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The problem of sequentially detecting the emergence of a moving
anomaly in a sensor network is studied. In the setting considered, the
data-generating distribution at each sensor can alternate between a
nonanomalous distribution and an anomalous distribution. Initially,
the observations of each sensor are generated according to its associ-
ated nonanomalous distribution. At some unknown but deterministic
time instant, a moving anomaly emerges in the network. It is assumed
that the number as well as the identity of the sensors affected by the
anomaly may vary with time. While a sensor is affected, it generates
observations according to its corresponding anomalous distribution.
The goal of this work is to design detection procedures to detect the
emergence of such a moving anomaly as quickly as possible, subject
to constraints on the frequency of false alarms. The problem is studied
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in a quickest change detection framework where it is assumed that
the spatial evolution of the anomaly over time is unknown but deter-
ministic. We modify the worst-path detection delay metric introduced
in prior work on moving anomaly detection to consider the case of
a moving anomaly of varying size. We then establish that a weighted
dynamic cumulative sum type test is first-order asymptotically optimal
under a delay-false alarm formulation for the proposed worst-path
delay as the mean time to false alarm goes to infinity. We conclude by
presenting numerical simulations to validate our theoretical analysis.

I. INTRODUCTION

In anomaly detection studied under the quickest change
detection (QCD) framework, the emergence of an anomaly
in the system is assumed to induce a change in the data-
generating distribution of the observations obtained by the
sensors monitoring the system. The goal is to design a
detection algorithm, in the form of a stopping time, to detect
this change in distribution as quickly as possible, subject to
constraints on the frequency of false alarm (FA) events. This
tradeoff is posed in a stochastic optimization framework, the
solution to which depends on the definition of the delay and
FA metrics, on the changepoint model, as well as on the
underlying statistical observation model.

The classical QCD setting involves a sequence of ob-
servations undergoing a change from a nonanomalous to
an anomalous distribution. Initially, the observations are
independent and identically distributed (i.i.d.) according
to a known nonanomalous distribution. At some unknown
time instant, referred to as the changepoint, an anomaly
affects the system leading to a persistent change in the
data-generating distribution. Thereafter, observations are
generated i.i.d. according to a known anomalous distri-
bution. This QCD setting, often referred to as the i.i.d.
model, has been mostly studied under two formulations:
1) the minimax setting [2]–[5], where the changepoint is
modeled as unknown but deterministic and the goal is to
minimize a worst average detection delay (WADD) subject
to a constraint on the mean time to false alarm (MTFA);
2) the Bayesian setting [6], [7], where the changepoint is a
random variable of known probability distribution and the
goal is to minimize an average detection delay subject to
constraints on the probability of FA.

QCD theory has also been extensively applied to
anomaly detection in sensor networks. In these settings, the
resulting QCD problem depends on how the sets of nodes
affected by the anomaly change as time progresses. A trivial
case arises when the anomaly constantly affects a specific
set of sensors, which is known to the decision maker. In
this case, the prechange and postchange joint distributions
are completely specified and the classical algorithms for
QCD [2]–[7] can be extended to provide optimal solutions.
A generalized instance of the sensor network anomaly
detection problem arises by assuming lack of knowledge
of the aforementioned set of nodes affected by the anomaly.
This composite postchange model problem has been exten-
sively studied in the asymptotic regime under the minimax
setting [8]–[14]. The aforementioned QCD problems can be
further generalized by considering an anomaly that affects
sensors at different time instants [15]–[23]. As noted up
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to this point, to our knowledge, sensor network anomaly
detection problems are mostly studied in the QCD literature
under the core assumption that an anomaly can only affect
sensors in a persistent matter.

In this article, we study a problem of sequential moving
anomaly detection in sensor networks under the minimax
frameworks of Lorden and Pollak [2], [3]. In the setting
considered, the sets of nodes affected by the anomaly may
vary with time and are unknown to the decision maker.
As a result, the anomaly is persistent in the network as
a whole without necessarily persistently affecting specific
nodes. The problem was initially studied in [24] and [25],
where it was assumed that the anomaly evolves accord-
ing to a discrete time Markov chain and is of fixed size.
In [26]–[28], the Markov assumption on the anomaly was
lifted. Consequently, a worst-path approach was employed
where the trajectory of the anomaly was assumed to be
unknown and deterministic. To this end, the lack of a spe-
cific model for the anomaly path was counterbalanced by
introducing a modification to Lorden’s [2] and Pollak’s [3]
detection delay that evaluates stopping procedures accord-
ing to their worst performance with respect to the path of
the anomaly. Optimal detection procedures were proposed
for both Markov chain and worst-path settings for the case
of a moving anomaly affecting a set of sensors of constant
size.

In this article, we generalize the aforementioned worst-
path setting by considering an anomaly of varying size. In
particular, we assume that the size of the anomaly varies
with time in a series of cascading transient phases, each
corresponding to a specific anomaly size before reaching
the persistent anomaly size. This problem is particularly
relevant to settings where the locations of the sensors are
such that different numbers of nodes perceive the anomaly
as time progresses or where the physical properties of the
anomaly change. For example, consider the case of a target
to be detected that approaches a monitored sensor network
and, as a result, affects a larger number of nodes with time,
eventually entering the region of the network at which point
the number of affected sensors remains constant. Another
example is the case where multiple targets approach a sensor
network at different time instants. The aforementioned set-
tings are often encountered in Internet of Battlefield Things
(IoBT) and intrusion detection applications [9], [29].

The analysis in this article draws on the results in [16],
where the problem of transient QCD is studied. The
main difference between the two works is that, in [16],
the joint postchange distribution at each phase is fixed
and known to the decision maker. In our work, the joint
postchange distribution may vary even during a specific
phase since the set of affected nodes changes with time.
In addition, the identity of affected nodes is not known
to the decision maker; hence, the joint postchange distri-
bution is also not known at any time instant. We estab-
lish that a solution to a specific instance of the transient
QCD problem studied in [16] also leads to a first-order
asymptotically optimal algorithm for the setting studied
here.

