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Abstract—In this paper we simulate an ensemble of cooperat-
ing, mobile sensing agents that implement the cyclic stochastic
optimization (CSO) algorithm in an attempt to survey, track,
and follow multiple targets. In the CSO algorithm proposed,
each agent uses its sensed measurements, its shared information,
and its predictions of other agents’ future motion to decide on its
next action. This decision is selected to minimize a loss function
that decreases as the uncertainty in the target state estimates
decreases. Only noisy measurements of this loss function are
available to each agent, and in this study, each agent attempts
to minimize this function by calculating its gradient. This paper
examines, via simulation-based experiments, the implications and
applicability of CSO convergence in three dimensions.

Keywords— Swarming, Cyclic Stochastic Optimization, Coopera-
tive Control

I. INTRODUCTION

This paper examines stochastic decentralized resource
optimization in the context of a multi-agent, multi-target
surveillance mission. The resources we consider are mo-
bile/unmanned agents which are capable of selecting their own
motion. The setting of this problem is deliberately generic,
so these unmanned agents could, for example, be aerial or
underwater. The mission of these agents is to learn as much as
possible about the kinetic states (position and velocity) of the
nearby targets. They do this by iteratively (one agent at-a-time)
minimizing a loss function which is stochastically measured.
This loss function decreases with growing information of the
targets, and by minimizing this loss function, the agents end
up tracking the targets. This idea was initially explored in [1]
and [2], but these studies were done in two dimensions. This
paper builds on those results by extending the study to three
dimensions, implementing a more accurate and stable estima-
tion method, and considering the applicability of this swarming
algorithm for a large number of agents. We even investigate
how multiple groups of agents (each group containing several
agents and working independently of any other group) track
and follow several targets.

This section begins by giving details of the problem,
discussing the assumptions we make, and comparing these
aspects of our study with those that are currently in the
swarming literature. This is done in Section I-A. Some brief
details regarding the loss function are then given in Section
I-B. In Section I-C, we discuss the various methods that can
be used to minimize such a loss function.

A. Problem Description and Assumptions

The problem discussed in this paper is how to configure
several mobile sensing agents over time and 3D space so that
their awareness of the targets is optimized. We say that an
agent’s “awareness” of a target increases if the uncertainty in
its estimates of the target’s states decreases.

We assume that some aspects of the agents and targets are
unpredictable in time, including target motion and sensing
reliability. Since aspects such as these change with time, no
steady-state solution exists; any optimal solution at a particular
time may not be optimal in the immediate future.

The agents optimize their configuration and orientation
using decentralized motion planning. In decentralized motion
planning, each agent decides on its heading and vertical
displacement at each time step via minimization of a loss
function. For each agent, this minimization is attempted ana-
lytically, i.e., it is done in one step and it is done by taking
the gradient of the stochastic loss function. These are the two
primary features of our proposed algorithm that distinguish it
from other swarming-type algorithms: (1) the loss function we
are minimizing changes at each time step, which necessitates
a quick (analytical and one-step) solution, and (2) the loss
function being minimized is stochastic. The efficacy of other
swarming algorithms in optimizing a stochastic function is
still not clear, while certain studies have shown that CSO does
converge when optimizing noisy functions (see Ref. [3]). Many
of the most common swarming optimization algorithms are
also derivative-free and require multiple steps in optimizing a
single function. Such algorithms would be impractical in the
setting we consider, and some of these algorithms are reviewed
below.

Genetic algorithms are swarming optimization algorithms
which begin by considering a set, or an initial population, of
possible solutions. The feasibility or fitness of each solution
in this set is then examined, and the set is then accordingly
refined into a new set of possible solutions. This new set
can be thought of as the next generation of the population.
This refinement is done using an action that is modeled after
genetic/evolutionary processes, such as mutation, crossover,
or reproduction. Genetic algorithms continue to refine this
set/population until they find the optimal solution. Genetic
algorithms have been successfully applied to many prob-
lems including those in operations management (see Ref.
[4]) and health (see Refs. [5], [6]). Differential evolution is
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another swarming optimization algorithm similar to genetic
algorithms. It too begins with an initial population, or set of
possible solutions. From these solutions, a new set of candidate
solutions are created, and if a candidate is superior to its
parents, it replaces its parents in the set of solutions. Variations
of it have also been successfully applied to many problems (see
Refs. [7], [8], [9]). The Artificial Bee Colony (ABC) algorithm
(see Refs. [10], [11]) is a swarming optimization algorithm
inspired by the food-seeking behavior of honey bees. In the
ABC algorithm, the optimal solution is found by “employed”
bees exploring solutions/sources of food, communicating their
findings to “onlooking” bees, after which the onlooking bees
select a source of food (a solution) that is better than the
current one. Particle Swarm Optimization (PSO) is yet an-
other swarming optimization algorithm modeled after animal
behavior (bird flocking). Like the other swarming algorithms,
PSO begins with a set of candidate solutions/particles. These
particles swarm towards the optimal solution by iteratively
evaluating the feasibility of the particles in the set, and flocking
towards those particles which have good (or better) solutions.
Just as with genetic algorithms and differential evolution, ABC
and PSO have been successfully applied to solve a myriad of
problems (see Refs [12], [13], [14]). In some cases, different
types of swarming algorithms are combined into one overall
optimization algorithm. In Fares et al. (Ref. [15]), for example,
a recently developed swarming algorithm called the whale
optimization algorithm (see Ref. [16]) is initially used to
explore spaces of the function to be optimized. The PSO then
acts on the feedback from the whale optimization algorithm
to finally optimize the function.

Even if convergence of these swarming algorithms in the
presence of a noisy objective function was guaranteed, ap-
plying algorithms such as these to our problem would be
impractical. In our case, the agents are not swarming to the
same point that minimizes the loss function. They are seeking
the optimal spatial arrangement, and they are doing this at
each time point. To apply any of the algorithms mentioned
above, multiple configurations of the agents would have to be
considered and repeatedly acted upon to find the optimal one.
This procedure would also have to happen at each time point
since the loss function at each time point is different. A more
efficient strategy is preferred, and that is why we consider
minimizing the loss function as we do. This loss function is
discussed in the section below.

B. The Loss Function

As in [2], the loss function is information-based, stochastic,
and time-varying. By information-based, we mean that the
function to be minimized quantifies the expected information
gain resulting from agents making specific motions. Having
agents or sensors select motions or actions to maximize some
measure of information on targets has been done before. In
Sinha et al. (Ref. [17]), for example, UAVs make decisions
to optimize an objective function which optimizes the de-
tectability and information on the kinetic states of ground-
based targets. Kreucher et al. (Ref. [18]) has sensors select
actions (where to move and what direction to emit energy, for

example) to maximize information gain on targets, and Yang
et al. (Ref. [19]) even studied sensor resource management
when information gain is optimized yet defined in alternative
ways.

The loss function we employ is also stochastic since it is
a function of the agent’s measurements of the targets. These
measurements are random, making the loss function random.
Randomness (or stochasticity) in the loss function changes
the minimization process because the algorithm often gets
misleading information about the fitness of the solution.

Finally, the loss function is time-varying since the agents
and targets move at every time step, and the motion of the
targets may be entirely unpredictable. As the agents and targets
move, the detectability of the targets, the view geometries of
the agents, and the agents’ ability to communicate change.
These changes affect the loss function. The subsection below
discusses two ways in which the loss function can be mini-
mized.

