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Message Passing and Hierarchical Models for

Simultaneous Tracking and Registration
David Cormack, Student Member, IEEE and James R. Hopgood, Member, IEEE

Abstract

Sensor registration is an important problem that must be considered when attempting to perform any kind of

data fusion in multi-modal, multi-sensor target tracking. In this Multiple Target Tracking (MTT) application, any

inaccuracies in the registration can lead to false tracks being created, and tracks of true targets being stopped

prematurely. This article introduces a method for simultaneously tracking multiple targets in a surveillance region and

estimating appropriate sensor registration parameters so that sensor fusion can be performed accurately. The proposed

method is based around particle Belief Propagation (BP), a recent but highly efficient framework for tracking multiple

targets. The proposed method also uses a hierarchical model which allows for multiple processes to be linked and

interact with one another. We present a comprehensive set of simulations and results using differing, asynchronous

sensor setups, and compare with a Random Finite Set (RFS) approach, namely the Sequential Monte Carlo (SMC)-

Probability Hypothesis Density (PHD) filter. The results show the proposed method is 17% more accurate than the

RFS approach on average.

Index Terms

Message passing, belief propagation, PHD filter, multiple target tracking, sensor registration, sensor fusion, radar,

camera

I. INTRODUCTION

A. Problem Outline

It is now more important than ever to maintain ground and airborne surveillance around key locations and assets.

By using a diverse range of sensing modalities to track multiple targets, sensor fusion performance can be increased,

and spatio-temporal uncertainty can be reduced [1]. Consider, for example, the scenario shown in Fig. 1 where

two radars (A and B) observe a common surveillance region from fixed and known locations. Using this sensor

configuration, the cross-range uncertainty in one radar can be reduced by exploiting the down-range uncertainty
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Fig. 1. Uncertainty reduction using two radars, with their field-of-view (FoV) shown in dotted lines facing a common target, at approximately

90◦ to one another. The down-range uncertainty in Radar A can reduce the cross-range uncertainty of Radar B and vice-versa.
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Fig. 2. An overview of the faster track-update-rate available if heterogeneous sensors are used. Between successive radar detections on the

same target, angular data from camera images can be used to update track estimates more frequently. There may be an unknown rotation φb

between the radar and camera frame of reference that will need to be overcome.

in the other and vice-versa. The main advantages of using radar include accurate target detection and localisation,

and its ability to scan large volumes of space in a short period of time [2]. The use of cameras alongside radar

can help improve angular accuracy further, as they often provide more accurate angular measurements at a much

faster update rate, albeit in a reduced scanning area (see Fig. 2). The frames of reference of the two sensors may

not align however; there may be a rotational offset or bias that needs to be overcome before data fusion can occur.

Sensors that are deployed as a part of larger fusion system are not often developed specifically for data fusion; they

are often commercial off-the-shelf (COTS) devices and would normally operate individually. Further development

and implementation is required to allow fusion to be performed between them. COTS sensors are likely to operate

asynchronously, and in their own frame of reference (FoR), making the fusion problem more challenging. This work

focuses on the registration problem with asynchronous sensors, where there may be relative biases or unknown

offsets between each of the individual frames of reference. In our homogeneous scenario in Fig. 3(a), there are

relative registration errors in both range rb and azimuth φb between the two radars. For the heterogeneous setup
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Fig. 3. Examples of the sensor registration problem for simple two-dimensional cases. (a) A homogeneous network containing two radars, with

range bias rb and azimuth bias φb. (b) A heterogeneous network where Radar B has been replaced with a camera that has azimuth registration

bias φb. All of these biases must be estimated and accounted for during the fusion process.

in Fig. 3(b), there is a relative angular error φb between the radar and the camera. At times, it may be impossible

to register the full system correctly to a global FoR (eg. WGS84, J2000) where GPS and other navigation systems

may be denied.

B. Proposed Method and Contributions

This work presents a hierarchical Bayesian method for simultaneously estimating the states of multiple targets

along with the appropriate registration parameters. This hierarchical model has been applied to a number of problems

previously, such as Simultaneous Localisation and Mapping (SLAM) [3], sensor drift estimation [4], and also to false

alarm rate estimation [5]. The main advantage of using this type of approach is the plug-and-play architecture that

the hierarchical model provides. Any Multiple Target Tracking (MTT) algorithm could, in theory, be implemented

within the hierarchy, as long as a suitable parameter likelihood has been derived to link the two processes together.

Another key advantage of the proposed technique is the capability of registering relative sensor frames correctly,

without alignment or knowledge of a global FoR. Moreover, this work deals with extrinsic parameter estimation,

such as sensor orientation and location, but could be extended or redeveloped to estimate system parameters [6],

[7] such as the probability of target detection for example.

In this article, we consider centralised fusion scenarios where the fusion engine or centre has access to all of the

raw measurements from the sensors. As a result of this, each sensor does not perform its own local tracking routine

before sending information to the centre. All measurements are kept in their polar representation and do not need

to be converted. The sensors that are present are assumed to be COTS sensors which operate asynchronously and

make the registration problem more challenging. This is likely to be the case in practice; sensors are very rarely

synchronised fully.

