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Abstract—Electronic countermeasures (ECM) against a radar
are actions taken by an adversarial jammer to mitigate the
effective utilization of the electromagnetic spectrum by the radar.
On the other hand, electronic counter-countermeasures (ECCM)
are actions taken by the radar to mitigate the impact of electronic
countermeasures (ECM) so that the radar can continue to
operate effectively. The main idea of this paper is to show that
ECCM involving a radar and a jammer can be formulated as
a principal-agent problem (PAP) - a problem widely studied
in microeconomics. With the radar as the principal and the
jammer as the agent, we design a PAP to optimize the radar’s
ECCM strategy in the presence of a jammer. The radar seeks
to optimally trade-off signal-to-noise ratio (SNR) of the target
measurement with the measurement cost: cost for generating
radiation power for the pulse to probe the target. We show
that for a suitable choice of utility functions, PAP is a convex
optimization problem. Further, we analyze the structure of the
PAP and provide sufficient conditions under which the optimal
solution is an increasing function of the jamming power observed
by the radar; this enables computation of the radar’s optimal
ECCM within the class of increasing affine functions at a low
computation cost. Finally, we illustrate the PAP formulation of
the radar’s ECCM problem via numerical simulations. We also
use simulations to study a radar’s ECCM problem wherein the
radar and the jammer have mismatched information.

Index Terms—principal-agent problem (PAP), Electronic
countermeasures (ECM), electronic counter-countermeasures
(ECCM), electronic warfare (EW), Kalman filter, algebraic
Riccati equation (ARE), convex optimization, stochastic order,
monotone likelihood ratio.

I. INTRODUCTION

Since radars operate in a shared electromagnetic envi-
ronment, they are susceptible to electronic countermeasures
(ECM): actions taken by an adversarial jammer to prevent ef-
fective utilization of the electromagnetic spectrum and thereby
decrease the measurement accuracy of the radar. Hence,
modern radars are often equipped with electronic counter-
countermeasures (ECCM): strategies to mitigate the impact
of ECM by an adversarial jammer. A list of standard ECM
and ECCM techniques are summarized in [1] and [2].

Why Principal-Agent Problem (PAP)? Our main idea is to
formulate the radar’s ECCM problem as a PAP. The PAP [3]
has been studied extensively in micro-economics to enforce a
contract between two entities in labor contracts [4], insurance
market [5], and differential privacy [6]. At the core of the
PAP lies information asymmetry: the principal only views
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the agent’s action in noise, so the principal needs to write
a contract with suitable incentives to induce action from the
agent that would maximize its utility.

In this paper, we model the radar as the principal and the
adversarial jammer as the agent. The radar is interested in
tracking a target of interest and maximizing its measurement
accuracy. The jammer injects jamming power (ECM) into the
environment to decrease the measurement accuracy of the
radar. The radar, in turn, observes the action of the jammer
in noise and takes action (ECCM) to counter the ECM of the
jammer. The radar should ensure an optimal balance between
measurement accuracy and measurement cost: cost to generate
radiation power for the pulse to probe the target. It is important
that we incorporate measurement cost while designing ECCM
as a large number of measurements have to be made for
continuous monitoring of targets. Similarly, the jammer has to
consider a jamming cost for generating radiation noise power.
Again it is important to include it in the jammer’s utility
function as the jamming has to be done continuously to reduce
the radar’s tracking accuracy.

The information asymmetry between the radar and the
jammer motivates PAP as a way to study the radar’s ECCM
problem. The PAP constitutes a principled approach to ECCM:
the PAP formulation captures the information asymmetries in
ECCM, it yields a formulation of optimal ECCM problem as a
convex optimization problem, and the resulting solution has a
useful stochastic dominance structure that can be exploited for
computing a constrained solution at a low computation cost.
The PAP is also flexible to accommodate additional constraints
on the information of the radar and the jammer: we study
through numerical examples a radar’s ECCM problem when
the radar and the jammer have mismatched information.

Related Work
Regarding ECCM for radars, [7], [8] analyze the power

allocation problem for a MIMO radar and a jammer as a game
both for complete and incomplete information. [9] generalizes
the setting for a network of radars and jammers. A game based
on a two-stage optimization method was considered in [10]
with either the radar or the jammer as the leader.

Related to pulse-level implementation aspects of the radar’s
ECCM problem, an ECCM scheme based on time-frequency
analysis was proposed in [11] for a particular type of deceptive
jamming. Radar waveform design to combat barrage jamming
was examined in [12], [13].

To the best of our knowledge, the PAP approach to model
the adversarial interaction between a radar’s ECCM strategy
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and a jammer’s ECM has not been explored in literature.
The PAP framework yields a tractable convex optimization
problem and also allows us to analyze the structure of the
optimal ECCM. Moreover, it overcomes the non-uniqueness
of the solution faced with the game-theoretic approach without
making strong assumptions on the utility functions. Hence the
motivation for this paper.

Organization and Main Results

Sec.II describes the PAP for the radar’s ECCM problem in
the presence of a jammer performing ECM. Using a suitable
choice of utility functions, we derive an equivalent convex
optimization problem for the PAP. This allows us to derive
analytical results and numerically solve the radar’s optimal
ECCM strategy using convex optimization solvers.

In Sec.III, we exploit the structure of the PAP to characterize
the radar’s optimal ECCM strategy: the radar’s optimal ECCM
strategy is an increasing function of the jamming power
observed by the radar. This enables us to parametrize the
solution and find the radar’s optimal ECCM strategy within
a constrained class of functions at a low computation cost.

Finally, Sec.IV illustrates the PAP model for the ECCM
problem using numerical examples. We apply the structural
result presented in Sec.III to compute a constrained solution
to the radar’s ECCM strategy. We also study a radar’s ECCM
problem via numerical examples wherein the radar and the
jammer have mismatched information.

II. ELECTRONIC COUNTER-COUNTERMEASURE MODEL

In this section, we formulate the PAP for optimizing the
radar’s ECCM strategy. As shown in Fig. 1, there are three
independent entities in our problem formulation:

1) a radar
2) a jammer
3) and a target (or multiple targets)

In the formulation below, the radar and jammer interact while
the target evolves independently. The main idea is that the
radar exploits this interaction to mitigate the effect of ECM
by using ECCM; it is this ECCM aspect that we model as a
PAP below. For simplicity, we describe our model for a single
target; Sec.II-A5 describes generalization to multiple targets.

The radar tracks the target using a Bayesian tracker [14].
The adversarial jammer (mounted on a dedicated ECM ship
[15] or aircraft) injects jamming power into the environment
as an electronic countermeasure (ECM) to decrease the mea-
surement accuracy of the radar. In response, the radar varies its
pulse power as an electronic counter-countermeasure (ECCM)
to mitigate the presence of the adversarial jammer.1

It is convenient to formulate our setup in a three timescale
framework as illustrated in Fig. 1. Let k ∈ {0, 1, 2, . . .},
n ∈ {0, 1, 2, . . .}, and t ∈ {0, 1, 2, . . .} denote the time index
for fast, intermediate and slow timescale, respectively. On

1In our setup, the jammer, and target are independent entities. [16], [17],
[18] also study a similar model with independent targets and jammers. In an
alternative setup (not considered here), the jammer is mounted on the target
[7]. This results in the radar’s observation R of the jamming power J also
being dependent on the target’s kinematics.

