumulated and incremental 

pulse measurements. In contrast, the magnitude of pulse 

velocity errors is larger than the other two types of errors. The 

noises with standard deviations 0.5p/s (0~1000s), 5p/s 

(1000~3000s), and 20p/s (3000~5000s) are added to the pulse 

velocity measurements. Figs. 9-11 show the results after using 

the MMAE method, in which the ideal model sets are applied. 

However, the standard methods use the smallest standard 

deviation with a reasonable assumption that the measurement 

information is reliable. In general, the prior knowledge of the 

measurement errors is hard to access. It can be seen that larger 
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measurement error will deteriorate the estimation performance 

in standard methods, whereas the MMAE technique can 

adaptively select the most appropriate standard deviation (as 

observed in the lower subfigures) and effectively suppress the 

error accumulation.  

 
Figure 9: Pulse accumulation measurements: comparison of standard method 

and MMAE. 

 
Figure 10: Pulse increment measurements: comparison of standard method and 

MMAE. 

 
Figure 11: Pulse velocity measurements: comparison of standard method and 

MMAE. 

VI. FIELD TEST RESULTS 

Land vehicle experiments were conducted to test the long-

time and long-distance performance of proposed methods. The 

vehicle was equipped with a navigation-grade IMU set and an 

odometer with a scale factor about 53 p/m. The bias stability 

and random walk for gyroscopes are normally 0.01 / h  and 

0.002 / sqrt(h) , respectively. For accelerometers, the bias 

stability is 50 g , and the random walk is 10 g / sqrt(Hz) . 

The sampling frequency of IMU is 100Hz and the 2-sample 

algorithm was exploited in the navigation solution. Besides, the 

odometer pulses generated in each T = 0.02s were stored as 

measurements. The pulse accumulation measurements were the 

direct summation of all pulses from the very start. After that, 

the pulse velocity measurements were obtained through the 

preliminary Kalman filter proposed in Section III.  

In order to corroborate the effectiveness of proposed methods, 

we conducted two runs on the same route, as shown in Fig. 12. 

In each experiment, the vehicle was kept still for 200~500 

seconds for the initial alignment.  

The reference data were obtained using the INS/OD/GPS 

integrated navigation. The position accuracy of GPS was about 

2m (1σ) and the accuracy of the reference position was better 

than 0.5m (1σ). As the height error of this system is ready to be 

aided with an atmospheric pressure altimeter [8], a reason that 

the height accuracy is usually not listed for commercialized 

products [35], the system performance is mainly evaluated by 

the horizontal position accuracy. 

 

 
Figure 12: Field tests last about 7 hours with the distance about 490km 

A. Online Calibration and Navigation 

We at first examine the methods proposed in Section III. 

Suppose no prior information about the system parameters is 

available. The odometer scale factor, lever arm, mounting 

angles, and IMU biases were all initialized as zeroes in the 

following navigation algorithms. The Kalman filter update 

interval is 1s for three types of measurements. In order to avoid 

the adverse effect of abnormal measurements caused by 

possible wheel slipping and skidding, we routinely conducted 

the variance relaxation when abnormal innovations were 

detected. More details about using three types of measurements 

are given as follows:  

 

1) Pulse accumulation measurement 

As shown in Lemma 1, the theoretical measurement error of 

accumulated pulse should be uniformly distributed with 

variance 1/12. In simulations, small measurement variance 

could be used. In field tests, larger standard deviations such as 

0.5 or 1 are favored. Moreover, we also found that smaller NHC 

variance was preferred for accumulated pulses, which puts 

more strict constraints on the vehicle’s orientation.  



  

 

10 

2) Pulse increment measurement 

In field tests, the vehicle’s speed was mostly 60~100 km/h 

and more than one thousand incremental pulses were generated 

in 1s. Therefore, the standard deviation of the measurement 

error was set to 2 to account for other systematic errors.  