C. Centralized vs. Decentralized Optimization

Centralized and decentralized optimization methods each
have a role in resource optimization. In centralized optimiza-
tion, the action of all agents are optimized simultaneously,
whereas in decentralized optimization, each agent selects its
optimal move separately.

Because our agents do not perfectly communicate, they can
not always share information, and their decisions are often
based on limited data. Each agent must thus act individually.
If communications were not a problem, all agents would
simultaneously have the exact same information of all the
targets, and all the agents would coordinate together to arrive
at a globally optimal solution. This globally optimal solution
is identical to centralized optimization.

Some literature has recently emerged on cooperative control
of multiple agent systems (see Ref. [20] for a current and broad
overview). Tang et al. (Ref. [21]), for example, studied how
agents can cooperate to minimize the average amount of time
between target detections. Jin et al. (Ref. [22]) investigated
how effectively agents cooperate if the number and location
of the targets are known a priori, and DeSena et al. (Ref.
[24]) studied the effectiveness of multi-agent decentralized
collaboration as a function of communication connectivity.
It is still unclear, however, exactly how the decentralized
optimization process degrades the centralized solution when
the function being optimized is stochastically measured. Some
preliminary theoretical results have recently emerged, though,
regarding convergence conditions on the cyclic optimization
of stochastic functions (see Ref. [3]).

In Section II, more details of the decentralized control
problem are described. In Section III, we describe how each
agent estimates the states of the targets, and in Sections IV
and V, we describe the details of how an agent minimizes this
loss function. In Section VI, the results of some simulations
are given, and in Section VII, conclusions and areas of future
work are discussed.
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II. DECENTRALIZED CONTROL PROBLEM DEFINITION

We have a decentralized control problem in which each
agent decides its actions according to its estimates of targets
and its information communicated to it by other agents. We
refer to each agent’s iterative estimation and control process
as its perception-action cycle (PAC) (see, e.g., Ref. [25]). For
the agents considered in this paper, the PAC consists of the
following steps: sense, communicate, infer, decide, and move.
This process is illustrated in Figure 1, and a description of the
steps follows. In the description, the true state of target i at
time k will be denoted as

xk;i =
(
xEk;i, x

N
k;i, x

U
k;i, ẋ

E
k;i, ẋ

N
k;i, ẋ

U
k;i

)
,

where xEk;i is the east coordinate of target i at time k, xNk;i is
its north coordinate, xUk;i is its up (or vertical) coordinate, ẋEk;i
is its velocity in the east direction, ẋNk;i is its velocity in the
north direction, and ẋUk;i is its velocity in the up direction. And
in the simulations we conducted in this study, the procedure
described below was executed for each agent at each time step.

Fig. 1. Per-agent perception-action planning cycle.

1) SENSE: The agent measures the range, azimuth angle
and polar angle to all the targets that it senses. The range,
azimuth angle and polar angle that agent j measures to
target i at time k will be denoted rk;i;j , φk;i;j and θk;i;j ,
respectively, where

rk;i;j =
√

(∆E
k;i;j)

2 + (∆N
k;i;j)

2 + (∆U
k;i;j)

2

φk;i;j = tan−1
[
(∆N

k;i;j)/(∆
E
k;i;j)

]
,

θk;i;j = cos−1
[(

∆U
k;i;j

)/
rk;i;j

]
,

∆E
k;i;j = xEk;i − yEk;j ,

∆N
k;i;j = xNk;i − yNk;j ,

∆U
k;i;j = xUk;i − yUk;j ,

and
(
yNk;j , y

E
k;j , y

U
k;j

)
are the north, east, and up coordi-

nates of agent j.
2) COMMUNICATE: The agent sends state estimates,

Fisher information matrices, and its most recent motion
decision to peer agents. The reliability and latency of
these communications vary with the type of vehicle con-
sidered and the environment in which they are operating.

Pantelimon et al. (Ref. [26]) review the communication
strategies and hardware involved in various types of
unmanned vehicle deployments. For aerial vehicles, Wi-
Fi modules are the most common hardware. They have
a communication range close to 100m and a com-
munication latency on the order of one millisecond.
The size and the necessary programming involved in
setting up such Wi-Fi hardware is a drawback, however.
Bluetooth is a less reliable alternative and has a smaller
communication range, but it may be preferable to Wi-
Fi as it is lower in weight and complexity. Acoustic
communications are the best for underwater vehicles, but
the weight, complexity and cost of the hardware involved
in such communications is relatively high. The latency is
also quite large (close to 0.67 ms/m, see Ref. [27]). The
simulations we conduct in this study incorporate a model
for gradual attenuation of communication over distance,
and this is consistent with real-world performance.

3) INFER: Given the information sensed, the agent updates
the state estimate for each detected target via a second
order extended Kalman filter. The state estimate agent j
has of target i at time k given all the data up until (and
including) time k will be denoted as

x̂k|k;i;j =
(
x̂Ek|k;i;j , x̂

N
k|k;i;j , x̂

U
k|k;i;j ,̂̇xEk|k;i;j , ̂̇xNk|k;i;j , ̂̇xUk|k;i;j) .

The state estimate agent j has of target i at time k given
all the data up until (but not including) time k will be
denoted as

x̂k|k−1;i;j =
(
x̂Ek|k−1;i;j , x̂

N
k|k−1;i;j , x̂

U
k|k−1;i;j ,̂̇xEk|k−1;i;j , ̂̇xNk|k−1;i;j , ̂̇xUk|k−1;i;j) .

With these estimates and the other information commu-
nicated to it from peer agents, the agent estimates the
loss function. The details of this loss function are given
in Section IV.

4) DECIDE: The agent selects its next action (its heading
and vertical displacement) by minimizing its estimated
loss function. The details of this step are given in Section
V.

5) MOVE: Each agent updates its state according to its
selected action (its selected heading and vertical dis-
placement). It is assumed that the time scale is large
enough that rotational dynamics are negligible, and the
vehicle can instantaneously change direction. In this
paper, the state of agent j at time k will be denoted as
yk;j =

(
yEk;j , y

N
k;j , y

U
k;j , ẏ

E
k;j , ẏ

N
k;j , ẏ

U
k;j

)
, and the heading

of agent j at time k will be denoted γk;j . The relation
between γk;j and yk;j is γk;j = tan−1

(
ẏNk;j

/
ẏEk;j

)
.

As mentioned earlier, these steps are meant to occur sequen-
tially in agents and among agents, implying that an agent will
execute the entirety of these steps, then another agent will, then
another will, etc. The time difference between agents executing
the PAC steps thus has to account for communication latency
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and the time it takes an agent to do the necessary processing
and computing.

Section III gives the details on Steps 2 - 4, i.e., it discusses
how the agents sense and estimate the state of the targets.
Section IV then gives details on how each agent estimates
and attempts to minimize the loss function (Steps 3-4).

III. ESTIMATING THE STATE OF THE TARGET

This section describes how an agent estimates the states of
a target that it senses.

We begin by letting Sk;i;j = 1 if agent j senses target i and
Sk;i;j = 0 otherwise. Each agent also assumes that the motion
of target i can be characterized with the state equation

xk;i = Φxk−1;i + wk;i, (1)

where wk;i ∼ N (06×1,Q) , and

Φ =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (2)

The coordinates in Equation 1 are in East, North, and Up,
yet the agents sense range, azimuth and polar angle. The
measurements agent j makes of target i are thus

zk;i;j = h (xk;i) + vk;i;j = (rk;i;j , φk;i;j , θk;i;j)
T

+ vk;i;j ,

where vk;i;j ∼ N (03×1,R) , and R = diag
(
σ2
r , σ

2
φ, σ

2
θ

)
.