The rest of this article is organized as follows. In
Section II, we introduce necessary notation, describe the
underlying statistical model, and present the delay and FA
metrics to be used, along with the optimization problem
to be solved. In Section III, we introduce our proposed
detection algorithm. In Section IV, we present the first-order
asymptotic optimality of the proposed test. In Section V, we
provide simulation results to numerically validate the use
of our proposed detection procedure. Finally, Section VI,
concludes this article.

II. PROBLEM MODEL

In this section, we present the observation model corre-
sponding to the moving anomaly detection problem of in-
terest. We also introduce the delay-FA optimization frame-
work to be employed together with the corresponding de-
tection delay metric. We begin by introducing some nec-
essary notation. For any sequence {α[k]}∞k=1 and k2 > k1,
we have that

∏k1
j=k2

α[ j] � 1 and
∑k1

j=k2
α[ j] � 0. Further-

more, α[k1, k2] � [α[k1], . . . α[k2]]� denotes the samples
from time k1 to k2. Given a set E , |E | denotes the number of
elements in the set. The set {1, . . . , L} is denoted by [L]. Let
{X [k]}∞k=1 denote the sequence of observations generated
by the sensor network, where X [k] � [X1[k], . . . , XL[k]]�

denotes the observation vector at time k and X�[k] ∈ R

denotes the measurement obtained by sensor � ∈ [L] at
time k. Define by F � {Fk}∞k=1 the filtration generated by
the observation process, where Fk = σ (X [1, k]) denotes
the σ -algebra generated by X [1, k]. Finally, for functions
f : R �→ R, g : R �→ R, we have that f (x) ∼ g(x) denotes
that f (x)/g(x) = 1 + o(1) as x → ∞, where o(1) → 0 as
x → ∞.

A. Observation Model

Consider a sensor network with sensors given in [L].
For sensor � ∈ [L], denote the respective nonanomalous
and anomalous distributions by g�(x) and f�(x). Before
the emergence of the moving anomaly in the network, it
is assumed that sensors generate data i.i.d. across time with
respect to their nonanomalous distributions. Furthermore, it
is assumed that observations are independent across sensors
and time. As a result, the joint probability density function
(pdf) of the observations before the anomaly emerges is
given by

g(x) �
L∏

�=1

g�(x�).

At some unknown and deterministic changepoint ν1 ≥
1, a moving anomaly emerges in the network, affecting
different sets of sensors as time progresses. It is assumed
that the number of affected nodes changes in phases be-
fore resolving to a persistent anomaly size. In particular,
we assume that our system goes through K − 1, K ≥ 2,
transient phases before reaching the persistent-size phase,
each phase corresponding to a specific moving anomaly
size. Phase i ∈ [K] is assumed to begin at an unknown and
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deterministic time instant νi, where νi ≥ νi′ for i > i′. As
a result, the duration of the ith transient phase is given by
di � νi+1 − νi for i ∈ [K − 1]. We denote by d � {di}K−1

i=1
the vector containing the transient phase durations. Note
that we assume that, in addition to the changepoints, the
durations of the transient phases are also deterministic and
unknown. In addition, without loss of generality, we assume
that adjacent phases correspond to distinct anomaly sizes.
Define by m(i) ∈ [L] the size of the anomaly at phase i ∈ [K],
which is assumed to be known to the decision maker.

Denote by S(i) � {S(i)[k]}∞k=1 the unknown but deter-
ministic trajectory of the anomaly at phase i, where S(i)[k]
denotes the vector containing the anomalous nodes at time
k and phase i. Note that S(i)[k] is defined for all k ≥ 1 and
not only νi ≤ k < νi+1 for notational convenience, although
only the values at νi ≤ k < νi+1 affect the distribution of
our observations. Define by E (i) the set of vector-values
S(i)[k] can take, corresponding to all anomaly positions for
an anomaly of size m(i). Note that there are |E (i)| = ( L

m(i)

)
such positions (without loss of generality, we assume that
the components of each vector are ordered to provide a
unique vector per anomaly placement). Assume that the ob-
servations are independent across time, conditioned on the
values of the changepoints νi, i ∈ [K] and on the anomaly
trajectory. Then, for a fixed set of trajectory sequences
S � {S(i)}K

i=1 and fixed changepoints {νi}K
i=1, we have that

for i ∈ [K] and νi ≤ k < νi+1 (assuming νK+1 � ∞)

X [k] ∼ pS(i)[k](x)�

⎛
⎝ ∏

� ∈ S(i)[k]

f�(x�)

⎞
⎠ ·

⎛
⎝ ∏

� /∈ S(i)[k]

g�(x�)

⎞
⎠

where for vector E, pE (x) denotes the joint pdf induced on
a vector observation when the identities of the anomalous
nodes are contained in E. As a result, conditioned on {νi}K

i=1
and S, the complete statistical model is

X [k] ∼
{

g(x), 1 ≤ k < ν1

pS(i)[k](x), νi ≤ k < νi+1
(1)

i ∈ [K], where we assume that the observations are inde-
pendent across time, conditioned on the changepoints.

B. Delay-FA Tradeoff Formulation

Our goal in this work is to design a detection algorithm
to detect the abrupt distribution change occurring at time
ν1 as described in (1) as quickly as possible, subject to FA
constraints. To this end, we frame this detection problem in
a QCD setting [30]–[32], with detection procedures taking
the form of stopping times. A stopping time τ adapted to F
is a positive random variable which satisfies {τ ≤ k} ∈ Fk

for all k ≥ 1, i.e., the decision to raise an alarm at time k
is determined only by the observations up to that point. To
frame the aforementioned delay-FA tradeoff, we introduce
a modified version of Lorden’s delay metric [2] to account
for the lack of anomaly path knowledge. In particular, we
evaluate candidate stopping times according to the trajec-
tory of the anomaly that leads to the anomaly inducing the
largest detection delay. Explicitly, denote by E

S
ν1,d

[·] the
expectation under the statistical model in (1) for fixed ν1, d,

and S. Then, for any stopping rule τ adapted to F and for
vector d, define the following modification of Lorden’s [2]
WADD metric:

WADDd (τ )

