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Nowadays, hyperspectral imaging is recognized as a cornerstone remote sensing technology. The explosive growth in image data
volume and instrument data rates, compete with limited on-board storage resources and downlink bandwidth, making hyperspectral
image data compression a mission critical on-board processing task. Recently, the Consultative Committee for Space Data Systems
(CCSDS) extended the previous issue of the CCSDS-123.0 Recommended Standard for multi- and hyperspectral image compression
to provide with Near-Lossless compression functionality. A key feature of the CCSDS-123.0-B-2 is the improved Hybrid Entropy
Coder, which at low bit rates, provides substantially better compression performance than the Issue 1 entropy coders. In this
paper, we introduce a high-throughput hardware implementation of the CCSDS-123.0-B-2 Hybrid Entropy Coder. The introduced
architecture exploits the systolic design pattern to provide modularity and latency insensitivity in a deep and elastic pipeline
achieving a constant throughput of 1 sample/cycle with a small FPGA resource footprint. This architecture is described in portable
VHDL RTL and it is implemented, validated and demonstrated on a commercially available Xilinx KCU105 development board
hosting a Xilinx Kintex Ultrascale XCKU040 SRAM FPGA, and thus, is directly transferable to the Xilinx Radiation Tolerant Kintex
UltraScale XQRKU060 space-grade devices for space deployments. Moreover, state-of-the-art SpaceFibre (ECSS-E-ST-50-11C) serial
link interface and test equipment were used in the validation platform to emulate an on-board deployment. The introduced CCSDS-
123.0-B-2 Hybrid Entropy Encoder achieves a constant throughput performance of 305 MSamples/s. To the best of our knowledge,
this is the first published fully-compliant architecture and high-throughput implementation of the CCSDS-123.0-B-2 Hybrid Entropy
Coder, targeting space-grade FPGA technology.

Index Terms—On-board data systems, Hyperspectral imaging, Compression, CCSDS-123, Hybrid Entropy Coder, FPGA
accelerator, IP Core.
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I. INTRODUCTION

HYPERSPECTRAL imaging is recognized as a cor-
nerstone remote sensing technology. The latest high-

resolution and high-speed space-borne imagers have brought
an explosive growth in data volume. For example, the HyspIRI
sensor developed by NASA can produce up to 5 TB of data per
day. This competes with the limited on-board storage resources
and downlink bandwidth, making hyperspectral image com-
pression a mission critical on-board processing task. Due to the
high data volume reduction often needed to meet spacecraft
downlink bandwidth requirements, lossy compression is be-
coming increasingly important. In this context, the Multispec-
tral Hyperspectral Data Compression (SLS-MHDC) Working
Group of the Consultative Committee for Space Data Systems
(CCSDS) standardized the new Issue 2 “Low-Complexity
Lossless and Near-Lossless Multispectral and Hyperspectral
Image Compression” standard CCSDS-123.0-B-2 [1]. This
new Issue 2 extends Issue 1 [2], incorporating support for low-
complexity near-lossless compression, while retaining lossless
compression capabilities. Near-lossless refers to the ability to
perform compression in a way that limits the maximum error
in the reconstructed image to a user-specified bound.

A key feature of CCSDS-123.0-B-2 is the improved Hybrid
Entropy Coder option. At high bit-rates, the Hybrid Entropy

Coder encodes most samples using a family of codes that are
equivalent to those used by the Sample-Adaptive Encoder of
Issue 1, and thus, has nearly identical high-bit-rate perfor-
mance. However, at low bit rates it has substantially better
performance than the Issue 1 entropy encoders [3, p. 4-29].
For example, the Sample-Adaptive Encoder of Issue 1 cannot
reach bit-rates lower than 1 bit-per-sample due to design
constraints, while the Rice-based Block-Adaptive Encoder
(described in CCSDS-121.0-B-3) may, but at a non-negligible
bit-rate overhead.

The Hybrid Entropy Coder specified in CCSDS-123.0-B-2
is an extended version of the NASA FLEX original hybrid
entropy coder [4], [5] so that decoding proceeds in reverse
order. This permits a more memory-efficient implementation
than FLEX’s original entropy coder, which was based on
an interleaved entropy coding approach. The Hybrid En-
tropy Coder includes codes equivalent to the Length-Limited
Golomb-Power-of-2 codes used by the Sample-Adaptive En-
tropy Coder with the addition of 16 variable-to-variable length
“low-entropy” codes to provide better compression of low-
entropy data. Such low-entropy data become more prevalent as
increased predictor quantization step sizes are used i.e. increas-
ingly lossy compression. The Hybrid Entropy Coder adaptively
switches between high and low entropy encoding methods on a
sample-by-sample basis, using code selection statistics similar
to those used by the Sample-Adaptive coder. A single output
codeword from a low-entropy code may encode multiple
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samples, which allows obtaining lower compressed data rates
than can be produced by the Sample-Adaptive Entropy Coder.

