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Abstract— In the present work, a reinforcement learning (RL)

based adaptive algorithm to optimise the transmit beampattern for

a co-located massive MIMO radar is presented. Under the massive

MIMO regime, a robust Wald-type detector, able to guarantee

certain detection performances under a wide range of practical

disturbance models, has been recently proposed. Furthermore, an

RL/cognitive methodology has been exploited to improve the detec-

tion performance by learning and interacting with the surrounding

unknown environment. Building upon previous findings, we develop

here a fully adaptive and data-driven scheme for the selection

of the hyper-parameters involved in the RL algorithm. Such an

adaptive selection makes the Wald-RL-based detector independent

of any ad-hoc, and potentially sub-optimal, manual tuning of the

hyper-parameters. Simulation results show the effectiveness of the

proposed scheme in harsh scenarios with strong clutter and low

SNR values.

Index Terms— Adaptive selection, beamforming, constant

false alarm rate, massive MIMO radar, Reinforcement Learning,

SARSA, target detection.
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I. INTRODUCTION

The concept of Cognitive Radar (CR) has been firstly

introduced by Haykin [1]. The need of adaptation to

the changes in the environment is intrinsic in the radar

detection problem due to the presence of multiple sources

of non-stationarity, such as variations in the clutter statis-

tics over time or changes in the target scenario. Un-

like communication systems where the transmitter and

receiver are physically separated, in a monostatic radar

system the transmitter and the receiver are in the same

position, allowing the latter to easily transmit information

to the former. MIMO radar systems can be divided into

two fundamentals categories: widely separated radars and

co-located radars. As [2] suggests, a radar with widely

separated antennas can exploit the spatial diversity of the

target radar cross section to obtain a diversity gain similar

to the one in communications. In a co-located MIMO

radar, the antennas are closely spaced and each element

of the array transmits a different probing signal, contrary

to standard phased array where all the elements transmit

the same waveform with variable amplitude and phase.

In [3] the authors discuss the advantages of parameter

identifiability led by co-located MIMO radars. Following

the recent works [4], [5], in this correspondence, we

focus our attention on co-located massive MIMO radars

exploiting RL-based techniques [6], [7] to implement the

cognition loop [8]. Specifically, in [4] the authors proved

that, if the number of virtual spatial antenna channels is

high enough (massive MIMO regime), a robust Wald-

type test can be derived to guarantee the constant false

alarm rate (CFAR) property under a wide variety of

disturbance models using a single snapshot. Then, in [5],

a reinforcement learning (RL) approach is proposed to

optimise the transmission beampattern of a co-located

massive MIMO radar exploiting the robust Wald-type

detector in [4].

Two original contributions are proposed in this corre-

spondence. The first one is the introduction of two new

policies, called quasi ε-greedy policy and quasi ε-greedy

policy with target recovery. The former improves the

performance of the system by forcing the RL algorithm

to focus its power in a number of angular bins greater

or equal to the number of detected targets; in addition,

the latter exploits a mechanism that allows the system

to recover a missed target more quickly. The second

original contribution consists of an adaptive algorithm that

selects the SARSA algorithm hyper-parameters (ε and α)

based on the received signal. This allows the system to

adapt to the variations of the surrounding environment and

to achieve better detection capability both in stationary

and non-stationary scenarios. Afterwards, the RL-based

algorithm proposed in [5] with the quasi ε-greedy policy

with target recovery and the adaptive selection of ε and

α is tested in various simulation scenarios. The results

confirmed that the updated algorithm achieves higher

detection performance, compared to the one in [5]. Both
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our algorithm and the one proposed in [5] exploit the

robust Wald-type detector described in [4].

In Section II we describe the detection problem and

the main properties of the robust Wald-type detector

derived in [4]. Section III provides the background on

the RL-based detector proposed in [5]. In Section IV two

variations of the ε-greedy policy are proposed, while an

adaptive algorithm to select the ε and α parameters is

described in Section V. In Section VI we validate the

proposed contributions via simulation. The simulated sce-

narios are described in Appendix A. Finally, conclusions

are drawn in Section VII.