3) Pulse velocity measurement 

The pulse velocity could be estimated from the accumulated 

pulses by the preliminary Kalman filter and used as the 

measurement. The simulation result indicated that large pulse 

velocity error would be generated once varying acceleration 

and deceleration were experienced. As a remedy for this 

drawback, a threshold was set on the innovation and a larger 

standard deviation was used to cope with these inaccurate 

measurements. It was also conducive to avoid the adverse effect 

of abnormal measurements induced by the slipping and 

skidding.  

Navigation results of three measurement models are shown 

in Figs. 13-18. Fig. 13 gives the estimated biases for gyroscopes 

and accelerometers of three methods in the first run. It indicates 

that the upward biases are more unstable and larger than those 

in other directions. Fig. 14 provides the estimation results of the 

scale factor and two mounting angles. Results are similar for 

three methods in two runs except that the mounting angle θ in 

the first run is more unstable, and two mounting angles were 

slightly different in two runs. In Fig. 15, the lever arm 

estimation results of three methods are inconsistent to each 

other; however, the system performance is not significantly 

affected by this inconsistency. We found that the lever arm can 

be regarded as a kind of ‘error buffer’ to account for the 

unconsidered uncertainties of the measurement errors. This 

observation is a good support for online calibration of the 

involved parameters first advocated by our group [13].  

 
Figure 13: Estimation results of gyroscopes and accelerometers for the first run 

(Results of the second run are similar). 

The position estimation errors are shown in Figs. 16-17. It 

can be seen that pulse velocity measurements yield the best 

accuracy than the other two kinds of measurements do. The 

relative horizontal position errors are mostly lower than 0.2‰ 

of the travelled distance. In contrast, the relative position errors 

of the pulse accumulation and increment measurements are 

approximately 0.2-0.4‰ of the travelled distance. As for the 

orientation estimation accuracy, three methods generate similar 

results in Fig. 18. 

 
Figure 14: Estimation results of odometer scale factor and mounting angles. 

The left column is for the first run, and the right column is for the second run. 

 
Figure 15: Estimation results of the lever arm. The left column is for the first 

run, and the right column is for the second run. 

 
Figure 16: The absolute position estimation errors for three methods. The top is 

for the first run, and the bottom is for the second run. 
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Figure 17: The relative position errors of three methods. The top is for the first 

run, and the bottom is for the second run. 

 
Figure 18: Yaw angle estimation errors of three methods for two runs. 

 

B. Results of MMAE 

The difficulty of using the MMAE resides in designing the 

parameter models. In this work, the standard deviations (stds) 

of three kinds of the odometer measurement errors are 

respectively designed in the MMAE, and the theoretical 

analyses provided in Section II lead to convenient selection of 

possible stds. The interacting multiple model (IMM) estimation 

method [27], [36] was also tested but was inferior to the MMAE 

method for the current problem. It agrees with the 

recommendation in [37] that the MMAE is more stable in 

parameter adaptation, and thus more preferred in the selection 

of suitable error stds. 

 

1) MMAE on pulse accumulation measurement  

According to the error statistics of the pulse accumulation 

measurements, the MMAE models here included stds {0.5, 0.6, 

0.7, 0.8, 0.9, 1}. Position estimation results are compared in 

Figs. 19-20. It can be seen that the improvements of MMAE 

over the standard pulse accumulation method are significant, 

especially for the long-distance stability of position errors. Fig. 

21 gives the adapted stds of MMAE in the two runs.  

 
Figure 19: The position estimation errors by MMAE on the pulse accumulation 

measurement. The top is for the first run, and the bottom is for the second run. 

 
Figure 20: Relative errors by MMAE on the pulse accumulation measurement. 

The top is for the first run, and the bottom is for the second run. 

 
Figure 21: Adapted odometer pulse increment error stds for two runs. 

 

2) MMAE on pulse increment measurement  

The ideal error characteristics of the incremental pulse 

measurement have been given in Lemma 2. However, including 

larger measurement stds for incremental pulses was found to be 

more helpful in the experiments. In our tests, the bank of models 
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was assigned with stds from the set {0.5, 1, 2}. Results of 

MMAE are shown in Figs. 22-23. It can be seen that horizontal 

position errors are obviously ameliorated. As shown in Fig. 24, 

the MMAE method frequently adjusts to select the most 

suitable stds. Most of the time, the optimal std is small, which 

means that the pulse increment measurement error is acceptable.  