Target dynamics

Radar Jammer
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Fig. 1. Three timescale radar-jammer problem for tracking a target. Target
dynamics/transient occurs on the fast timescale; radar-jammer PAP is solved
at the intermediate timescale; target is maneuvered at the slow timescale.

the fast timescale, the targets of interest evolve with linear,
time-invariant dynamics and additive Gaussian noise. On the
intermediate timescale, the radar and the jammer participate
in an EW and update their ECCM and ECM, respectively.
Finally, in the slow timescale, the target conducts maneuvers
independent of the radar and the jammer.

We consider the two frameworks below. Our first frame-
work, discussed in Sec.II-A considers ECCM against barrage
jamming (ECM) by an adversarial jammer; the jammer and the
target operate independently. Our second framework discussed
in Sec.II-B considers ECCM against deception jamming by
an adversarial jammer. Here the jammer exploits information
about the target’s state to jam the radar (for example, the
jammer is mounted on the target). Finally, for both these
frameworks, Sec.II-C formulates the PAP for the optimal
ECCM and ECM strategy of the radar and jammer.

A. Example 1: ECCM against barrage jamming

1) Target dynamics: The targets evolve on the fast time
scale k. We use the standard linear Gaussian model [14] for
the kinematics of the target and initial condition x0:

x0 ∼ N (x̂0,Σx0
)

xk+1 = Axk + wk

A = diag

[[
1 T
0 1

]
,

[
1 T
0 1

]
,

[
1 T
0 1

]] (1)

Here, T denotes the sampling time. The initial condition
N (x̂0,Σx0) denotes a Gaussian random vector with mean
x̂0 and covariance Σx0 . xk ∈ R6, comprised of the x, y, z
position and velocity, is the state of the target at time k. The
i.i.d. sequence of Gaussian random vectors {wk ∼ N (0, Qt)}
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models the acceleration maneuvers of the target. The covari-
ance matrix Qt depends on the target maneuvers on the slow
timescale.

2) Radar’s measurement model: The measurement vectors
yk of the target’s state recorded at the radar are

yk = h(xk, vk), vk ∼ N
(

0, V
(

SNR
(n)
))

(2)

Here, h(·) represents the radar’s sensing functionalities. The
measurement noise variance V

(
SNR

(n)
)

of the random vec-

tor vk depends on SNR
(n)

which will be defined in (16). Here,
n indexes the intermediate timescale on which the radar and
the jammer update their strategies2. The sequences {wk}, {vk}
are assumed to be statistically independent.

3) Bayesian Tracker and Covariance: We make the stan-
dard assumption that the radar has a Bayesian tracker
[14], which recursively computes the posterior distribution
P(xk|y1, . . . yk) of the target state at each time k. For the
nonlinear measurement equation (2), the posterior distribution
can only be computed approximately, for example, using a
particle filter [19].

In our PAP formulation discussed in Sec.II-C, we will
require the covariance Cov(xk|y1, . . . , yk) of the posterior
distribution of the target’s state. The PAP is solved on the
intermediate timescale. In comparison, the target evolves on
the fast timescale. Therefore, in the PAP formulation below,
we only need the asymptotic value of the covariance, i.e.,
Σ := limk→∞ Cov(xk|y1, . . . , yk). This can be estimated (in
general) using a particle filter algorithm [19].

4) Example. Linear measurement model and tracker: A
special case of measurement equation (2) is the linear case:

yk = Cxk +
vk

SNR
(n)

(3)

Then the posterior p(xk|y1, . . . , yk) is computed exactly by
the Kalman filter [20], [21]. As mentioned above, in the
PAP we are interested only in the covariance of the pos-
terior distribution. The Kalman filter equations provide a
closed-form, recursive relation to compute the covariance:
Σk|k := E

[
(xk − E[xk|y1, . . . , yk])2

]
; this can be computed

independent of the observations [21]. Moreover, assuming
[A,C] is detectable and [A,

√
Q] is stabilizable guarantees that

the covariance Σk|k converges to the limiting solution Σ(n)

given by the algebraic Riccati equation (ARE) (4). We use
Σ(n) to denote the solution of the ARE at the end of the time
index n in the intermediate timescale.

Σ(n) −A
(

Σ(n) − Σ(n)C ′D−1
n CΣ(n)

)
A′ −Q = 0 (4)

where, Dn :=
[
CΣ(n)C ′ + 1

SNR
(n)

]
. The solution of ARE,

i.e., Σ(n), on the fast timescale parametrizes the PAP (de-
scribed in Sec.II-C).

2SNR
(n) is the ratio of mean radiation pulse power of the radar to the

mean jamming power observed by the radar, see (16).

5) Multiple targets: Thus far, we assumed that the jammer
adversely affects the radar measurements of a single target.
More generally, the jammer can affect the radar measurements
of multiple targets. If the jammer interferes with the radar
estimates of multiple targets, the parameter λ (Σ) appearing in
the PAP (see Sec.II-C below) can be modified by substituting a
convex combination of the covariance of posterior distribution
of the targets’ state as in (5), namely,

λ (Σ) =

H∑
i=1

βi λ (Σi)

where,
H∑
i=1

βi = 1, and βi ≥ 0, ∀ i ∈ {1, 2, . . . ,H}

(5)

Here H denotes the number of targets whose radar mea-
surements are adversely affected by the jammer. This can
be implemented by replicating H copies of the ARE (4).
Let us denote them as ARE1,ARE2, . . . ,AREH respectively.
AREi solves the algebraic Riccati equation for the ith target
and outputs Σ

(n)
i at the start of the the time index n in the

intermediate timescale. Substitute Σ
(n)
1 ,Σ

(n)
2 , . . . ,Σ

(n)
H in (5)

to obtain λ (Σ).

B. Example 2. ECCM against deception jamming

In the above section, the jammer injected noise power into
the environment to degrade the measurement accuracy of the
radar; and the radar optimized its pulse power as an ECCM
against the jammer’s ECM. We assumed that the jammer’s
ECM was independent of the target’s state. In this section,
we consider a deception jamming framework. The jammer
purposefully injects interference that depends on the state
(position) of the target. (For example, the jammer is mounted
on a target.) This designed interference introduced by the
jammer affects the measurement accuracy of the radar as a
function of the target’s state.