NOTATIONS: In this paper we use upper case letters

A and lower case ones a to denote matrices and vectors

respectively. (·)T and (·)H denote a matrix transpose

and conjugate transpose respectively, while (·)∗ denotes

the conjugate operator. IN denotes the N × N identity

matrix, while 0N denotes an all zeros N × N matrix.

E{·} denotes the statistical expectation. The Kronecker

product is represented by ⊗. A closed interval of numbers

between a and b is denoted by [a, b], while a set containing

only a and b is denoted by {a, b}. The absolute value is

represented by | · |. The relative complement of set A with

respect to set B is denoted as B\A.

II. THE CFAR DETECTION ALGORITHM

Consider a co-located MIMO radar with NT transmit

and NR receive antennas. Both transmit and receive

arrays are uniform linear arrays (ULA) with inter-element

distance d = λ/2. The transmitted signal vector can be

expressed as s(t) = WΦ(t) where W ∈ CNT×NT is a

weighting matrix and Φ(t) ∈ CNT is a vector containing

a set of orthonormal signals. After sampling the correct

range-doppler bin at the output of the matched filter the

received signal can be expressed as [4]

y = αh + c ∈ C
N×1, (1)

with N = NTNR and h = W TaT (ν0) ⊗ aR(ν0).
Finally, aT (ν0) and aR(ν0) are the transmit and receive

steering vectors that depend on the spatial frequency

ν0 = (d/λ) sin(θ0) where θ0 is the target angle of arrival

(in a given reference frame).

Assuming that the received signal is processed at each

time instant k by a bank of L spatial filters tuned to a

fixed grid of angular bins Θ = {θl}Ll=1, the detection

problem can be formulated as the following hypothesis

testing problem [5]

H0 : yk,l = ck,l,

H1 : yk,l = αk,lhk,l + ck,l.
(2)

In the following, we assume that the grid is chosen

in order to uniformly span the spatial frequency interval

[−0.5, 0.5].
As a test statistic, the robust Wald-type detector Λk,l is

adopted [4], [9]:

Λk,l =
2|hH

k,lyk,l|2

hH
k,lΓ̂k,lhk,l

, (3)

where Γ̂k,l is an estimate of the covariance matrix of the

noise vector ck,l. The detector discriminates between H0

and H1 by comparing the statistic with a threshold λ in

each angular bin. When N → ∞, the statistic satisfies

the CFAR property, i.e. the Probability of False Alarm

(PFA) is constant and can be selected by choosing the

threshold as λ = −2 ln (PFA), under a wide rage of

practical disturbance processes with unknown statistical

characterisation. For a PFA equal to 10−4, if N ≥ 104

the MIMO radar is assumed to operate in the massive

MIMO regime and the previous property is satisfied [4].

III. RL-BASED ALGORITHM

After having ensured the CFARness of the detection

scheme through the Wald-type detector in (3), the work

[5] focused on how to exploit the large degrees of

freedom, offered by a massive MIMO radar, to max-

imise the Probability of Detection (PD). This can be

achieved by properly selecting the weighting matrix Wk

to shape the transmit beampattern aT
T (ν)WkW

H
k a∗

T (ν)
[10]. In order to do so, an RL-based algorithm has been

proposed to allow the radar focusing the power in the

angular bins associated to the targets’ angular position

[5]. In the following, a concise summary of the main

definitions and results obtained in [5] will be provided

since they represent the starting point of the original

developments proposed in this correspondence. Let us

start by introducing the Markov Decision Process (MDP)

characterising the learning/detection task at hand. For the

sake of clarity, it is worth mentioning that the following

definitions of state, action and reward, associated to the

considered MDP, are slightly different with respect to the

ones introduced in [5]. Even though the essence remains

exactly the same, this new formulation is more precise

and self-consistent.

A. The set of the states

The state space of our MDP is denoted as

S ,
{

s(i)
}K

i=0
, where K < ∞ is the maximum number

of detectable target.

The state of the system at time instant k is defined as

sk = s(ik) with [5]

ik , min

{ L−1
∑

l=0

Λ̄k,l,K

}

, (4)

where Λ̄k,l , u(Λk,l − λ) and u(·) corresponds to the

Heaviside step function 1.