 
Figure 22: The position estimation errors by MMAE on the pulse increment 

measurement. The top is for the first run, and the bottom is for the second run. 

 
Figure 23: Relative errors by MMAE on the pulse increment measurement. The 

top is for the first run, and the bottom is for the second run. 

 
Figure 24: Adapted odometer pulse increments error stds for two runs. 

3) MMAE on pulse velocity measurement  

 

Varying acceleration and deceleration are inevitable in 

practical driving. In addressing large measurement errors, the 

aforementioned variance relaxation method is quite ad hoc. In 

contrast, the MMAE approach provides a more delicate 

treatment of this problem. The bank of stds was designed as {1, 

2, 3, 5}, in view of the above observation that high-accuracy 

pulse velocity information could be obtained most of the time. 

Results presented in Figs. 25-26 show the improvement on the 

horizontal position over the original EKF method. Fig. 27 gives 

the adapted stds, which indicates that the pulse velocity 

measurements are accurate in most cases.  

 

 
Figure 25: The position estimation errors by MMAE on the pulse velocity 

measurement. The top is for the first run, and the bottom is for the second run. 

 

 
Figure 26: Relative errors by MMAE on the pulse velocity measurement. The 

top is for the first run, and the bottom is for the second run. 
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Figure 27: Adapted odometer pulse velocity error stds for two runs. 

 

C. Detailed Measures for Performance Evaluation 

In Fig. 28, we also compared the position estimation results 

of three measurements after using the MMAE. It can be seen 

that the long-distance position accuracy of pulse accumulation 

measurement is slightly better than the others. In order to 

further quantitatively assess the performance of the proposed 

methods, three measures are presented here. The results with 

the measures defined below are given in Table II. Note that the 

absolute error is in meter and the relative error is the ratio of the 

position error w.r.t. the travelled distance. 

 
Figure 28: Comparison of position errors after using MMAE. The top is for the 

first run, and the bottom is for the second run. 

 

1) Mean position error (Mean20)  

We observed that the position error often becomes stable after 

20km. The criterion Mean20 is thus defined as the average of 

the positon errors after 20km. The criterion reflects the overall 

performance, and the mean absolute error and the mean relative 

error are both given. 

  

2) Gradient (Gra20)  

A straight line is used to fit the position errors after 20km. The 

criterion Gra20 is defined as the slope of the line. This criterion 

indicates the stability of errors. Specifically, both the absolute 

error and the relative error are computed. The smaller the slope, 

the better the estimation error stability. 

 

3) Maximum (Max20)  

This measure is defined as the maximum position error after 

20km. Note that this measure is only computed with the 

absolute error, since the relative error ratio at 20km is always 

the largest.  
TABLE II 

PERFORMANCE MEASURES OF PROPOSED METHODS 

Test Methods Mean20 (m, ‰) Gra20 (m, ‰) Max20(m) 

1 PA 48.05 0.202 0.156 -1.77e-4 88.67 

2 PA 62.98 0.252 0.230 -6.94e-5 128.7 

1 PI  49.64 0.209 0.151 -1.90e-4 90.69 

2 PI  66.20 0.252 0.264 1.19 e-4 138.7 

1 PV 34.55 0.168 0.112 -4.47e-4 72.58 

2 PV 46.91 0.190 0.201 -8.27e-5 111.4 

1 PA_M 22.03 0.154 -6e-4 -9.25e-4 51.28 

2 PA_M 19.86 0.119 0.019 -5.63e-4 49.84 

1 PI_M 26.48 0.127 0.068 -3.17e-4 59.86 

2 PI_M 26.17 0.118 0.096 -2.12e-4 72.47 

1 PV_M 23.60 0.132 0.053 -5.44e-4 54.57 

2 PV_M 26.59 0.132 0.088 -3.75e-4 69.23 

PA: Pulse accumulation. PI: Pulse increment. PV: Pulse velocity. The suffix 

‘M’ denotes the MMAE-aided versions. For Mean20 and Gra20, the left column 

was computed with absolute errors, and the right column was computed with 

relative errors. 