Apart from the compression needs, on-board applications
require devices that are capable of high-performance with
low power consumption and radiation hardness characteristics.
The current state-of-the-art SRAM-based FPGA technology
offers radiation hardening by design (RHBD), high density and
dynamic partial reconfiguration for in-flight adaptability and
Time-Space Partitioning (TSP) of on-board data processing
tasks. An excellent example of such technology is the RHBD
Xilinx Kintex-Ultrascale XQRKU060 FPGA which provides
exceptional hardness to Single-Event-Upset (SEU), typical
immunity of 80MeV-cm2/mg to Single-Event Latchup (SEL),
data path protection from Single-Event Transients (SET) and
maximum tolerance of 100 Krad to Total Ionizing Dose
(TID) [6]. The XQRKU060 FPGA offers those technological
advantages and is considered a suitable device for on-board
payload data processing applications due to its ability to sup-
port upgrades after launch, greatly enhancing mission profile
and extending valuable mission life time.

The first, fully-compliant, architecture and implementation
of CCSDS-123.0-B-2 Hybrid Entropy Coder was presented
in [7]. The architecture achieved variable throughput perfor-
mance depending on hyperspectral image statistics operating
at 1 sample/cycle only for high-entropy data and at no less than
0.33 samples-per-cycle, for low-entropy data. The maximum
throughput (1 sample/cycle) which was achieved for lossless
compression configuration of a high entropy hyperspectral
cube was 344 MSamples/sec targeting the XQRKU060 space-
grade FPGA. However, even for lossless compression of low-
entropy data or near-lossless mode, where low-entropy coded
samples occur increasingly more often, the throughput perfor-
mance is degraded when the Absolute Error Limit Constant
increases, with a lower bound of 114 MSample/sec.

In this paper, we introduce an efficient architecture and high-
throughput hardware implementation of the CCSDS-123.0-B-
2 Hybrid Entropy Coder. The proposed architecture extends
our previous work in [7] achieving a constant throughput of
1 sample/cycle introducing an efficient codetable lookup by
modifying the low entropy coder without any performance
degradation when using near-lossless mode even with larger
values of error limits. Moreover, the proposed architecture is
implemented in portable VHDL RTL and exploits the systolic
design pattern to provide modularity and latency insensitiv-
ity in a deep and elastic pipeline minimizing the number
of stalls. The introduced Hybrid Entropy Coder architecture
is validated and demonstrated on a commercially available
Xilinx KCU105 development board hosting a Xilinx Kintex
Ultrascale XCKU040 SRAM FPGA, and is therefore directly
transferable to the Xilinx Radiation Tolerant Kintex Ultra-
Scale XQRKU060 space-grade devices for space deployments.
Moreover, state-of-the-art SpaceFibre (ECSS-E-ST-50-11C)
high-speed serial link interface and test equipment were used
in the validation platform to match space deployment. The in-
troduced CCSDS-123.0-B-2 Hybrid Entropy Encoder achieves
a constant high-throughput performance of 305 MSamples/s
(4.88 Gbps @ 16bpppb), with minimal footprint that is 2.10%
(5086) of device LUTs and 0.17% (1) BRAMs of FPGA

Fig. 1. Block diagram of the CCSDS-123.0-B-2
compressor [1]

resources. To the best of our knowledge, this is the first
published, fully-compliant, architecture and high-throughput
implementation of the CCSDS-123.0-B-2 Hybrid Entropy
Coder, also targeting space-grade FPGA technology.

The rest of this contribution is organized as follows: Sec-
tion 2 provides background information about the CCSDS-
123.0-B-2 Recommended Standard and the Hybrid Entropy
Coder algorithm, while Section 3 describes the introduced
architecture. Section 4 provides experimental results including
the verification of the proposed architecture, the validation
of the implemented design on Xilinx KCU105 development
board interfacing with SpaceFibre, as well as resource and
throughput performance statistics of the implemented design.
Section 5 presents related work and comparisons. Finally,
Section 6 concludes the paper.

II. BACKGROUND

A. CCSDS-123.0-B-2 Overview
The CCSDS-123.0-B-2 standard was designed to provide

an effective method of performing lossless or near-lossless
compression of three-dimensional image data with low imple-
mentation complexity for space-borne imagers. Near-lossless
compression refers to the ability to perform compression such
that the maximum error in the reconstructed image can be
limited to a user-specified bound by adjusting the absolute
and relative error parameters.

Incoming image samples enter at compressor’s input. Im-
age indices are denoted as sz(t) where t = y · Nx + x,
x = 0, ..., Nx−1, y = 0, ..., Ny−1 are the spacial coordinates
(Nx columns and Ny rows) and z = 0, ..., Nz − 1 the
spectral dimension. Image samples produced by multispectral
and hyperspectral imagers are typically interleaved in one of
three common orderings: z,y,x (Band SeQuential [BSQ]), y,x,z
(Band Interleaved Pixels [BIP]), and y,z,x (Band Interleaved
Lines [BIL]). In BSQ the compression of all image samples of
a spectral band is computed before processing the following
bands; in BIP a sample is compressed for all the bands before
processing next samples; finally, in BIL each line of samples is
compressed for all the bands before processing the next lines.

The predictor uses a low-complexity adaptive linear predic-
tion method to predict the value of each sample based on
the values of nearby samples in a small three-dimensional
neighborhood. Prediction can be performed causally in a single
pass through the image, making use of an adaptively weighted
prediction algorithm. Since the original input samples will not
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be available to the decompressor due to lossy compression,
the predictor performs calculations based on sample represen-
tatives s′′z (t) instead.