B. The set of the actions

The action set of the MDP is indicated as

A ,
{

a(j)
}K

j=0
. If the action a(jk) is selected at time

1In this correspondence the notation (·)k,l is used, unlike the one (·)k
l

used in [5] .
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instant k, then the beamforming algorithm focuses its

power in the jk angular bins with the highest decision

statistic.

Let
{

l
(n)
k

}L

n=1
be the set containing the angular bin’s

indexes sorted in descending order with respect to the

decision statistic at time instant k (Λ
k,l

(1)
k

≥ ... ≥ Λ
k,l

(L)
k

),

we define the set

Ωk ,

{

∅ , jk = 0

{l
(n)
k }jkn=1 , jk 6= 0

, (5)

containing the indexes of the angular bins associated to

the jk highest decision statistics.

The system chooses the matrix Wk according to [5], [11]

Wk =











Wort ,

√

Pmax

NT

· INT
, Ωk = ∅

{

arg max
W

min
l∈Ω

k

a
T

T
(ν

l
)WW

H
a
∗
T

(ν
l
)

subject to tr
{

WW
H}

≤ Pmax

, Ωk 6= ∅
(6)

where Pmax is the maximum transmitted power.

C. The reward function

Let’s define the set Ψk ,
{

l
(n)
k

}K

n=1
, where

{

l
(n)
k

}L

n=1
is the same set as in Section B, and the sets

Φk ,

{

∅ , ik = 0
{

l
(n)
k

}ik

n=1
, ik 6= 0

, (7)

and Φ̄k , Ψk\Φk, where ik is defined in (4).

The reward is defined as [5]

rk ,
∑

l∈Φk

P̂D,k,l −
∑

l∈Φ̄k

P̂D,k,l (8)

where P̂D,k,l is an estimate of the PD of a target located

in the lth angular bin at the kth time instant.

D. SARSA algorithm

The goal of RL algorithms is to find the optimal

policy π∗, i.e. the one that maximises the state value

function Vπ(s) , Eπ

{

+∞
∑

h=0

γhrk+h+1

∣

∣sk = s

}

, ∀s ∈ S,

where γ ∈ [0, 1] is a damping factor. By defining the

state-action value function associated to the policy π

as Q(s, a) , Eπ

{

+∞
∑

h=0

γhrk+h+1

∣

∣(sk = s) ∩ (ak = a)

}

, it

can be proved that the greedy action associated to the state

s is equal to π∗(s) = argmaxa′∈A Qπ∗(s, a′) [6], [7]. The

SARSA algorithm, named after the update rule sequence

State-Action-Reward-State-Action, allows the system to

recursively compute the Q matrix associated to the op-

timal policy when the dynamics of the environment are

unknown.

The algorithm proposed in [5] consists of setting the

initial values s0 = s(0), a0 = a(0) and Q0 = 0K+1 and

proceeding by computing the new state sk+1 and reward

rk+1, selecting a new action ak+1 following the ε-greedy

policy and then updating Q as

Qk+1(sk, ak) = Qk(sk, ak)+

+ αk+1(rk+1 + γQk(sk+1, ak+1)−Qk(sk, ak)).
(9)

Once the action has been selected the algorithm com-

putes the Wk+1 matrix following (6) and then the system

transmits the new pulses. The learning rate αk ∈ (0, 1)
is the weight given to the new information with respect

to the old one.

E. ε-greedy policy

To ensure the convergence of the SARSA algorithm,

the new action ak+1 must be selected according to a

policy that guarantees that each state-action pair is visited

infinitely many times. The ε-greedy policy is one of the

most used ones in the RL-literature [6], [7]. The new

action is selected as

π
(1)
k (sk) =

{

a
(greedy)
k , w.p. 1− ε

U

{

A− {a
(greedy)
k }

}

, w.p. ε
, (10)

where “w.p.” stands for with probability, a
(greedy)
k =

argmaxa′∈A Qk(sk, a
′) and U{C} denotes a function

that selects randomly one of the elements in the set C
with uniform probability. The ε parameter controls the

exploration-exploitation tradeoff : low ε values correspond

to a system that chooses the greedy action most of the

time (exploitation), while high values to one that selects

a random action more frequently (exploration).