This work provides a novel extension of Message Passing (MP) MTT algorithms to allow for simultaneous

registration and sensor fusion. The two main novel contributions of this article are:

1) development of a MTT technique based on MP that incorporates sensor calibration in a joint manner, in

contrast to existing techniques which solve tracking and calibration separately by using pseudo-measurements
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[8], [9]; our proposed technique also resolves the data association problem efficiently using MP algorithms

[10];

2) the derivation of a suitable sensor parameter likelihood for the particle Belief Propagation (BP) implementation.

This article also includes a comprehensive set of simulations (Section VI) involving the sensor setups and biases

shown in Fig. 3. Moreover, the simulations shown in this article consider a similar range bias compared to those

simulated in [8], [11], however the azimuth bias simulated here is an order of magnitude larger. A full comparison

with a Probability Hypothesis Density (PHD) approach [12] is also provided.

This article extends our previous journal publication [12] by showing it is possible to combine a vector-type

tracking method [13], with the hierarchical model inspired by the set-type tracking literature. The two conference

articles that we have previously published on this topic [14], [15] contained preliminary results. This article provides

a lot more detail on the theory, results and analysis, and describes the specific implementation details of our

algorithm.

The rest of the article is organised as follows: Section II contains a literature review of existing techniques for

resolving sensor registration; Section III defines the registration and fusion problems and provides an overview of

the algorithms that are used. Section IV introduces the necessary parameter likelihood functions that are used to

estimate the registration parameters, with appropriate performance metrics provided in Section V. Simulations and

results are shown in Section VI and conclusions are drawn in Section VII.

II. BACKGROUND AND MOTIVATION

A. State-of-the-Art in Sensor Registration

Target tracking systems are typically based on dynamical models and sensor observation models, which need

to be carefully tuned to give a suitable output [16]. Ideally, real-world systems should be calibrated accurately

using parameter estimation [17] before being deployed out in the field. If the registration parameters are not

correctly estimated, the projection of sensor measurements into a common FoR will be incorrect. This may make

measurements appear distant from one another, which in turn may make false tracks appear, and prematurely

stop correct tracks. Sensor biases could come from different sources, and manifest themselves in different ways.

Bias sources could include misalignment during installation, harsh weather, or strong platform vibrations e.g. high

winds, aircraft take-off and landing etc. With dynamic platforms such as aircraft, there are no guarantees that the

bias will remain static throughout the scenario, or stay in its pre-calibrated state, hence the need for this type

of online registration algorithm that can continually account for potentially dynamic and time-varying registration

parameters. Having this type of algorithm available would remove the burden from the system operator of having

to continually realign sensors and avoid a loss in tracking accuracy due to incorrect data fusion.

Previous works in the field of radar and camera fusion [18], [19] have shown the benefits of exploiting multiple

sensors to improve accuracy and update rates. However, these articles either omit the registration problem altogether,

or perform the sensor registration before fusion occurs. Performing sensor registration in this way could lead to

further systematic biases in the system. Methods for resolving registration errors have been presented in [8], [9] which

attempt to resolve the errors using pseudomeasurement approaches. Such approaches often reduce the problem down
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Fig. 4. Flowchart of the simultaneous tracking and registration process. Asynchronous measurements are sent to the fusion centre when ready,

and then used in the low-level process for tracking. When measurements are received from the uncalibrated sensor, the parameter likelihood
¯̀i
n = ¯̀

n(qin|zn) is calculated to update the appropriate registration parameter(s) in the high-level process (see Section III-A).

to pairs of sensors, with estimated target states and unknown biases placed into a stacked vector. Other approaches

such as [20], [21] use machine learning algorithms and neural networks to determine appropriate parameters. One

of the main drawbacks to machine learning methods is that they require very large amounts of training data to give

accurate results and, in turn, take a long time to train before testing and deployment is possible [22], [23]. Works

such as [24], [25] focus on the sensor localisation and distributed fusion problems, where all sensors perform their

own individual tracking routines. The filtered distributions are then shared between pairs of sensors to perform

fusion, and to solve the localisation problem. These works also assume that each sensor can perform its own target

tracking accurately, which may not be the case in this article.

B. State-of-the-Art in Multi-Target Tracking (MTT)

The hierarchical model used in this work is shown in Fig. 4, and will be discussed in depth in Section III. This

two-stage model is very flexible and allows for many design choices to be made such as the parameters to be

estimated, models that describe how the sensor registration is expected to evolve, and the MTT algorithm used

in the low-level stage of this plug-and-play architecture. Various types of tracking algorithm could be used in the

low-level process for MTT including vector-type approaches such as Joint Probabilistic Data Association (JPDA)

[26] and Multiple Hypothesis Tracking (MHT) [27], [28], or set-type approaches such as the PHD filter [29], [30],

the Cardinalized Probability Hypothesis Density (CPHD) filter [31] and labelled Random Finite Set (RFS) methods

[32], [33]. This article will use an approach based on BP and MP techniques [13], [34]. These techniques for

MTT have seen a recent revival in the literature and bring a number of advantages, such as scalability to larger

tracking scenarios; the complexity only scales quadratically in the number of targets, and linearly in the number

of measurements per sensor. Fundamental tracking algorithms such as the Kalman filter [35] and the particle filter
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[36] can be seen as instances of the Sum-Product Algorithm (SPA). The SPA is very efficient in computing the

marginal posterior probability density functions (pdfs) [37].

