
Approximating Posterior
Cramér–Rao Bounds for
Nonlinear Filtering Problems
Using Gaussian Mixture
Models

SHUO ZHANG

DEFENG CHEN

TUO FU

HUAWEI CAO
School of Information and Electronics, Beijing Institute of Technology
Beijing 100081, China

The posterior Cramér–Rao bound (PCRB) is a fundamental tool
to assess the accuracy limit of the Bayesian estimation problem. In
this article, we propose a novel framework to compute the PCRB for
the general nonlinear filtering problem with additive white Gaussian
noise. It uses the Gaussian mixture model to represent and propagate
the uncertainty contained in the state vector and uses the Gauss–
Hermite quadrature rule to compute mathematical expectations of
vector-valued nonlinear functions of the state variable. The detailed
pseudocodes for both the small and large component covariance cases
are also presented. Three numerical experiments are conducted. All
of the results show that the proposed method has high accuracy and
it is more efficient than the plain Monte Carlo integration approach
in the small component covariance case.
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I. INTRODUCTION

Nonlinear state estimation or filtering is ubiquitous in
engineering fields, such as target tracking, space vehicle
navigation, and robotics. For a nonlinear filtering problem,
its complete solution requires precise knowledge of the state
posterior probability density function (pdf) conditioned on
all of the available measurements, which generally cannot
be described using a finite number of parameters [1], [2]. A
special case is the linear model with additive white Gaussian
noise (AWGN), in which the state posterior pdf is Gaussian.
The optimal solution for this linear case is known as the
Kalman filter. Although finding the optimal nonlinear state
estimator is usually intractable under limited computational
resources, many effective suboptimal filtering algorithms
have been proposed, including the extended Kalman fil-
ter [3], unscented Kalman filter [4], [5], and particle filter
(PF) [6]. All of these algorithms are based on either an
approximation of the filter model or a preassumed special
form of the posterior pdf. A practical concern when using
a suboptimal filter is its accuracy compared with that of
the optimal solution. However, quantitatively assessing the
highest achievable accuracy is a nontrivial problem.

The Cramér–Rao bound (CRB) in the parametric esti-
mation framework finds the lower bound on the minimum
covariance when estimating the fixed-value parameter using
noise-corrupted measurements. It has become a standard
tool to assess the performance of a concrete estimator.
However, the sequential state estimation is situated in the
Bayesian setting, where the variable being estimated is
random and described by a known prior pdf. Therefore, the
CRB cannot be directly applied. The CRB counterpart in the
Bayesian framework is the posterior CRB (PCRB), which
was proposed by Van Trees in [7]. It finds the lower bound on
the minimum mean square error (mse) when estimating the
random parameter. The PCRB can be used for the following.

1) Assessing the effect of approximation for a subopti-
mal filter [8]–[10].

2) Verifying whether the imposed design requirement
is realistic.

3) Selecting the best tracking device in a multisensor
network [11]–[13].

It should be noted that when using PCRB in a highly
nonlinear non-Gaussian context, there is some danger, the
bound is not as tight as desired, especially in low signal-to-
noise scenarios [14].

Due to its great value in both theoretical and practical
aspects, the PCRB has been extensively studied since its
emergence. A breakthrough was achieved in the work of
Tichavský et al. [15], in which the authors presented a
recursive formula for calculating the PCRB. This work sets a
foundation for applying the PCRB to the nonlinear filtering
realm and boosts numerous research works, including some
important modifications. Perceiving Tichavský et al. [15]
implicitly assumes that the detection probability Pd = 1 and
the false alarm probability Pfa = 0, Farina et al. extended
the recursive formula to target tracking applications with
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Pd < 1 and Pfa = 0 by first computing the PCRB con-
ditioned on a specific detection/miss sequence and then
averaging over all possible detection/miss sequences [16].
Hernandez et al. [16] subsequently extended the result to
Pfa �= 0 situations [17]. All of the aforementioned works
are based on a single target scenario. Hue et al. further
generalized the original recursive PCRB to accommodate
multitarget tracking applications [18].

A practical difficulty related to the PCRB is how to effi-
ciently compute it. The recursive formula presented in [15]
and its modifications in [16]–[18] all require mathematical
expectations of some nonlinear functions of the state vector.
Such expectations involve nontrivial high-dimensional inte-
grations of these functions multiplied by the state pdf. These
integrations are conventionally approximated by Monte
Carlo simulations [9], [10], which may consume too much
computation time in real-world applications. Bréhard and
Cadre derived the closed-form PCRB for the bearings-only
tracking problem by introducing the logarithmic polar co-
ordinate system [19]. A main deficiency of that research
is that the authors assumed the target follows a nearly
constant-velocity model in the Cartesian frame, which is not
always adequate for practical applications, such as satellite
tracking. Lei et al. developed an approach for approximating
the PCRB using the online estimated state [20]. A main
assumption in Lei’s paper is that the state and measurement
can be modeled as Gaussian distributed vectors. However,
such an assumption may be inappropriate when the system
is highly nonlinear or the state pdf becomes multimodal.
More recently, Tulsyan et al. proposed a sequential Monte
Carlo (SMC) based method to approximate the PCRB [21].
The authors first computed the expectations with respect
to the measurement-conditioned state pdf by using the
SMC approach and then with respect to the measurement
pdf by the standard Monte Carlo method. This method
is suitable for general nonlinear, non-Gaussian filtering
problems. However, it still requires Monte Carlo simula-
tion to generate multiple groups of measurements, which
could be computationally inefficient. To our knowledge,
a non-Monte Carlo based, general-purpose framework to
accurately compute the PCRB remains unresolved.

In this article, a novel Gaussian mixture model (GMM)
based approach to accurately compute the PCRB for general
nonlinear filtering problems with the AWGN is proposed.
This method uses the GMM to represent and propagate
the uncertainty contained in the state vector and uses the
Gauss–Hermite quadrature rule to compute the mathemati-
cal expectation of a vector-valued nonlinear function of the
state variable. The main contributions are as follows.

1) Integrated frameworks with detailed pseudocodes
for both the small and large component covariance
cases are presented. Because the only model as-
sumption is the AWGN, the proposed framework is
suitable for any nonlinear system or measurement
equation. Furthermore, this framework does not rely
on the stochastic sampling technique, so its computa-
tional efficiency is superior to the plain Monte Carlo

integration for computing the PCRB, especially in
the small component covariance case.

2) When the system is highly nonlinear or the process
noise is too large, covariances of the GMM compo-
nents can be unduly enlarged in the uncertainty prop-
agation process, resulting in degradation of accuracy.
This is referred to as the covariance expansion. We
propose a refine-coarsen step for propagating the
state uncertainty, which successfully eliminates the
covariance expansion phenomenon and overcomes
the exponentially growing memory problem.

3) Numerical simulations, including a physically based
satellite tracking problem, are performed. All of the
results show that the accuracy of the proposed frame-
work is high. In particular, from the satellite tracking
simulation, we find that including the high-accuracy
radial velocity measurement can effectively improve
the orbit accuracy. Thus, a radar system working in
coherent integration mode can not only improve its
detection ability for small targets but also generate
high-accuracy radial velocity measurements to better
reduce the target uncertainty. This is meaningful for
space situational awareness.