Besides using sample representatives, the predictor in Issue
2 also differs from Issue 1 in that each prediction residual
∆z(t), that is, the difference between the predicted and actual
sample values, is quantized using a uniform quantizer. The
quantizer step size can be controlled via an absolute error limit
(so that samples can be reconstructed with a user-specified
error bound) and/or a relative error limit (so that samples
predicted to have smaller magnitude can be reconstructed
with lower error). Lossless compression in a band is obtained
by setting the absolute error limit to zero. The quantized
prediction residual qz(t) is then mapped to an unsigned integer
mapped quantizer index δz(t). These mapped quantizer indices
make up the output of the predictor.

The Encoder receives those mapped quantizer indices from
the Predictor and encodes them using a family of codes. The
Standard describes three possible Encoder options, the Sample
Adaptive Encoder, Block-Adaptive Encoder and Hybrid En-
tropy Coder. The CCSDS-120.2-G-2 Informational Report [3]
includes detailed benchmarks of the encoders and highlights
that even though the Hybrid Entropy Coder is the more com-
plex encoder option, it is capable of improved compression
performance for both lossless and near-lossless compression
for well-chosen parameters. A comprehensive review of the
Standard can also be found at [8].

B. Hybrid Entropy Encoding Algorithm

The Hybrid Entropy Coder is a modified version of the
one originally used by the FLEX entropy coder. It includes
codes equivalent to the length-limited Golomb Power-of-2
(GPO2) codes (i.e. Golomb codes with parameters that are
powers of 2, also known as Golomb-Rice codes [3, p. 3-15])
used by the Sample-Adaptive encoder, but extended with an
additional 16 variable-to-variable length low-entropy codes.
During encoding it adaptively switches between these two
coding methods on a sample-by-sample basis based on code
selection statistics. A single output codeword from a low-
entropy code may encode multiple samples, which allows
obtaining lower compression data rates (under one bit-per-
pixel) than those achievable by the Sample-Adaptive entropy
coder.

The mapped quantizer indices, δz(t) of dynamic range D,
from the Predictor’s output are the inputs of the encoder.
The Coder maintains the Adaptive Code Selection Statistics
(ACSS), a high-resolution accumulator, Σ̃z(t), and a counter
Γ(t). Based on the ratio of these variables, the running δz(t)
is encoded with a high entropy or a low entropy code.

Initially when t = 0, both variables are initialized, and the
first sample of every band, δz(0), is emitted uncompressed. For
the rest of the encoding process, both variables are updated
before coding the sample and rescaled when the counter
saturates (indicated by the rescaling factor γ∗), as shown in (1)
and (2). After rescaling, the most significant value of Σ̃z(t) is
emitted to enable recalculation of the accumulator during the
decoding process.

Algorithm 1 Functionality of Hybrid Entropy Coder

if t = 0 then
init()

else if t = NxNy − 1 then
compressed image tail()

else(
Σz(t),Γ(t)

)
← update acss

(
Σz(t− 1),Γ(t− 1), δz(t)

)
hilo ← entropy coder selection

(
Σz(t),Γ(t)

)
if hilo = 1 then

codeword ← high entropy coder
(
δz(t)

)
to bitstream(codeword)

else
codeword ← low entropy coder

(
δz(t)

)
if codeword match = 1 then

to bitstream(codeword)
end if

end if
end if

Σ̃z(t) =


Σ̃z(t− 1) + 4δz(t) ,Γ(t− 1) < 2γ

∗ − 1⌊
Σ̃z(t− 1) + 4δz(t) + 1

2

⌋
,Γ(t− 1) = 2γ

∗ − 1
(1)

Γ(t) =


Γ(t− 1) + 1 ,Γ(t− 1) < 2γ

∗
− 1⌊

Γ(t− 1) + 1

2

⌋
,Γ(t− 1) = 2γ

∗
− 1

(2)

In equation (3), the choice of coder is represented by the
high/low entropy flag (hilo), where T0 is a constant provided
by the standard. When the flag is set, the current sample shall
be encoded with a high entropy code, otherwise with a low
entropy code.

hilo =

{
1 , Σ̃z(t) · 214 ≤ T0 · Γ(t)
0 , else

(3)

Each high entropy sample is then encoded by a Reverse
Length-Limited Golomb Power-of-2 (RLL-GPO2) code. Each
code is identified by a code index kz(t), being the largest
positive integer satisfying

kz(t) ≤ max(D − 2, 2) (4)

Γ(t)2kz(t) ≤ Σ̃z(t) +

⌊
49

25
Γ(t)

⌋
(5)

The RLL-GPO2 codeword for the high entropy sample
δz(t), <′kz(t)(δz(t)) is defined as follows:

a) if bδz(t)/2kz(t)c < Umax, where Umax is the maximum
unary length, then <′kz(t)(δz(t)) consists of the kz(t)
least significant bits of the binary representation of δz(t),
followed by a ‘one’, followed by bδz(t)/2kz(t)c ‘zeros’

b) otherwise, <′k(δz(t)) consists of the D-bit binary repre-
sentation of δz(t) followed by Umax ‘zeros’.