Here we adopt the absolute mean and the stability to assess 

the algorithms. Among three types of measurements, Table II 

indicates that the performance of the standard pulse velocity 

measurement is about 39% better in mean, and 28% better in 

stability. But aided by MMAE, the pulse accumulation 

measurement slightly outperforms the other two types of 

measurements about 23% in mean, whereas it is more stable by 

over 7 times. This indicates that the contribution of MMAE is 

more significant to the pulse accumulation measurement than 

the other two measurements. 

In summary, the properties of three measurements are finally 

concluded in Table III, which might be conducive to their 

practical applications. The error property is corresponding to 

the theoretical analyses in Section III. Considering more 

computations are required for the MMAE-aided EKF, we 

regard the standard EKF versions as ‘fast’ and name the 

MMAE-aided versions as ‘effective’. Moreover, the pulse 

velocity measurement with standard EKF and the pulse 

accumulation measurement with MMAE-EKF are both denoted 

as ‘recommended’. 

 
TABLE III 

SUMMARY OF THREE MEASUREMENTS 

Methods Error Property Standard EKF MMAE-EKF 

PA Motion-dependent fast 
Effective 

& Recommended 

PI 
Motion-dependent 

& Correlated 
fast Effective 

PV Motion-dependent 
fast 

& Recommended 
Effective 

PA: Pulse accumulation. PI: Pulse increment. PV: Pulse velocity.  

 

VII. CONCLUSION 

In this article, the INS and odometer integrated navigation 

algorithms were investigated, focusing on rigorous error 

analysis of the odometer pulse and the countermeasures. 
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Specifically, three types of measurements were formulated 

based on the pulse accumulation, pulse increment, and pulse-

derived velocity, respectively. In addition, the multiple model 

estimation method was applied to further improve the 

performance by accounting for the motion-dependent 

measurement errors. Field tests were repeated on the same route 

about 490km for two times. The average position errors of three 

types of measurements are all better than 0.25‰ of travelled 

distance. Moreover, results of simulations and field tests show 

that the pulse velocity measurement performs the best in 

standard EKF realizations. After incorporating the MMAE 

approach, the average position errors of three types of 

measurements are all better than 0.15‰ of travelled distance, 

and the pulse accumulation measurement is more privileged in 

the sense of error stability, despite more computation-intensive. 

The delicate manipulation of odometer pulses proposed in this 

paper is hopefully beneficial to other wheeled applications, 

such as the land robotics navigation and the pipeline survey, etc. 

APPENDIX A  

The pulse velocity error in (27) is simplified by only 

considering the error of each state. 
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in which, the mounting matrix is denoted as 

 ( ) ( )3 2
m
b =C M M    (50) 

And, the derivatives of the elementary rotation matrix are given 

as 

 

( ) ( )
2 3

sin 0 cos sin cos 0

= 0 0 0 , = cos sin 0

cos 0 sin 0 0 0

M M

− − −   
   

− −
   
   −   

D D

   

   

 

 

 (51) 

Therefore, the partial derivatives can be computed as follows 

( ) ( )1(1: 3) T m b n b b n
k b n n ienT

s
K

  = = −  +  
 

M e C C v l C ω



 

 (52) 

1(4 : 6) T m b
k b nnT

s
K


= =


M e C C

v




  (53) 

( )1

0 sin 0

(7 : 9) 0 cos 0

0 0 0

T m b b
k b n ieT

L
s

K L

− 
  

= = 
 
  

M e C l C
p





 

 (54) 

( )1(10 :12) T m b
k bT

g

s
K


= = − 


M e C l

b




  (55) 

( )1(16) T m b n b b
k b n I eb

s

K


= = + 


M e C C v ω l




  (56) 