The rest of this article is organized as follows. Section II
presents a concise review on the definition of the PCRB.
Section III introduces the GMM, including the split of a
general Gaussian pdf and the uncertainty mapping under a
nonlinear transform. Section IV shows the detailed algo-
rithms for computing PCRBs in both the small and large
component covariance cases. Section V demonstrates the
simulation results for three numerical examples. Finally,
Section VI concludes this article.

II. REVIEW OF PCRBS

Let xn be an L-dimensional state vector at time n that
evolves according to

xn+1 = fn (xn) + wn (1)

where fn(·) is a general nonlinear function, and wn is the
zero-mean white Gaussian process noise with a nonsingular
covariance matrix of Qn. The measurement zn+1 is linked
to the state vector xn+1 by

zn+1 = hn+1

(
xn+1

) + vn+1 (2)

where hn+1(·) is also a general nonlinear function, and vn+1

is the zero-mean white Gaussian measurement noise with a
nonsingular covariance matrix of Rn+1. The initial state x0

is available as the a priori information, and x0, wn, and vn

are mutually independent.
The PCRB states that the mse matrix Mn for any unbi-

ased estimation of xn must satisfy

Mn − J−1
n ≥ 0 (3)

where Jn is the Fisher information matrix (FIM). The sym-
bol “≥” means that Mn − J−1

n is always positive semidef-
inite. Tichavský et al. [15] proved that the FIM Jn can be
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expressed recursively as

Jn+1 = D22
n − D21

n

(
Jn + D11

n

)−1
D12

n (4)

where

D11
n = E

{
∂fT

n (xn)

∂xn
Q−1

n

∂fn (xn)

∂xT
n

}
(5)

D12
n = − E

{
∂fT

n (xn)

∂xn

}
Q−1

n (6)

D21
n = − Q−1

n E
{

∂fn (xn)

∂xT
n

}
= [

D12
n

]T
(7)

D22
n = Q−1

n + E

{
∂hT

n+1

(
xn+1

)
∂xn+1

R−1
n+1

∂hn+1

(
xn+1

)
∂xT

n+1

}
. (8)

The initial FIM J0 will be �−1
0 if the initial state x0 is

distributed as N (μ0, �0).
It is noted that the PCRB derived in [15] is for more

general scenarios, and this article only presents a special
case with AWGN. A prominent feature of the PCRB is
that it is determined only by the initial state distribution
and the system and measurement models. Therefore, the
PCRB can be computed completely offline, before any real
measurement datum is received. However, there are three
main difficulties that prevent the efficient computation of
PCRBs for general nonlinear filtering problems, which are
as follows.

1) The state transition function fn(·) may not have an
explicit expression, especially in situations where
the evolution of the state is described by a group
of ordinary differential equations.

2) The state pdf p(xn) evolves according to the
Chapman–Kolmogorov equation, which generally
does not have an analytic solution.

3) Even if fn(·) and p(xn) can be expressed analytically,
the high-dimensional integrations involved in (5)–
(8) when acquiring the expectations also have no
simple expressions in general.

For the aforementioned reasons, the PCRB is usually
obtained via Monte Carlo integrations, which could be
computationally heavy. The lack of an efficient yet high-
accuracy algorithm for evaluating the PCRB still remains
unresolved.

A careful look at (5)–(8) reveals that the only random
vector (RV) in evaluating D11

n , D12
n , and D21

n is xn, whereas
that in evaluating D22

n is xn+1. Therefore, if we can find a
more effective method to represent p(xn) and p(xn+1) re-
cursively, we can develop a more computationally efficient
algorithm to obtain the PCRB.

III. INTRODUCTION TO GMMS

A. Gaussian Mixture Refinement

The GMM is a powerful tool to approximate any true pdf
of an RV by a group of weighted Gaussian pdfs. Suppose
that x is a general RV with a pdf of p(x). p(x) can then be

approximately represented as

p (x) ≈
α∑

i=1

wiN
(
x;μi, �i

)
(9)

where α is the component number, and wi, μi, and �i are the
weight, mean, and covariance of the ith Gaussian compo-
nent, respectively. In the rest of this article, the notation N (·)
with three parameters represents the pdf, whereas N (·) with
two parameters refers to the distribution itself. To retain a
valid pdf, wi must satisfy the following constraints:

0 ≤ wi ≤ 1, i = 1, 2, . . . , α (10)
α∑

i=1

wi = 1. (11)

It has been proved that the GMM can converge to the true
pdf uniformly when the component covariance tends to zero
and the component number tends to infinity [22]. Due to its
high accuracy and mathematical simplicity, the GMM has
been widely used in the fields of uncertainty propagation,
nonlinear filtering, etc.

In the context of nonlinear filtering, once the state pdf is
approximated by a GMM, there may be a requirement for
increasing the number of components of the GMM while
decreasing the component covariances, which is referred
to as the GMM refinement. This can be done by refining
each Gaussian component separately. The foundation of
refining a general Gaussian pdf N (x;μ, �) into a GMM
is the refinement of the standard univariate normal pdf
N (x; 0, 1)

N (x; 0, 1) ≈
M∑

i=1

wiN
(
x;μi, σ

2
i

)
. (12)

Such a GMM is also referred to as the 1-D splitting library.
It can be computed and stored in advance. The parameters to
be determined are the component number M and the triplet
(wi, μi, σi ) for each component. The solution for these
parameters usually comes down to a complex nonlinear
optimization process with the following objective function:

E =
∫ +∞

−∞

[
N (x; 0, 1) −

M∑
i=1

wiN
(
x;μi, σ

2
i

)]2

dx (13)

where E is the L2 distance between N (x; 0, 1) and the
splitting library.

To reduce the complexity, Horwood et al. proposed two
suboptimal solutions to the aforementioned problem [23],
[24]. One is based on the Gauss–Hermite quadrature rule,
in which wi is set to the ith quadrature weight and μi = kεi,
where εi is the ith quadrature node and k is a dispersion
parameter; σ 2

i = σ 2 = 1 − k2. One salient feature of such
a splitting library is that its higher order moments are
matched with N (x; 0, 1). However, the library places too
many components at the tail of N (x; 0, 1), especially when
the component number M is large. The second suboptimal
solution is to set M, μi, and σi according to

σi = σ < 1 (14)
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μi = −m + σ (i − 1) (15)

M = �1 + 2m/σ � (16)

where m = 6 if σ < 1/2 , else m = 4; �·� is the ceiling
function. Only the weights then must be optimized. Under
these extra constraints, the optimization of (13) reduces to
a quadratic optimization problem, which is much simpler
to solve.