The agent then applies a second order extended Kalman
filter to obtain estimates of xk;i. A second order extended
Kalman filter is used rather than a first order extended Kalman
filter since it produces more accurate state estimates and the
additional computational cost of using it is negligible. The
details of how agent j calculates these estimates of target i
are given in the text box labeled “The Second Order Extended
Kalman Filter.”

With the estimates calculated in the extended Kalman filter,
an agent estimates a loss function. The motion it takes at time
k is selected to minimize this loss function. The details of
the loss function and its minimization are given in the section
below.

IV. FORMULATION AND MINIMIZATION OF THE LOSS
FUNCTION

As mentioned earlier, in each DECIDE step an agent selects
a heading and vertical displacement. This is done to minimize
a loss function which measures information over the targets.
The more information on the targets, the smaller the loss
function. In performing its local minimization, however, each
agent can only approximate the loss function using estimates
of target states and predictions of peer agent actions.

We define the “information” about target i using the Fisher
information matrix (FIM) of the state estimates on target
i. We denote the total pre-action FIM of target i at time
k as FTotal

k|k−1;i, where FTotal
k|k−1;i is the sum of every agent’s

knowledge (or “information”) about target i before data at

time k has been processed. It is meant to measure the entire
information of target i before time k, and it is mathematically
written as

FTotal
k|k−1;i =

A∑
j=1

Fk|k−1;i;j , (3)

where A is the total number of agents, and Fk|k−1;i;j is the
pre-action FIM that agent j has on target i’s states at time k,
i.e., Fk|k−1;i;j = P−1k|k−1;i;j . The total pre-action FIM of target
i at time k (as calculated in (3)) would be equivalent to the
true total Fisher information on target i if all measurements
and estimates on the target were independent, which they are
not. Independence of these measurements and estimates is an
assumption we are making in this study.

The Second Order Extended Kalman Filter
Let x̂k|k−1;i;j be the predicted state estimate of target
i by agent j, and let Pk|k−1;i;j be the corresponding
predicted error covariance of x̂k|k−1;i;j . That is,

Pk|k−1;i;j = E

[(
x̂k|k−1;i;j − xk;i

) (
x̂k|k−1;i;j − xk;i

)T ]
.

Then

x̂k|k;i;j = x̂k|k−1;i;j + Kk;i;juk;i;j1 (Sk;i;j = 1) ,

and

Pk|k;i;j = [I6×6 −Kk;i;jHk;i;j1 (Sk;i;j = 0)]Pk|k−1;i;j ,

where

Kk;i;j = Pk|k−1;i;jH
T
k;i;jS

−1
k;i;j ,

Hk;i;j =
∂h

∂x

∣∣∣∣
x=x̂k|k−1;i;j

,

Sk;i;j [l,m] = Hk;i;jPk|k−1;i;jH
T
k;i;j + R +[

1

2
tr
(
∇2
xhl
(
x̂k|k−1;i;j

)
Pk|k−1;i;j ·

∇2
xhm

(
x̂k|k−1;i;j

)
Pk|k−1;i;j

)]
uk;i;j [l] = zk;i;j −

{
h
(
x̂k|k−1;i;j

)
+

1

2
tr
[
∇2
xhl
(
x̂k|k−1;i;j

)
Pk|k−1;i;j

]}
.

With x̂k|k;i;j it is straight-forward for agent j to obtain
the predicted value of x for target i at time k+1. This
is x̂k+1|k;i;j = ΦΦΦx̂k|k;i;j and the predicted error co-
variance associated with this estimate is Pk+1|k;i;j =
ΦPk|k;i;jΦ

T + Q. The detailed calculations of Hk;i;j

are given in the Appendix.

We specifically use the log determinant of the pre-action
Fisher information, log |FTotal

k|k−1;i|, to quantify information
about target i before new data is acquired, and the log determi-
nant of the post-action Fisher information, log |FTotal

k|k;i (ξξξallk )|,
to quantify information about target i after new data is
acquired. This new data is obtained as a consequence of all
the agents executing actions ξξξallk at time k, where ξξξallk =(
ξξξk;1, ξξξk;2, . . . , ξξξk;A

)
, ξξξk;j is the action taken at time k by
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agent j, ξξξk;j =
(
γk;j , y

U
k;j

)T
, γk;j is the bearing agent j

takes at time k, and yUk;j is the vertical position it chooses at
time k. Mathematically, γk;j can be written as

γk;j = tan−1

(
yNk;j − yNk−1;j
yEk;j − yEk−1;j

)
.

The information gain on the states of target i at time k as a
result of the agents taking actions ξξξallk is then defined as the
difference between these measures of information,

log |FTotal
k|k;i (ξξξallk )| − log |FTotal

k|k−1;i|. (4)

With regard to these quantities, observe that the post-action
Fisher information FTotal

k|k;i (ξξξallk ) is random. It is random since
it depends on knowing which agents will detect target i after
all actions are executed at time step k. The post-action Fisher
information in turn depends on the unknown positions of the
targets and each agent’s imperfect detection capability. Any
loss function depending on FTotal

k|k;i (ξξξallk ) will thus be stochastic.
The loss function each agent hopes to minimize at time k

will be denoted as Lk
(
ξξξallk

)
. This loss function is defined

as the negative of the total information gain written in (4),
summed over the total number of targets, T .

Lk(ξξξallk ) = −
T∑
i=1

(
log
∣∣∣FTotal
k|k;i (ξξξallk )

∣∣∣− log
∣∣∣FTotal
k|k−1;i

∣∣∣) . (5)

The total information gain resulting from the actions ξξξallk
cannot be known in advance of (i) all of the agents carrying
out their respective actions, (ii) all targets moving (randomly)
over the time step interval, and (iii) all agent sensors imper-
fectly detecting and measuring targets. The agents must thus
minimize Lk while only being able to calculate estimated and
stochastic values of the loss function.

To execute the optimization within their respective DECIDE
steps, each agent needs to predict the loss function. Each agent
must therefore first predict the post-action Fisher information,
FTotal
k|k;i (ξξξallk ). It does this by replacing ξξξallk with its predicted

values of these components. It is specifically using its knowl-
edge of the other agents’ positions, orientations, and FIMs
(communicated to it at time k − 1) to arrive at a sensible
guess of what actions the other agents will take at time k. With
this prediction, each agent will have a prediction of the post-
action Fisher information. The post-action Fisher information
of target i predicted by agent j as a function of agent j’s
actions at time k will be denoted as F̂Total

k|k;i;j
(
ξξξk;j

)
, and this

will be calculated as

F̂Total
k|k;i;j

(
ξξξk;j

)
= FTotal

k|k;i

(
ξξξallk

)∣∣∣
ξξξ
all\j
k =ξ̂ξξ

all\j
k;j

,

where ξξξall\jk =
(
ξξξk;1, . . . , ξξξk;j−1, ξξξk;j+1, . . . , ξξξk;A

)
, ξ̂ξξ

all\j
k;j =(

ξξξk;1;j , . . . , ξξξk;j−1;j , ξ̂ξξk;j+1;j , . . . , ξ̂ξξk;A;j

)
, and ξ̂ξξk;l;j is the

action agent j predicts of agent l at time k . A more detailed
formula for F̂Total

k|k;i;j is given below in (6).