We model deception jamming as follows (recall k, n, t index
the fast, intermediate and the slow timescales):

x0 ∼ N (x̂0,Σx0), z0 ∼ N (x̂0,Σz0)[
xk+1

zk+1

]
=

[
A 0
B1 B2

] [
xk
zk

]
+

[
wk
vk

]
yk =

[
C1 C2

] [xk
zk

] (6)

Here, matrix A is as in (1). zk denotes the designed interfer-
ence injected by the jammer at time k. The key point is that the
designed interference zk depends on the target state xk. For
analytical tractability, we assume that zk is a linear function of
state xk. Notice that zk affects the measurement of the radar
through (6), i.e., the jammer injects an additional component
Dzk to the radar’s measurement. The i.i.d. sequence of random
vectors {wk ∼ N (0, Qt)} models the acceleration maneuvers
of the target. The covariance matrix Qt is updated by a
target maneuver on the slow timescale. The i.i.d. random
vectors {vk ∼ N (0, 1

SNR
(n) )} controls the impact of deception

jamming on the measurement accuracy of the radar. SNR
(n)
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is defined in (16). It is a function of the radar’s pulse power
(ECCM) and the jamming power (ECM).

In our PAP formulation discussed in Sec.II-C below, we
will require the covariance Cov(xk|y1, . . . , yk) of the posterior
distribution of the target’s state. The PAP is solved on the
intermediate timescale. In comparison, the target evolves on
the fast timescale. Therefore, in the PAP formulation, we
only need the asymptotic value of the covariance, i.e., Σ =
Σxx := limk→∞ Cov(xk|y1, . . . , yk). For the linear deception
jamming model (6), we can compute Σ using the ARE (7) as

Σ(n) − Ā

(
Σ(n) − Σ(n)

[
C1

C2

]
D−1
n

[
C1

C2

]′
Σ(n)

)
Ā′ − Q̄ = 0

Ā :=

[
A 0
B1 B2

]
, Q̄ :=

[
Q 0
0 1

SNR
(n)

]
Dn :=

[
C1, C2

]′
Σ(n)

[
C1

C2

]
, Σ(n) =

[
Σxx Σxz
Σxz Σzz

]
(7)

Here, Σ(n) denotes the asymptotic covariance Σ at the inter-
mediate time index n.

Nonlinear Model for Deception Jamming: The above linear
model is for analytical tractability. A more general deception
jamming model is zk+1 = f(zk, xk, vk) where the designed
interference zk impacts radar measurement as yk = h(xk, zk).
Under suitable ergodicity conditions, the asymptotic value
of the covariance Σ = Σxx := limk→∞Cov(xk|y1, . . . , yk)
can be estimated using sequential Markov chain Monte-Carlo
methods [19]. Recall that k indexes the fast timescale. The
PAP formulation of this paper (discussed below) also holds
for such nonlinear models in terms of Σ.

C. Principal-agent problem (PAP)

Thus far, we described the dynamics of ECCM on three
timescales. We now describe how the radar optimizes its
ECCM strategy on the intermediate timescale as the solution of
a PAP3. At the core of the PAP lies information asymmetry:
the principal only views the agent’s action in noise, so the
principal needs to write a contract with suitable incentives to
induce action from the agent that would maximize its utility.

In our formulation, we treat the radar as the principal and
the jammer as the agent. The EW setup between the radar
and jammer is illustrated schematically in Fig. 1. The radar
aims to track a target with kinematics described in (1). The
jammer performs ECM to decrease the SNR of the radar’s
measurement, and the radar observes a noisy signal (3) of
the jammer’s ECM. The radar then chooses its ECCM as a
function of the noisy signal of the jammer’s ECM to maximize
its utility.

We described our two frameworks for jamming, namely
barrage jamming and deception jamming in Sec.II-A and
Sec.II-B, respectively. In both frameworks, ECM and ECCM
impact the measurement accuracy of the radar through the

3There are two types of PAP [3] studied in microeconomics: moral hazard
and adversarial selection. In PAP with moral hazard, the principal receives a
noisy signal of the agent’s action and writes a contract to induce an agent’s
action that maximizes its utility.

random process {vk}. The jammer controls its jamming power
(ECM) to increase the variance of {vk} whereas the radar
controls its radiation pulse power (ECCM) to decrease the
variance of {vk}. Hence, the PAP is the same for barrage and
deception jamming.

1) ECCM as a PAP: We assume the jamming power J of
the jammer takes values from the finite set J :

J = {j1, j2, . . . , jM}, j1 ≤ j2 ≤ . . . ≤ jM (8)

Below we denote random variables in boldface. Due to
the measurement noise (3), radar observes a noisy signal
R ∈ J when the jamming power is J . The conditional pmf
P(R = R | J = J) gives the probability that radar observes R
given the jamming power is J . We have modeled the obser-
vation uncertainty P(R = R | J = J) using a time-invariant,
memoryless channel [22]. This inherently assumes that the
ambient condition, including obstacles, source of electromag-
netic noise, are constant throughout the EW. One can use a
more sophisticated model to include moving obstacles and
time-varying sources of electromagnetic noise. We deal with
a time-invariant, memoryless model for simplicity.

The radar observes the jamming power R and chooses a
radiation pulse power (ECCM), e′R π, to maximize its utility
in the presence of the jammer’s ECM. Let π ∈ RM denote the
radar’s ECCM strategy for each possible observation of the
jammer:

πi = e′ji π, eji := ei, ∀i ∈ {1, 2, . . . ,M} (9)

Here, ei denotes the standard unit vector in RM with ith entry
as 1; and e′i denotes its transpose.

Remark. We assume the jammer knows the radar’s channel
model parameters P(R = R | J = J). For the linear measure-
ment model (3), the assumption implies that the radar and
jammer compute the same target covariance Σ via ARE (4).
In Sec.IV-C, we give a detailed discussion and numerical
examples when the jammer has imperfect information about
the radar’s channel. We discuss how this imperfect information
affects the optimal ECCM strategy.

We can now formulate the radar’s ECCM problem as a
PAP. The PAP for both barrage and deception jamming is the
following constrained optimization problem:

max
J∈J ,
π∈RM

φ(π, J)

s.t. arg max
J̄∈J

ψ(π, J̄) = J

(10a)

(10b)

Here, φ(π, J), ψ(π, J) denote the utility functions of the radar
and the jammer respectively:

φ(π, J) := ER|J
[
λ (Σ) c1 log (SNR(R))− (e′R π)2

]
(11a)

ψ(π, J) := ER|J

[
1

λ (Σ)
c2 log

(
1

SNR(R)

)]
− J2 (11b)

c1, c2 are positive constants, and eR is defined in (9). SNR(R)
in (11) denotes the measurement SNR of the radar:

SNR(R) :=
e′R π

R
(12)
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The first term, c1 log (SNR(R)) in (11a) is the radar’s reward
to improve its measurement’s SNR. The logarithm of SNR as
a candidate function is closely related to channel capacity for
an analog channel subject to additive white Gaussian noise
[22]. Hence, we substitute it for our reward functions given
its practical significance. The first term, c2 log

(
1

SNR(R)