Bayesian tracking methods require the posterior pdfs f (xn,k | z1:n), which are the marginals of the joint posterior

pdf f (xn | z1:n), where xn,k represents a state vector of target k, xn = [xn,1, . . . , xn,K ]T represents a state vector

for all targets at time n, and z1:n represents the sensor measurements from time-step 1 to n. By using the SPA, the

marginal pdfs can be calculated much faster than when using direct marginalisation. This advantage alone makes

the SPA better suited than other traditional MTT algorithms for larger problems involving many sensors and targets.

The MTT problem is made more difficult by the data association (DA) problem; the sensors and filters do

not know which received measurement corresponds to each target. Classic solutions to this problem include the

Hungarian algorithm [38], Auction [39], or MHT algorithms [27], [40]. For this work, we use a more recent

association algorithm called the Sum-Product Algorithm for Data Association (SPADA) [10], which is also based

on MP and the SPA. By making distinct associations between measurements and targets, track histories can be

stored and full target trajectories could be given as an output to system operators.

C. Proposed Method

The problem is broken down into two separate layers as shown in Fig. 4. The high-level process will estimate

the registration parameter(s), and the low-level process will estimate the multiple target states using techniques

such as those described in Section II-B, based on the estimated parameter(s). This article presents a novel approach

to estimating sensor registration parameters using message passing and hierarchical models in both homogeneous

and heterogeneous sensor setups. This method tracks multiple targets in the surveillance region, while estimating

appropriate parameters so that sensor measurements are correctly projected onto a common frame of reference.

The measurements used for performing the parameter estimation will come from the uncalibrated sensor which

will detect the non-cooperative targets in the surveillance region. So, for example, the uncalibrated sensor in Fig. 3

could either be Radar B or the camera, with the calibrated sensor being Radar A.

For tracking targets in the low-level process, the main focus will be on MP algorithms, specifically a SPA-

based reformulation of the Joint Integrated Probabilistic Data Association (JIPDA) filter [34], [41]. This technique

comes into the category of vector-type tracking methods, where target states and measurements are represented as

random vectors [28]. The algorithm will be implemented using particle BP, meaning that each individual target,

belief and message will be represented by a particle distribution. The use of particles allows for non-linear, non-

Gaussian models to be dealt with directly, making this an attractive choice for dealing with radars and cameras.

This implementation will be compared to one containing a Sequential Monte Carlo (SMC)-PHD filter which,

in contrast, is a set-type tracking method where targets and measurements are represented as RFSs. Both of these

MTT algorithms can be directly integrated into the low-level of the hierarchical model using a suitable filter-specific

parameter likelihood [42] which acts as a measure of the accuracy of the high-level process.
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III. PROBLEM DEFINITION

The main challenges associated to this work are highlighted in Fig. 3. All of the biases must be estimated

simultaneously with the multiple target states. First, consider the scenario shown in Fig. 3(a) containing multiple

radars. Here, the range-azimuth measurements from Radar B have been projected into the Radar A FoR, with

potentially time-varying registration errors qn = [rb,n, φb,n]
T . It is only when the measurements are in a common

frame that the registration errors are apparent.1 The same applies to the scenario in Fig. 3(b), where Radar B has

been replaced with a camera to improve the update rate between the sensors. The camera only provides azimuth

measurements, and target range cannot be resolved in this case using a single passive sensor. In this scenario, there

is a relative angular bias qn = φb,n. The following sections will provide more detailed information on the problems

being solved.

A. Sensor Registration

The high-level process will estimate the potentially time-varying sensor registration configuration qn at time n in

each of the scenarios. The densities associated with the high-level process will be denoted with ·̄ for the remainder

of the article. A typical Bayesian recursion is used to propagate the posterior density, p̄n(qn), of the registration

configuration such that in its general form

p̄n|n−1(qn|zn−1) =

∫
S

f̄n|n−1(qn|q′)p̄n−1(q′|zn−1)dq′, (1a)

p̄n(qn|zn) =
¯̀
n(qn|zn)p̄n|n−1(qn|zn−1)∫

S
¯̀
n(q′|zn)p̄n|n−1(q′|zn−1)dq′

. (1b)

where f̄n|n−1(qn|q′) is a first-order Markov process representing the expected change in sensor registration in time,

and ¯̀
n(qn|zn) is the sensor parameter likelihood, discussed in Section IV.

As described earlier, the registration configuration qn will be represented using a particle distribution qin for

1 ≤ i ≤ N , where each i represents a different configuration. Each individual particle is weighted with win and

has a corresponding set of underlying MTT statistics θin that are dependent on the choice of algorithm used in the

low-level process. More on these statistics can be found in [43]. The high-level process is flexible, and allows for

the particle states to be fixed to a preset grid [44], or allowed to move with a resampling process to search the

wider space [45].

1The true target trajectory is located in a world reference frame e.g. WGS84, but for simplicity, it is assumed that the Radar A FoR is perfectly

aligned to this.
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With this particle representation, equations (1) become:

p̄n|n−1(qn|zn−1) =

N∑
i=1

win|n−1 δ(qn − q
i
n), (2a)

p̄n(qn|zn) =

N∑
i=1

win δ(qn − qin), (2b)

win|n−1 =

N∑
j=1

wjn−1 f̄n|n−1(qin|q
j
n−1), (2c)

win =
win|n−1

¯̀i
n∑N

j=1 w
j
n|n−1

¯̀j
n

(2d)

where ¯̀i
n = ¯̀

n(qin|zn) is the sensor parameter likelihood evaluated for particle i. This routine is performed after the

MTT in the low-level process has been completed. After updating the high-level weights win, i = 1, . . . , N , particle

degeneracy is tested for using the effective sample size [36, Eq.(51)]. Degeneracy can occur after a number of time-

steps, where all of the weight will be placed on one particle, and the rest of the particle weights will be negligible.