( ) ( )( )
231(17) T b n b b

k n I ebM

s
K


= = + 


M e C v ω lM D 




 

 (57) 

( ) ( )( )
31 2(18) M

T b n b b
k n I eb

s
K


= = + 


M e C v ω lD M





   (58) 

( )1(19 : 21) T m b
k b ebbT

s
K


= = 


M e C ω

l




  (59) 

Finally, the Jacobian matrix of the pulse velocity model w.r.t. 

the error state is  

  ,0
T

p k=F M   (60) 

 

APPENDIX B 

This appendix gives detailed derivation of the velocity 

integration in (31). According to the velocity integration 

method proposed in [38], the terms related to attitude are 

rewritten as 

 ( ) ( ) ( )
( )

( )
( )

( )
( ) ( )= k k

k k

b t n tb tb n n

n n tb t n t
t t tC v C C C v   (61) 

 
( )( ) ( )( ) ( )

( )
( )

( )
( )

( )
( ) ( ) ( )

( )
( )
( )

( )
( )

=

= k k k k

k k k k

b n b b n n b

n ie n ie b

b t n t n t b tb t n tn b

ien t b tb t n t n t b t

t t t 



C ω l C ω C l

C C C ω C C C l
 

 (62) 

And, we have 

 

( )
( ) ( )

( )
( )

2

2

k
k

tb t b

ibb t t

k

k

dt

t t
t t 

= − 

 −
  − + − 
 
 

C I ω

I a b

  (63) 

 ( )
( ) ( )kn t n

k inn t
t t + − C I ω   (64) 

where , a b  are computed with two samples of gyroscopes. 

 

( )2 1

2

1 2

4

3

T

T





 − 
=

 − 
=

θ θ
a

θ θ
b

  (65) 

Substitute (63), (64) into (61), the integration of (61) is 

computed as 

 

( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

1

1 1

1

1

2

3

2

2

2

k
k k

k k
k

k k
k k

k k
k k

k
k

k
k

k
k

k
k

t b t n tb t n

n tb t n tt

t tb t b tn n n

k inn t n tt t

t b tk n

k n tt

t b tk n n

k inn tt

t dt

t dt t t t dt

t t
t t t dt

t t
t t t dt

 

 

+

+ +

+

+

= + − 

 −
 − + − 
 
 

 −
 − + −  
 
 



 





C C C v

C v C ω v

a b C v

a b C ω v

  (66) 
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Suppose the velocity in  1,k kt t +
 changes linearly, i.e.,  

 ( ) ( ) ( ) ( )( )+1

n n n nk

k k k

t t
t t t t

T

−
= + −v v v v   (67) 

The integrations in (66) are further approximated as 

 

( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( ) ( )( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

2

+1

2

+1 1

1 2 1

2

1 2

2

1 2 1

2 6

3 3

3
6

9
60

7 3
20

k
k k

k k
k

k k

k k

k k

k k

k

k

k

k

k

k

t b t n tb t n

n tb t n tt

b t b tn n n n

k k in kn t n t

b t b tn n n

in k kn t n t

b t n

kn t

b t n n

in kn t

b t n n

in kn t

t dt

T T
t t t

T T
t t

T
t

T
t

T
t

+

+

+

 + + 

+  −  

−  +  

−  −   

−  +   

 C C C v

C v v C ω v

C ω v θ C v

θ θ C v

θ θ C ω v

θ θ C ω v

  (68) 

Similarly, the integration of (62) is approximated as 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )( )

( )
( ) ( )

( )

( )( ) ( ) ( )( ) ( )
( )

( )
( )

1

1

3

2

3

2

2

+
2

k
k k k k

k k k k
k

k
k

k
k

k

k

t b t n t n t b tb t n tn b

ien t b tb t n t n t b tt

t b tk

k n tt

n tn n n

k in ie k in b t

k b

k

dt

t t
t t

t t t t

t t
t t dt

 

 

+

+



  −
 = − + −  
    

 + −     − − 

  −
   + − 

  
  





C C C ω C C C l

I a b C

I ω ω I ω C

I a b l

  (69) 