)
,

in (11b) is the jammer’s reward to decrease the measurement’s
SNR (12) of the radar. It captures the adversarial nature
of the jammer: while the radar’s reward is increasing in
log(SNR(R)), the jammer aims to minimize log(SNR(R)).
The second term, (e′R π)2, in (11a) is the radar’s cost for using
a pulse power e′R π in response to the observed jamming power
R. The second term, J2, in (11b) is the cost for injecting the
jamming power J . Choosing a convex, increasing function for
cost in (11a)-(11b) models an increasing cost function whose
marginal value increases at higher effort.
λ (Σ) in (11) denotes the maximum eigenvalue of the

covariance matrix Σ. It is a useful scalar-valued measure4

of the covariance of the posterior distribution of the target’s
state. λ (Σ) parametrizes the reward function for the radar and
the jammer. To be specific, it scales the reward component
of the radar’s and the jammer’s utility function (11). This
implies: when the uncertainty in the target’s maneuver is large,
the radar’s reward λ (Σ) c1 log(SNR(R)) for a higher SNR
increases with an increase in target’s maneuver. It incentivizes
the radar to aim for better measurement accuracy when the
target’s maneuver is large. For the jammer, it’s the other way
round: the jammer’s reward 1

λ(Σ)c2 log
(

1
SNR(R)

)
for a higher

SNR decreases with increase in target’s maneuver. It ensures
that the jammer does not waste its effort to decrease the
measurements’ accuracy of the radar when the target maneuver
is large.

At first sight, the PAP (10) is a mixed-integer program. The
objective (10a) is the radar’s utility function. The incentive
constraints (10b) incentivizes the jammer to take the action J .
To obtain the optimal ECCM strategy, the radar first solves
the PAP (10) for each jamming power J̄ ∈ J . The radar
then incentivizes the jamming power J , which yields the best
utility. To efficiently compute the radar’s ECCM strategy for
a fixed J , we will derive an equivalent convex optimization
problem for the PAP (10) in Sec.II-C3 below. This facilitates
the use of convex optimization solvers for the radar’s ECCM
problem.

2) Discussion of utility functions for the radar and the
jammer: We discussed the PAP (10) for a specific choice of
the utility functions defined in (11). The utility function was
linearly separable into a reward for improving the performance
and a cost for choosing a particular strategy. One can consider
more general utility functions for the radar and jammer:

φ(π, J) := ER|J [λ (Σ) g1 (SNR(R))− g2(e′R π)]

ψ(π, J) := ER|J

[
1

λ (Σ)
f1 (SNR(R))

]
− f2(J)

(13)

4Another useful measure is the trace of the covariance. Our framework
allows for any scalar-valued measure λ (Σ) for the covariance of the posterior
distribution of the target’s state.

Here, eR is defined in (9). SNR(R) is defined in (12).
g1(·), f1(·) are increasing, concave functions that model the
reward of the radar and the jammer respectively; they model
the radar and the jammer as a risk-averse agents. The functions
g2(·), f2(·) are increasing, convex functions and model the
cost of the radar and jammer, respectively. The convexity
assumption ensures that the marginal cost increases at higher
effort.

3) Convex optimization formulation for radar’s ECCM
problem: In PAP (10), the radar optimizes its ECCM strategy
π for each jamming power J̄ ∈ J and then incentivizes a
jamming power J that yields it maximum utility. Our main
result below is to construct an equivalent convex optimization
problem for the PAP (10) for any fixed jamming power J :

Theorem 1. For any fixed jamming power J , the PAP (10)
for the radar’s ECCM problem is equivalent to the following
convex optimization problem in x (recall eR is defined in (9)):

max
x∈RM

ER|J [c1 λ (Σ) (e′R x− log(R))− exp(2 e′R x)]

(14a)

subject to the following affine constraint on x for a fixed
jamming power J:

arg max
J̄∈J

ER|J̄

[
c2

λ (Σ)
(log(R)− e′R x)

]
− J̄2 = J (14b)

Finally, given the solution x∗ to PAP (14), the radar’s optimal
ECCM strategy π∗ is

π∗i = exp(x∗i ), i ∈ {1, 2, . . . ,M} (15)

Remark. The intuition behind Theorem 1 is as follows. The
objective (14a) is a sum of affine and a concave function in x;
the incentive constraints (14b) can be equivalently represented
as a set of affine inequality constraints.

Let us denote the solution of the PAP (14) at the time instant
n as (π(n), J (n)) ∈ RM × J . The solution of the ARE (4) at
time index n can be computed using the expected signal-to-
noise ratio SNR

(n)
:

SNR
(n)

=
ER|J

[
e′R π

(n)
]

ER|J [R]
(16)

Radar-jammer interaction as a non-cooperative game

We have formulated the radar’s ECCM problem as a con-
vex optimization problem (Theorem 1). The formulation also
yields useful structural results, as will be discussed in Sec.III.
An alternative approach is to formulate a non-cooperative
dynamic game and characterize the perfect Bayesian Nash
equilibrium. For the utility functions specified in (11), it turns
out that we have a supermodular game [23] [24] with the
radar and jammer as players. For a supermodular game, it is
well known that a pure strategy Nash equilibrium exists, but
there could be multiple Nash equilibria. If the supermodular
game has a unique Nash equilibrium, it can be computed
using best-response dynamics [23] [24]. In general, additional
constraints have to be imposed on the utility functions to
guarantee uniqueness. One can also formulate a Stackelberg
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game to obtain the radar’s optimal ECCM strategy. With the
radar as the leader and the jammer as the follower, the solution
of PAP (14) is also a Nash equilibrium for the Stackelberg
game. The advantage of the PAP framework is that it provides
a convenient way to impose additional constraints on the
problem. For example, suppose the radar wants to ensure
that the utility of the jammer is below a certain threshold.
This can be straightforwardly handled by adding an inequality
constraint to the PAP (14).

D. ECM and ECCM Implementation details

The target evolves kinematically on the fast timescale ac-
cording to the dynamics in (1). Its maneuver Qt is updated
in the slow timescale, independent of the strategies of the
radar and the jammer. Given the ECCM and ECM strategies
π(n), J (n) at the time index n, the radar and the jammer
solve the ARE (4) to obtain covariance Σ(n) of the posterior
distribution of the target’s state. We can use the ARE (4) to
obtain the covariance Σ(n) because the target evolves on the
fast timescale and the radar’s ECCM problem is solved at the
intermediate timescale. Σ(n) updates the utility functions (11)
of the radar and the jammer. The radar then solves the
radar’s ECCM problem (14) at time n+ 1 to find the optimal
ECCM and ECM strategy π(n+1), J (n+1), respectively. This
step requires solving |J | convex optimization problems (14).
The optimal ECCM and ECM strategies converge before the
next update of the target maneuver Qt.

To summarize, this section formulated the radar’s ECCM
problem as a PAP. For specific choices of utility functions for
the radar and the jammer, we formulated a convex optimization
problem (14) for the radar’s ECCM problem for each J ∈ J .