This implies that much of the computational effort is being used on configurations that are highly unlikely. If the

effective sample size is below a threshold τr, stratified resampling [46] is performed on the particles to increase

their spread in the high-level state space. This choice of stratified resampling over other traditional methods in this

application is justified due to the shape of the updated likelihood: this distribution tends to be very sharp and peaky

around the true value. Small errors in azimuth make the tracking accuracy much worse, and therefore reduces the

parameter likelihood and output likelihood. In resampling, particles with high weights are statistically chosen much

more often and it is possible that the samples could all collapse down to one point in the state space which is

known as particle impoverishment. By using stratified resampling, the variance of the newly-drawn particles should

be kept larger and the problem can be avoided [46].

B. MTT and Fusion

Multiple Target Tracking (MTT) estimates the states of multiple targets using only the measurements from one

or more sensors, even where the number of targets is unknown and time-varying. The target states often contain

information on a target’s position and velocity, but the state could be extended to incorporate more variables if

required. The low-level process in the hierarchy estimates the potentially time-varying multi-target state, ψn ∈ Xmn ,

which is conditional on the sensor configuration qn. This MTT process evolves with a Markov transition function

fn|n−1(ψn|ψn−1) which for this article will be a near-constant velocity (NCV) model [47]. Similar to the high-level

process in Equation (2), a Bayes recursion is used to propagate the joint posterior of the MTT process:

pn|n−1(ψn|qn, zn−1) =

∫
Ψ

fn|n−1(ψn|ψ̃)pn−1(ψ̃|qn, zn−1)dψ̃ (3a)

pn(ψn|qn, zn) =
`n(ψn|qn, zn)pn|n−1(ψn|qn, zn−1)∫

Ψ
`n(ψ̃|qn, zn)pn|n−1(ψ̃|qn, zn−1)dψ̃

(3b)

where `n(ψn|qn, zn) is the multi-measurement/multi-target likelihood, which describes the association likelihood

between measurements and targets.
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Many MTT algorithms give good tracking accuracy, but they can become computationally cumbersome when the

system model becomes larger in terms of the number of sensors and targets. MTT methods with lower complexity

and better scalability can be derived and implemented using BP, also known as MP or the SPA [13]. The SPA gives

a close approximation to Bayesian inference and allows for a suitable trade-off between accuracy and computation

time. The final implementation can be structured in such a way that non-linear dynamical and measurement models

can be overcome, along with an unknown and time-varying number of targets [34].

C. Model Definitions

1) Dynamical Model: The measurement buffer will have access to the raw range-bearing radar measurements

and/or the bearing-only camera measurements that are recorded at a given iteration n and physical time tn. The

MTT routine will be performed using 4−D Cartesian state vectors with elements

xn,k = [xn,k ẋn,k yn,k ẏn,k]
T (4)

where xn,k, yn,k are the x and y positions of target k at time n and ẋn,k, ẏn,k are the x and y velocities of the

target. The collection of xn,k vectors make up the multi-target state ψn = [xn,1, . . . , xn,K ]T . It is assumed that

each and every target follows a NCV model [16], [47], which is a common model used in MTT. Other state-space

motion models can also be used in this framework. The NCV model is given by

xn,k = Fnxn−1,k + wn,k (5)

where Fn is the state transition matrix

Fn =


1 ∆n 0 0

0 1 0 0

0 0 1 ∆n

0 0 0 1

 , ∆n = tn − tn−1, (6)

and wn,k represents zero-mean white Gaussian process noise with covariance

Qn =


u∆3

n/3 u∆2
n/2 0 0

u∆2
n/2 u∆n 0 0

0 0 u∆3
n/3 u∆2

n/2

0 0 u∆2
n/2 u∆n

 (7)

and u is the acceleration noise value in both the x and y directions.

2) Radar Measurement Model: This is defined as

zRn,k = hR(xn,k) + ηRn,k, (8)

with

hR(xn,k) =

rn,k
φn,k

 =

 √
x2
n,k + y2

n,k

tan−1(xn,k, yn,k)

 , (9)
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where rn,k > 0, tan−1(xn,k, yn,k) is the four-quadrant inverse tangent function, and the resulting φn,k lies within

[0, 2π). The additive noise term ηRn,k is defined by

ηRn,k ∼ N (ηRn,k; 0, diag(σ2
rr , σ

2
φr

)) (10)

where σrr and σφr
are the radar’s range and azimuth standard deviations respectively.

3) Camera Measurement Model: This is described by

zCn,k = hC(xn,k) + ηCn,k, (11)

where

hC(xn,k) = φn,k = tan−1(xn,k, yn,k). (12)

The additive noise term ηCn,k is defined by

ηCn,k ∼ N (ηCn,k; 0, σ2
φc

) (13)

where σφc
is the camera azimuth standard deviation.

In each case, the full set of observations at time n is given by zn = [zn,1, . . . , zn,K ]T corresponding to either

the radar or camera, such that at each time-step zn,k ∈ {zCn,k, zRn,k}.

IV. PARAMETER LIKELIHOODS

This section presents a new result by deriving the sensor parameter likelihood, ¯̀
n(qn|zn), used in Eq. (1b), for

the MP based MTT method used in this paper, and summarises the known result for the SMC-PHD filter.