= sup
S

sup
ν1≥1

ess supES
ν1,d

[
τ − ν1 + 1|Fν1−1, τ ≥ ν1

]
where E

S
ν1,d

[τ − ν1 + 1|Fν1−1, τ ≥ ν1] � 1 when
P

S
ν1,d

(τ ≥ ν1) = 0 by convention. Note that the main
difference from Lorden’s [2] classical detection delay
metric is the use of an additional sup over the path of the
anomaly. Furthermore, note that the proposed detection
delay depends on d since different phase durations imply
different probability distributions across time and, hence,
different algorithm performance. Denote by E∞[·] the
expectation when no anomaly is present in the network. To
quantify the frequency of FA events, we use the MTFA,
denoted by E∞[τ ] for stopping time τ . For γ > 1, a
predetermined constant, define the class of stopping times

Cγ � {τ : E∞[τ ] ≥ γ }.
Our goal is to design a stopping procedure τ that solves the
following stochastic optimization problem:

min
τ

WADDd (τ )

s.t. τ ∈ Cγ

for any value of d.

C. Randomized Anomaly Allocation Model

In this subsection, we introduce an alternative statistical
model to that in (1). Note that this model is only used as
an intermediate tool that will play an important role in the
presentation of our results as well as in the analysis and that
it is not the model characterizing our QCD problem. More
explicitly, consider the case of a moving anomaly that, at
each phase i, affects one of the sets of sensors in E (i) at
random. To this end, denote by α(i) � {α(i)

E : E ∈ E (i)} the
probability mass function (pmf) containing the probabilities
that each of the vectors in E (i) is chosen as the vector
of anomalous nodes at each time instant at phase i. In
particular, at each time instant in phase i, the anomalous
nodes are chosen i.i.d. from E (i) according to α(i). Define
α � {α(i)}K

i=1 to be the set of the aforementioned pmfs for all
phases. According to this randomized allocation model, the
joint pdf before the emergence of the anomaly is identical to
that in (1). In addition, after the emergence of the anomaly,
we have that the joint pdf of the observations at phase i is
completely specified by

p(i)
α(i) (x) �

∑
E∈ E (i)

α
(i)
E pE (x). (2)

For fixed {νi}K−1
i=1 , α, this results in the following statistical

observation model:

X [k] ∼
{

g(x), 1 ≤ k < ν1

p(i)
α(i) (x), νi ≤ k < νi+1

(3)
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i ∈ [K]. Furthermore, for fixed α, define the Kullback–
Leibler (KL) divergence [33] between the joint pdf at phase
i and the nonanomalous joint pdf g(x) by

I (i)
α(i) � D(p(i)

α(i)‖g) � Ep(i)
α(i)

[
log

p(i)
α(i) (X )

g(X )

]
(4)

where, for pdf p(x), Ep[·] denotes the expectation with
respect to p(x). Note that (3) corresponds to the observation
model for a transient QCD problem, as described in [16]
since the prechange and postchange pdfs are completely
specified. This QCD problem is associated with a corre-
sponding detection delay. In particular, let E

α

ν1,d [·] denote
the expectation under the model in (3) for fixed ν1, d, and
α. Then, for stopping time τ , define the detection delay
corresponding to the QCD problem detailed in (3) by

WADDα,d (τ )= sup
ν1≥1

ess supE
α

ν1,d [τ − ν1 + 1|Fν1−1, τ ≥ ν1]

(5)

where the convention that E
α

ν,d [τ − ν1 + 1|Fν1−1, τ ≥
ν1] � 1 when P

α

ν1,d (τ ≥ ν1) = 0 is also used here. Note
that the transient QCD problem described in (3)–(5) can be
solved asymptotically by using the weighted dynamic cu-
mulative sum (WD-CUSUM) test proposed in [16] adapted
to the model in (3). However, it is not clear whether this
solution coincides with that of Section II-B. In the remainder
of the article, we show that solving the transient QCD
problem in (3)–(5) for a specific choice of pmfs in α will lead
to the solution of the initial worst-path problem described
in Section II-B.

III. PROPOSED DETECTION ALGORITHM

In this section, we present the mixture-WD-CUSUM
(M-WD-CUSUM) test that solves the transient QCD prob-
lem introduced in (3)–(5). In particular, for a fixed set of
pmfs α, define the log-likelihood ratio at time k during phase
i by

Z (i)
α [k] = log

p(i)
α(i) (X [k])

g(X [k])
. (6)

Consider the following M-WD-CUSUM test statistic

Wα[k] = max{�(1)
α [k], . . . , �(K )

α [k], 0} (7)

where for i ∈ [K], �(i)
α [k] is calculated recursively as

�(i)
α [k] = max

0≤ j≤i

⎛
⎝�( j)

α [k − 1] +
i−1∑
r= j

log ρr

⎞
⎠

+ Z (i)
α [k] + log(1 − ρi ) (8)

where ρ0 � 1, ρi ∈ (0, 1) for i ∈ [K − 1], ρK � 0, �(i)[0] �
0 for all i ∈ [K], and �(0)[k] � 0 for all k. Furthermore,
define the corresponding stopping time by

τW (α, b) � inf{k ≥ 1 : Wα[k] ≥ b}. (9)

From the results in [16], the M-WD-CUSUM test presented
in (7)–(9) is asymptotically optimal with respect to the

transient QCD problem in (3)–(5) for specific choices of
ρi parameters. Explicitly, the ρi parameters are introduced
so that the FA constraint is satisfied for b = log γ and should
be chosen to not play a role asymptotically in order for an
optimal test to be derived. More details regarding the choice
of the ρi parameters will be given in the subsequent analysis
and can also be found in [16].

IV. ASYMPTOTIC OPTIMALITY OF THE M-WD-
CUSUM PROCEDURE

In this section, we establish the asymptotic optimality
of the M-WD-CUSUM test for a carefully chosen α.