For the multivariate standard Gaussian pdf N (x; 0, I),
the splitting library must be applied along a specific dimen-
sion. Assuming the dth dimension is to be split, we have

N (x; 0, I) ≈
M∑

i=1

wiN
(
x;μd

i , �d
i

)
(17)

where

μd
i = [

0, . . . , 0d−1, μi, 0d+1, . . . , 0
]T

(18)

�d
i = diag

{
1, . . . , 1d−1, σ

2, 1d+1, . . . , 1
}
. (19)

In (19), diag{·} denotes a diagonal matrix.
For a general multivariate Gaussian pdf N (x;μ, �),

the affine transform x = Ly + μ maps N (x;μ, �) into
N (x; 0, I), where � = LLT . Therefore, the unidirectional
GMM for N (x;μ, �) is

N (x;μ, �) ≈
M∑

i=1

wiN
(
x;μ + Lμd

i , L�d
i LT

)
. (20)

Note that in (20), each component is a Gaussian pdf, so it
can be furthered refined by splitting. By repeatedly applying
the splitting library, we finally obtain the multidirectional
GMM for a general Gaussian pdf.

B. Uncertainty Mapping

In the rest of the article, let p(·) denotes a pdf. Assume
y = g(x) is a nonlinear function of x. The problem of finding
p(y) from the known p(x) is referred to as the uncertainty
mapping, which is nontrivial to be rigorously solved. In the
context of nonlinear filtering, finding p(xn+1) from p(xn)
recursively is also known as the uncertainty propagation
problem.

If p(x) has been represented as a GMM, then p(y) can
also be approximated by a GMM. There are two widely used
approaches to perform the uncertainty mapping between
the two GMMs: the linearization method and the unscented
transform (UT). Suppose that p(x) is approximated by

p (x) ≈
α∑

i=1

wx
i N

(
x;μx

i , �x
i

)
(21)

p(y) then can be approximated as

p (y) ≈
β∑

i=1

w
y
i N

(
y;μ

y
i , �

y
i

)
. (22)

For the sake of simplicity, the component number and
weights are assumed to stay unchanged before and after
mapping, although there are studies concerning updating

the weights to improve the accuracy [25]. Therefore

β = α (23)

w
y
i = wx

i . (24)

For the linearization method, the mapped mean and covari-
ance are

μ
y
i = g

(
μx

i

)
(25)

�
y
i = G̃(μx

i )�x
i G̃T (μx

i ) (26)

where G̃ = ∂g(x)/∂xT supposing the first-order partial
derivative of g(x) exists. Although the linearization method
is efficient, it could become inaccurate when g(x) is highly
nonlinear. Furthermore, the need for the first-order partial
derivative can also become a restriction when g(x) is nondif-
ferentiable at some points. To overcome the deficiencies of
linearization, UT is proposed [4], [5]. It uses a set of deter-
ministically chosen, weighted sigma points to approximate
the mean and covariance for each component in (22).

Here, we use the scaled UT (SUT) to map the uncer-
tainty, which is a variant of the original UT approach [26],
[27]. For the ith component in (21), we first generate the
sigma points and weights based on N (x;μx

i , �x
i ) as follows:

ξ0 = μx
i , W m

0 = λ

L + λ
, W c

0 = λ

L + λ
+ (

1 − ε2 + β
)

(27)

ξl = μx
i +

(√
(L + λ) �x

i

)
l
, W m

l = W c
l = 1

2 (L + λ)

l = 1, 2, . . . , L (28)

ξl+L = μx
i −

(√
(L + λ) �x

i

)
l
, W m

l+L = W c
l+L = 1

2 (L + λ)

l = 1, 2, . . . , L (29)

where {ξl}2 L
l=0 is the sigma point set, (·)l denote the lth

column of a matrix; {W m
l }2 L

l=0 and {W c
l }2 L

l=0 are the weights
for computing the mean and covariance, respectively; L
is the dimension of the state; λ = ε2(L + κ ) − L. There
are three free parameters in this sigma-point set, namely,
ε, β, and κ . The parameter ε controls the dispersion of
the sigma-point set, its value should satisfy 0 ≤ ε ≤ 1. For
Gaussian distributions, β = 2 is optimal; to make sure that
the weights are all positive numbers, κ should satisfy κ ≥ 0
[28]. The mean and covariance of the ith component in (22)
are then calculated as follows:

ηl = g
(
ξl

)
(30)

μ
y
i =

2 L∑
l=0

W m
l ηl (31)

�
y
i =

2 L∑
l=0

W c
l

(
ηl − μ

y
i

) (
ηl − μ

y
i

)T
. (32)

The SUT approach has better accuracy than the linearization
method and is suitable for situations where g(x) does not
have explicit expressions or is nondifferentiable.
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The basic idea behind the GMM uncertainty mapping
is that if the covariance of a Gaussian vector is small, the
nonlinear mapping relationship can be well approximated
by a first-order Taylor expansion around the mean of this
Gaussian vector. Therefore, each Gaussian component in
(21) is mapped into another Gaussian component in (22)
while the whole pdf p(y) can deviate from the shape of
p(x) dramatically.

C. Expectation of a Nonlinear Function

Now, consider the mathematical expectation of y =
g(x); namely

E (y) =
∫

g (x) p (x) dx. (33)

Such a high-dimensional integration usually does not have
an analytic result, and the unknown of the precise expression
for p(x) intensifies this difficulty. However, if we replace
p(x) with (9), then (33) reduces to

E (y) ≈
α∑

i=1

wi

∫
g (x) N

(
x;μi, �i

)
dx. (34)

The core of (34) is the integration of the product of a general
function and a Gaussian pdf, which has an efficient numer-
ical algorithm: the Gauss–Hermite quadrature rule [29].

Let us first consider the 1-D case. Based on the Gauss–
Hermite quadrature rule, the following equation can be
established: ∫ +∞

−∞
g(x)e−x2

dx ≈
nq∑

i=1

	ig (εi ) (35)

where {	i}nq

i=1 and {εi}nq

i=1 are the quadrature weights and the
zeros of the nth degree Hermite polynomial, respectively.
By normalizing {	i}nq

i=1 and {εi}nq

i=1 as

ωi = 1√
π

	i, zi =
√

2εi, i = 1, 2, . . . , nq (36)

the integration
∫ +∞
−∞ g(x)N (x; 0, 1)dx can be expressed as

∫ +∞

−∞
g(x)N (x; 0, 1) dx ≈

nq∑
i=1

ωig (zi ). (37)

In the L-dimensional multivariate function case, the 1-D
quadrature weights {ωi}nq

i=1 and points {zi}nq

i=1 are generated

first, then the high-dimensional quadrature points {zi}nL
q

i=1 are
constructed from the tensor product of 1-D points, and the

high-dimensional quadrature weights {ωi}nL
q

i=1 are obtained
by multiplying the corresponding 1-D weights together. For
the ith integration in (34), supposing �i can be decomposed
as �i = LiLT

i , the affine transform x = Liz + μi then maps
N (μi, �i ) to N (0, I). Now, the higher order Gauss–Hermite
quadrature rule can be written as [30]

∫
g (x) N

(
x;μi, �i

)
dx ≈

nL
q∑

j=1

ω jg
(
Liz j + μi

)
. (38)

It is noted that the total quadrature point number is nL
q ,

which grows rapidly as nq increases, especially when the
dimensionality L is large. Thus, there is the curse of dimen-
sionality. To overcome this problem, a sparse grid quadra-
ture rule, such as the Smolyak grid with mq quadrature
points, can be adopted to compute (38), where mq << nL

q
[31]–[33].