F̂Total
k|k;i;j

(
ξξξk;j

)
= Fk|k−1;i;j + (6)

π̂dk;i;j
(
ξξξk;j

) [
Ĥk;i;j

(
ξξξk;j

)]T
R−1Ĥk;i;j

(
ξξξk;j

)
+

+

A∑
l=1;l 6=j

{
Fk|k−1;i;l1 (Ck−1;l;j = 1) + π̂dk;i,l;j

(
ξ̂ξξk;l;j

)
×
[
Ĥk;i;l;j

(
ξ̂ξξk;l;j

)]T
R−1Ĥk;i;l;j

(
ξ̂ξξk;l;j

)}
,

where Ck−1;l;j is 1 if agents l and j communicate at time
k − 1 and 0 otherwise, π̂dk;i;l;j

(
ξ̂ξξk;l;j

)
is the probability that

agent l detects target i, as predicted by agent j, and the
matrix Ĥk;i;l;j(ξ̂ξξk;l;j) is the measurement sensitivity Jacobian
computed by agent j using its predicted positions of agent l
and target i. Note that the first two terms on the right-side of
the equality in (6) measure agent j’s contribution to the FIM
of target i. The first term is agent j′s pre-action Fisher and
the second is the additional information resulting from action
ξξξk;j . The last two terms on the right of (6) estimate the other
agents’ contribution to the Fisher of target i (as predicted by
agent j). The second-to-last term is agent l’s pre-action Fisher
on target i and the fourth is the additional information on
target i resulting from agent l taking the action agent j would
expect it to. We would like to remind the reader, again, that
this estimate of the post-action Fisher assumes independence
among the measurements.

With the estimated FIM calculated as it is in (6), agent
j calculates a predicted post-action loss value by summing
the information losses over all of the targets. This predicted
post-action loss of agent j’s is denoted as L̂k;j

(
ξξξk;j

)
and is

calculated as

L̂k;j
(
ξξξk;j

)
= −

T∑
i=1

(
log
∣∣∣F̂Total
k|k;i;j

(
ξξξk;j

)∣∣∣− log |FTotal
k|k−1;i|

)
.

(7)
Recall this is an approximation to the actual loss. The value
of L̂k;j can be thought of as Lk conditioned on agent j’s pre-
dicted positions of all targets and agents. Hernandez (Ref. [3])
gives the conditions on Eqn. (7) which guarantee convergence
of the CSO when trying to minimize such a function. These
conditions do not necessarily apply and can be severely relaxed
in our situation, however. If each agent were iteratively making
multiple moves to minimize one stochastically measured loss
function, the conditions on Eqn. (7) given in Ref. [3] would
apply. This is not the case, however. Recall that at each time
step, each agent only has the time to make one move (not
several moves), and all that is necessary is that this move
sufficiently goes in the right direction towards minimizing the
loss function.

Before we discuss how the loss function at each time step is
minimized, it is important that we mention that L̂k;j is a biased
predictor of Lk. The estimated loss and/or its gradient must be
an unbiased predictor of the true (unknown) loss or gradient
(see Ref. [28], Chaps. 4–7) for classic stochastic optimization



6

results to hold. If the probability distributions of Lk and L̂k;j
are the same, then E

(
Lk − L̂k;j

)
= 0, making L̂k;j unbiased.

We discuss an approximate resolution to this issue below.

Note that the only distinction between Lk and L̂k;j is
the different form for the updated Fisher information. For
Lk, we use FTotal

k|k;i (ξk), while for L̂k;j , we use F̂Total
k|k;i;j .

The probability distributions of Lk and L̂k will therefore be
identical if the distributions of FTotal

k|k;i (ξk) and F̂Total
k|k;i;j(ξ̂k) are

identical.

We now describe a method by which we attempt to mitigate
the bias issue. We first discuss the method in the idealized case
of a linear state-space model with Gaussian randomness. We
then offer comments relative to our more practical nonlinear
setting.

From standard orthogonality properties and notation of the
generic Kalman filter, it is known that with linear state-
space models and Gaussian randomness, the one-step ahead
prediction x̂k|k−1 is independent of the estimation error
εk|k−1 = xk − x̂k|k−1. The standard one-step-ahead error-
covariance matrix calculated in the Kalman filter, Pk|k−1, is
the covariance of this estimation error, i.e.,

εk|k−1 ∼ N
(
0,Pk|k−1

)
. (8)

And with the distribution given in (8), one can create a
simulated true state by adding a simulated value of εk to the
prediction, x̂k|k−1. In the case of the linear state-space model
with Gaussian errors, this simulated true state has a distribution
identical to the unknown true state, xk.

In the context of the problem discussed here, we let
xk|k−1;i;j be agent j’s simulated true state of target i at
time step k. That is, each of these will be states formed by
adding the above-mentioned Monte Carlo randomness to the
corresponding one-step ahead filter estimates. To state this
mathematically,

xk|k−1;i;j = x̂k|k−1;i;j + εk|k−1;i;j , (9)

where εk|k−1;i;j ∼ N
(
06×1,Pk|k−1;i;j

)
.

Although the adjustment in (9) makes E
(
Lk − L̂k;j

)
= 0

when the state-space model is fully linear, the actual case of
interest here involves a nonlinear measurement equation. The
Monte Carlo adjustment to produce a simulated true state is
thus an approximation that is valid to the extent that the EKF
acts like a standard Kalman filter.

Now that each agent can estimate a loss function, it can
decide (in its DECIDE step) which heading to take and how
to vertically displace itself at time k. As mentioned earlier, this
involves agent j minimizing L̂k;j

(
ξξξk;j

)
with respect to γk;j

and yUk;j . Agent j selects its heading and vertical displacement
at time k by taking the stochastic gradient of L̂k;j with
respect to γk;j and yUk;j , respectively. The heading and vertical

displacement agent j select at time k are calculated as

γk;j = γk−1;j − ak
∂L̂k;j

(
γ, yU

)
∂γ

∣∣∣∣∣
γ=γk−1;j ,yU=yUk−1;j

,(10)

and

yUk;j = yUk−1;j − bk
∂L̂k;j

(
γ, yU

)
∂yU

∣∣∣∣∣
γ=γk;j ,yU=yUk−1;j

,(11)

where ak and bk are predefined sequences of numbers selected
by the user. This is done iteratively (using the seesaw method),
until some convergence threshold or fixed maximum number
of iterations is reached. The details of the seesaw method are
given in the next section, and the actual calculations for the
derivatives in (10) and (11) are given in Sections A - C of the
Appendix.

V. CYCLIC STOCHASTIC OPTIMIZATION AND THE SEESAW
METHOD

When the number of parameters is large, the problem of
jointly minimizing a loss function with respect to multiple
parameters can incur excessively high computational cost. This
computational cost can be reduced, however, using conditional
optimization methods. In such methods, the loss function is
minimized with respect to a subset of the parameters while the
rest of the parameters are held fixed. Cyclic optimization seeks
to combine algorithms for performing conditional optimization
with the hopes of obtaining a solution to the joint optimization
problem [29]. A specific case of cyclic optimization is CSO,
which applies when the loss function to be minimized is
random or measured with error.

The CSO technique employed in this project is the seesaw
method. In the seesaw method, each agent selects an action in
an attempt to minimize its contribution to the loss function.
The agent does this given knowledge (possibly imperfect
knowledge) of other agents. Before attempting to minimize
the loss function, however, each agent iteratively incorporates
the other agents’ information and decisions.