A. Universal Asymptotic Lower Bound on the WADD

We begin our analysis by presenting an asymptotic
lower bound on WADD for stopping times in Cγ . Our lower
bound is based on an important lemma connecting WADD
and WADD. In particular, note that WADD evaluates each
candidate stopping time τ with regard to the worst possible
path of the anomaly for τ . On the other hand, WADD
corresponds to a model where the anomalous nodes are
chosen at random. Our first result says that the worst-path
delay cannot be smaller than the delay that corresponds
to choosing the anomalous nodes at random regardless of
the choice of prior α. In particular, we have the following
lemma.

LEMMA 1 For any stopping time τ , any vector of pmfs α,
and any d, we have that

WADDd (τ ) ≥ WADDα,d (τ ).

PROOF See Appendix. �

Since the results in [16] provide a universal asymptotic
lower bound on WADD for any α, an asymptotic lower
bound on WADD then follows directly from Lemma 1.
However, since the asymptotic rate in the lower bound of
WADD is a function of the KL numbers defined in (4), we
need to choose the pmfs in α to get the tightest lower bound
on WADD. To this end, define

α(i)
∗ � arg min

α(i)

I (i)
α(i) (10)

and α∗ � {α(i)
∗ }K

i=1, the vector containing the minimizing
pmfs. It can be shown that I (i)

α(i) is strictly convex with
respect to α; hence, such a minimizer is uniquely defined.
Furthermore, define the minimum value of I (i)

α(i) by

I (i)
∗ � I (i)

α
(i)
∗
.

To ensure that the transient phases play a nontrivial role
asymptotically in our initial QCD problem, the durations
of the transient phases need to scale to infinity with γ .
In particular, without loss of generality, assume that there
exist constants ci ∈ [0, ∞) ∪ {∞}, i ∈ [K − 1] such that as
γ → ∞

di ∼ ci
log γ

I (i)
∗

. (11)
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This assumption can be intuitively explained since asymp-
totically the rate of the transient durations with respect to
log γ will indicate the phase at which the anomaly will
be detected [16]. The specific choice of KL numbers in
the scaling coefficient is chosen so that the universal lower
bound and upper bound on the delay of the proposed test
match, as will be noted in the upper bound analysis. We
then have the following:

THEOREM 1 Assume that (11) holds. Furthermore, de-
fine h � min{ j ∈ [K] :

∑ j
i=1 ci ≥ 1}. We then have that as

γ → ∞

inf
τ∈Cγ

WADDd (τ ) ≥ log γ

(
h−1∑
i=1

ci

I (i)
∗

+ 1 − ∑h−1
i=1 ci

I (h)
∗

)

· (1 − o(1)).

PROOF The result follows directly by applying Lemma
1 for α = α∗ and [16, Theorem 5] to lower bound
WADDα∗,d (τ ). �

B. Asymptotic Upper Bound on the WADD of the M-
WD-CUSUM Test

We now establish an asymptotic upper bound on the
WADD of the proposed algorithm. The asymptotic upper
bound is based on exploiting the upper bound analysis
in [16], [27], and [28]. For the asymptotic upper bound
analysis to be nontrivial, we need to assume that the transient
durations scale accordingly to threshold b. In particular,
assume that there exist constants c′

i ∈ [1, ∞) ∪ {∞}, i ∈
[K − 1] such that

di ∼ c′
i

b

I (i)
∗

. (12)

Furthermore, to use the analysis in [16], we need to de-
sign the parameters ρi, i ∈ [K − 1] in the M-WD-CUSUM
such that their effect is asymptotically negligible [16]. In
particular, assume that ρi can be chosen such that

ρi → 0, and − log ρi

b
→ 0 (13)

as b → ∞ for i ∈ [K − 1]. We then have the following
asymptotic upper bound.

THEOREM 2 Suppose b and ρi, i ∈ [K − 1] are chosen such
that (12) and (13) hold. Assume that

max
i ∈ [K]

max
E ∈ E (i)

EpE

⎡
⎣
⎛
⎝log

p(i)
α

(i)
∗

(X )

g(X )

⎞
⎠

2⎤
⎦ < ∞. (14)

Furthermore, define h′ � min{ j ∈ [K] :
∑ j

i=1 c′
i ≥ 1}. We

then have that as b → ∞

WADDd (τW (α∗, b)) ≤ b

(
h−1∑
i=1

c′
i

I (i)
∗

+ 1 − ∑h′−1
i=1 c′

i

I (h′ )
∗

)

· (1 + o(1)).

PROOF See Appendix. �

C. Asymptotic Optimality of the M-WD-CUSUM Test

By combining Theorem 1 with Theorem 2, we can
establish the asymptotic optimality of the M-WD-CUSUM
when α = α∗. In particular, we have the following theorem.

THEOREM 3 Assume that

max
i∈[K]

max
E ∈ E (i)

EpE

⎡
⎣
⎛
⎝log

p(i)
α

(i)
∗

(X )

g(X )

⎞
⎠

2⎤
⎦ < ∞.

We then have the following:
1) For any γ > 1, α, E∞[τW (α, log γ )] ≥ γ .
2) Assume that d is chosen to satisfy (11) as γ → ∞ for

some ci ∈ [1, ∞) ∪ {∞}, i ∈ [K − 1] and that as γ → ∞

ρi → 0, and − log ρi

log γ
→ 0.

Let h � min{ j ∈ [K] :
∑ j

i=1 ci ≥ 1}. We then have that as
γ → ∞

WADDd (τW (α∗, log γ )) ∼ inf
τ∈Cγ

WADDd (τ )

∼ log γ

(
h−1∑
i=1

ci

I (i)
∗

+ 1 − ∑h−1
i=1 ci

I (h)
∗

)
.

PROOF 1) Follows directly from the MTFA analysis of the
WD-CUSUM test [16]. �

2) Follows from 1) and Theorems 1 and 2, and because
b = log γ , we have that ci = c′

i for all i ∈ [K − 1].

REMARK Note that the first-order asymptotic optimality
result in this article also holds if we use a worst-path
version of Pollak’s detection delay [3]. In particular, for
stopping time τ and vector of transient durations d, define
the detection delay

CADDd (τ ) � sup
S

sup
ν1≥1

E
S
ν1,d [τ − ν1|τ ≥ ν1] .