Low entropy samples are encoded using one of 16 variable-
to-variable length family of codes. The code index of the low
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Fig. 2. Top-level architecture for the proposed Hybrid Entropy Coder

entropy code to be used for encoding the low entropy sample
δz(t) is the largest positive i satisfying

Σ̃z(t) · 214 ≤ Ti · Γ(t), 0 ≤ i ≤ 15 (6)

where T0, ..., T15 are constants provided by the standard and
T0 is used in (5).

For each code i a prefix of previously input samples is
maintained. When a sample is processed, a symbol is added
to the corresponding prefix. The standard defines a list of
complete prefixes for each code. When a code’s prefix matches
a complete prefix, then a unique codeword corresponding to
that sequence of symbols is emitted and the prefix is cleared
for this code i.

The complete prefixes of any low entropy code i, can only
contain samples satisfying δz(t) ≤ Li, where L0, ..., L15 are
constant symbol limits provided by the standard. When a
sample exceeds this limitation, then <0(δz(t) − Li − 1) is
emitted, and an escape symbol X (here represented as Li+1)
is added to the code’s prefix. The addition of the escape
symbol, completes the prefix and the corresponding codeword
is emitted. Therefore in this case an RLL-GPO2 codeword
is followed by a low entropy codeword. The input symbol
selection can be summarized as

ιz(t) =

{
δz(t) , δz(t) ≤ Li
Li + 1 , δz(t) > Li

(7)

A more detailed description of the encoding procedure
including code tables and limits, can be found in the Standard
[1]. The encoding procedure is outlined in pseudocode in
Algorithm 1.

III. INTRODUCED ARCHITECTURE

The Hybrid Entropy Coder is designed as an IP core
described in technology agnostic VHDL RTL. However, tech-
nology specific blocks (e.g. DSP48E blocks in Xilinx FPGAs)
are used by inference, as well as, generic usage for memory
technology mapping between inference and vendor specific
memory cells. The encoder operates in the BIP ordering to
be matched with a lossless predictor in BIP order (e.g [9]),
however, it can be modified to match specific instrument
sensors and mission requirements, with different pixel order
(BIL and BSQ). The top-level block diagram of the proposed

Hybrid Entropy Coder architecture implemented as an IP core
is shown in Fig. 2.

The IP Core interfaces using AXI4-Stream based I/O, sup-
porting flow control using the protocol handshake (tvalid
and tready signals). Internally, each encoder sub-unit, as
shown in Fig. 2, is pipelined using a systolic latency insensitive
design pattern, with elastic buffers [10] as pipeline registers.
The elastic buffers use AXI4-Stream handshaking and allow
for full throughput (1 cycle/sample) when neither source
or sink are stalling. This design pattern avoids additional
controllers for flow control, or superfluous buffering to manage
sink side stalls. At the same time it facilitates Unit testing, by
having consistent, verified interfaces in internal components on
which testbench bus functional models attach with a consistent
protocol.

The Hybrid Entropy Coder comprises of six pipelined
components at the top level, which are:

1) Adaptive Code Selection Statistics (ACSS) Unit
2) High/Low (HiLo) Entropy Decision Unit
3) High Entropy Coder (HiEC) Unit
4) Low Entropy Coder (LoEC) Unit
5) Codeword Combiner Unit and
6) Variable Length Code (VLC) Packer Unit

A. Design Considerations for Hardware Implementation

Using the latency insensitive design pattern, feed-forward
processing paths are further pipelined to decrease logic path
lengths and increase achievable frequency. However, process-
ing feedback loops imply a total number of delay cycles equal
to the pipeline registers in the loop, which if exceeded, limits
performance in terms of cycles/sample processed. This creates
a pipeline depth versus critical path (achievable Fmax) trade-off
to be considered in these feedback loops. In this context, two
components stand out in complexity, the ACSS unit, and the
LoEC unit, which contain such feedback loops.

The ACSS unit contains a feedback loop in the update
of Σ̃z(t) and Γ(t). Initializing and computing this update
depending on previously computed values (Σ̃z(t−1), Γ(t−1)),
is handled by a Loop Controller module. In this unit, for BIP
and BIL order the feedback datapath delay is commonly larger
than the pipeline depth (Nz clock cycles), therefore the loop



5

Fig. 3. Code Adaptive Selection Statistics Unit top level
architecture

does not cause a performance degradation in terms of samples-
per-cycle processed, unless the number of bands is extremely
small. For BSQ order, the feedback datapath comprises of
exactly one clock cycle delay, regardless of the number of
bands.

The LoEC unit contains a loop where the input codeword
in a code-table lookup operation, depends on the output of
previous lookups of the same code-table.

B. Adaptive Code Selection Statistics Unit

The Adaptive Selection Statistics (ACSS) Unit maintains
and updates the accumulator Σ̃z(t), and counter Γ(t), values
according to equations (1) and (2), supplying them to the
downstream units.

Both variables are updated when a new, δz(t), enters the
encoder and rescaled when the counter reaches the value of
the γ∗ parameter. Under BSQ ordering one accumulator and
one counter would be required. Under BIL ordering, the same
elements and resources are required for each spectral band,
which is Nz accumulators and counter values. Under BIP
ordering Nz accumulator values and a single counter value
are required.