A. Particle-BP Algorithm

In order to use the SPA for marginalisation, it is assumed that the joint posterior f (xn | z1:n) can be seen as a

product of M lower-dimensional factors,

f (xn | z1:n) ∝
M∏
m=1

γm(x(m)). (14)

where each argument x(m) comprises of a set of parameter vectors, xn,k, the set depending on the probabilistic

models. This representation could also be drawn as a factor graph, Markov Random Field (MRF) or a Bayesian

network [37]. In factor graphs, each variable xk is represented with a variable node, and each factor γm(·) is

represented with a factor node. A variable node is connected to a factor node if it is an argument of that factor.

The factors may be complex and may need to be stretched into a larger number of factors in order to reduce the

dimensionality of messages that will be passed amongst the nodes. The reduction in the message dimensions will

result in lower computational complexity and improved scalability. A factor graph representation of the particle

BP algorithm used in this work is shown in Fig. 5, with the following notation that is described in detail in the

paragraphs below: f̃ represents the beliefs from iteration n−1; f represents the prediction step f(yn,k |yn−1,k) (see

Eq. (16)); α is the marginal prediction (see (19)); v is calculated through (22) and (23); β represents the correlation

information used to initialise the association process (nodes a and b, messages ν and ς , and the exclusion enforcing
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Fig. 5. Factor graph for the particle-BP algorithm.

function Ψ); η contains the result of the association step and γ represents the measurement update information.

All messages are only approximations of the true messages because of the use of particle BP [13], [34]. In [13],

the authors assume the sensor network is synchronised, and a parallelisation over multiple sensors is possible to

update the target states. However, in this work, this is not possible as the sensors operate asynchronously. This

parallelisation has been removed from the factor graph shown in Fig. 5.

By using MP, MTT methods with lower computational cost and better scalability can be developed [34]. In

this section, the notation closely follows that of [13], [34]. To use a BP type algorithm for registration, a suitable

sensor-parameter likelihood function is needed. An augmented target is defined as yn,k = [xn,k, rn,k]
T , where xn,k

is a single target state, and rn,k is a binary existence variable. The prediction equation for yn = {yn,k}Kk=1 is from

Eq. (3a) with ψn = yn and sensor configuration q′:

p (yn | zn−1, q
′) =

∫
f (yn | yn−1) p (yn−1 | zn−1, q

′) dyn−1 (15)

where it is assumed the posterior can be factorised as

p (yn−1 | zn−1, q
′) =

K∏
k=1

p (yn−1,k | zn−1, q
′) , (16)

as well as the target-state evolution, which does not depend on the sensor configuration:

f
(

yn | yn−1

)
=

K∏
k=1

f
(

yn,k
∣∣ yn−1,k

)
, (17)

i.e. the joint target density is a product over all individual target densities. Following [13], [34], this is written as

p (yn | zn−1, q
′) =

K∏
k=1

α(yn,k ; q′) (18)

where α(yn,k ; zn, q
′) is the marginal prediction:

α(yn,k ; zn, q
′) =

∑
rn−1,k∈{0,1}

∫
f (yn,k | yn−1,k)

× p (yn−1,k | zn−1, q
′) dxn−1,k

(19)
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Introducing the target-oriented association variables, an, the update equation for the BP implementation can be

written as,

p (yn,an | zn, z1:n−1, q
′) = p (zn | yn,an, q′)

× p (an | yn, z1:n−1, q
′) p (yn | z1:n−1, q

′)

p (zn | z1:n−1, q′)

(20)

where p (zn | yn,an, q′) is the single-object association likelihood, p (yn | z1:n−1, q
′) contains the predicted target

states from (18), and p (zn | z1:n−1, q
′) = ¯̀

n(q′ | zn) is the evidence term necessary for deriving the sensor-

parameter likelihood function in Eq. (1b). A stretching process is used to reduce message dimensionality and

computational complexity. Here, the random vector bn is introduced, which is an alternative measurement-oriented

association variable, and can be derived directly from an [13]. Stretching introduces loops into factor graphs, and

these loops create instances where the messages or beliefs are no longer exact. However, in [34] it is shown the

algorithm will still converge. By using an and bn, high-dimensional factors in the graph have been replaced with

many lower-dimensional factors. Using stretching [13, Eq. (27)] and (20), it is shown:

p(yn, ân | zn, q′) ∝

Ψ(ân)

∏K
k=1 v(yn,k, an,k ; zn, q′)

∏K
k=1 α(yn,k ; zn, q

′)

p(zn | z1:n−1, q′)

(21)

where ân = {an,bn}, Ψ(ân) is an “indicator” term that excludes all infeasible association events, (see [13, Eqs. 12

& 16] for complete details and caveats), and:

v(xn,k, rn,k = 1, an,k ; zn, q
′)

=


f(zn,m|xn,k,q

′)
fFA(zn,m)

pd
µc

an,k = m ∈Mn

1− pd an,k = 0

(22)

v(xn,k, rn,k = 0, an,k ; zn, q
′) = 1(an,k) (23)

with fFA(zn,m) representing the clutter distribution, µc is the mean number of false alarms, and M is the number

of measurements, m ∈ {1, . . . ,M}. Note that following [13, Eqs. 12 & 24], there are normalisation terms C(z)

and C(m) in Eq. (21); however, these are constant across the different filters with respect to different registration

parameters q′, as shown in [48]. Marginalising (21) over the joint space of all feasible association events, an, and

yn, gives the evidence:

p (zn | z1:n−1, q
′) ∝

∑
an

∫
· · ·
∫ K∏

k=1

v(yn,k, an,k ; zn, q
′)

