Loading [MathJax]/extensions/MathMenu.js
Successive Convexification for Ascent Trajectory Replanning of a Multistage Launch Vehicle Experiencing Nonfatal Dynamic Faults | IEEE Journals & Magazine | IEEE Xplore

Successive Convexification for Ascent Trajectory Replanning of a Multistage Launch Vehicle Experiencing Nonfatal Dynamic Faults


Abstract:

In this article, a successive convexification algorithm is presented for real-time ascent trajectory replanning of a multistage launch vehicle experiencing nonfatal dynam...Show More

Abstract:

In this article, a successive convexification algorithm is presented for real-time ascent trajectory replanning of a multistage launch vehicle experiencing nonfatal dynamic faults, including the faults of thrust, mass flow, and states. This problem presents a challenge for onboard real-time guidance applications due to its nonconvex constraints, such as the heat flux constraints, and the terminal orbit entry constraints, and to its nonlinearities introduced by atmospheric effects, multiphase mass-depletion dynamics, and free flight time. After proper convexification and relaxation, the general replanning strategy and algorithm of postfault multistage launch vehicle ascent trajectory replanning problems are presented, based on a compensation-based initialization method. Numerical simulations show that the presented algorithm converges reliably after only a small number of iterations, and has a good embedded performance, making it suitable for onboard real-time applications.
Published in: IEEE Transactions on Aerospace and Electronic Systems ( Volume: 58, Issue: 3, June 2022)
Page(s): 2039 - 2052
Date of Publication: 07 December 2021

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.