For our BIP implementation, the current values of accumu-
lator and counter, Σ̃z(t) and Γ(t), are computed using their
previous values, Σ̃z(t− 1) and Γ(t− 1) respectively, creating
a dependency. To resolve it, values of Σ̃z(t) for all bands are
stored in a FIFO queue of depth at least equal to the number
of bands, also acting as a delay buffer for the value of Γ(t),
taking advantage of the interleaved processing between the Nz
spectral bands. The feed-forward path of the loop is comprised
of 2 pipeline stages, and Nz > 2, therefore the dependency is
not violated.

A a similar architecture is estimated for the BIL imple-
mentation as well. In that case accumulator values would be
stored in the FIFO queue at the end of every line of every
band. In a BSQ architecture, the FIFO queue would not be
included in the feedback datapath, acting only as a buffer for
Σ̃z(t) values at the and of every band in order to be emptied
during the construction of the compressed image-tail. Finally,

Loop Controller logic would be modified to meet each orders
handshake requirements.

Code Statistics calculation is architecturally very similar to
the Sample Adaptive Coder of [2], therefore an indicative im-
plementation would be close in required resources as in [11],
[12], [13], with the exception of the BSQ order, where the
FIFO queue of Nz depth would still be in use for storing
Σ̃z(t) for the compressed image-tail.

The top-level architecture of the ACSS unit is shown
in Fig. 3. Signals with the “_hs” suffix represent handshaking
signals, shown in a simplified ready/valid notation. As a
whole, the ACSS unit receives a mapped quantizer index, δz(t)
(of D bits) input and produces Σ̃z(t) (of 2 + D + γ∗ bits),
Γ(t) (of γ∗ bits), δz(t) and certain flags used for codeword
selection downstream. The unit consists of a feed-forward path
which updates Σ̃z(t) and Γ(t) and a feedback path, which
comprises a queue storing previous Σ̃z(t) values, returning
them as Σ̃z(t− 1) to the feed-forward path.

Also, for the construction of the compressed image-tail,
additional logic is introduced, not shown for clarity, that
activates on assertion of the end of image flag, in order to
extract and output the Nz final values of Σ̃z(t) from the
feedback queue.

1) Loop Controller
The Loop Controller is a generic IIR (Infinite Impulse

Response) filter flow controller with an arbitrary pipelining
depth in the feed-forward and feedback paths defined as RTL
generics. There is a feed-forward pipelined path with M
pipeline registers and a feedback path with N delay registers.
The filter executes a function between the incoming samples
and the feedback samples, for example

y(t) = αx(t) + y(t−K) (8)

where K is the feedback dependency of the loop.
The loop controller ensures that only up to K samples can

traverse the filter by manipulating the handshaking signals at
the inputs and outputs of the feed-forward and feedback paths.
If K is less or equal than the total pipeline stages of the filter
(N + M ), then the loop controller inserts stall cycles in the
loop, in order to not violate the data dependency, limiting data
throughput to N/(M+N) samples/cycle. Otherwise, the filter
operates in a constant data rate of 1 sample/cycle.

For the Hybrid Entropy Coder, the filter is described
by (Equation 1). For the BIP order, the same equation can
be re-written to resemble (Equation 8) as

Σ̃(t) =


Σ̃(t−Nz) + 4δ(t) ,Γ(t−Nz) < 2γ

∗ − 1⌊
Σ̃(t−Nz) + 4δ(t) + 1

2

⌋
,Γ(t−Nz) = 2γ

∗ − 1

with M = 2 pipeline registers in the feed-forward path
and N = Nz delay registers on the feedback path. In case
of Nz ≤ 2, stall cycles would be introduced by the loop
controller, limiting throughput to Nz/(Nz + 2) samples/cycle,
but this is a highly unlikely use-case, since there are no
multispectral (or hyperspectral) images with such low number
of bands (multispectral typically refers to 3 up to 15 bands).
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Fig. 4. High Entropy Coder Unit schematic

C. High/Low Entropy Decision Unit
The design of this unit revolves around the multiplica-

tion between Γ(t) and the threshold constant T0 as shown
in (Equation 3). Constant T0 is not a power of 2, thus
embedded multiplier blocks, should be used depending on
the FPGA technology. When targeting Xilinx technology, a
Xilinx DSP48E2 Slice is used to perform the multiplication
operation, registering both inputs and the product with the
internal DSP48E2 pipeline registers. After the product is
calculated a comparison follows that determines the encoder
choice. A binary high/low(hilo) flag signals this decision, and
is later used in the Codeword Combiner unit.

D. High Entropy Coder Unit
In the High Entropy Coder (HiEC) unit δz(t) is encoded

with a “high entropy” RLL-GPO2 codeword. The HiEC unit
(Fig. 4) comprises two sub-modules, the 3-stage pipelined
kz(t) Calculation module and the 2-stage pipelined RLL-
GPO2 Encoding module. The former calculates the code index
kz(t) in D−2 bits as described in equations (4) and (5), while
the latter calculates the RLL-GPO2 codeword <′kz(t)

(
δz(t)

)
in

D + Umax bits.
The unit receives δz(t) and the code statistics Σ̃z(t) and

Γ(t), along with Umax and the zero flag (t = 0), and produces
an RLL-GPO2 code along with its size in 8 bits, producing 1
sample (codeword and code-size pair) per cycle.