× α(yn,k ; q′)dyn,1 . . . dyn,k (24)

which reduces, using the definition of β(an,k·) in [13, Eq. (31)], to:

¯̀
n(q′ | zn) = p(zn | z1:n−1, q

′) ∝
∑
an

K∏
k=1

β(an,k ; zn, q
′) (25)
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where β(an,k ; zn, q
′) is defined by

β(an,k ; zn, q
′) =∑

rn,k

∫
v(yn,k, an,k ; zn, q

′)α(yn,k ; zn, q
′) dyn,k

(26)

Note that β(an,k ; zn, q
′) can be interpreted as an approximation of the single-target association weights commonly

found in the Probabilistic Data Association (PDA) and JPDA filters [16]. The final parameter likelihood equation in

(25) can be implemented at the end of the correlation/association step inside the MTT process, where the β-terms

have been pre-computed through MP operations. The likelihood in (25) is not evaluated through a MP operation,

it merely exploits information already available as part of the offspring process.

The derived parameter likelihood is in the same form as that of the permanent of a matrix [49], [50]. These

articles propose methods for directly computing the permanent, or approximations of the permanent. As the size

of the matrix increases, the number of operations required to compute the permanent will increase exponentially.

Because the number of targets and number of measurements are relatively small, the permanent will be computed

directly in this case.

B. PHD Approach

This work will compare the MP approach to MTT with an SMC-PHD filter. The PHD filter is also a relatively

recent development in this field. It was first developed in 2003 [51], with the SMC implementation first appearing

in 2005 [52]. This filter propagates the first-order information of the target distribution (i.e. the mean number of

targets), and assumes that both the predicted number of targets and the clutter cardinality are Poisson distributed.

This particle-based implementation of the PHD filter can also work explicitly with non-linearities, much like the

MP approach. A direct application of typical SMC methods to propagate the PHD intensity would fail as it is not

strictly a pdf, and the recursion used in the filter is not the standard Bayes recursion. Instead, the intensity function

is represented by a large set of weighted random samples which are propagated over time using a generalised

importance sampling and resampling strategy [52]. The number of particles in this set can be continually adapted,

depending on the estimated number of targets in the surveillance region. It is noted that the main difference between

this implementation and the MP approach is that the SMC-PHD filter uses a general particle distribution to represent

all targets in the state space, rather than having N particles specifically for each individual target.

The parameter likelihood for the PHD filter is derived in [42], and for a given sensor configuration q′ is,

¯̀
n(q′ | zn) =∏
z∈z[µc,n (z) +

∫
X pd (x) gn (z | x, q′)µn|n−1 (dx | q′)]

exp
[∫
Z µc,n (z) dz +

∫
X pd (x)µn|n−1 (dx | q′)

] (27)

where pd (x) is the probability of detection, gn (z | x, q′) is the single-object likelihood, µc,n (z) is the clutter

intensity, µn|n−1 (dx | q′) is the predicted intensity. This likelihood function is implemented as a part of the PHD

filter update step. This function will simplify as the integrals become summations of all components for one

measurement, i.e. a sum of the corresponding component weights.
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V. PERFORMANCE METRICS

In order to compare the two types of filter for performing simultaneous tracking and registration, the Generalized

Optimal Sub-Pattern Assignment (GOSPA) metric [53] will be used. The GOSPA distance is made up of a cardinality

error and a localisation error between two sets X and Y with cardinalities m and n respectively. It generalises the

Optimal Sub-Pattern Assignment (OSPA) metric [54] by including an additional parameter α̂, enabling a choice of

cardinality mismatch cost, hence giving a sum of localisation errors for detected targets, and penalising missed and

false targets. This closely follows traditional MTT performance assessment metrics. The GOSPA metric is given

by [53, Eq. (1)]

d(c,α)
p (X,Y ) =

[
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p +

cp

α̂
(n−m)

] 1
p

, (28)

using an order parameter p, and a cut-off distance c. Here, the distance function d(c)(x, y) = min(d(x, y), c) is

an appropriate distance measure, e.g. the Euclidean distance, cut off at c, and Πn denotes the set of all possible

permutations of the numbers 1, . . . , n. As the order parameter increases, the metric penalises estimates that are

further away from the ground truth more harshly. From [54, Sec. III-D], p = 2 is a good practical choice for the

order parameter, as it usually gives smoother distance curves, and is consistent with other metrics that use a p-th

order average construction. The cut-off distance c determines the trade-off between penalising cardinality errors as

opposed to localisation errors. For all GOSPA results shown, α̂ = 2 as recommended in [53], the cut-off parameter

of c = 100 m and an order parameter p = 2 will be used.

The algorithms will also be compared in terms of computation time per iteration. All simulations have been

run on a desktop PC containing an Intel Core i7-6700K CPU with a clock speed of 4 GHz and 16 gigabytes of

RAM. Because each of the sensor configurations to be evaluated are independent of one another, it is possible to

parallelise the filtering process, further improving the computational efficiency.