IV. GMM-BASED PCRB APPROXIMATION ALGO-
RITHMS

Based on the aforementioned foundation, we can now
develop a GMM-based framework to effectively compute
the PCRB for a general nonlinear filtering problem. In
summary, we use the GMM to propagate the state uncer-
tainty and the Gauss–Hermite quadrature rule to compute
the high-dimensional integrations.

Suppose that at time n, the FIM Jn is known, and the state
pdf p(xn) is well approximated by the following GMM:

p (xn) ≈
αn∑

i=1

wx
n,iN

(
xn;μx

n,i, �x
n,i

)
. (39)

We want to obtain the FIM Jn+1 and the propagated pdf
p(xn+1).

A. Small Component Covariance Case

Let us consider first the small component covariance
case, in which the covariance of each Gaussian component
in (39) is sufficiently small. From (5)–(8), we must compute
D11

n , D12
n , D21

n , and D22
n . Note that D11

n , D12
n , and D21

n are
related only to the state at time n, so we address these three
terms first.

For D11
n , substituting (39) into (5) yields

D11
n ≈

αn∑
i=1

wx
n,i

∫ [
∂fT

n (xn)

∂xn
Q−1

n

∂fn (xn)

∂xT
n

]

× N
(
xn;μx

n,i, �x
n,i

)
dxn. (40)

Denote the ith term in the right-hand side of (40) as D11
n,i,

and let �x
n,i = Ln,iLT

n,i; then, by using the (sparse-grid)
Gauss–Hermite quadrature rule with mq points, D11

n,i can
be calculated as

D11
n,i ≈

mq∑
j=1

ω jF̃
T
n

(
Ln,iz j + μx

n,i

)
Q−1

n F̃n
(
Ln,iz j + μx

n,i

)
(41)

where

F̃n
(
Ln,iz j + μx

n,i

) = ∂fn (xn)

∂xT
n

∣∣∣∣
xn=Ln,iz j+μx

n,i

. (42)

Integrating for all components and summing yields

D11
n ≈

αn∑
i=1

wx
n,iD

11
n,i

=
αn∑

i=1

mq∑
j=1

wx
n,iω jF̃T

n

(
Ln,iz j + μx

n,i

)
× Q−1

n F̃n
(
Ln,iz j + μx

n,i

)
. (43)
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Similarly, D12
n can be computed as

D12
n,i ≈

⎡
⎣ mq∑

j=1

ω jF̃T
n

(
Ln,iz j + μx

n,i

)⎤⎦ Q−1
n (44)

D12
n ≈

αn∑
i=1

wx
n,iD

12
n,i. (45)

From (6), D21
n is simply the transpose of D12

n .
Next, we must address D22

n . A careful look at (8) reveals
that only the second term of D22

n must be computed. Denote
the second term of D22

n as D̂22
n , which is related only to

the state xn+1. Thus, the uncertainty propagation is required
before calculating D̂22

n . Suppose that the propagated GMM
for p(xn+1) is

p
(
xn+1

) ≈
αn+1∑
i=1

wx
n+1,iN

(
xn+1;μx

n+1,i, �x
n+1,i

)
. (46)

If the covariance matrices of all components in (39) are
sufficiently small, the component number and weights can
remain unchanged before and after the propagation [25];
namely

αn+1 = αn (47)

wx
n+1,i = wx

n,i. (48)

For each Gaussian component in (39), its propagated ver-
sion is assumed to be a new Gaussian component in (46).
Strictly speaking, the Gaussian-to-Gaussian mapping is
only valid for linear systems. For a nonlinear system repre-
sented by (1), this mapping is an approximation. However,
if the component covariance is sufficiently small, the sys-
tem can be well represented by a linear model around the
corresponding component mean and such an approxima-
tion becomes reasonable. Therefore, before the uncertainty
propagation step, it is necessary to verify whether (39) has
the property of small component covariance.

For the ith Gaussian term in (39), let the nonlinearity
metric �n,i corresponding to N (μx

n,i, �x
n,i ) be defined as

follows:

�n,i = sup
û

∥∥F̃n
(
μx

n,i + 3σûû
) − F̃n

(
μx

n,i

)∥∥
2∥∥F̃n

(
μx

n,i

)∥∥
2

(49)

where 3σûû denote a point which is along the direction
of û and located at the 3-σ error ellipsoid determined by
�x

n,i. Note that the nonlinearity metric should be evaluated
along several different directions and the maximum value
is selected.

For the whole GMM, the nonlinearity metric is defined
as the weighted sum of its component nonlinearity metrics,
namely

�n =
αn∑

i=1

wx
n,i�n,i. (50)

A small nonlinearity metric means the nonlinearity of the
system has little impact on the Gaussian-to-Gaussian map-
ping of components involved in the uncertainty propagation

process, and the propagated GMM will be a close approx-
imation of the state pdf at time n + 1 supposing (39) is a
good approximation of p(xn).

In practice, the nonlinearity metric should be compared
with a problem-related threshold. If the metric is less than
the threshold, the current iteration is classified into the small
component covariance case. Otherwise, it should be treated
as the large component covariance case.

In the small component covariance case, the Gaussian-
to-Gaussian mapping of a component requires propagating
its mean and covariance only. If the linear propagator is
adopted, then

μx
n+1,i = fn

(
μx

n,i

)
(51)

�x
n+1,i = F̃n(μx

n,i )�
x
n,iF̃

T
n (μx

n,i ) + Qn. (52)

Although the linear propagator is simple, however, it may
produce inaccurate or even ill-conditioned solutions if
the system is highly nonlinear or the propagation time
is too long [34]. When this type of anomaly occurs,
we can use the SUT approach to replace the lineariza-
tion method. For the SUT propagator, the weights and
sigma points {W m

l ,W c
l , ξn,l}2 L

l=0 are first generated based on
N (xn;μx

n,i, �x
n,i ), then

ηn+1,l = fn
(
ξn,l

)
(53)

μx
n+1,i =

2 L∑
l=0

W m
l ηn+1,l (54)

�x
n+1,i =

2 L∑
l=0

W c
l

(
ηn+1,l − μx

n+1,i

) (
ηn+1,l − μx

n+1,i

)T + Qn.

(55)

After the uncertainty propagation, D22
n now can be computed

as follows:

D̂22
n,i = E

{
∂hT

n+1

(
xn+1

)
∂xn+1

R−1
n+1

∂hn+1

(
xn+1

)
∂xT

n+1

}

≈
mq∑
j=1

ω jH̃
T
n+1

(
Ln+1,iz j + μx

n+1,i

)
× R−1

n+1H̃n+1

(
Ln+1,iz j + μx

n+1,i

)
(56)

D22
n ≈ Q−1

n +
αn+1∑
i=1

wx
n+1,iD̂

22
n,i (57)

where

�x
n+1,i = Ln+1,iLT

n+1,i (58)

H̃n+1

(
Ln+1,iz j + μx

n+1,i

) = ∂hn+1

(
xn+1

)
∂xT

n+1

∣∣∣∣∣
xn+1=Ln+1,iz j+μx

n+1,i

.