A desired feature of any algorithm we use is that each
agents’ local estimates and control actions converge to the
global optimum. This convergence should occur under rea-
sonable conditions, and these conditions are usually related
to how well the agents communicate. Two desirable aspects
of the seesaw method are: (i) it is a hybrid technique that
can operate in either a centralized or decentralized mode, and
(ii) the formal structure lends itself to rigorous empirical and
theoretical analysis.

The seesaw method specifically divides the entire param-
eter (or decision) vector into at least two subvectors. Each
subvector corresponds to the parameters/decisions associated
with one of the agents. As an example, consider a special
case where two agents cooperate to minimize a loss function.
In this example we will assume this loss does not depend on
time (and will thus not be indexed by k). We will write this
loss function as L, and L will depend on the decisions of the
two agents, βββall, where

βββall =
(
βββT1 ,βββ

T
2

)T
,
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and βββj is the decision vector associated with agent j. Mathe-
matically we write the loss function as

L = L
(
βββall
)
.

In the seesaw process, iteration by iteration, subvector βββ1 is
improved (possibly optimized) conditioned on the most recent
value of βββ2 and, likewise, βββ2 is improved (possibly optimized)
based on the most recent value of βββ1. The estimate at the very
end of seesaw iteration t thus has the form

β̂ββ
all, ssawt ≡

[(
β̂ββ
ssawt

1

)T (
β̂ββ
ssawt

2

)T]T
,

with β̂ββ
ssawt

1 a function of β̂ββ
ssawt−1

1 and β̂ββ
ssawt−1

2 , and β̂ββ
ssawt

2 a
function of β̂ββ

ssawt−1

2 and β̂ββ
ssawt

1 . While this scheme allows for
the localized (decentralized) optimization of each subvector,
it does not allow for the optimization of the overall decision
vector βββ. This is not always true when the loss function is not
stochastic.

The above ideas apply directly to an M -agent process,
where M > 2. In the case of M agents, suppose that

βββall =
[
βββT1 , βββ

T
2 , βββ

T
3 , · · · βββ

T
M

]T
,

where βββ1,βββ2, . . . ,βββM are subevectors, each subvector corre-
sponding to one agent’s decision variables, and each processed
in the exact same sequential manner as the two-stage algorithm
described above. That is, the vectors are processed sequentially
such that

L(β̂ββ
all, ssawt+1

) ≤ . . .
≤ L(β̂ββ

ssawt+1

1 , β̂ββ
ssawt+1

2 , β̂ββ
ssawt

3 , . . . , β̂ββ
ssawn

M )

≤ L(β̂ββ
ssawt+1

1 , β̂ββ
ssawt

2 , . . . , β̂ββ
ssawt

M )

≤ L(β̂ββ
all, ssawt

)
(12)

subject to β̂ββ
all, ssawt+1 6= β̂ββ

ssawt

only if L(β̂ββ
all, ssawt+1

) <

L(β̂ββ
ssawt

).
Because of the imperfect information each agent has about

the entire system, the seesaw process we employ in this
problem has to work with a stochastic loss function. In
particular, each agent will have a “noisy” estimate of the global
loss L. This noisy estimate of L can be generically written as
L̂
(
βββall
)

, where

L̂(βββall) ≡ L(βββall) + ε(βββall) (13)

and ε(βββall) represents the error due to random quantities such
as imperfect state estimates. At each iteration of the seesaw
process, each agent selects an action (a value of βββj) in an
attempt to minimize its contribution to L̂(βββall). The overall
aim is to minimize the unknown (ideal) loss L while only
using information that is associated with the available L̂. In
our surveillance problem, the true loss in (5) and the noisy
loss in (7) play the role of L and L̂, respectively, in (13).

At each iteration of the process, the contribution of each
agent may only be improved, versus being optimized. Ref. [29]
shows that convergence to a centralized solution is possible
with improvement at the per-agent level. In fact, convergence

is guaranteed if, at each iteration, only one of the M agents
improves a sufficient amount.

In the simulations, the agents execute the seesaw within
the DECIDE step at time k as follows: the agents alternately
choose an action by trying to minimize their respective loss
functions using their respective current estimates of target
states and their predicted actions of peer agents they have
yet (or failed) to communicate with. Each agent predicts each
target to move with the same heading and speed as estimated
in the previous time step, and each peer agent it has not
communicated with is projected to move in the same direction
and speed it did in the previous time step. The seesaw process
continues for a prescribed number of iterations, at which point
the final decisions are executed. The process is then repeated
for each time step k.

We investigated the performance of our proposed CSO
algorithm with simulation studies. These simulation studies
are described in the next section.

VI. SIMULATION STUDIES

To test whether the cyclic stochastic optimization algorithm
we propose in this paper is effective, we conducted several
simulation studies. In the first simulation study, we considered
two agents and two targets. In the second and third study,
we considered three agents and two targets. In the fourth
simulation study, we show how two groups of two agents
simultaneously track two targets (note that these two groups of
agents are independent of one another, and no communication
takes place between the two groups), and in the fifth study, two
groups of four agents independently and simultaneously track
four targets. The trajectory of the agents and targets in these
simulations are shown in Figures 3 - 12. A small number of
agents were selected for these five simulation studies so that
the reader can get a clear understanding of how our algorithm
performs. Visually inspecting the trajectories of more than
eight agents is difficult to do. In our final studies, however,
we do examine the performance of our algorithm when many
agents (many more than four) are tracking a set of targets.

In each simulation, the starting location of both the agents
and the targets was random (each location was uniformly
drawn within an 8 × 8 × 8 cube centered at the origin). The
motion of the targets throughout each simulation was random
and meant to mimic Brownian motion. At each time point
during a simulation, each target randomly selected a heading
(uniformly between 0 and 2π) and then moved .1 units of
distance in that direction. Each target also selected a vertical
displacement at each time point. This was randomly drawn
from a uniform distribution on [-.15, .15]. This motion of the
targets, however, is a significant departure from their motion
as assumed by the agents.1

1As mentioned in the introduction, the setting of this problem is deliberately
generic. If the unmanned agents were drones, which have a maximum speed of
approximately 65mph ≈ 10ft/.1sec = 30ft/.3sec, the units of distance could be
100 feet and the time units could be one second, or the units of distance could
be 300 feet and the time units could be 3 seconds. If the agents were undersea
vehicles, which travel at a maximum speed of over 15 knots (approximately
20mph ≈ 10 yards/sec = 20 yards/2sec), the units of distance could be 100
yards and the units of time 10 seconds, or the units of distance could be 200
yards yards and the units of time could be 20 seconds.
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As stated in Section III, the agents assumed the targets
followed the motion model of xk;i = Φxk−1;i + wk, where
Φ is given in (2), ∆t = .1, and wk ∼ N (06×1,Q)
with Q = diag (.03, .03, .03, .01, .01, .01) . The probability
of detection, πd, decays with the distance between agent and
target according to the function given in (14)

πdk;i;j = exp
{
−
[(

∆E
k;i;j

)2
+
(
∆N
k;i;i

)2
+
(
∆U
k;i;i

)2]/
100
}
. (14)

The probability agent j successfully communicates with agent
l at time k is calculated as

ρk;j→l = exp
{
−
[(
yEk;j − yEk;l

)2
+
(
yNk;j − yNk;l

)2
+
(
yUk;j − yUk;l

)2]/
200
}
. (15)

We select this communication probability to illustrate that
our methodology is robust to non-ideal communications. The
communications are non-ideal since, at a specific distance, the
probability of two agents successfully communicating is only
slightly larger than the probability of an agent detecting an
adversarial vehicle. This is shown in Figure 2. In Section D of
the Appendix, we illustrate how the algorithm would perform
with more reliable communications.
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Fig. 2. The probability of detection, πd
k;i;j , and the probability of commu-

nication, ρk;j→l(200), as a function of distance.