E. Low Entropy Coder Unit
The Low Entropy Coder (LoEC) unit is responsible for

emitting output codewords from the low entropy code-tables,
by combining multiple input symbols in a single output
codeword. The encoding procedure is implemented by three
sub-units as shown in Fig. 5.

First, the code table index i is selected by Code Index
Selection unit, followed by the determination of the input
symbol ιz(t) in Input Symbol Calculation unit. A series
of input symbols for a certain i, is used to search for a
matching input codeword at the selected code-table. If one
is found, the corresponding output codeword is emitted as
the low entropy codeword along with its respective code-
length. This procedure is performed by the Low Entropy Code-
Tables Lookup unit. Finally, additional logic is implemented

Fig. 5. Low Entropy Coder Unit top level block diagram

to extract flush codes from the 16 flush code-tables during
the construction of the compressed image tail, signaled by an
end-of-image flag.

1) Code Index Selection & Input Symbol Calculation
The Code Index Selection unit selects the code-table index

i, which will be selected for lookup. It receives δz(t) and
statistics Σ̃z(t) and Γ(t) as inputs and emits the code index i
and input symbol limit Li, as outputs, where i is the largest
code index satisfying (Equation 6).

To perform the Γ(t) · Ti, i = 0, 1, ..., 15 multiplications,
where Ti are not powers-of-two, embedded multiplier blocks
are used (e.g. 3-stage pipelined DSP48E2 Slices in Xilinx
technology). All 16 multiplications are performed in parallel,
and a comparison scheme selects the code index and input
symbol limit.

The Input Symbol Calculation unit determines the input
symbol, ιz(t) to be used for the code-table lookup as described
in (Equation 7).

2) Low Entropy Code-Table Lookup
The Low Entropy Code-Table Lookup unit is the most

complex unit and the primary performance bottleneck of the
design. The unit contains two parallel data paths. The first path
provides the low entropy codeword as a lookup to the selected
code-table, while the second path calculates the RLL-GPO2
codeword, <′0

(
δz(t)− Li − 1

)
, when the input symbol is the

escape symbol. The two codewords are concatenated, and a
multiplexer selects either the single low entropy codeword, or
the concatenated RLL-GPO2 codeword with the low entropy
codeword.

a) Low Entropy Code-Tables ROM:
A major design consideration is implementing the 16 low en-
tropy code-tables and flush-tables efficiently. Taking advantage
of the code-table tree structure, we adopt the representation of
them in Code-Table ROMs for efficient lookups introduced
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Fig. 6. Low Entropy Code-Table Lookup implementation

for the first time in [7]. The structure used to represent
the code and flush-tables resembles a prefix-free Trie data
structure. The tree root is the “null” sequence while every
child-node is connected to its parent with an edge representing
an input symbol. Terminal nodes are output codewords and
non-terminal nodes are flush codewords. A sequence of input
symbols that leads to a terminal leaf node during encoding,
causes a match codeword to be output. To map this sequence
to ROM addresses, a model of the Code-Table ROMs was
developed in software to appropriately order the code-table
contents to allow lookup via address increments.

If input samples are exhausted before the tree for a code-
table is fully traversed, then a flush codeword is emitted.
Such codewords correspond to each non-terminal tree node
and form part of the compressed image tail, which is emitted
when sample encoding has finished. The Code-Table ROMs
are looked-up with the last stored address of each tree in
sequence of increasing code index, and the corresponding flush
codeword is emitted, either from an intermediate node or from
the tree’s root address.

To demonstrate, a similar but smaller code and flush-table
are, along with the corresponding tree shown in Table I. This
code-table is transformed for efficient lookups into the code-
table ROM shown at the lower part of the table, each cell
containing a tuple that corresponds to a tree node. The first
tuple element represents the node’s parent flush codeword. In
terminal nodes the second tuple element contains its output
codeword. Otherwise, non-terminal nodes contain an offset
which lead to the next node in the tree walk, when added to
the incoming input symbol. The ROM contents are produced
by representing each code-table with a Trie in software and
then traversing it breadth-first, to produce appropriate pointer
offsets for all possible walks from the root to the terminal
nodes.

To implement the code-table ROM scheme, we store 16
ROM address pointers, in the CT ADDRESS LOOKUP mem-
ory shown in Fig. 6. Incoming symbols are added to the
previous pointer for their corresponding code index to form
a ROM address. When an escape symbol appears, a codeword
emission is guaranteed from the selected code-table and the
ROM address is reset to the root address. After the image is

TABLE I: Example of low entropy code-table and flush table
along with their tree and ROM representations

Example code-table

Input codeword Output codeword

0 4’hA
X 5’hB
10 4’hC
11 8’hD
1X 6’hE

Example flush table

Active prefix Flush word

(null) 1’h0
1 2’h1

Example code-table tree

Example code-table ROM

Address Data

0 (1’h0, 4’hA)
1 (1’h0, ptr = 3)
2 (1’h0, 5’hB)
3 (2’h1, 4’hC)
4 (2’h1, 8’hD)
5 (2’h1, 6’hE)

fully encoded, additional logic handles flush codewords for
the image tail construction.

b) Low Entropy Feedback Loop:
Low Entropy feedback loop is implemented as shown
in Fig. 6. The selected code-table address is read from the
CT ADDRESS LOOKUP registers and updated by adding the
current input symbol. Then it is used for reading the code-table
ROM (CT_ROM) and finally is written back to the registers.