By deriving a lower bound similar to the one in Lemma
1 and since WADD is always larger than CADD, we can
easily establish the first-order asymptotic optimality of the
M-WD-CUSUM test under Pollak’s criterion, i.e., Theorem
3 also holds when WADD is replaced by CADD.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the proposed M-WD-CUSUM algorithm of (6)–(9). We
consider the case of both homogeneous and heterogeneous
sensors. For the case of homogeneous sensors, it can be
shown that the optimal weight α choice in (6)–(9) is uni-
form [1]. Note that WADDd for the proposed test is attained
at ν1 = 1, i.e., ν1 = 1 leads to the worst-case delay. Further-
more, for the case of heterogeneous sensors, the worst-path
cannot be specified analytically. As a result, we will approx-
imate the worst-path delay by placing the anomalous nodes
at each phase such that the worst-possible slope for the test
statistic is attained. This is done because, asymptotically,
the performance of the proposed algorithm is dominated by
the slope of the test statistic. We numerically calculate the
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Fig. 1. WADDd vs. MTFA for K = 3 and varying network sizes.

Fig. 2. WADDd vs. MTFA comparison between the test that exploits
and the test that does not exploit complete knowledge of the anomaly

size across phases for a homogeneous sensor network.

average statistic slope through Monte Carlo simulations. In
addition, we use ρi = 1

b to guarantee that the conditions in
(13) are satisfied.

For the case of homogeneous sensors, we focus on the
case of g� = N (0, 1) and f� = N (1, 1), � ∈ [L]. In Fig. 1,
we simulate the proposed M-WD-CUSUM test for the case
of K = 3, m(1) = 1, m(2) = 2, m(3) = 3, d1 = 9, d2 = 10,
and for L = 3, 5, 10. We note that for fixed MTFA, the
average detection delay increases with network size. This
is to be expected since a larger network introduces more
noise in the calculation of the mixture likelihood ratios in
(8). Furthermore, we see that as the MTFA increases, the
slopes of the curves gradually decrease. This means that the
M-WD-CUSUM is adaptive to each transient phase since
the expected slope increases as the anomaly size increases.

In Fig. 2, we evaluate the performance loss that our
algorithm incurs when the anomaly size is not completely
specified. In particular, we consider the case of K = 3,
m(1) = 2, m(2) = 3, m(3) = 4, d1 = 9, d2 = 10, and L = 6
and compare the performance of the M-WD-CUSUM test
that is designed by completely knowing the values of these
parameters with the M-WD-CUSUM that assumes that
K = 6 and m(i) = i for i ∈ [K]. As expected, the algorithm
that exploits complete knowledge of the size of the anomaly
at each phase performs much better. Note that the perfor-
mance loss for our case study is not significant; however, the
performance loss can increase significantly as L increases
if our estimates for K and m(i) are not sufficiently accurate.

Finally, in Fig. 3, we evaluate the performance of
our proposed detection procedure for the case of a het-
erogeneous sensor network with L = K = 5, m(i) = i for

Fig. 3. WADDd vs. MTFA comparison between the test that exploits
and the test that does not exploit complete knowledge of the sensor pdfs

for a heterogeneous sensor network.

i ∈ [K], g� = N (0, 1), and f� = N (μ�, 1) where μ =
[0.8, 0.8, 1, 1.2, 1.2]�. Furthermore, we assume that d1 =
19 and d2 = d3 = d4 = 20. To this end, we compare the
M-WD-CUSUM that uses complete knowledge of f�(x)
and g�(x) for all � ∈ [L] and chooses the proposed optimal
weights (see Theorems 1–3) to the M-WD-CUSUM test that
uses uniform weights (i.e., assumes sensors are homoge-
neous). For each phase, the anomaly for the uniform weights
case is placed so that the slope of the statistic is minimized.
We see that there is significant performance loss when the
decision maker assumes that the sensors are homogeneous
when they are heterogeneous.

VI. CONCLUSION

In this article, we studied the problem of sequentially
detecting a moving anomaly of varying size in a sensor
network. We posed the problem within Lorden’s mini-
max framework, under the assumption that the path of the
anomaly is unknown but deterministic. To account for the
lack of a model of how the anomaly evolves spatialy over
time, we introduced a modified version of Lorden’s [2]
delay metric that evaluates candidate stopping rules with
respect to the worst-path performance. We proposed a WD-
CUSUM-type test that is first-order asymptotically optimal
for the case of observations that are independent across
time and derived its asymptotic delay rate. It should be
noted that our detection procedure can be modified by using
conditional pdfs in place of the marginal pdfs in the likeli-
hood ratio of the test statistic in (6)–(9) to yield a first-order
asymptotically optimal test even when the observations are
dependent across time. However, the analysis in this set-
ting becomes significantly more challenging (see, e.g., [5]
and [7]).

Future work in this area includes extending the proposed
detection procedure to allow for partial knowledge of the
postchange model as well as studying the problem when an
adversary can mask the emergence of the anomaly. The
first problem is particularly important for the proposed
procedures to be applicable in practice. We believe that
the algorithms given in this article can be extended to
address partial postchange model knowledge by introducing
online changepoint as well as data-generating distribution
estimators (see, e.g., [34] and [35]).
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APPENDIX

For our theoretical analysis, we focus on the case of two
postchange phases (one transient phase and one persistent
phase). The results in this article hold for the case of
arbitrary number of phases K known to the decision maker,
but, in that case, the analysis becomes cumbersome. To this
end, consider the sequences S(1) � {S(1)[k]}∞k=1 and S(2) �
{S(2)[k]}∞k=1 that characterize the location of the anomalous
nodes at each time instant for postchange phases 1 and 2,
respectively. For clarity of notation, we will use ν in the
Appendix to denote the first changepoint ν1, d to denote
the transient duration d1, and ρ to denote ρ1. Define the
likelihood ratio of samples X [1, k] between the hypothesis
that the anomaly evolves according to S and changepoints
are equal to ν1 and ν2 and the hypothesis that the anomaly
never appears by


S(k, ν1, ν2)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣min{ν2−1,k}∏

j=ν1

∏
� ∈ S1[ j]

f�(X�[ j])

g�(X�[ j])

⎤
⎦

·
⎡
⎣ k∏

j=ν2

∏
� ∈ S2[ j]

f�(X�[ j])

g�(X�[ j])

⎤
⎦,ν1 < ν2,

k∏
j=ν1

∏
� ∈ S2[ j]

f�(X�[ j])
g�(X�[ j]) , ν1 = ν2.