IV. Policy improvement

This section and the following Section V present the

original contribution of this correspondence. We start by

providing two improved versions of the ε-greedy policy.

A. Quasi ε-greedy policy

The problem arising from choosing the ε-greedy pol-

icy in our specific application can be easily explained with

an example.

Example 1. Consider a static scenario with two targets

as in Scenario 1 (see Appendix A). Suppose that the

system performs the optimal action at the kth iteration,

i.e. selects action ak = a(2) and the set Ωk, defined in (5),

contains the indices associated to the actual position of

the two targets. If the system chooses the random action

ak+1 = a(1) at the next time instant and focuses all the

power in only one of the two targets, with high probability

it will end up in sk+2 = s(1). At this point, even if the

system selects the action ak+2 = a(2), the set Ωk+2 isn’t

guaranteed to contain the indexes of the two targets. The

system will stay in state s(1) until the missed target will

be in the set Ωk+m.

To overcome this issue a new policy is proposed here.

We define the quasi ε-greedy policy as:

π
(2)
k (sk) =

{

U
{

A′(sk)− {a
(greedy)
k }

}

, w.p. ε

a
(greedy)
k , w.p. 1− ε

(11)

where A′(s(i)) , {a(j), j = i, ...,K}. If the quasi ε-

greedy policy is combined with Q0 = IK+1 then, when
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the system is in state s(i), it can’t focus its power in a

number of angular bins less than i, that corresponds to

the number of detected targets if these aren’t more than

K .

B. Quasi ε-greedy policy with target recovery

Although the quasi ε-greedy policy solved one of

the main issues encountered with the ε-greedy policy,

it doesn’t solve the target loss problem described in the

following example.

Example 2. Consider a scenario with two targets in the

radar scene, like in Scenario 1 (see Appendix A). Suppose

that, at a given time instant k, the system is in state s(2),
having detected both targets, and randomly selects action

a(5). Although two of the five angular bins in which the

system focuses its power correspond to the position of the

targets, the system might lose one of them if its SNR is

low and end up in state s(1). Now, with high probability,

the two highest decision statistics still correspond to the

angular position of the targets. Consequently, if the system

selects action a(2), it recovers the lost target and gets back

in state s(2). On the other hand, since the system is in state

s(1), it might happen that it selects action a(1) randomly

or because this is the greedy action associated to state

s(1), especially in the early phases when the system hasn’t

figured out the scene yet. In this case the system focuses

all its power in the direction of the detected target and

the decision statistic of the missed one drops. Now it will

take a long time for the system to recover it.

To solve this “missed target” problem, we define a

new policy as:

π
(3)
k (sk, sk−1) ,

{

argmax
a∈A

Qk(sk−1, a) , ik < ik−1

π
(2)
k (sk) , ik ≥ ik−1.

(12)

In words, this policy can be motivated as follows:

when the system detects an higher or equal number of

targets, it chooses the new action according to the quasi ε-

greedy policy. On the contrary, if the number of detected

targets is smaller than the one at the previous iteration

the system tries to recover them as soon as possible by

choosing the greedy action associated to the state at the

previous time instant sk−1.

V. Adaptive selection of ε and α

The ε and α hyper-parameters are both kept constant

in the algorithm proposed in [5]. Although this is one of

the most popular choices for non-stationary environments,

it has two major drawbacks. Firstly, in order to use the

algorithm, the user must select them in advance and this

operation requires a certain knowledge of both the prob-

lem and algorithm, thus limiting its usability. Secondly,

the parameters’ optimal value changes over time, both in

stationary and non-stationary environments. To overcome

these problems we propose an adaptive algorithm that

selects both the parameters based on the collected data.