In addition to the low entropy codeword, whenever the
input symbol is the escape symbol, an additional RLL-GPO2
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TABLE II: Implementation statistics for XCKU040 FPGA

Image AVIRIS
(680×512×224,16bpppb)

AVIRIS-NG
(640×512×432,14bpppb)

Frequency 305 MHz

Est. Power 1.525 W

Device
utilization

5086(2.05%) LUTs
1(0.08%) BRAMs
17(0.89%) DSPs
3296(0.67%) FFs

5067(2.09%) LUTs
1(0.08%) BRAMs
17(0.89%) DSPs
3301(0.68%) FFs

MSamples/sec 305

Gbps (@16bpppp) 4.88

codeword for δz(t)−Li−1 is produced by this unit. Therefore
there are two output codewords corresponding to a single
input.

The code-table address update procedure is performed in
a single clock cycle providing full-throughput of one sam-
ple/cycle. The critical path of the design is also located in the
feedback loop and defines the maximum achievable frequency.

F. Codeword Combiner Unit & Variable Length Code
Packer Unit

Depending on the HiLo decision flag and certain other flags,
Code Combiner unit emits the appropriate codeword into the
Variable Length Code (VLC) Packer’s input, which produces
fixed 64-bit packets. In the case of a low entropy codeword, if
the input symbol is the escape symbol, then the high entropy
codeword must precede the low entropy code-table output
codeword, meaning that there are two codewords to forward
to the VLC packer corresponding to the same input sample.
Also, whenever Γ(t) rescales, the least significant bit of Σ̃z(t)
is emitted to the bitstream for decoding purposes, meaning that
it should precede the current codeword output.

The Codeword Combiner unit handles those special cases
using flags produced throughout the encoding to provide the
required output codewords to the VLC packer, as well as han-
dling the sequence of outputs that constitute the compressed
image tail.

After the Codeword Combiner unit has extracted the appro-
priate codeword, the Variable Length Code (VLC) Packer unit
accepts variable-length codewords as inputs along with their
length, and packs them into a 64-bit packets comprising the
final bitstream. This component is re-used from previous work
in [9] and is capable of operating in high data rates.

IV. EXPERIMENTAL RESULTS

The proposed CCSDS-123.0-B-2 Hybrid Entropy Coder
architecture implemented as an IP core was verified using
simulation-based (RTL) and FPGA-in-the-loop (FIL) based
verification to speed-up verification process on a ZedBoard
FPGA development board against a software golden model in
Python, developed and provided by Universitat Autònoma de
Barcelona (UAB).

The proposed architecture is implemented with the en-
coder parameters (Table III) defining the image dimensions

TABLE III: Hybrid Entropy Coder list of parameters

Parameter Support Range

Nx yes 2 up to g Nx max
Ny yes 2 up to g Ny max
Nz yes 3 up to g Nz max
D yes 4 up to g D max
γ0 yes 1 up to g go max
γ∗ yes max{4, γ0 + 1} up to g gs max
Umax yes 8 up to g Umax max

(Nx, Ny , Nz), sample dynamic range (D), Unary Length
limit (Umax), Initial Count Exponent (γ0) and the Rescal-
ing Counter Size (γ∗). The encoder can be configured with
run-time configurable parameters through a memory-mapped
register interface, while VHDL generics are used to constrain
the parameters’ maximum allowable range. Using Nx as an
example, at netlist generation time (compile-time) a VHDL
generic g_Nx_max sets the maximum usable number of
image columns and then at run-time through the configuration
interface, this instance of the IP Core can be configured for
values of Nx to compress images with Nx < g_Nx_max. This
feature allows tailoring to optimize the design by minimizing
resource utilization or increasing achievable frequency, at the
expense of increased complexity in the RTL architecture and
design. In all cases, the generics should not get values that
exceed the maximum allowed value of the corresponding
parameter as defined by the Standard [1].

A. Design Verification
The Hybrid Entropy Coder design was verified using

simulation-based verification at VHDL RTL with Mentor
Questa against the software golden model to ensure functional
coverage of all corner cases and also targeting high VHDL
code coverage (statement, branch, FSM and condition). The
testing framework is based on the VUnit [14] Python test-
ing framework and a set of python scripts. Test campaigns
comprising of different images, compile time (generics) and
run-time (compression) parameters are described in test files
in this framework. The test scripts interpret the parameters
to invoke the golden compressor binary to produce the veri-
fication data. Then, a testbench implemented as pass/fail test
instrumented with VUnit is invoked with the Questa simulator
with automatic checking comparing with golden responses.

A comprehensive test suite exercising all combinations of
the encoder’s parameters (Umax,γ0,γ∗) was used to verify
functional correctness. Finally, tests incorporating full images
from AVIRIS [15] and AVIRIS-NG [16] image sets and
synthetic images to debug corner case scenarios were applied
to verify the encoder against realistic use-case scenarios.