In addition, for the model in (3)–(5), define the likelihood
ratio of samples X [1, k] between the hypothesis that the
anomaly evolves according to mixture weights in α and
changepoints are equal to ν1 and ν2 and the hypothesis that
the anomaly never appears by

Lα(k, ν1, ν2)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣min{ν2−1,k}∏

j=ν1

p(1)
α(1) (X [ j])

g(X [ j])

⎤
⎦

·
⎡
⎣ k∏

j=ν2

p(2)
α(2) (X [ j])

g(X [ j])

⎤
⎦ ,ν1 < ν2,

k∏
j=ν1

p(2)

α(2) (X [ j])

g(X [ j]) , ν1 = ν2.

We now proceed to establish Lemma 1 and Theorem 2
which imply the main theoretical results of this article. The
analysis is based on techniques in [5], [16], and [28].

PROOF OF LEMMA 1 For any stopping rule τ , define its
truncated version by τ (N ) � min{τ, N} where N is a positive
integer. Since τ ≥ τ (N ), it can be established that for any ν,
d , N ≥ 1

WADDd (τ ) ≥ WADDd (τ (N ) )

≥ sup
S

E
S
ν,d [τ (N ) − ν + 1|Fν−1, τ

(N ) ≥ ν].

(15)

In addition, we have that

E
S
ν,d [τ (N ) − ν + 1|Fν−1, τ

(N ) ≥ ν]

= E
S
ν,d

⎡
⎣ ∞∑

j=ν

1{τ (N )≥ j}
∣∣∣Fν−1, τ

(N ) ≥ ν

⎤
⎦

(a)= E
S
ν,d

⎡
⎣ N∑

j=ν

1{τ (N )≥ j}
∣∣∣Fν−1, τ

(N ) ≥ ν

⎤
⎦

=
N∑

j=ν

E
S
ν,d

[
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

(b)=
N∑

j=ν

E∞
[

S

(
j − 1, ν, ν + d

)
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

= E∞

⎡
⎣ N∑

j=ν


S
(

j − 1, ν, ν + d
)
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦

= E∞
[

S (ν − 1, ν, ν + d )1{τ (N )≥ν}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

+E∞

⎡
⎣ N∑

j=ν+1


S
(

j − 1, ν, ν + d
)
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦

= E∞
[
1{τ (N )≥ν}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

+E∞

⎡
⎣ N∑

j=ν+1


S
(

j − 1, ν, ν + d
)
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦

(c)= E∞
[
1{τ (N )≥ν}

∣∣∣Fν−1, τ
(N ) ≥ ν]

]

+ E∞

⎡
⎣N−1∑

j=ν


S
(

j, ν, ν + d
)
1{τ (N )> j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦

(16)

where (a) follows since 1{τ (N )≥ j} = 0 for j > N because
τ (N ) ≤ N , (b) follows from a change of measure, and (c)
from a change of variables. As a result, by taking the
supremum over S, we have that

sup
S

E
S
ν,d [τ (N ) − ν + 1|Fν−1, τ

(N ) ≥ ν]

= E∞
[
1{τ (N )≥ν}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

+ sup
S

E∞

⎡
⎣N−1∑

j=ν


S
(

j, ν, ν + d
)
1{τ (N )> j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦.

(17)

By bounding the supremum by an average, as in [1] and
[28], it can be shown that

sup
S

E∞

⎡
⎣N−1∑

j=ν


S
(

j, ν, ν + d
)
1{τ (N )> j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦

≥ E∞

⎡
⎣N−1∑

j=ν

Lα

(
j, ν, ν + d

)
1{τ (N )> j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦ .

(18)
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From (15), (17), and (18), and by following similar steps as
in (16), we then have that

WADDd (τ ) ≥ E∞
[
1{τ (N )≥ν}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

+ E∞

⎡
⎣N−1∑

j=ν

Lα

(
j, ν, ν + d

)
1{τ (N )> j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦

= E∞
[
1{τ (N )≥ν}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

+E∞

⎡
⎣ N∑

j=ν+1

Lα

(
j − 1, ν, ν + d

)
1{τ (N )≥ j}

∣∣∣Fν−1,τ
(N ) ≥ ν

⎤
⎦

= E∞

⎡
⎣ N∑

j=ν

Lα

(
j − 1, ν, ν + d

)
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

⎤
⎦

=
N∑

j=ν

E∞
[
Lα

(
j − 1, ν, ν + d

)
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

=
N∑

j=ν

E
α

ν,d

[
1{τ (N )≥ j}

∣∣∣Fν−1, τ
(N ) ≥ ν

]

= E
α

ν,d

⎡
⎣ N∑

j=ν

1{τ (N )≥ j}
∣∣∣Fν−1, τ

(N ) ≥ ν

⎤
⎦

= E
α

ν,d

⎡
⎣ ∞∑

j=ν

1{τ (N )≥ j}
∣∣∣Fν−1, τ

(N ) ≥ ν

⎤
⎦

= E
α

ν,d [τ (N ) − ν + 1|Fν−1, τ
(N ) ≥ ν].

From the monotone convergence theorem, since τ (N ) − ν +
1 and 1{τ (N )≥ν} are nondecreasing with N , we have that

lim
N→∞

E
α

ν,d [τ (N ) − ν + 1|Fν−1, τ
(N ) ≥ ν]

= lim
N→∞

E
α

ν,d

[
(τ (N ) − ν + 1)1{τ (N )≥ν}|Fν−1

]
E

α

ν,d

[
1{τ (N )≥ν}|Fν−1

]
= E

α

ν,d

[
limN→∞(τ (N ) − ν + 1)1{τ (N )≥ν}|Fν−1

]
E

α

ν,d

[
limN→∞ 1{τ (N )≥ν}|Fν−1

]
= E

α

ν,d

[
(τ − ν + 1)1{τ≥ν}|Fν−1

]
E

α

ν,d

[
1{τ≥ν}|Fν−1

]
= E

α

ν,d

[
τ − ν + 1|Fν−1, τ ≥ ν

]
.