III. STRUCTURE OF THE ECCM STRATEGY

Although the previous section formulated ECCM as a
convex optimization problem, a natural question is: Does the
problem have sufficient structure so that the optimal ECCM
strategy can be characterized without brute force computa-
tion? This section gives sufficient conditions for the radar’s
optimal ECCM strategy (14) to be an increasing function of
the observed jamming power. Our result is motivated by the
structural result for PAP with moral hazard [25].

The structural result in this section is useful for two reasons.
First, it yields a useful heuristic for the choice of the optimal
ECCM strategy; namely, it is an increasing function of the
observed jamming power. Second, if we constrain the solution
of the PAP (14) within the class of increasing affine functions5

(defined below in (21)), then we can reduce search-space for
the radar’s ECCM strategy in (14) from RM to R2. This
enables efficient computation of a constrained solution at a
low computation cost. For example, consider computing the
optimal solution for the constrained optimization problem (14)
using the projected gradient descent algorithm [26]. It requires
the computation of gradient at each update step. The cost for
calculating gradient is of the order O(M), where M is the

5Since the optimal strategy is monotone, the monotone affine ECCM
strategy obtained below qualifies as the optimal affine approximation to PAP.

dimension of the search space. Hence, reducing the search-
space from RM to R2 can significantly reduce the computation
for large M .

To present our result, we first define a stochastic ordering
[27] for the conditional pmf P(R = R | J = J). We represent
the conditional pmf P(R = R | J = J) as a stochastic matrix
P with elements

Pmn := P(R = jn | J = jm) (17)

Definition 1 (Total positivity of order 2 (TP2) [28]). The
stochastic matrix P (17) satisfies TP2 if ∀ i, j,m, n ∈
{1, 2, . . . ,M} with i > j,m > n,

PimPjn ≥ PinPjm (18)

Now consider a relaxed radar’s ECCM problem by modi-
fying the constraint (14b):

Definition 2 (Relaxed Radar’s ECCM Problem). A relaxed
radar’s ECCM problem is obtained from (14) by modifying
the constraint (14b) on x to (eR below is defined in (9)):

For a fixed jammer power J , x satisfies the affine constraint

arg max
J̄≥J

(
ER|J̄

[
c2

λ (Σ)
(log(R)− e′R x)

]
− J̄2

)
= J (19)

The set of x satisfying the constraint (14b) is a subset of
the set of x satisfying the constraint (19). Hence, we call
optimization of (14a) subject to (19) as the relaxed radar’s
ECCM problem. This implies that the maximum value of the
relaxed radar’s ECCM problem (19) is an upper bound to the
radar’s ECCM problem (14). Our main result in this section
would establish that the maximum value of (19) is the same
as that of the PAP (14) under certain conditions. We have
already described the TP2 (18) requirement on the stochastic
matrix P (17). We now describe the second requirement on
the convexity of the tail distribution of the conditional pmf
P(R = R | J = J):

Πi (J) := P (R ≥ ji | J = J), ∀i ∈ {1, 2, . . . ,M} (20)

We use convexity of Πi (J) , ∀i ∈ {1, 2, . . . ,M} (20)
to prove the concavity of the jammer’s utility function
ψ(π, J) (11b):

Lemma 1. Let x∗ be the solution of the relaxed radar’s ECCM
problem (19). If x∗1 ≤ x∗2 ≤ . . . ≤ x∗M and Πi (J) (20) is
convex in J, ∀i ∈ {1, 2, . . . M}, then for the relaxed radar’s
ECCM problem (19), the jammer’s utility ψ(π∗, J) (11b) is
concave in J .

Here, the relation between π∗ and x∗ is given by (15).
We are ready to discuss our structural result concerning the
monotonicity of the solution of the PAP (14) for the radar’s
ECCM problem. The result provides sufficient conditions
under which the radar’s optimal ECCM strategy for the radar’s
ECCM problem (14) is an increasing function of the radar’s
observation of the jamming power.

Theorem 2. If the stochastic matrix P (17) is TP2 (18) then
for any choice of J , solution of the relaxed radar’s ECCM
problem (19) is non-decreasing, i.e., x∗1 ≤ x∗2 ≤ . . . ≤ x∗M .
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Moreover, if Πi (J) is convex in J, ∀i ∈ {1, 2, . . . ,M} then
any solution of the relaxed radar’s ECCM problem (19) is
a solution to the radar’s ECCM problem (14), i.e., there
is an radar’s optimal ECCM strategy to the radar’s ECCM
problem (14) s.t. π∗1 ≤ π∗2 ≤ . . . ≤ π∗M .

Here, the relation between π∗ and x∗ is given by (15).
In the context of the radar’s ECCM problem, TP2 (18)
requirement on the matrix P (17) implies that if the jammer
uses a high jamming power J , the radar’s noisy observation
of the jammer’s action R is likely higher. This is a rea-
sonable assumption for additive ambient noise (discussed in
Sec.II-C1). For a complex radar’s channel model, one can
find the closest approximation of P(R = R | J = J) within
the class of TP2 conditional distribution using a suitable
statistical distance, e.g., total variation distance [29]. This
yields a sub-optimal ECCM strategy for the radar with a
reduced computation cost. The convexity of the tail distribu-
tion Πi(J), ∀i ∈ {1, 2, . . . ,M} (20) is used in Lemma 1 to
conclude that the jammer’s utility ψ(π∗, J) (11b) is concave
in J . Concave utility function implies diminishing marginal
return with increasing effort. This is frequent in real life.
We make a weaker assumption about the convexity of the
tail distribution Πi (J) , ∀i ∈ {1, 2, . . . ,M} (20) to conclude
the concavity of the jammer’s utility function ψ(π∗, J) (11b).
Hence, it is also a well-justified assumption.

Theorem 2 facilitates a constrained solution to the radar’s
ECCM problem (14) by restricting the search space for x
within the class of increasing affine functions:

xi = c3ji + c4; c3 ∈ R+, c4 ∈ R, i ∈ {1, 2, . . . ,M} (21)

The parametrization (21) reduces the search-space for x from
RM to R2. In Sec.IV-B, we apply Theorem 2 to compute a
constrained solution to the radar’s ECCM problem (14).

IV. NUMERICAL EXAMPLES OF PAP BASED ECCM

This section illustrates via numerical examples the applica-
tion of the PAP (14) for the radar’s ECCM problem. Sec.IV-A
summarizes the ECCM model setup involving a radar, a target
and a jammer. It also specifies the model parameter and
simulates the model. In Sec.IV-B, we exploit Theorem 2 to
parametrize the solution of the radar’s ECCM problem; it
enables computation of the radar’s optimal ECCM within the
class of increasing affine functions at a low computation cost.