VI. SIMULATIONS

Previous work that uses this type of hierarchical model [5] contains a grid-based method [44, pp. 9] to represent

the high-level process in practice. Particles were evenly distributed on this grid to perform a consistent parameter

test, and to remove the need for particle resampling. This method has a drawback; in that outliers that are far from

the true parameter values will be continually tested unnecessarily and contribute little to the overall estimation. We

introduce a resampling strategy into our simulations, where if the effective sample size is below a given threshold, the

sensor configurations are resampled. Both sets of simulations use 324 particles, which will be initialised uniformly

across the appropriate parameter space, as shown in Fig. 6. The parameters used in the low-level tracking process

are given in Table I and are consistent across all scenarios. The simulated target trajectories are also consistent,

and an overview of these is shown in Fig. 7.

The GOSPA results shown in Table III and Table IV later in the paper are based on three different measurement

noise combinations; low, medium and high. The values for these measurement noises are shown in Table II.
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TABLE I

TRACKING PARAMETERS

Quantity Symbol Value

Survival Probability ps 0.95

Gating Threshold τgate 99%

Pruning Threshold τprune 0.001

Extraction Threshold τextract 0.5

False Alarm Rate λr, λc 2, 5

Birth Intensity µb 0.01

Acceleration Noise q 1 ms−2

Particles per Target N 1000

Maximum Number of Targets K 7

TABLE II

MEASUREMENT NOISE LEVELS

Noise Level σrr σφr σφc

Low Noise 5 m 0.05° 0.01°

Medium Noise 10 m 0.1° 0.03°

High Noise 20 m 0.2° 0.05°

−2 0 2

−100

0

100

Angle bias φb (deg)

R
an

ge
bi

as
r b

(m
) Initial particles

Final particles

Fig. 6. An example of the sensor configurations represented by a particle distribution in the high-level process for the homogeneous scenario.

Particles are initialised uniformly between rb = [−150 m→ 150 m], φb = [−3°→ 3°], and converge towards the correct biases over time.
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Fig. 7. Simulated target trajectories for all scenarios and sensor setups. Each line represents one of the four different target trajectories.

A. Homogeneous Network

For this scenario, we consider the sensor setup shown in Fig. 1 which contains two radars observing a common

surveillance region. The radars are physically separated by a number of kilometres, in fixed and known locations,

but there is some uncertainty in their relative orientation as shown in Fig. 3(a). Modern radar systems typically have

a much smaller down-range uncertainty than cross-range uncertainty. The down-range uncertainty is determined by

how fast the system can sample the received return signal, which could be in the order of a few metres. Cross-range

uncertainty is determined by the width of the radar beam when it has been projected onto the ground plane. This

distance could be in the order of hundreds of metres. By using the down-range measurement in one radar to correct

the cross-range measurement in the other radar, we could drastically reduce the overall uncertainty in target location.

It is desired to estimate both the bias in range and the bias in azimuth, alongside the multiple target states. For this

scenario, the true biases simulated are rb = 30 m and φb = 2°.

We first demonstrate the accuracy and stability of results over a number of Monte-Carlo (MC) runs. The results

plotted in Fig. 8 show that for the homogeneous scenario described above, both methods provide stable GOSPA

results, even if a low number of runs are included. Therefore, all further results presented have been averaged over

100 MC runs, which Fig. 8 shows to be adequate.

From Fig. 9a and Fig. 9b, the proposed method of simultaneous tracking and registration (black dash-dotted plot)

outperforms the use of a single radar (red dashed plot), but as expected, does not reach the optimal performance

of having a perfectly registered set of sensors (solid green plot). The unregistered set of sensors (dotted blue

plot) performs much worse; this underlines the importance of taking the registration problem into account while

attempting to fuse information from multiple sensors. At the end of the scenario, the GOSPA distance for the PHD

approach is 64.2 m and 54.2 m for the MP approach, giving the MP approach a performance gain of around 10%

over the PHD approach.

In terms of the parameter estimation results in Fig. 10, there is less variation in the estimated range value using

the PHD approach than with the MP approach – explained by recalling that the PHD approach does not include

data association. For the vast majority of the scenario, the MP approach is within 0.07° of the true angle bias as
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Fig. 8. Average GOSPA Distance over the number of Monte-Carlo runs included.

shown in Fig. 10b. The PHD approach took 0.781 s per iteration on average, with the MP approach marginally

slower at 1.086 s per iteration.

The results involving different probabilities of detection are shown in Fig. 11. As the probability of detection

increases from 0.8 through to 0.99, it can be seen that the GOSPA distance decreases and the tracking accuracy

continues to improve as expected. In Fig. 11b and Fig. 11c, there is only a small change in the overall average of

the estimated parameters with pd; however the overall spread or variation in the result becomes smaller.

For the different noise variations and corresponding results in Table III, it can be seen that the MP approach is

more accurate in the low noise cases, across all of the probabilities of detection. In the high noise scenarios, both

methods have largely deteriorated and give poor tracking accuracy; there is no discernible difference between them.

At the medium noise level, the proposed MP approach deteriorates more rapidly than the PHD approach. This may

be due to the PHD approach not taking the data association problem in to account. As the MP approach makes a

hard decision through the use of correlation, high levels of noise may generate measurements that lie outside the

gating threshold, and therefore will not be associated to a target.

B. Heterogeneous Network

Now consider a sensor setup where a radar and a camera are co-located on the same static platform, as described

in Fig. 3(b) in Sect. I. Cameras typically have a much higher update rate than radars, and this is exploited to

maintain track estimates more frequently. For the simulated scenario, the high update rate is important, as if sensors

operate too slowly, track resolution could be lost and wrong measurement-to-track associations could be made.