(59)

Finally, the FIM is obtained via (4). The complete
procedure for one step of the iteration is summarized in
Algorithm 1.
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B. Large Component Covariance Case

The algorithm for the PCRB in the large component
covariance case is almost the same as that in the small
component covariance case, except for the uncertainty prop-
agation step. When propagating the state GMM, either
the nonlinear system equation or the process noise could
enlarge the component covariance, which may cause the
GMM nonlinearity metric to exceed the threshold. This is
referred to as the covariance expansion phenomenon. For
example, in (52), if the determinant of the Jacobian matrix
F̃n(μx

n,i ) is greater than one, the component covariance
�x

n,i will be enlarged after multiplying it by F̃n(μx
n,i ) and

F̃T
n (μx

n,i ), respectively, and the additive term Qn will further
enlarge the propagated covariance.

When the GMM nonlinearity metric exceeds the thresh-
old, the uncertainty propagation strategy used in the small
component covariance case can introduce great error, which
finally leads to dramatic accuracy loss in computing D22

n . To
overcome this, each component in (39) should be refined
according to (20) to reduce its covariance, and the yielding
GMM can be expressed as

p (xn) ≈
α+

n∑
i=1

wx
n,iN

(
xn;μx

n,i, �x
n,i

)
(60)

where α+
n > αn. Furthermore, if the process noise covari-

ance Qn is equal or greater than each component covariance
in (39), it is suggested that the process noise pdf p(wn)
should also be refined as

p (wn) ≈
βn∑
j=1

ww
n, jN

(
wn;μw

n, j, �w
n, j

)
. (61)

For the ith component in (60) and the jth component
in (61), xn ∼ N (xn;μx

n,i, �x
n,i ) and wn ∼ N (wn;μw

n, j, �w
n, j ).

Linearizing (1) at (μx
n,i, μ

w
n, j ) yields

xn+1 ≈ fn
(
μx

n,i

) + F̃n
(
xn − μx

n,i

)
+ μw

n, j + (
wn − μw

n, j

)
. (62)

Therefore, the linear uncertainty propagator should yield
the propagated component mean and covariance as

μx
n+1,i j = fn

(
μx

n,i

) + μw
n, j (63)

�x
n+1,i j = F̃n(μx

n,i )�
x
n,iF̃

T
n (μx

n,i ) + �w
n, j . (64)

The propagated GMM for p(xn+1) now becomes

p
(
xn+1

) ≈
α+

n∑
i=1

βn∑
j=1

wx
n,iw

w
n, jN

(
xn+1;μx

n+1,i j, �x
n+1,i j

)
.

(65)
For the SUT propagator, the weights and sigma

points {W m
l ,W c

l , ξn,l}2 L
l=0 are generated first based on

N (xn;μx
n,i, �x

n,i ), and then the propagated mean and covari-
ance are calculated as

ηn+1,l = fn
(
ξn,l

) + μw
n, j (66)

μx
n+1,i j =

2 L∑
l=0

W m
l ηn+1,l (67)

�x
n+1,i j =

2 L∑
l=0

W c
l

(
ηn+1,l − μx

n+1,i j

) (
ηn+1,l − μx

n+1,i j

)T

+ �w
n, j . (68)

Although the simultaneous refinement for p(xn) and
p(wn) mitigates the covariance expansion, it causes the
Gaussian terms to grow exponentially as time passes, which
is known as the growing memory problem. As a result,
the GMM for the state pdf soon becomes intractable. To
restrict the amount of computation, an additional coarsening
operation is needed. Before starting the computation of
D22

n , the propagated GMM for p(xn+1) is coarsened by
merging the components to a predefined number K . The
choice of K should guarantee that the L2 distance between
the propagated and coarsened GMMs does not exceed a
threshold. The calculation of the L2 distance between two
GMMs can be found in [34].

The K-means clustering algorithm can be used to ef-
fectively coarsen a GMM. A key point in the K-means
algorithm is the selection of a proper distance to measure
the closeness between a pair of data. However, a component
in a GMM is characterized by a triplet (wi, μi, �i ), so
traditional distances, such as the Euclidian distance, cannot
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be used directly for the GMM clustering. Instead, we use the
weighted Mahalanobis distance [35] between two Gaussian
components, which is defined as

d2
i j = wiw j

wi + w j

(
μi − μ j

)T (
�i + � j

)−1 (
μi − μ j

)
. (69)

Another difficulty is how to calculate the cluster center
when a set of Gaussian components is confirmed to belong
to the same cluster. This is essentially asking how to merge
a set of Gaussian components into a single Gaussian term.
A merge scheme that preserves the mean and covariance
has been proposed as

wC =
∑
i∈C

wi (70)

μC = 1

wC

∑
i∈C

wiμi (71)

�C = 1

wC

∑
i∈C

wi
(
�i + μiμ

T
i

) − μCμT
C (72)

where C is the index set in which the components are to
be merged, and wC , μC , and �C are the weight, mean, and
covariance of the cluster center, respectively [35].

The detailed steps for an iteration in the large component
covariance case are demonstrated in Algorithm 2. In the
Appendix, the detailed algorithm for the GMM K-means
clustering is presented.

C. Computational Complexity Analysis

A key performance consideration about the proposed
algorithm is its computational complexity. In this section,
we present the computational complexity analysis for both
the small and large component covariance cases. In each
iteration, since computing D11

n , D12
n , D21

n , D22
n and propagat-

ing the state uncertainty consume most of the time, we need
only to analyze the operations related to those steps.

In the small component covariance case, the matrix D11
n

is first computed. According to (41), if we treat the operation
of multiplying a matrix by a scalar weight as multiplying the
matrix by the corresponding diagonal matrix, then for each
D11

n,i, it requires mq Jacobian matrix evaluations, mq matrix
transposes, 3mq matrix multiplications, and mq − 1 matrix
additions. Thus, computing D11

n needs total αnmq Jacobian
matrix evaluations, αnmq matrix transposes, 3αnmq + αn

matrix multiplications, and αnmq − 1 matrix additions ac-
cording to (43).

Suppose that all variables involved in computing D11
n

are stored, then computing D12
n requires additional αnmq +

2αn matrix multiplications and αnmq − 1 matrix additions
according to (44) and (45). After computing D12

n , only one
matrix transpose is required to yield the term D21

n .
Similarly, according to (56) and (57), the computation

of D22
n requires αn+1mq Jacobian matrix evaluations, αn+1mq

matrix transposes, 3αn+1mq + αn+1 matrix multiplications,
and αn+1mq matrix additions.