In view of the fact that 
n

ieω  and 
n

inω  are both in the order of 

10-5. Therefore, their multiplication can be omitted, and (69) is 

approximated as 

 

( )
( )

( )
( )

( )
( ) ( ) ( )

( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
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( )
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( ) ( )
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( )
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( ) ( )
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( )
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( ) ( )
( )

1

2
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3
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2
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2

5
6

7 3
40

3
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k
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k
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k

k
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ie ie ibn t b t n t b t

b t n tn b

ien t b t

b t n tn b

ien t b t
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n t

dt

T
T

T

T

T



+



   +  

−  +   

−  +    

−  +  

 C C C ω C C C l

C ω C l C ω C ω l

θ θ C ω C l

θ θ C ω C a l

θ θ C
( )
( )k

k

n tn b

ie b t  ω C b l

  (70) 

The integration of the middle term in (31) is approximated as 

 ( ) ( )
1

1 2

k

k

t
b b b

ib
t

t dt
+

   +   ω l θ θ l   (71) 

Since the integration interval T=0.02s or more smaller, small 

terms are further omitted and the integration of (31) are finally 

approximated as  

 

( ) ( ) ( )

( )
( ) ( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( )

( )
( ) ( ) ( )

( )
( )
( )

1

+1 1 2

1 1 2 1
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2

3
3 6

5
6
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k

k
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t
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ie ien t b t n t b t
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T T
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T
T

+

+

+ 

 + +  +  

−   −  +  

−  −  +   

 C v ω l

C v v θ θ l

θ C v θ θ C v

C ω C l θ θ C ω C l

 

 (72) 

 

APPENDIX C 

The Jacobian matrix 
kM  has been given in (60). Therefore, 

kH  in (35) is derived by integrating the elements of 
kM as 

  

( ) ( )

1

1 1

1

k

k

k k

k k

t

nTt

t t
T m b n b b n

b n n ie
t t

s
M dt

K dt dt

+

+ +


=



 = −  +  
  



 e C C v l C ω




  (73) 

1 1

1

k k

k k

t t
T m b

b nnTt t

s
M dt K dt





+ +
= =

 v
e C C

v
  (74) 

( )

1

1

1

0 sin 0

0 cos 0

0 0 0

k

k

k

k

t

Tt

t
T m b b

b n ie
t

s
M dt

L

K dt L







+

+


=



− 
 

= 
 
  




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p

e C l C

  (75) 

( )
1

1

k

k

t
T m b

bTt
g

s
M dt K T

+ 
= = − 

b
e C l

b




  (76) 

1 1

1

k k

k k

t t
T m b n b b

K b n eb
t t

s
M dt dt

K





+ +
= = + 

 e C C v ω l   (77) 

 

( ) ( )
2

1 1

1 3

k k

k k

t t
T b n b b

n eb
t

M
t

s
M dt K dt

+ +
= = + 

 M C v ω lDe  


  

 (78)
 

 

( ) ( )
3

1 1

1 2

k k

k k

t t
T b n b b

n eb
t

M
t

s
M dt K dt

+ +
= = + 

 D C v ω lMe 



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 (79) 

( )
1

1

k

k

t
T m b

b ebbTt

s
M dt K T





+ 
= = 

l
e C ω

l
  (80) 

New integrations involved in computing the above elements 

are computed as 

( ) ( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( )
( ) ( )( )

1
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1
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2

3

3
6
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k

k

k

k

k

k
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k kn t

b t n
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T
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T
t

T
t
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+
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  (81) 
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( )
( )

( )
( )

( )
( )

( )
( ) ( ) ( )

( )

1 1

1 25 +
6

k k
k k

k k
k k

k k

k k

t t b t n tb tb

n n tb t n tt t

b t b t

n t n t

dt dt

T
T

+ +

=

 −   

 C C C C

C θ θ C

  (82) 

Therefore,  

 
1 3, , , , , , , ,

T

k KM M M M M M M M
 =  v p b l

H 0     (83) 
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