As a result, by taking the sup over ν and the esssup, we have
that for any stopping time τ , α, and for d ≥ 0

WADDd (τ ) ≥ WADDα,d (τ ).

PROOF OF THEOREM 2 Our upper bound analysis is based
on the proof technique in [16]. In particular, due to the
Markov property and recursive structure of the M-WD-
CUSUM test, we have that for any S and any values of
b, α, and d

WADDd (τW (α, b)) = sup
S

E
S
1,d [τW (α, b)] .

Furthermore, since ρ → 0 and − log ρ

b → 0 as b → ∞ and
since d ∼ c′

1
b

I (1)
∗

as b → ∞, we have that as b → ∞

d ∼ c′
1

b

I (1)
∗ + log(1 − ρ )

.

Depending on the value of c′
1, we can proceed to bound

supS E
S
1,d [τW (α∗, b)] as in [16].

Case 1: Consider the case of c′
1 > 1. Let δ > 0. Choose

ε > 0 such that 1 ≤ 1+ε
1−ε

≤ c′
1 which in turn implies that

c′
1(1−ε)
1+ε

≥ 1 and define

nb � b

I (1)
∗ + log(1 − ρ ) − ε

,

cε � �c′
1

1 − ε

1 + ε
�.

We then have that

sup
S

E
S
1,d

[
τW (α∗, b)

nb

]
(a)= sup

S

∫ ∞

0
P

S
1,d

(
τW (α∗, b)

nb
> x

)
dx

(b)≤ sup
S

∞∑
ζ=0

P
S
1,d (τW (α∗, b) > ζnb)

≤ 1 +
cε∑

ζ=1

sup
S

P
S
1,d (τW (α∗, b) > ζnb)

+ lim
ξ→∞

ξ∑
ζ=cε+1

sup
S

P
S
1,d (τW (α∗, b) > ζnb) (19)

where (a) follows by writing the expectation as an in-
tegral of the inverse cumulative density function for a
positive random variable and (b) from the sum-integral
inequality.

We now consider two cases depending on the value of ζ

relative to cε . First, fix ζ ∈ [cε]. We then have that datapoints
X [1, ζnb] are all generated in postchange phase 1. As a
result, we have that for any S and ζ ∈ [cε]

P
S
1,d (τW (α∗, b) > ζnb) = P

S
1,d

(
max

1≤k≤ζnb

Wα∗[k] < b

)

(c)= P
S
1,d

⎛
⎝ rnb∑

j=(r−1)nb+1

(
Z (1)

α∗ [ j] + log(1 − ρ )
)
< b, ∀ r ∈ [ζ ]

⎞
⎠

(d)=
ζ∏

r=1

P
S
1,d

⎛
⎝ 1

nb

rnb∑
j=(r−1)nb+1

(
Z (1)

α∗ [ j] + log(1 − ρ )
)
<

b

nb

⎞
⎠

(e)=
ζ∏

r=1

P
S
1,d

(∑rnb
j=(r−1)nb+1 Z (1)

α∗ [ j]

nb
< I (1)

∗ − ε

)
(20)

where (c) follows by binning the observations and bound-
ing the maxima (see [5] and [16]), (d) follows from the
independence of data across times conditioned on S, and
(e) follows from the definition of nb. We then have that for
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any b > 0 from (19)

sup
S

P
S
1,d (τW (α∗, b) > ζnb)

≤ sup
S

[
ζ∏

r=1

P
S
1,d

(∑rnb
j=(r−1)nb+1 Z (1)

α∗ [ j]

nb
< I (1)

∗ − ε

)]

=
[

sup
S

P
S
1,d

(∑nb
j=1 Z (1)

α∗ [ j]

nb
< I (1)

∗ − ε

)]ζ

. (21)

By [28, Lemma 2], we have that

J � E
S
1,d

[∑nb
j=1 Z (1)

α∗ [ j]

nb

]
=

∑nb
j=1 EpS(1)[ j]

[
Z (1)

α∗ [ j]
]

nb
≥ I (1)

∗ .

(22)

This in turn implies that for any S

P
S
1,d

(∑nb
j=1 Z (1)

α∗ [ j]

nb
< I (1)

∗ − ε

)

= P
S
1,d

(∑nb
j=1 Z (1)

α∗ [ j]

nb
< I (1)

∗ − ε + J − J

)

≤ P
S
1,d

(∑nb
j=1 Z (1)

α∗ [ j]

nb
< J − ε

)

≤ P
S
1,d

(∣∣∣∣
∑nb

j=1 Z (1)
α∗ [ j]

nb
− J

∣∣∣∣ > ε

)
. (23)

Define

(σ̄ (1) )2 � max
E ∈ E (1)

VarpE

⎡
⎣log

p(1)

α
(1)
∗

(X )

g(X )

⎤
⎦ . (24)

From (14), we have that (σ̄ (1))2 < ∞. Then, by Cheby-
chev’s inequality

P
S
1,d

(∣∣∣∣
∑nb

j=1 Z (1)
α∗ [ j]

nb
−J

∣∣∣∣ > ε

)
≤VarS

1,d

(∑nb
j=1 Z (1)

α∗ [ j]

nb

)
1

ε2

= 1

ε2n2
b

nb∑
j=1

VarpS(1)[ j]

(
Z (1)

α∗ [ j]
) ≤ (σ̄ (1) )2

nbε2
≤ δ (25)

for large b, which, from (21), implies that for large b

sup
S

P
S
1,d (τW (α∗, b) > ζnb) ≤ δζ . (26)

For the case of ζ > cε , we have that for large threshold b
samples, X [1, ζnb] can be generated in either phase 1 or
phase 2. Define

t �
⌈

I (1)
∗

min{I (1)
∗ , I (2)

∗ }

⌉
+ 1. (27)