The values of σθ, σφ, and σr are all .01, and the step-sizes
in the stochastic gradient calculation, ak and bk, were set to
1 and 0.1, respectively, for all values of k. Images of the first
five simulation studies are given in Figures 3 - 12. The paths
of both targets are given in different shades of black (in the
North-East plots their starting positions are circles and their
final positions are squares), and the trajectories of the agents
are given in red, blue, and green. Just as with the agents, in the

North-East plots their starting positions are circles and their
final positions are squares.
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Fig. 3. The North-East motion of two targets and two agents across time
(1500 time points).
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Fig. 4. The vertical motion of two targets and two agents across time (1500
time points).

Figures 3 - 4 show the results of the first simulation. In
these figures it is clear that the agents effectively track and
go in the direction of the targets. The red agent loops around
the other vehicles to eventually track the black target which
is moving west. The blue agent travels northeast to track the
grey target. These agents seem to stick with the targets they
are following vertically as time progresses as well. In Figure
5 - 6 we have three agents and two targets. Observe how the
green agent starts at roughly the same vertical position as the
grey target and travels southwest to track it, while the blue
agent starts at roughly the same vertical position as the black
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Fig. 5. The North-East motion of two targets and three agents across time
(2000 time points).
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Fig. 6. The vertical motion of two targets and three agents across time (2000
time points).

target and travels northeast to track it. Also observe that the
red agent departs and circles the scene; since both targets have
been tracked by the other agents, any additional information
the red agent will gain by moving closer to the any of the two
targets is negligible. The red agent thus keeps its distance.
This same story is told in Figures 7 and 8; in this case the
green agent departs and circles the scene.

In Figures 9 - 10, we see what happens when two groups
of two agents independently and simultaneously track two
targets. One group of agents is in red and the other is in
blue. In this case, the phenomenon observed in Figures 5 -
6 and Figures 7 - 8 (one agent departing and circling around
the other vehicles) does not occur. This is because the agents
that are following the same target are operating independently
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Fig. 7. The North-East motion of two targets and three agents across time
(1500 time points).
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Fig. 8. The vertical motion of two targets and three agents across time (1500
time points).

and not communicating with one another. Each target is thus
very closely followed by two agents. The same story is told in
Figures 11 - 12 which illustrate our fifth simulation study. In
this case, two groups of four agents (a total of eight agents)
independently and simultaneously track four targets.

Another set of simulation studies were done to uncover the
average behavior of multiple agents against a set of targets.
One hundred simulations were done in each study, and the
median minimum distance to an agent from each target was
calculated at each time point. We denote this distance at
time k as mk. The results in Figure 13 are when T , the
total number of targets, is 2, and the result in Figure 14
is when T = 4. Figure 13 shows that when A = 2, i.e.,
when there are two agents communicating with each other,
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Fig. 9. The North-East motion of two targets and two groups of two agents
across time (1500 time points).
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Fig. 10. The vertical motion of two targets and two groups of two agents
across time (1500 time points).

the agents converge towards the targets. This convergence is
more pronounced when there are 5 agents tracking two targets.
An additional five agents (for a total of 10) only provides a
slight improvement, and this is mostly likely a consequence
of the behavior observed in Figures 5 - 8. Recall that these
figures illustrate that an excessive number of communicating
agents does not help in tracking and following targets, as the
additional information an extra agent provides on the kinetic
states of a target is negligible.

The simulated setting which provides the fastest and closest
tracking is when five groups of two agents independently
and simultaneously track the targets. This is a scaled-up
version of the simulation shown in Figures 9 - 10, where two
groups (as opposed to five) of two agents independently and
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Fig. 11. The North-East motion of four targets and two groups of four agents
across time (1500 time points).
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Fig. 12. The vertical motion of four targets and two groups of four agents
across time (1500 time points).

simultaneously track two targets. The convergence in this case
is shown by the magenta line in Figure 13 and is so prompt
and close since (within each group of agents) there are no
extraneous agents whose additional information is negligible.
This type of convergence is observed on a larger scale in
Figure 14, where eight groups of four agents (a total of
32 agents) track four targets. This simulation is a scaled-up
version of the simulation shown in Figures 11 - 12, where only
two (as opposed to eight) groups of four agents independently
and simultaneously track four targets.

As can be seen in Figures 3 - 14, it appears that, on average,
the targets are detected and found relatively quickly. This
implies that the agents consistently choose (via the stochastic
gradient method) to be close to a target. Recall that the closer
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(8 groups of 4 agents).

an agent is to a target, the more likely it is to gain information
about the target’s states, and information gain on the states of
all of the targets is the ultimate goal.

We also explored how the computational cost of the algo-
rithm scales with the number of agents, A, and the number of
targets, T . Table I gives the average CPU time it takes to run
one simulation for 4000 time steps (using MATLAB 2020b
on a MacBook Pro with a 2.3 GHz 8-Core Intel Processor).
Table I also gives the average CPU time it takes for one agent
to do the necessary filtering and processing in one time step.
We refer to the former metric as the simulation time (ST) and
the latter metric as Agent Processing Time (APT). The APT
may be useful in a practical setting when scheduling the time
delay between two different agents executing the PAC steps.

Plotting mean ST as T increases with the value of A fixed
(at A = 5) and plotting mean ST as A increases with the
value of T fixed (at T = 2), it is clear that the computational
cost of the simulation grows quadratically with the number of
agents and linearly with the number of targets. Plotting mean

TABLE I
THE AVERAGE SIMULATION TIME (ST) AND THE AVERAGE AGENT

PROCESSING TIME (APT) IN SECONDS.

A T Mean ST Mean APT
2 2 47.86 .00487
5 2 203.33 .00934
5 3 273.62 .0127
5 4 377.56 .0176
5 5 498.42 .0232
5 10 879.46 .0412
5 15 1256.10 .0584

10 2 679.91 .0161
15 2 1431.37 .0228
20 2 2537.79 .0305
25 2 3817.83 .0368

APT as T increases with the value of A fixed (at A = 5) and
plotting mean APT as A increases with the value of T fixed
(at T = 2), it is clear that the computational cost of the agent
processing time grows linearly with the number of agents and
the number of targets.

VII. CONCLUSIONS

We have observed in our simulation study that our proposed
CSO is effective. On average, agents do successfully swarm
to locate, track, and follow the moving enemy assets. Our
proposed CSO algorithm is also simple. It requires that each
agent iteratively (one-at-a-time) sense the targets, communi-
cate its position and FIMs, estimate a loss function which
decreases with decreasing uncertainty in the estimated states,
and then selects a motion that minimizes its contribution to this
loss function. Areas of future work include accounting for the
dependence in the measurements collected by the agents, and
possibly avoiding agent collisions.

APPENDIX

A. Calculation of Hk;i;j

We will let Hk;i;j [a, b] denote the element of Hk;i;j in row
a and column b. Unless otherwise indicated, Hk;i;j [a, b] = 0.