A. Radar’s optimal ECCM strategy for barrage jamming
(Sec.II-A) using the PAP

Recall the schematic setup in Fig. 1. A target evolves
kinematically on the fast timescale according to the dynamics
in (1); the target is maneuvered on the slow timescale. The
radar’s measurement equation is a linear function with additive
Gaussian noise (3). The radar tracks the target, and a jammer
attempts to decrease the radar’s measurement accuracy by
injecting jamming power as an ECM. The radar only observes
the jamming power in noise. In order to operate efficiently, the
radar is forced to vary its pulse power to probe the target

TABLE I
SIMULATION PARAMETERS FOR THE RADAR’S ECCM PROBLEM AGAINST

BARRAGE JAMMING.

Parameters Eq. Value

T (1) 1

Q0 (1) I6×6

C (3) I6×6

{j1, . . . , j4} (8) {1, 2, 3, 4}
c1 (14a) 1× 102

c2 (14b) 1× 104

P (17)


0.3878 0.3215 0.1858 0.1049

0.2980 0.3617 0.2146 0.1256

0.2040 0.2583 0.3307 0.2070

0.1029 0.1408 0.2140 0.5422



(ECCM) as a function of the observed jamming power to
mitigate the impact of ECM. The radar’s optimal ECCM is
solved using the PAP (14).

We now simulate the PAP (14) for finding the radar’s op-
timal ECCM strategy for the target tracking problem detailed
above. The model parameters are tabulated in the Table I. We
simulated our model for a horizon length of 4 on the slow
timescale with maneuvers updated as Qt = tQ0 in the slow
timescale. One unit of time in the slow timescale is chosen to
be 8 units in the intermediate timescale. This allows sufficient
time for the transients in the intermediate timescale to settle
down. A block diagram of the interaction between the radar
and jammer for a fixed target maneuver is shown in Fig. 2.

ARE PAP ARE PAP ...Σ(0) π(1)

J (1)

Σ(1) π(2)

J (2)

Fig. 2. Schematic interaction between the radar and the jammer for a fixed
target maneuver. ARE denotes the algebraic Riccati equation (4); PAP refers
to the PAP (14) for the radar’s ECCM problem. The radar computes the
asymptotic covariance Σ(n) of the target’s posterior distribution using the
ARE (4). The covariance Σ(n) paramterizes the radar’s ECCM problem (14).
The radar’s ECCM problem (14) is used by the radar to solve the radar’s
optimal ECCM strategy π(n+1); it also incentivizes the jammer to choose
the jamming power J(n+1). The solution pair (π(n+1), J(n+1)) is then
used to compute the Σ(n+1) using the ARE (4). We repeat the computations
till the equilibrium is reached.

The simulation is initialized with Σ(0) = λ (Q0) = 1 as the
solution of ARE (4). The output SNR vs time n is displayed
in Fig. 3. Qt = tI6×6 and diag(Q) represents the diagonal
element of Q.

A well-known property of the ARE of the Kalman filter is
that as the state noise covariance Q increases, so does λ (Σ)
[20]. Therefore, as state noise covariance Q increases, the
radar’s marginal reward increases, whereas the marginal cost
to increase the effort remains the same. For the jammer, an
increase in state noise covariance Q decreases the marginal
reward, whereas the marginal cost to increase the effort
remains the same. Hence, the SNR of the radar increases with
an increase in the target’s state noise covariance Q as shown
in Fig. 3.
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Fig. 3. Expected signal-to-noise ratio (SNR) (16) vs. intermediate time index
(n) for barrage jamming. The parameters are specified in Table I. Additionally,
the target maneuver is updated as Qt = tQ0 in the slow timescale. For each
maneuver in the slow timescale, simulation was run for a horizon length=8 in
the intermediate timescale. As state noise covariance Q increases, the radar’s
marginal reward increases, whereas the marginal cost to increase the effort
remains the same. For the jammer, an increase in state noise covariance Q
decreases the marginal reward, whereas the marginal cost to increase the
effort remains the same. Hence, overall the SNR of the radar improves with
an increase in state noise covariance Q.

B. Constrained ECCM strategies for barrage jamming
(Sec.II-A) that exploit the PAP structure

In Sec.III we showed that the radar’s ECCM strategy is an
increasing function of the observed jamming power. We now
exploit this property to construct a constrained ECCM strategy
by the radar that is computationally efficient. To motivate
this, if the cardinality of the jamming noise power, |J |, is
large, then computing the optimal solution to the PAP (14)
is not tractable for real-time computation. This is because the
radar has to solve |J | convex optimization problems. We now
exploit Theorem 2 to approximate the radar’s optimal ECCM
strategy. The model parameters specified in Table I satisfies
the conditions in Theorem 2. Therefore, we parametrize the
radar’s ECCM strategy as an increasing affine function (21)
of the observed jamming power. This parametrization reduces
the search-space for x from RM to R2. Therefore, the resulting
convex program for each J ∈ J can be solved efficiently.

We again simulate our model for a horizon length of 4 on
the slow timescale with Qt = t I6×6. One unit of time in
the slow timescale is chosen to be 8 units in the intermediate
timescale. This was to allow sufficient time for the transients
in the intermediate timescale to settle down. Fig. 4 plots the
radar’s utility (11a) vs. n for the radar’s ECCM problem (14)
and the constrained solution (21) within the class of affine
ECCM strategies.

To summarize, we illustrated an application of Theorem 2
to compute a constrained solution for ECCM. From Fig. 4, we
observe that the loss in accuracy resulting from a constrained
solution is small for small values of the state noise covariance
Q. Therefore, for targets with small state noise covariance
Q, the radar can implement the parametrized radar’s ECCM
strategy without significant degradation in its utility.
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Fig. 4. Radar’s utility vs. intermediate time index (n) for barrage jamming.
Simulation parameters are tabulated in Table I. Additionally, the target maneu-
ver is updated as Qt = tQ0 in the slow timescale. For each maneuver in the
slow timescale, simulation was run for a horizon length=8 in the intermediate
timescale. Using Theorem 2 to parametrize the radar’s ECCM strategy yields
a constrained solution within the class of affine ECCM strategies at a low
computation cost.

C. ECCM strategy for barrage jamming (Sec.II-A) when the
jammer has imperfect information about the radar’s channel

So far, our ECCM formulation assumes that the jammer
knows the radar’s channel model P(R = R | J = J). This
assumption allowed us to model the radar’s ECCM problem
as a PAP and derive structural results for the ECCM strategy.
We now consider the case where the jammer has imperfect
information about the radar’s channel model, denoted as
P̂(R = R | J = J). Given imperfect information of the radar’s
channel, clearly, the jammer’s ECM actions are less effective.
But there is also an interesting secondary effect: if the radar
does not know the jammer’s estimate of the radar’s channel,
then the radar’s ECCM strategy also becomes less effective.
Below we illustrate this via numerical examples.