We then have that for large b, cεnb ≤ ν + d ≤ (cε + t )nb.
Consider ζ such that cε + (m − 1)t ≤ ζ ≤ cε + mt − 1, for
any m ≥ 1. By following steps similar to (20)–(26), it can
be established that for large b

sup
S

P
S
1,d (τW (α∗, b) ≤ δcε+m−1. (28)

We then have from (19) and (26) that (28) and the definition
of t

sup
S

E
S
1,d

[
τW (α∗, b)

nb

]
≤ 1 +

cε∑
ζ=1

δζ + lim
ξ→∞

ξ∑
m=1

tδcε+m−1

= 1

1 − δ
+ tδcε + (t − 1)δcε+1 1

1 − δ
� 1 + δ′ (29)

where δ′ → 0 as b → ∞ since δ → 0 as b → ∞ and cε ≥
1. This, in turn, implies that as b → ∞

WADDd (τW (α∗, b)) = sup
S

E
S
1,d [τW (α∗, b)]

≤ b

I (1)
∗

(1 + o(1)). (30)

Case 2: Consider the case of c′
1 ≤ 1. Define

n′
b �

(
d + b − log ρ − d (I (1)

∗ + log(1 − ρ ))

I (2)
∗

)
(1 + ε)

∼
(

c′
1

I (1)
∗

+ 1 − c′
1

I (2)
∗

)
(1 + ε). (31)

This implies that

lim
b→∞

n′
b

d
=
(

1 +
(

1

c′
1

− 1

)
I (1)
∗

I (2)
∗

)
(1 + ε) > 1

which, in turn, implies that for large b, n′
b > d and n′

b − d →
∞ as b → ∞ [16]. By analyzing the expectation as in case
1, we then have that

sup
S

E
S
1,d

[
τW (α∗, b)

n′
b

]
≤ 1 + sup

S
P

S
1,d (τW (α∗, b) > n′

b)

+ lim
ξ→∞

ξ∑
ζ=2

sup
S

P
S
1,d (τW (α∗, b) > ζn′

b). (32)

Fix S. Then since for any x, y and random variables X , Y ,
P(X + Y < x + y) ≤ P(X < x) + P(Y < y), we have that

P
S
1,d (τW (α∗, b) > n′

b)

= P
S
1,d

( d∑
j=1

(
Z (1)

α∗ [ j] + log(1 − ρ )
) +

n′
b∑

j=d+1

Z (2)
α∗ [ j]

< d (I (1)
∗ + log(1 − ρ )) + (n′

b − d )I (2)
∗ − εa

)

≤ P
S
1,d

(∑d
j=1 Z (1)

α∗ [ j]

d
< I (1)

∗ − εa

2d

)

+ P
S
1,d

⎛
⎝∑n′

b
j=d+1 Z (2)

α∗ [ j]

n′
b − d

< I (2)
∗ − εa

2(n′
b − d )

⎞
⎠

ROVATSOS ET AL.: QUICKEST DETECTION OF ANOMALIES OF VARYING LOCATION AND SIZE IN SENSOR NETWORKS 2117



where a � dI (2)
∗ + b − d (I (1)

∗ + log(1 − ρ )) − log ρ. This,
in turn, implies that

sup
S

P
S
1,d (τW (α∗, b) > nb)

≤ sup
S

P
S
1,d

(∑d
j=1 Z (1)

α∗ [ j]

d
< I (1)

∗ − εa

2d

)

+ sup
S

P
S
1,d

⎛
⎝∑n′

b
j=d+1 Z (2)

α∗ [ j]

n′
b − d

< I (2)
∗ − εa

2(n′
b − d )

⎞
⎠ .

(33)

We now upper bound both of the terms in the right-hand
side of (33). In particular, from (22), we have that

sup
S

P
S
1,d

(∑d
j=1 Z (1)

α∗ [ j]

d
< I (1)

∗ − εa

2d

)

≤ sup
S

P
S
1,d

(∣∣∣
∑d

j=1 Z (1)
α∗ [ j]

d
− J

∣∣∣ >
εa

2d

)
.

From Chebychev’s inequality, we then have that

sup
S

P
S
1,d

(∣∣∣
∑d

j=1 Z (1)
α∗ [ j]

d
− J

∣∣∣ >
εa

2d

)

≤ sup
S

1

d2
VarS

1,d

⎛
⎝ d∑

j=1

Z (1)
α∗ [ j]

⎞
⎠(

2d

εa

)2

≤ 1

d

(
2d σ̄ (1)

εa

)2

≤ δ

2
(34)

for large b since d/a converges to a constant and d → ∞
as b → ∞. Similarly, it can be shown that

sup
S

P
S
1,d

⎛
⎝∑n′

b
j=d+1 Z (2)

α∗ [ j]

n′
b − d

< I (2)
∗ − εa

2(n′
b − d )

⎞
⎠ ≤ δ

2

(35)

for large b.
Define

t ′ �

⎡
⎢⎢⎢

1(
c′

1

I (1)
∗

+ 1−c′
1

I (2)
∗

)
min{I (1)

∗ , I (2)
∗ }

⎤
⎥⎥⎥ + 1.

Following arguments similar to (27)–(30), we can establish
that if (m − 1)t + 1 ≤ ζ ≤ mt for any m ≥ 1, we then have
that

sup
S

P
S
1,d (τW (α∗, b) > ζn′

b) ≤ t ′δm. (36)

Combining (32), (34), (35), and (36), we have that

sup
S

E
S
1,d

[
τW (α∗, b)

nb

]
≤ 1 + δ + lim

ξ→∞

ξ∑
ζ=2

t ′δz−1

= 1

1 − δ
+ t ′δ + (t ′ − 1)

δ2

1 − δ
� δ′′ (37)

where δ′′ → 0 as b → ∞. As a result, we have that from
(31) and (37)

WADDd (τW (α∗, b)) = sup
S

E
S
1,d [τW (α∗, b)]

≤ b

(
c′

1

I (1)
∗

+ 1 − c′
1

I (2)
∗

)
(1 + o(1)). (38)

Finally, from (30) and (38), the theorem is established.
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