Here, it is desired to estimate the relative angular bias qn = φb = 2° between the sensors, alongside the multiple

target states.

As shown in Fig. 12a, both the PHD approach and the MP approach perform better than their respective single

radar cases in terms of tracking accuracy, but not as well as the correct registration cases. The proposed MP

approach is more accurate than the PHD approach for the low noise cases. At the end of the scenario, the GOSPA

distance for MP is 47.8 m and 72.6 m for the PHD, giving a more substantial performance gain at around 25%. The

parameter estimation results in Fig. 13 are very comparable with the MP approach 0.05° away from the true value,
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Fig. 9. Homogeneous sensors, pd = 0.99

and the PHD approach 0.06° away after the first 100 iterations. The PHD approach took more time to reach accurate

parameter estimation, and the MP method provided a more consistent estimate over time. The PHD approach took

1.203 s per iteration on average, with the MP approach slower at 1.530 s per iteration.

When considering the different probabilities of target detection, in Fig. 14, it can again be seen that the GOSPA

distance decreases as pd increases. For lower probabilities of detection, the MP method provides a more accurate

average estimate of the angle bias between the radar and the camera. A full breakdown of the results for the different

pd values, and for the different noise levels for the heterogeneous scenario are given in Table IV. We see similar

behaviour to that of the homogeneous case; the proposed MP approach performs best in low measurement noise

cases, the MP method deteriorates more quickly at medium noise cases, and both methods perform badly with high

noise.

VII. CONCLUSIONS

From the comprehensive results, the proposed MP approach has shown to provide more accurate target tracking

and sensor registration estimation than that of the RFS approach in low measurement noise cases. When considering

the low noise cases, the proposed MP approach performs approximately 17% more accurately in terms of the GOSPA

metric, than the RFS approach. All of the results highlight the importance of having an accurately registered set of
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Fig. 10. Registration parameter estimation, homogeneous sensors, pd = 0.99

TABLE III

HOMOGENEOUS NETWORK, AVERAGE GOSPA DISTANCES AT n = 200

pd 0.80 0.85 0.90 0.95 0.99

Noise Low Med High Low Med High Low Med High Low Med High Low Med High

Single Radar
PHD 144 164 202 135 155 197 122 144 193 101 132 189 94 126 187

MP 120 192 200 117 189 199 106 186 197 102 178 195 80 167 186

Incorrect
PHD 152 191 209 145 166 207 137 150 203 117 136 197 117 134 197

MP 155 199 205 144 195 203 139 191 203 128 188 208 109 182 203

Proposed
PHD 134 164 183 129 145 195 115 133 191 73 98 170 64 95 151

MP 107 189 199 101 182 195 83 170 179 69 149 158 54 136 154

Correct
PHD 130 150 164 121 140 181 103 130 178 62 82 158 52 78 139

MP 97 183 194 87 180 190 62 156 176 58 140 165 39 134 150

sensors when performing fusion, as tracking accuracy can dramatically reduce when the registration is incorrect.

When considering the high measurement noise level, both methods deteriorate and perform badly as expected. For

the medium noise case, the MP method deteriorates more rapidly than the RFS approach due to issues with the

correlation and association steps. The noisy measurements, when used in the correlation step in the MP method,

may lie outside the gating threshold and therefore not be associated to a target and reduce the overall accuracy of
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Fig. 11. Varying pd results, homogeneous sensors, average value at n = 200, low measurement noise values.

the target tracking.

Previous works in this field have shown that the MP for MTT algorithm should be more computationally efficient

than that of the PHD filter and its variants; so far we have not been able to recreate this result, and our implementation

of the MP approach continues to run approximately 20% slower than the RFS approach.

Currently, the formulation of the parameter likelihood is based around the hierarchical model, or single-cluster

method approach, where the sensor registration and fusion problems are connected. The parameter likelihood used

in this work is evaluated using information already available from the MTT algorithm. Some future work could
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Fig. 12. Heterogeneous sensors, pd = 0.99
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Fig. 13. Angular bias φb estimation, heterogeneous sensors, pd = 0.99
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Fig. 14. Varying pd results, heterogeneous sensors, average value at n = 200, low measurement noise values.

TABLE IV

HETEROGENEOUS NETWORK, AVERAGE GOSPA DISTANCES AT n = 200

pd 0.80 0.85 0.90 0.95 0.99

Noise Low Med High Low Med High Low Med High Low Med High Low Med High

Single Radar
PHD 144 164 202 135 155 197 122 144 193 101 132 189 94 126 187

MP 120 192 200 117 189 199 106 186 197 102 178 195 80 167 186

Incorrect
PHD 170 180 219 164 173 213 155 167 211 135 151 203 126 142 197

MP 189 216 222 175 211 222 160 207 220 140 204 218 116 193 210

Proposed
PHD 137 152 192 130 145 186 116 136 182 86 116 175 73 103 168

MP 114 189 197 91 187 194 79 182 196 49 174 191 48 161 182

Correct
PHD 127 141 181 118 132 177 108 124 174 79 105 165 67 93 157

MP 101 179 193 84 177 192 56 180 193 44 171 187 32 159 181

include the use of other message passing approximations such as the Bethe permanent [55] to evaluate this parameter

likelihood in a message passing framework.
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