Hk;i;j [1, 1] = ∆̂E
k|k−1;i;j

/
r̂k|k−1;i;j

Hk;i;j [1, 2] = ∆̂N
k|k−1;i;j

/
r̂k|k−1;i;j

Hk;i;j [1, 3] = ∆̂U
k|k−1;i;j

/
r̂k|k−1;i;j

Hk;i;j [2, 1] = − ∆̂N
k|k−1;i;j

/
f̂k|k−1;i;j

Hk;i;j [2, 2] = ∆̂E
k|k−1;i;j

/
f̂k|k−1;i;j

Hk;i;j [3, 1] =

[
1−

(
∆̂U
k|k−1;i;j

/
r̂k|k−1;i;j

)2]− 1
2

×

∆̂U
k|k−1;i;j∆̂

E
k|k−1;i;j

/(
r̂k|k−1;i;j

)3
Hk;i;j [3, 2] =

[
1−

(
∆̂U
k|k−1;i;j

/
r̂k|k−1;i;j

)2]− 1
2

×

∆̂U
k|k−1;i;j∆̂

N
k|k−1;i;j

/(
r̂k|k−1;i;j

)3
Hk;i;j [3, 3] = −

[
1−

(
∆̂U
k|k−1;i;j

/
r̂k|k−1;i;j

)2]− 1
2

×



12

 1

r̂k|k−1;i;j
−

(
∆̂U
k|k−1;i;j

)2
(
r̂k|k−1;i;j

)3


r̂k|k−1;i;j =

[(
∆̂E
k|k−1;i;j

)2
+
(

∆̂N
k|k−1;i;j

)2
+

(
∆̂U
k|k−1;i;j

)2] 1
2

f̂k|k−1;i;j =

[(
∆̂E
k|k−1;i;j

)2
+
(

∆̂N
k|k−1;i;j

)2] 1
2

∆̂E
k|k−1;i;j = x̂Ek|k−1;i;j − y

E
k;j

B. Equation (10)

∂L̂k;j(γ, y
U )

∂γ

∣∣∣∣∣
γ=γk−1;j ,yU=yUk−1;j

= −
T∑
i=1

{∣∣∣F̂Total
k|k;i;j

(
ξξξk;j

)∣∣∣ ·
Tr

[
F̂Total
k|k;i;j

(
ξξξk;j

)−1 ∂F̂Total
k|k;i;j

(
ξξξk;j

)
∂γ

]}∣∣∣∣∣
γ=γk−1;j ,yU=yUk−1;j

where

∂F̂k|k;i;j
(
ξξξk;j

)
∂γ

∣∣∣∣∣
γ=γk−1;j ,yU=yUk−1;j

=

[
∂π̂dk;i;j

(
ξξξk;j

)
∂γ

Ĥk;i;j

(
ξξξk;j

)T
R−1Ĥk;i;j

(
ξξξk;j

)
+

π̂dk;i;j
(
ξξξk;j

)∂Ĥk;i;j

(
ξξξk;j

)
∂γ

T

R−1Ĥk;i;j

(
ξξξk;j

)
+

Ĥk;i;j

(
ξξξk;j

)T
R−1

∂Ĥk;i;j

(
ξξξk;j

)
∂γ

}]∣∣∣∣∣
γ=γk−1;j ,yU=yUk−1;j

,

∂π̂dk;i;j
(
ξξξk;j

)
∂γ

∣∣∣∣∣
γ=γk−1;j

= −π̂dk;i;j
(
ξξξk;j

)
·
r̂k|k−1;i;j

50

(
∂r̂k|k−1;i;j

∂γk−1;j

)
, and

∂r̂k|k−1;i;j

∂γk−1;j
=
∂rk|k−1;i;j

∂γ

∣∣∣∣
γ=γk−1;j

=
(
r̂k|k−1;i;j

)−1 (
∆̂E
k|k−1;i;j sin (γk−1;j)

−∆̂N
k|k−1;i;j cos (γk−1;j)

)
.

Below are the elements of
∂Ĥk;i;j(ξξξk;j)

∂γ

∣∣∣∣
γ=γk−1;j ,yU=yUk−1;j

.

For notational simplicity, we denote the (a, b)th element in
this matrix as Ĥderiv, γ

k;i;j [a, b], and unless otherwise stated,
Ĥderiv, γ
k;i;j [a, b] = 0.

Ĥderiv, γ
k;i;j [1, 1] = −

x̂Ek|k−1;i;j

r̂2k|k−1;i;j

(
∂r̂k|k−1;i;j

∂γk−1;j

)

−

[
∂yEk−1;j
∂γk−1;j

(
1

r̂k|k−1;i;j

)
−

yEk−1;j
r̂2k|k−1;i;j

(
∂r̂k|k−1;i;j

∂γk−1;j

)]

Ĥderiv, γ
k;i;j [1, 2] = −

x̂Nk|k−1;i;j

r̂2k|k−1;i;j

(
∂r̂k|k−1;i;j

∂γk−1;j

)
−

[
∂yNk−1;j
∂γk−1;j

(
1

r̂k|k−1;i;j

)
−

yNk−1;j
r̂2k|k−1;i;j

(
∂r̂k|k−1;i;j

∂γk−1;j

)]

Ĥderiv, γ
k;i;j [1, 3] = −

x̂Uk|k−1;i;j

r̂2k|k−1;i;j

(
∂r̂k|k−1;i;j

∂γk−1;j

)
−

[
∂yUk−1;j
∂γk−1;j

(
1

r̂k|k−1;i;j

)
−

yUk−1;j
r̂2k|k−1;i;j

(
∂r̂k|k−1;i;j

∂γk−1;j

)]

Ĥderiv, γ
k;i;j [2, 1] = 2

x̂Nk|k−1;i;j

f̂3k|k−1;i;j

∂f̂k|k−1;i;j

∂γk−1;j

+

[
∂yNk−1;j
∂γk−1;j

(
1

f̂2k|k−1;i;j

)
− 2

yNk−1;j

f̂3k|k−1;i;j

∂f̂k|k−1;i;j

∂γk−1;j

]

Ĥderiv, γ
k;i;j [2, 2] = −2

x̂Ek|k−1;i;j

f̂3k|k−1;i;j

∂f̂k|k−1;i;j

∂γk−1;j

−

[
∂yEk−1;j
∂γk−1;j

(
1

f̂2k|k−1;i;j

)
− 2

yEk−1;j

f̂3k|k−1;i;j

∂f̂k|k−1;i;j

∂γk−1;j

]

Ĥderiv, γ
k;i;j [3, 1] = −

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 3

2

×

(
∆̂U
k|k−1;i;j

)3
∆̂E
k|k−1;i;j

r̂6k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j

−2

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 1

2

×

(
∆̂U
k|k−1;i;j∆̂

E
k|k−1;i;j

r̂4k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j

−1

2

∆̂U
k|k−1;i;j

r̂2k|k−1;i;j
·

[
−
x̂Ek|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j
−{

∂yEk−1;j
∂γk−1;j

1

r̂k|k−1;i;j
−

yEk−1;j
r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j

}])

Ĥderiv, γ
k;i;j [3, 2] = −

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 3

2

×

(
∆̂U
k|k−1;i;j

)3
∆̂N
k|k−1;i;j

r̂6k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j

−2

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 1

2

×

(
∆̂U
k|k−1;i;j∆̂

N
k|k−1;i;j

r̂4k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j
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−1

2

∆̂U
k|k−1;i;j

r̂2k|k−1;i;j
·

[
−
x̂Nk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j
−{

∂yNk−1;j
∂γk−1;j

1

r̂k|k−1;i;j
−

yNk−1;j
r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j

}])