We denote the jammer’s imperfect model of the radar’s
channel as P̂(R = R | J = J) where

P̂ = P + ∆

∆ =


−0.1099 0.0361 0.0429 0.0310

−0.0079 0.0588 −0.0165 −0.0344

0.0192 0.0428 −0.1213 0.0593

0.0973 0.0521 −0.0882 −0.0612


(22)

Recall the stochastic matrix P denotes the radar’s channel
model P(R = R | J = J) as defined in (17). ∆ models the
error in the jammer’s estimate of the radar’s channel model.
To ensure that P̂ is a valid stochastic matrix, the elements of
∆ are chosen so that P̂ ≥ 0 (element-wise) and P̂1 = 1.
Here, 1 denotes a column vector of 1s of size M .

We consider two scenarios:
1) Scenario 1: Jammer knows P̂ , Radar knows P but does

not know P̂ : In this scenario, the radar does not know the
jammer’s estimate of the radar’s channel. Since both jammer
and radar are operating with misspecified information, it is
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intuitive that both the jammer’s ECM and radar’s ECCM
strategy are less effective. Due to the information mismatch,
the mis-specified radar’s ECCM problem is:

max
J∈J ,
π∈RM

φP(π, J)

s.t. arg max
J̄∈J

ψP(π, J̄) = J
(23)

The subscript P in (23) denotes the probability measure
w.r.t. which the utility functions (11) are evaluated. We denote
the solution of (23) as (π∗PP, J

∗
PP).

2) Scenario 2: Jammer knows P̂ , Radar knows P and P̂ : In
this scenario, the radar knows the jammer’s imperfect estimate
of the radar’s channel. So it is intuitive that the radar can
exploit this additional information to improve its ECCM while
the jammer is less effective since it is operating with mis-
specified information. The ECCM problem is given by:

max
J∈J ,
π∈RM

φP(π, J)

s.t. arg max
J̄∈J

ψP̂(π, J̄) = J
(24)

The subscripts P, P̂ denote the probability measure w.r.t. which
the utility functions (11) are evaluated. We denote the solution
of (24) as (π∗

PP̂
, J∗

PP̂
), respectively.

3) Numerical results comparing Scenarios 1 and 2: We
begin with the study of performance degradation of the radar’s
ECCM strategy in Scenario 1. Fig. 5 plots the difference of the
radar’s utility obtained from (24) and (23), i.e., φP(π∗

PP̂
, J∗

PP̂
)−

φP(π∗PP, J
∗
PP). As expected, poor information decreases the

utility of the radar. Also, degradation increases with increase
in state noise covariance Q of the target (1) . This is because
radar’s utility (11a) is an increasing function of λ (Σ). Next,

Fig. 5. Degradation in radar’s utility vs. intermediate time index (n) for
barrage jamming. Simulation parameters are tabulated in Table I. Additionally,
target maneuver is updated as Qt = tQ0 in the slow timescale. For each
maneuver in the slow timescale, simulation was run for a horizon length=8 in
the intermediate timescale. The jammer’s noisy estimate of the channel model
is given by (22). When the radar does not know P̂, its utility decreases. Also,
degradation in radar’s utility increases with increase in state noise covariance
Q of the target. .

we study the performance degradation of the jammer in

Scenario 2. Fig. 6 displays ψP(π∗PP, J
∗
PP)−ψP̂(π∗

PP̂
, J∗

PP̂
). As

expected, poor information decreases the utility of the jammer.
Also, degradation in jammer’s utility decreases with increase
in state noise covariance Q of the target (1). This is because
the jammer’s utility (11b) is a decreasing function of λ (Σ).

Fig. 6. Degradation in jammer’s utility vs. time (n) for barrage jamming.
The parameters are specified in Table I. The target maneuver (state covariance
matrix) is updated as Qt = tQ0 on the slow timescale. For each maneuver
in the slow timescale, simulation was run for a horizon length=8 in the
intermediate timescale (n). The jammer’s noisy estimate of the channel model
is given by (22). When the jammer does not know P, the jammer’s utility
decreases. Also, degradation in jammer’s utility decreases with an increase in
state noise covariance Q.

To summarize, Fig. 5 and Fig. 6 show that the optimal
radar’s ECCM and jammer’s ECM are less effective when the
radar and the jammer have imperfect information about the
other. Also, since the utility functions (11) depend on λ (Σ),
we observe that degradation in the radar’s utility increases
with an increase in state noise covariance Q. For the jammer,
degradation in the jammer’s utility decreases with an increase
in state noise covariance Q.

D. ECCM for deception jamming (Sec.II-B) using PAP

We now simulate our second example from Sec.II-B: ECCM
against deception jamming by an adversarial jammer. The
simulation parameters are tabulated in Table II. As much of the
model remains unchanged, one can reproduce similar results
for ECCM against deception jamming. For brevity, we only
present a plot of the radar’s utility function for a comparative
study between the two types of jamming. Fig. 7 displays
the radar’s utility with ECCM vs. intermediate time index
(n) for the case of deception jamming. For the simulation
parameters specified in Table I and Table II, a comparison
between Fig. 4 and Fig. 7 shows that deception jamming leads
to reduction in the utility of the radar. Hence, for our choice
of model parameters, deception jamming is advantageous for
the adversarial jammer.

Summary of Numerical Results:
1) In Sec.IV-A, we explored numerically how the expected

signal-to-noise ratio SNR
(n)

(16) varies with increasing
uncertainty in the target maneuver. As the state covariance
Q increases, the radar’s marginal reward (11a) increases,
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TABLE II
SIMULATION PARAMETERS FOR THE RADAR’S ECCM PROBLEM AGAINST

DECEPTION JAMMING.

Parameters Eq. Value

T (6) 1

B1, B2, Q0 (6) I6×6[
C1 C2

]
(6)

[
I6×6 0.5 I6×6

]
{j1, . . . , j4} (8) {1, 2, 3, 4}

c1 (14a) 1× 102

c2 (14b) 1× 104

P (17)


0.3878 0.3215 0.1858 0.1049

0.2980 0.3617 0.2146 0.1256

0.2040 0.2583 0.3307 0.2070

0.1029 0.1408 0.2140 0.5422


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Fig. 7. Radars’s utility vs. intermediate time index (n) for deception
jamming. Simulation parameters are tabulated in Table II. Additionally, the
target maneuver is updated as Qt = tQ0 in the slow timescale. For each
maneuver in the slow timescale, simulation was run for a horizon length=8
in the intermediate timescale. For our choice of model parameters, deception
jamming lowers the radar’s utility in comparison to barrage jamming. Hence,
deception jamming is more effective as an ECM than barrage jamming.

whereas the marginal cost to increase the effort remains
the same. For the jammer, an increase in state covariance
Q decreases the marginal reward (11b) whereas the
marginal cost to increase the effort remains the same.
Hence, overall the SNR of the radar increases with an
increase in the state noise covariance Q.

2) In Sec.IV-B, we parametrized the radar’s ECCM strategy
within the class of increasing affine functions (21). This
reduced the search space for the radar’s ECCM strategy
from RM to R2. Through simulation results, we observed
that at a low state noise covariance of the target, the radar
can implement a parametrized ECCM strategy without
significant degradation in its utility. The parametrized
solution also has the advantage of being computationally
efficient.