TABLE I: Adaptive ε and α algorithm parameters. εmin

(αmin) and εmax (αmax) are the endpoints of the interval

to which ε (α) belongs; c1 and c2 correspond to the

multiplicative decrease and increase factors; η1 and η2
are the lower and upper threshold respectively.

x xmin xmax c1 c2 η1 η2

ε 0.1 0.8 0.8 2 0.5 1.8

α 0.2 0.6 0.9 2.5 0.5 1.8

Let rk be the reward at time instant k and dk the

sequence defined as

dk ,

{

r1 , k = 1

rk − rk−1 , k 6= 1
. (13)

Then, ε and α can be updated, at the kth iteration,

according to the following strategy:

xk+1 =











max{c1 · xk , xmin}, |dk| < η1

min{c2 · xk , xmax}, η1 < |dk| < η2

xmax, |dk| > η2
(14)

where x corresponds to ε or α, c1 ∈ (0, 1) and c2 ∈
(1,+∞). The initial value of x is set to x0 = xmax.

c1, c2, η1 and η2 are constants, but differ for the ε and α
algorithm. Table I lists all the constants’ values. xk+1

is not updated if the system was in exploration mode

in the two previous time instants, i.e. k − 1 and k. If

the system selects a random action at time instant k, the

reward rk+1 may drop due to a bad choice of the action

causing |dk+1| = |rk+1 − rk| to surpass η1 even though

the scenario hasn’t changed. If the system then chooses

the correct action at time k + 1, the reward rk+2 rises

back to a value around rk , but |dk+2| = |rk+2 − rk+1| is

likely to be over η1 due to the low value of rk+1.

The thresholds η1 and η2 depend on the definition

of the reward. For the one defined in (8), if the system

misses one target or detects a new one the reward variation

will be around 1 depending on the target SNR. A good

choice for η1 is 0.5. Moreover, η2 should be chosen high

enough to guarantee that the value is reset only when a

sudden change in the scenario happens: some empirical

tests suggested that η2 ≥ 1.8 meets this specification.

VI. SIMULATION RESULTS

In this section the performances of the two policies

and the adaptive algorithm previously described are vali-

dated via simulations in Scenarios 1 and 2 (see Appendix

A). Then the RL-based cognitive algorithm (RL-C) with

the adaptive selection of ε and α and the quasi ε-greedy

policy with target recovery is compared with the orthogo-

nal algorithm and a “non RL-based” cognitive algorithm

(NRL-C) in two non-stationary scenarios (3 and 4). The

orthogonal algorithm is the one with an omnidirectional

beampattern, while the NRL-C algorithm focuses the

power in the angular bins where a detection occurred.

As performance benchmark, we plot an upper bound on
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TABLE II: Simulation parameters. L is the number of

spatial filters in the receiver and K is the maximum

number of detectable targets; γ is the damping factor of

the cumulative reward and Q0 is the initial value of the

state-action value matrix.

PFA NT NR L K Pmax γ Q0

10−4 100 100 20 5 1 0.8 IK+1

the PD obtained by a clairvoyant beamformer that focuses

its power in the exact (and generally unknown) direction

of the targets. Finally, the proposed RL-C algorithm is

compared with the one in [5] in a stationary scenario.

Due to a lack of space only the most relevant figures

are shown, but the interested reader can obtain all the

simulations’ results using the code available via the link

in the first page of the correspondence. Table II lists all

the parameters’ values used in the simulations.

Figure 1 shows the PD of target 2 in Scenario 1

for the ε-greedy policy and the two proposed policies.

The figure shows that both the quasi ε-greedy policy and

quasi ε-greedy policy with target recovery have better

detection performances than the classical ε-greedy one. In

particular, the quasi ε-greedy policy with target recovery

has the best performances among the three policies.

Figure 2 compares the performance of the adaptive ε
algorithm with the two static cases with ε = εmin and

ε = εmax while keeping α constant (α = 0.5); Figure 3

does the same for α when ε is kept constant (ε = 0.5). All

the graphs show that the adaptive algorithm combines the

positive effects of having high values of both the param-

eters in the initial transitory phase, when the system has

to gather information about the surrounding environment,

and low values in the following phase when the system

approaches a steady state.

Scenario 3 consists of two targets with fixed angular

position and variable SNR, which is shown in the inset in

Figure 4a. Figure 4 shows the PD of both targets. Since

the SNR increases in the interval [1,100] and decreases

in [101,200], the PD varies accordingly. It is interesting

to note that there is a delay between the drop of the

PD and the time instant when the SNR starts to go

down (k = 100) for both the RL and NRL cognitive

algorithms. For example, considering the performance of

the RL-C algorithm in Figure 4b, the PD goes down after

k = 110; in the interval [101,110] the positive effect

of the algorithm’s learning capability prevails over the

negative effect of the decreasing of the target’s SNR. The

RL-based algorithm shows better detection performance

than the non RL-based cognitive one, confirming that

the system is able to exploit the information gathered

from the surrounding environment. Since the SNR of both

targets is low, the orthogonal algorithm can’t detect them.