Ĥderiv, γ
k;i;j [3, 3] =

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 3

2

×
∂r̂k|k−1;i;j

∂γk−1;j


(

∆̂U
k|k−1;i;j

)2
r̂4k|k−1;i;j

−

(
∆̂U
k|k−1;i;j

)4
r̂6k|k−1;i;j


+

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 1

2 (
1

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j

−2

(
∆̂U
k|k−1;i;j

)2
r̂4k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j
+

∆̂U
k|k−1;i;j

r̂2k|k−1;i;j

×

[
−
x̂Uk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j
−

{
∂yUk−1;j
∂γk−1;j

1

r̂k|k−1;i;j

−
yUk−1;j
r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂γk−1;j

}])
where

∂yEk−1;j
∂γk−1;j

=
∂yEk−1;j
∂γ

∣∣∣∣∣
γ=γk−1;j

= − sin (γk−1;j) ,

∂yNk−1;j
∂γk−1;j

=
∂yNk−1;j
∂γ

∣∣∣∣∣
γ=γk−1;j

= cos (γk−1;j) ,

∂yUk−1;j
∂γk−1;j

= 0,

f̂k|k−1;i,j =

[(
∆̂E
k|k−1;i;j

)2
+
(

∆̂N
k|k−1;i;j

)2] 1
2

, and

∂f̂k|k−1;i;j

∂γk−1;j
=

∂fk|k−1;i;j

∂γ

∣∣∣∣
γ=γk−1;j

=
(
f̂k|k−1;i;j

)−1
×(

∆̂E
k|k−1;i;j sin (γk−1;j)−

∆̂N
k|k−1;i;j cos (γk−1;j)

)
.

C. Equation (11)
The calculations for Equation (11) are very similar to those

of Equation (10), except instead of taking the derivative with
respect to γ, the derivative is taken with respect to yU . The
necessary derivatives are given below.

∂π̂dk;i;j
(
ξξξk;j

)
∂yU

∣∣∣∣∣
yU=yUk−1;j

= −π̂dk;i;j
(
ξξξk;j

)
·
r̂k|k−1;i;j

50

(
∂r̂k|k−1;i;j

∂yUk−1;j

)
, and

∂r̂k|k−1;i;j

∂yUk−1;j

=
∂rk|k−1;i;j

∂yU

∣∣∣∣
yU=yUk−1;j

= −∆̂U
k|k−1;i;j

/
r̂k|k−1;i;j .

Below are the elements of
∂Ĥk;i;j(ξξξk;j)

∂yU

∣∣∣∣
γ=γk−1;j ,yU=yUk−1;j

.

For notational simplicity, we denote the (a, b)th element in
this matrix as Ĥderiv, yU

k;i;j [a, b], and unless otherwise stated,
Ĥderiv, γ
k;i;j [a, b] = 0.

ĤDeriv, yU

k;i;j [1, 1] = −
x̂Ek|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

ĤDeriv, yU

k;i;j [1, 2] = −
x̂Nk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

ĤDeriv, yU

k;i;j [1, 3] = −
x̂Uk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j
− 1

r̂k|k−1;i;j

ĤDeriv, yU

k;i;j [3, 1] =

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 3

2

×

(
∆̂U
k|k−1;i;j

)2
∆̂E
k|k−1;i;j

r̂4k|k−1;i;j

[
−
x̂Uk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j
−(

1

r̂k|k−1;i;j
−

yUk−1;i;j
r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

)]
−

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 1

2

(

∆̂U
k|k−1;i;j∆̂

E
k|k−1;i;j

)
r̂4k|k−1;i;j

·
∂r̂k|k−1;i;j

∂yUk−1;j
−

(
∆̂E
k|k−1;i;j

)
r̂k|k−1;i;j

(
−2

x̂Uk|k−1;i;j

r̂3k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j
−

[
1

r̂2k|k−1;i;j
− 2

ŷUk−1;i;j
r̂3k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

]))

ĤDeriv, yU

k;i;j [3, 2] =

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 3

2

(
∆̂U
k|k−1;i;j

)2
∆̂N
k|k−1;i;j

r̂4k|k−1;i;j

[
−
x̂Uk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j
−(

1

r̂k|k−1;i;j
−

yUk−1;i;j
r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

)]
−

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 1

2

(

∆̂U
k|k−1;i;j∆̂

N
k|k−1;i;j

)
r̂4k|k−1;i;j

·
∂r̂k|k−1;i;j

∂yUk−1;j
−

(
∆̂N
k|k−1;i;j

)
r̂k|k−1;i;j

(
−2

x̂Uk|k−1;i;j

r̂3k|k−1;i;j
·

∂r̂k|k−1;i;j

∂yUk−1;j
−

[
1

r̂2k|k−1;i;j
− 2

ŷUk−1;i;j
r̂3k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

]))



14

ĤDeriv, yU

k;i;j [3, 3] =

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 3

2

 1

r̂k|k−1;i;j
−

(
∆̂U
k|k−1;i;j

)2
r̂3k|k−1;i;j

(∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)
·

[
−
x̂Uk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1

∂yUk−1;j
−
(

1

r̂k|k−1;i;j
+

yUk−1;j
r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

)]
−

1−

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)2
− 1

2

·

×

{
− 1

r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j
−

[
∆̂U
k|k−1;i;j

r̂2k|k−1;i;j
·(

−
x̂Uk|k−1;i;j

r̂2k|k−1;i;j

∂r̂k|k−1

∂yUk−1;j
−
(

1

r̂k|k−1;i;j
+

yUk−1;j
r̂2k|k−1;i;j

∂r̂k|k−1;i;j

∂yuk−1;j

))
+

(
∆̂U
k|k−1;i;j

r̂k|k−1;i;j

)
·(

−2
x̂Uk|k−1;i;j

r̂k|k−1;i;j

∂r̂k|k−1

∂yUk−1;j
−

(
1

r̂2k|k−1;i;j
−

2
yUk−1;j
r̂3k|k−1;i;j

∂r̂k|k−1;i;j

∂yUk−1;j

))]}

D. Comparing Communication Probabilities

The communication probability used in the simulations of
this study is given Equation (15). We referred to this com-
munication probability in the text as “non-ideal.” In this sub-
section of the Appendix, we show that if the communication
probability between the agents were better, the performance
of our algorithm would improve. We specifically compare the
performance of our algorithm when the communication prob-
ability between agents takes the form given in Equation (15)
to the performance of our algorithm when the communication
probability between agents takes the form

ρmore reliable
k;j→l = exp

{
−
[(
yEk;j − yEk;l

)2
+
(
yNk;j − yNk;l

)2
+
(
yUk;j − yUk;l

)2]/
2000

}
.

The plot in Figure 15 illustrates the difference between these
two probabilities, and the plot in Figure 16 shows the results
of two simulation studies meant to compare the two communi-
cation models. The simulation studies are identical to the ones
illustrated in Figures 13 and 14; in each study, one hundred
simulations of 4000 time steps were done, and the median
minimum distance to an agent from each target was calculated
at each time point. We denote this distance at time k as mk,
and in these simulations, there were two agents and two targets
(A = 2 and T = 2). The results of the simulation study
using the communication probability ρk;j→l are in blue, and
those using the communication probability ρmore reliable

k;j→l are in
magenta. It is clear that when communications are better, the
agents converge more quickly and more closely to the targets.
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Fig. 15. The probability of communication between agents, pk;j→l and
pmore reliable
k;j→l .
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Fig. 16. Median distance (across 100 simulations) from target to closest agent
over time assuming two different communication models. The total number
of targets is 2, and the total number of agents is 2.
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