Before computing D22
n , the uncertainty propagation is

conducted to yield (46). For the small covariance matrix
case, if the linear propagator is adopted, then under the

condition ofαn+1 = αn, propagating component means only
need αn function evaluations according to (51); propagating
component covariances need αn Jacobian matrix evalua-
tions, αn matrix transposes, 2αn matrix multiplications, and
αn matrix additions according to (52). Otherwise if the SUT
propagator is adopted, it takes αn(2L + 1) function evalua-
tions, αn(2L + 1) matrix multiplications, and 2αnL matrix
additions to propagate all component means according to
(53) and (54). For propagating component covariances, it re-
quires additional 2αn(2L + 1) matrix additions, αn(2L + 1)
matrix transposes, and 2αn(2L + 1) matrix multiplications
according to (55).
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In general, the number of quadrature nodes mq is greater
than 2L + 1. Then, based on the aforementioned analysis,
we can conclude that the computational complexity for the
small component covariance case is O(αnmq ). It is noted that
αnmq is the total number of quadrature points for computing
the high-dimensional integrations of (5)–(8).

When it comes to the large component covariance case,
the only difference lies in the uncertainty propagation step.
Due to the refinement for p(xn) and p(wn), the number of
components in the propagated GMM will be α+

n βn. For the
linear propagator, it takes α+

n function evaluations and α+
n βn

matrix additions to obtain all propagated means according to
(63), and it takes α+

n Jacobian matrix evaluations, α+
n matrix

transposes, 2α+
n matrix multiplications, and α+

n βn matrix
additions to obtain all propagated covariances according
to (64). For the SUT propagator, it takes total α+

n (2L + 1)
function evaluations, α+

n βn(4L + 1) matrix additions, and
α+

n βn(2L + 1) matrix multiplications to propagate all com-
ponent means according to (66) and (67), and it takes
additional 2α+

n βn(2L + 1) matrix additions, α+
n βn(2L + 1)

matrix transposes, and 2α+
n βn(2L + 1) matrix multiplica-

tions to propagate all component covariances according
to (68).

After the uncertainty propagation step, it usually needs
to invoke the K-means algorithm to reduce the GMM to
K components. For typical α+

n βn and K values, this K-
means clustering step can consume the majority of the total
computation time. For the K-means algorithm itself, the
computation of the weighted Mahalanobis distance (69)
determines its computational complexity. In each iteration
of K-means, it computes the distance α+

n βnK times. In the
worst case, it takes Imax iterations before the clustering result
converges, where Imax is the maximum allowed number of
iterations. Therefore, the worst-case computational com-
plexity is O(α+

n βnKImax).
The proposed method is expected to be more efficient

than Monte Carlo for integrating (5)–(8), especially in the
small component covariance case. This is because the GMM
is more effective for approximating the state pdf than Monte
Carlo, which approximates p(xn) as

p (xn) ≈ 1

N

∑
i

δ
(
xn − χn,i

)
(73)

where N is the number of samples, χn,i is the ith realization
of xn. The GMM can retain the pdf value at any point,
whereas the Monte Carlo approach preserves the pdf values
only at discrete points. The computational complexity for
Monte Carlo integration is O(N ), whereas the computa-
tional complexity for the proposed method is O(αnmq) in
the small component covariance case. Due to the effec-
tiveness of GMM in representing the state uncertainty, it
usually has αnmq < N to achieve the same computational
accuracy. In special cases where the terms in (5)–(8) for
mathematical expectations can be approximated well by
polynomials, these expectations can be accurately obtained
from weighted sums of higher order moments of the Gaus-
sian components.

D. Discussion

In the GMM-based PCRB computation algorithms,
there are multiple types of approximations. The first ap-
proximation is representing the true state pdf p(xn) as a
GMM. Then, the computation of Di j

n (i = 1, 2; j = 1, 2)
comes down to computing the high-dimensional integration
of the product of a nonlinear function and a general Gaussian
pdf. This integration is approximately solved by the (sparse-
grid) Gauss–Hermite quadrature rule. Before computing
D22

n , an uncertainty propagation step is required to obtain
p(xn+1). This step is done by propagating each Gaussian
component separately. For propagating a Gaussian compo-
nent, either the linearization or the SUT approach is used to
approximate the propagated mean and covariance.

In addition to the aforementioned summary for the
approximation techniques, we have some additional notes
for the proposed algorithms, which are as follows.

1) The term ∂fn(xn)/∂xT
n appearing in (5)–(7) is also

referred to as the state transition matrix. In situations
where the evolution of the state is described by a
group of ordinary differential equations rather than
an explicit form of fn(·), the state transition matrix
can be obtained by numerically integrating the vari-
ational equation. The reference state should be the
corresponding Gauss–Hermite quadrature point.

2) The proposed method can be viewed as a special
implementation of the sigma-point method. We use
deterministically chosen samples of p(xn) to com-
pute the expectations of nonlinear functions of xn.
However, the pdf p(xn) is difficult to sample due to its
unknown expression. Instead, we construct a GMM
as a surrogate model for p(xn) and sample from the
GMM. As a contrast, Monte Carlo based approaches
use stochastically chosen samples of p(xn), as given
by (73).

V. COMPUTATION EXAMPLES

A. Linear System

Consider the following linear system and measurement
models:

xn+1 = Fnxn + wn (74)

zn+1 = Hn+1xn+1 + vn+1 (75)

where Fn and Hn+1 are the system and measurement ma-
trices, respectively. This linear model is a special case of
the general nonlinear model expressed by (1) and (2). The
PCRB for xn can be easily determined.

From (5), we can directly obtain D11
n = FT

n Q−1
n Fn. From

(43), D11
n is computed as

D11
n ≈

αn∑
i=1

mq∑
j=1

wx
n,iω j

(
FT

n Q−1
n Fn

) = FT
n Q−1

n Fn. (76)

This is because both the sums of {wx
n,i}αn

i=1 and {ω j}mq

j=1 equal
to one. Thus, the proposed method has no approximation
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error when computing D11
n in the linear case. The same

conclusion holds for D12
n and D21

n .
For D22

n , we should have D22
n = Q−1

n + HT
n+1R−1

n+1Hn+1.
In the small component covariance case

D22
n ≈ Q−1

n +
αn+1∑
i=1

mq∑
j=1

wx
n+1,iω j

(
HT

n+1R−1
n+1Hn+1

)
= Q−1

n + HT
n+1R−1

n+1Hn+1 (77)

while in the large component covariance case

D22
n ≈ Q−1

n +
αn∑

i=1

βn∑
j=1

mq∑
k=1

wx
n,iw

w
n, jωk

(
HT

n+1R−1
n+1Hn+1

)
= Q−1

n + HT
n+1R−1

n+1Hn+1. (78)

Therefore, our method has no approximation error for
the PCRB in linear cases. It has been proved that in linear
cases, the yielding PCRB according to (4) equals the well-
known Kalman mse matrix [15], so the Kalman filter is said
to be optimal.