3) In Sec.IV-C, we investigated via numerical examples
what happens when the radar and the jammer have
imperfect information about the other. Numerical results
showed that the optimal ECCM and ECM of the radar

and the jammer are less effective when the radar and
the jammer have imperfect information about the other.
Due to parametrization of the utility functions (11),
we observed that degradation in radar’s utility increases
with an increase in state noise covariance Q; whereas
degradation in the jammer’s utility decreases with an
increase in state noise covariance Q.

4) In Sec.IV-D, we computed the utility of the radar when
it employs ECCM to mitigate deception jamming (ECM)
by an adversarial radar. For our choice of model param-
eters, we observed that the deception jamming was more
effective as an ECM than the barrage jamming.

V. CONCLUSION AND EXTENSIONS

We proposed the principal agent problem (PAP) as
a principled approach for the radar’s electronic counter-
countermeasure (ECCM) problem. In the PAP studied in
microeconomics, the principal designs a contract to induce
a specific action from an agent when the agent’s action is ob-
served in noise. In complete analogy, in this paper, the radar’s
ECCM strategy (obtained by solving the PAP) mitigates the
effect of the jammer’s electronic countermeasure (ECM) by
inducing specific actions by the jammer. By incorporating
performance and measurement cost in the utility function,
we formulated a PAP with the radar-jammer as a principal-
agent pair. Using a utility-maximization approach, we modeled
the trade-off between performance and associated cost. Our
main results were the following: i) we formulated the ECCM
problem as a convex optimization problem, and ii) we derived
conditions under which the optimal ECCM strategy is an
increasing function of the jamming power observed by the
radar. Finally, we simulated the PAP to compute the optimal
radar’s ECCM strategy. The importance of structural results
in parametrizing the solution of the PAP was dealt with
qualitatively using simulations. Towards the end, we also
simulated a radar’s ECCM problem wherein the radar and the
jammer have mismatched information.

The PAP approach to ECCM in this paper can be extended
to more general settings involving multiple networked radars
and jammers in a shared environment [30]. The presence of
multiple radars in a shared environment creates an additional
issue of inter-radar interference. This is a challenging problem
for future work.
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APPENDIX A
PROOF OF THEOREM 1 IN SEC.II-C

The change of variable xi = log(πi) in (10) for the
choice of utility functions in (11) yields the optimization
problem (14). The objective (14a) is concave in unknowns
for a fixed J . The constraint (14b) can be re-written as M −1
affine inequality constraints. Hence, the resulting optimization
problem is a convex program.
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APPENDIX B
PROOF OF LEMMA 1 IN SEC.III

Define x0 = 0.

ER|J [e′R x] =

M∑
m=1

P(R = jm | J = J)

m∑
j=1

(xj − xj−1)

=

M∑
j=1

(xj − xj−1)

M∑
m=j

P(R = jm | J = J)

= x1 +

M∑
m=2

(xm − xm−1) Πm (J)

∴ ψ(π, J) := ER|J

[
c2

λ (Σ)
(−x(R) + log(R))

]
− J2

=
c2

λ (Σ)

(
−x1 −

M∑
m=2

(xm − xm−1) Πm (J)

+ ER|J [log(R)]

)
− J2

Note that ψ(π, J) in (11b) is the sum of functions which are
concave in J and some constants. Hence, ψ(π, J) is a concave
in J .

APPENDIX C
PROOF OF THEOREM 2 IN SEC.III

To prove Theorem 2, we first rewrite (14b), (19) as a set of
affine inequality constraints:

Constraint (14b) for the ECCM problem is equivalent to:

ER|J

[
c2

λ (Σ)
(log(R)− e′R x)

]
− J2 ≥

ER|J̄

[
c2

λ (Σ)
(log(R)− e′R x))

]
− J̄2, ∀J̄ 6= J

Constraint (19) for the relaxed ECCM problem is

ER|J

[
c2

λ (Σ)
(log(R)− e′R x)

]
− J2 ≥

ER|J̄

[
c2

λ (Σ)
(log(R)− e′R x))

]
− J̄2, ∀J̄ > J

The first-order necessary conditions for optimization problem
[26] helps us to derive the main result of this section. With
µ
J̄
≥ 0 as Lagrange multipliers and L to denote the La-

grangian of the convex optimization problem (14), first-order
necessary condition for optimality is given by (25):

∂L
∂xm

= 0 (25)

⇒ P(R = jm | J = J)
(
2e2xm − c1λ (Σ)

)
=

c2
λ (Σ)

∑
J̄

µ
J̄

[
P(R = jm | J = J̄)− P(R = jm | J = J)

]
⇒ e2xm =

1

2

[
c1λ (Σ)

+
∑
J̄

(
P(R = jm | J = J̄)

P(R = jm | J = J)
− 1

) µ
J̄
c2

λ (Σ)

]
(26)

⇒ e2xm − e2xl =
∑
J̄

[
P(R = jm | J = J̄)

P(R = jm | J = J)

− P(R = jm | J = J̄)

P(R = jl | J = J)

]
µ
J̄
c2

2λ (Σ)

(27)

We exploit (27) to prove Theorem 2. Let J be the jamming
power to be incentivized. To prove first part, we use the same
steps as (26)-(27) for the relaxed radar’s ECCM problem (19)
to obtain:

e2xm − e2xl =
∑
J̄>J

[
P(R = jm | J = J̄)

P(R = jm | J = J)

− P(R = jm | J = J̄)

P(R = jl | J = J)

]
µ
J̄
c2

2λ (Σ)
≥ 0, ∀m > l

Therefore, xm is non-decreasing in m i.e. x1 ≤ x2 ≤ . . . ≤
xM , which implies ψ(π, J) is concave in J for the relaxed
radar’s ECCM problem using Lemma 1.

To prove second assertion of Theorem 2, note that for
J = j1, (19) is same as PAP (14). For J ≥ j2, we know that
the any solution of the relaxed radar’s ECCM problem should
be non-constant or else J1 becomes the optimal jamming
power. This implies at least one of the incentive constraint
for the relaxed radar’s ECCM problem is binding. Let the
corresponding constraint be for J̄ = δ > J . We have

ψ(π, δ) = ψ(π, J) ≥ ψ(π, J̄), ∀J̄ > J

Due to concavity of ψ(π, J), we also get

ψ(π, J) ≥ ψ(π, J̄), ∀J̄ < J

because if ψ(π, J) < ψ(π, τ) for some τ < J < J̄ implies:

ψ(π, J) < 0.5 ψ(π, δ) + 0.5 ψ(π, τ)

which contradicts the fact that ψ(π, J) is a concave function in
J . Hence, the radar’s ECCM strategy for the relaxed radar’s
ECCM problem (19) is also optimal for the radar’s ECCM
problem (14).
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