Even though the RL-based algorithm shows far better

performance than the other algorithms, there’s still a gap

with the upper bound on the PD.

TABLE III: PD of the four targets in Scenario 3 in [5] for

a fixed PFA value of 10−4. The values in the second row

are obtained using the proposed RL-C algorithm, while

the ones in the third row are extracted from Figure 6

in [5].

Target 1 (ν = −0.2) 2 (ν = 0) 3 (ν = 0.2) 4 (ν = 0.3)

RL-C 1.00 0.98 0.99 0.97

[5] 1.00 0.74 0.91 0.73

Scenario 4 consists of three stationary targets. Target

1 and 2 are in the scene at time k = 1 and disappear at

time k = 101 and k = 301 respectively. Target 3 appears

at time k = 201 and stays in the scene until the end

of the simulation. Figure 5 confirms that the RL-based

algorithm is the one with the best detection performance

among the three algorithms. Figure 6 and Figure 7 show

the temporal evolution of the ε and α parameters: the

adaptive algorithm is able to track the variations in the

scene and adjust the parameters accordingly.

Finally, Table III compares the performance of the

proposed RL-C algorithm with one obtained in [5].

Thanks to the developed quasi ε-greedy policy with

target recovery and the adaptive selection of ε and α,

a significant improvement has been achieved.

VII. CONCLUSION

In the present paper we introduced two variations of

the ε-greedy policy. In addition, we proposed an adaptive

algorithm to select the SARSA ε and α parameters,

which increases both the RL-based algorithm performance

and usability, since the user doesn’t have to set them

manually. Then the enhanced version of the algorithm

proposed in [5] was tested in various stationary and

non-stationary scenarios. The results confirmed that the

updated algorithm leads to a significant improvement

of the detection capability of the massive MIMO radar

system. On the other hand, the new policies and the adap-

tive selection of the hyper-parameters slightly increase

the computational overhead, which must be taken into

account when the algorithm is implemented by a real-time

system. Furthermore, the time complexity of the algorithm

grows exponentially with NT , due to the growth of the

dimension of the weighting matrix W [5], limiting its

scalability. Future works will investigate the possibility to

fill the gap between the performance of the improved RL-

based algorithm and the upper bound. More specifically,

we will try to fuse the position information (i.e. target

tracking) with the RL-based detection algorithm.

Appendix A
SIMULATION FRAMEWORK DESCRIPTION

In all the simulated scenarios the noise process is

an AR(6) process with t-distributed independent and

CORRESPONDENCE: 5



identically distributed (i.i.d.) innovations with the same

parameters as the ones in [5].

Table IV contains all the details that characterise the

four simulated scenarios.

TABLE IV: Target scenarios.

Scenario
Time

Target
Angular

ν SNRdB
Interval Bin

1 7 -0.20 -20
1 [1,300]

2 16 0.25 -20

2 [1,100] 1 17 0.30 -20

1 7 -0.20 variable
3 [1,200]

2 16 0.25 (Inset Fig.4a)

4

[1,100]
1 5 -0.30 -18

2 13 0.10 -21

[101,200] 2 13 0.10 -21

[201,300]
2 13 0.10 -21

3 17 0.30 -20

[301,400] 3 17 0.30 -20
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Fig. 1: Policy comparison: PD of target 2 (Scenario 1).
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Fig. 2: Adaptive vs static ε: PD of target 2 (Scenario 1).

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Discrete time k

P
D

α = αmin = 0.20

α =αmax = 0.60

adaptive α

Fig. 3: Adaptive vs static α: PD of target 1 (Scenario 2).
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Fig. 4: PD of the targets in Scenario 3. The inset figure in (a) shows the SNR of both targets expressed in dB.
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Fig. 5: PD of the targets in Scenario 4.
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