B. 1-D Benchmark Problem

Now, consider the following 1-D benchmark problem:

xn+1 = xn

2
+ 25xn

1 + x2
n

+ 8 cos(1.2n) + wn (79)

zn+1 = x2
n+1

20
+ vn+1. (80)

This model has been used already for testing PFs [6] and
the SMC-based PCRB approximation algorithm [21]. First,
the model parameters are set as

x0 ∼ N (0, 1) (81)

σ 2
w = 10, σ 2

v = 1. (82)

In this model, determining the PCRB for estimating xn

is challenging because both the system and measurement
equations are highly nonlinear, and the covariance of the
process noise is large—even larger than the initial state
covariance.

Next, the PCRB is computed by the plain Monte Carlo
integration and the proposed method, respectively, and the
results are compared. For the GMM approach, the com-
ponent number is selected as K = 64 at first. The first
splitting library presented in Section III-A with σ = 1/2
and M = 8 is applied four times for refining p(x0), yielding
84 = 4096 components. The GMM for p(x0) is then merged
to 64 components, and the iteration for computing PCRB
begins. Due to the large process noise, after completing the
computation of D11

n , D12
n , and D21

n in each iteration, the state
pdf is refined by the first splitting library with σ = 1/40
and M = 16, yielding 64 × 16 = 1024 components for the
state. Meanwhile, the process noise pdf is refined by the first
splitting library with σ = 1/2 and M = 8. The linear prop-
agator is used for the uncertainty propagation, and the total
number Gaussian terms after the uncertainty propagation is
1024 × 8 = 8192. The 8192 components are subsequently
merged into 64 components. The numerical integrations

Fig. 1. GMM nonlinearity metrics under small and large component
covariance assumptions.

for computing D11
n , D12

n , D21
n , and D22

n are conducted by
invoking the integral function built in MATLAB. The total
computation time of this 64-component GMM approach is
1400.712 s. However, the profiler indicates that 99.7% of the
computation time is spent on the clustering process. There-
fore, an improved high-efficiency implementation of the K-
means algorithm can greatly reduce the time consumption.
Setting K = 32 and retaining all other configurations leads
to a total computation time of 225.141 s, 99.0% of which is
spent on the clustering.

For the Monte Carlo integration, two experiments with
different sample volumes are conducted. Here, the word
“experiment” denotes computing the integrals of (5)–(8)
using a set of Monte Carlo samples. First, the experiment
with 107 samples is performed to generate a reference PCRB
to validate the accuracy of the proposed algorithm. Then,
the experiment with a reduced sample volume of 1.2 × 104

is conducted. This reduced sample volume Monte Carlo
consumes 4.157 s, which is almost the same as that of the 64-
component GMM approach after excluding the time used
on K-means clustering. The PCRB relative errors of the
reduced sample volume Monte Carlo simulation and the
GMM approach are compared to verify the computational
efficiency of the proposed algorithm.

Fig. 1 depicts the nonlinearity metrics with different
configurations. Since (79) is highly nonlinear, the threshold
for distinguishing the small and large component covariance
cases is set to be 1. The legend “S-Case” denotes the metric
under the assumption of small component covariance case.
Without refinement for the state and process noise pdfs,
the nonlinearity metric frequently exceeds the threshold,
which will lead to dramatic accuracy loss. In contrast, the
legend “L-Case” denotes the metric corresponding to the
aforementioned settings. By refining p(xn) and p(wn) in
each time step, the nonlinearity metric is confined below
the threshold almost everywhere except for a few points.

Fig. 2 shows GMM-approximated state pdfs versus
Monte Carlo histograms at different times. It is clear
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Fig. 2. GMM pdfs versus Monte Carlo samples at various times. (a) n = 1. (b) n = 33. (c) n = 66. (d) n = 99.

Fig. 3. Comparison of GMM and Monte Carlo approximated PCRBs. (a) Full time steps. (b) Segment zoom in.

that the GMM approximation agrees well with the Monte
Carlo samples, and no degradation in accuracy occurs,
although the process noise is quite large. This means
the extra refine-coarsen step for the uncertainty propaga-
tion successfully eliminates the phenomenon of covariance
expansion.

Fig. 3 shows the minimum root-mean-square error
(RMSE) curves computed by both the GMM and Monte
Carlo. Here, we define the state minimum RMSE as
the square root of the PCRB. Fig. 3(a) is a local zoom
of Fig. 3(b). The two subfigures show that the GMM
computed PCRB is consistent with the Monte Carlo
experiment.

Fig. 4 shows the computed PCRB relative errors for
the GMM and reduced-volume Monte Carlo approaches
with respect to the reference PCRB. It is clear that the
GMM method is more accurate. Furthermore, the maximum
PCRB relative error for this 64-component GMM is no more
than 1%, which indicates that the accuracy of the proposed
method is high.

Fig. 5 shows the effect of reducing the number of com-
ponents. A 64-component GMM yields a maximum PCRB
relative error of no more than 1%, whereas this quantity
for the 32-component GMM is no more than 1.5%. This
indicates that the GMM approach is effective in quantifying
the state uncertainty.
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Fig. 4. Comparison of GMM and Monte Carlo PCRB computation
accuracies.

Fig. 5. PCRB computation accuracies for GMMs with different
component numbers.

C. Satellite Tracking

Finally, let us consider a more practical problem. In
space situational awareness, due to the imperfect dynamic
model and the measurement noise introduced by obser-
vation sensors, a satellite must be tracked periodically to
restrict the unlimited growth of the uncertainty contained in
its state. The inter-observation interval is controlled by the
sensor tasker and can be very long between two consecutive
observation arcs, because the observation resources are
always scarce. To save observation time, we want to task
a sensor that can best reduce the state uncertainty. The
PCRB can serve as a basis for sensor tasking, since it can
be computed offline.

The satellite state consists of its position and velocity
vectors, namely, x = [r, v]T . The evolution of the discrete
state xn is described by

xn+1 = φ
(
xn; tn, tn+1

) + wn (83)

where φ(·) is the numerical integration operator. In this
example, we assume that the satellite follows a Keplerian

TABLE I
Radar Geodetic Coordinates

TABLE II
Satellite Reference State

TABLE III
Satellite Reference Orbital Elements

orbit between two consecutive time instants. Thus, xn+1

can be obtained by numerically integrating the following
dynamic equation from tn to tn+1:

r̈ = − μ

r3
r (84)

where μ is the earth’s gravitational constant, and r = ‖r‖.
Furthermore, under the two-body dynamics assumption, the
time-consuming numerical integration can be replaced with
numerical root-finding for the Kepler equation. Although
this model is simple, and it may be inadequate for prac-
tical applications, it is sufficient for testing the proposed
algorithm.

A ground radar system can produce the slant range R, the
azimuth angle A, and the elevation angle E by using a single
pulse. If the radar works in the coherent integration mode,
the high-precision radial velocity Ṙ can also be obtained by
using a pulse train. The radar is assumed to be located in
Shaanxi province, China, and its geodetic coordinates are
shown in Table I.

Table II shows the satellite reference state at t =
−33.320833 h, that is, the time interval between the last orbit
determination epoch and the first observation of the current
arc is approximately 33 h. Table III lists the equivalent
orbital elements.

The reference state contains a zero-mean Gaussian un-
certainty with a covariance of

�0 = diag
{
10−2, 10−2, 10−2, 10−8, 10−8, 10−8

}
(85)

in which the position and velocity are in kilometer
and kilometer per second, respectively. The process and
measurement noise covariance matrices are

Qn = diag
{
10−6, 10−6, 10−6, 10−12, 10−12, 10−12

}
(86)

Rn = diag
{
4 × 10−6, 10−6, 10−6, 10−12

}
(87)

in which the unit for angle is rad.
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Fig. 6. Radar measurements versus time. (a) Radial range. (b) Azimuth angle. (c) Elevation angle. (d) Radial velocity.

Fig. 6 shows the radar measurements for the current
visible arc. These measurements are generated every 5 s.

The PCRB for tracking this satellite is first computed
using only R, A, and E . For the GMM approach, since
Horwood et al. proved that the error in the semimajor
axis drives the mean longitude error to grow quadratically,
we first linearly convert the initial covariance matrix �0

from the Cartesian space to the Keplerian orbit element
space; the second splitting library presented in Section III-A
with σ = 1/4 is then applied along the semimajor axis
dimension, yielding a 49-component GMM. Finally, the
GMM in the orbit element space is converted back to
Cartesian space using linear uncertainty mapping. In each
iteration, a Smolyak sparse-grid Gauss–Hermite quadrature
rule with an accuracy level of two is adopted to compute
the high-dimensional integrations. This rule contains 13
quadrature points. Thus, the total number of sigma points
is 49 × 13 = 637. The overall computation time using the
GMM approach is 34.091 s.

As in the 1-D benchmark problem, two Monte Carlo
experiments with different sample volumes are conducted.
One is the experiment with 105 samples to generate the
reference PCRB for validating the accuracy of the proposed
algorithm, the other is the experiment with 1200 samples
for verifying the computational efficiency. The 1200-sample
Monte Carlo consumes 35.039 s, which is almost the same
as the time consumed by the 49-component GMM.

Fig. 7 presents the uncertainty propagation results in the
radial–in track (R-S) plane using the GMM and Monte Carlo
methods at t = 0, which is the time instant corresponding to
the first observation. From this figure, it is obvious that the
propagated pdf is no longer Gauss-shaped, since the propa-
gation time is long (approximately 33 h). Furthermore, the
propagated GMM shows good consistency with the Monte
Carlo samples.

Fig. 8 demonstrates the nonlinearity metrics with differ-
ent settings. In this example, only the state prior pdf p(x0) is
refined. This means the PCRB for this example is computed
under the assumption of small component covariance. In
this figure, the legend “GMM-01” denotes the nonlinearity
metric corresponding to a single Gaussian pdf, whereas
the legend “GMM-49” denotes the metric corresponding
to the GMM with the aforementioned splitting strategy.
Due to the relative mild nonlinearity of satellite dynamics,
the threshold is assigned with 0.01. From this figure, the
nonlinearity metric for the 49-component GMM is less than
the threshold all the time, which indicates the validity of the
small component covariance assumption. Furthermore, we
note that the nonlinearity metric at t = 0 is much higher than
that at other time instants, this is because the propagation
time corresponding to the first measurement (approximately
33 h) is much longer than that corresponding to other mea-
surements (5 s). For a propagation interval of 5 s, the nonlin-
earity of the satellite motion can be safely ignored, thus we
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Fig. 7. Satellite state uncertainty in the R-S plane. (a) Position uncertainty. (b) Velocity uncertainty.

Fig. 8. GMM nonlinearity metrics for GMMs with different component
numbers.

only need to split the initial state pdf. This is the principle
behind the small component covariance assumption in this
example.

Fig. 9 depicts the position and velocity PCRB and
their relative error curves. Here, we define the position
PCRB (PPCRB) as the square root of the trace of the
PCRB positional submatrix. The velocity PCRB (VPCRB)
is defined similarly. From Fig. 9(a) and (b), we find that
the PCRB obtained by using the GMM approach is very
close to the reference PCRB. Furthermore, from Fig. 9(c)
and (d), the 49-component GMM is more accurate than
the 1200-sample Monte Carlo. Since the computation time
for the two approaches is approximately equal, the GMM
approach is considered to be more efficient. An interesting
phenomenon is that the minimum PPCRB is obtained at
approximately t = 600 s, rather than the end of this visible
arc.

Next, we want to investigate the effect of incorporating
the high-precision radial velocity measurement. The afore-
mentioned configurations are preserved except for adding
the new measurement Ṙ. The average computation time for
the reduced volume Monte Carlo experiment now becomes

33.307 s, whereas the time for the GMM approach becomes
33.977 s.

Fig. 10 shows the PPCRB and VPCRB for estimating
the satellite state using R, A, E , and Ṙ. Compared with
the results without using Ṙ, both the PPCRB and VPCRB
decrease. This clearly indicates that there is additional in-
formation contained in Ṙ. Thus, a radar system working in
coherent integration mode can not only improve its detec-
tion ability for small targets but also generate high-precision
radial velocity measurements to prompt the estimated orbit
accuracy.

VI. CONCLUSION

In this article, we propose a novel framework to compute
the PCRB for the general nonlinear filtering problem with
the AWGN. This approach uses the GMM to effectively
represent and propagate the uncertainty contained in the
state vector and adopts the Gauss–Hermite quadrature rule
to compute the high-dimensional integrations. The over-
all algorithm can be viewed as a deterministic sampling
simulation. Three computation examples are presented: the
linear model, the 1-D benchmark problem, and the satel-
lite tracking problem. The results show that the proposed
method is accurate and more efficient than the plain Monte
Carlo integration, especially in the small component noise
case. This is because the GMM can approximate a pdf more
effectively than a set of Monte Carlo particles.

In the large component covariance case, an extra refine-
coarsen step is inserted into the uncertainty propagation
stage to eliminate the covariance expansion phenomenon
and restrict the exponential growth of computation. In the
current work, the K-means clustering algorithm is used
to coarsen a GMM, which consumes most of the total
computation time. In the future work, a more effective
mixture reduction method can be adopted to replace the
K-Means clustering to accelerate the execution of the algo-
rithm. Furthermore, this research is based on the AWGN
assumption. Although this assumption is widely accepted,
it could become a major restriction in some applications.
Generalizing this framework to nonlinear, non-Gaussian
cases still requires further investigation.
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Fig. 9. Comparison of the GMM and Monte Carlo computed PCRBs using R, A, and E . (a) Position PCRB. (b) Velocity PCRB. (c) Position PCRB
relative error. (d) Velocity PCRB relative error.

Fig. 10. Comparison of the GMM and Monte Carlo computed PCRBs using R, A, E , and Ṙ. (a) Position PCRB. (b) Velocity PCRB. (c) Position
PCRB relative error. (d) Velocity PCRB relative error.
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APPENDIX K-MEANS CLUSTERING ALGORITHM FOR
GMM REDUCTION

The pseudocodes for coarsening a GMM are listed in
Algorithm 3.
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