More comprehensive verification was performed using
FPGA-in-the-loop (FIL) techniques on a ZedBoard FPGA
development board hosting a Xilinx Zynq-7000 SoC FPGA
device, also leveraging the ARM embedded processor. For
the purposes of FIL verification, several hyperspectral test
cubes including synthetic and random test images and using
multiple configurations were transferred to the board and the
compressed images was received from the board using a
JTAG-to-AXI interface.
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Fig. 7. Maximum frequency and resource usage with respect
to g_D_max

B. Design Implementation
The CCSDS-123.0-B-2 Hybrid Entropy Coder was im-

plemented targeting Xilinx Kintex-Ultrascale technology
(XCKU040-2FFVA1156E FPGA) and is therefore directly
transferable (in terms of implementation results), to the
Xilinx Radiation Tolerant XQRKU060 FPGA. Implementa-
tion on the target device was performed using a configura-
tion for the AVIRIS (680×512×224, 16bpppb), AVIRIS-NG
(640×512×432, 14bpppb) hyperspectral instruments, which
are typical hyperspectral sensors and the standard benchmark
in the literature.

Table II presents implementation (Place & Route, Timing
Analysis) results for the Kintex Ultrascale FPGA using Xilinx
Vivado 2020.2. The implementation parameters used are those
suggested as defaults in [17] and [3] (Umax = 18, γ0 = 1,
γ∗ = 6). For more accurate implementation results, the generic
parameters defining the maximum allowed values of encoder
inputs, are set to be equal to the exact input parameter value.

The proposed architecture achieves a constant throughput of
∼305 MSamples/sec operating at 305 MHz while the FPGA
resource footprint is kept low. The power consumption is
reported for the whole FPGA including SpaceFibre interface
IP cores and the Kintex Ultrascale device GTH transceivers.

Design’s data rate throughput can be estimated by the ratio
between total image samples and total clock cycles, needed
for a complete encoding.

data rate =
NxNyNz

init + NxNyNz + 16 + Nz + Tesc syms
(9)

The total number of samples are divided by the total number
of clock cycles. Here, init, are the initial cycles required
for the pipeline to fill up and for the header generation. In
addition to these initial cycles, there are Nx ·Ny ·Nz samples
processed in one cycle each and the cycles consumed for
the image tail creation, which are the extraction of 16 flush-
codewords followed by Nz accumulator values also processed
in one cycle each. Finally, Tesc syms, is the number of escape
symbols that force the low entropy coder to produce an
additional RLL-GPO2 codeword to the low entropy code-table
codeword, requiring an additional clock cycle in encoding.

Fig. 7 presents the resource usage and maximum frequency
after Place & Route for the generic-configurable parameter
g_D_max. Maximum frequency of the IP Core is slightly

TABLE IV: Data-rate of the Hybrid Entropy Coder IP Core
validated for different hyperspectral images

Image A* Nx Ny Nz
Throughput

(samples/cycle)

AVIRIS yellowstone sc00 0 512 680 224 0.999
AVIRIS hawaii 0 512 614 224 0.989
AVIRIS maine 0 512 680 224 0.988
AVIRIS-NG A 0 512 640 432 0.999
AVIRIS-NG A 1 512 640 432 0.990
AVIRIS-NG B 0 512 640 432 0.999
AVIRIS-NG B 1 512 640 432 0.990
PRISMA land 0 1000 1000 173 0.999
PRISMA land 1 1000 1000 173 0.987
PRISMA land 2 1000 1000 173 0.991
PRISMA ice 0 1000 1000 173 0.999
PRISMA ice 1 1000 1000 173 0.990
PRISMA ice 2 1000 1000 173 0.990
PRISMA ocean 0 1000 1000 173 0.999

influenced by the increase of g_D_max estimated between
290 MHz and 305 MHz for g_D_max = 2,4,6,...,32, while
resources tend to increase as data-path width is close relating
to g_D_max.

The throughput performance is stable, providing a constant
data rate of ∼1 sample/cycle which does not depend on the
hyperspectral image data statistics and is not degraded when
high Absolute Error Limit Constants are configured leading
to a large number of low entropy encoded samples as in
our preliminary work [7]. The critical path of the design is
located in the low entropy coder’s feedback loop datapath
which determines the maximum operational frequency. The
code-table ROM component included in this feedback loop
path is implemented using asynchronous distributed RAM
(LUTRAM), instead of BRAM in order to avoid the RAW
hazard of LoEC loop, resulting in increased LUT usage.

C. Design Validation

The CCSDS-123.0-B-2 Hybrid Entropy Coder’s validation
and demonstration set-up is built around SpaceFibre (ECSS-
E-ST-50-11C) test equipment, provided by STAR-Dundee, to
interface the Xilinx KCU105 development board and match
standard space deployment. SpaceFibre is a very high-speed
(5 Gbit/s) serial link and network technology, designed specif-
ically for use on board spacecraft.

The CCSDS-123.0-B-2 Hybrid Entropy Coder validation
and demonstrator set-up includes a standard PC emulating
Electronic Ground Support Equipment (EGSE). The EGSE
PC hosts a STAR-Ultra PCIe board which is connected to
the KCU105 development board using QSFP to SFP+ cable
assembly. SpaceFibre interface VHDL IP Cores are also im-
plemented in the XCKU040 FPGA hosted in KCU105 board
to provide AXI4-Stream interface with the CCSDS-123.0-B-2
Hybrid Entropy Coder IP Core data inputs and compressed
output over a singe data Virtual Channel (VC). A single lane
SpaceFibre link able to provide 6.25 Gbps (effective 5.0 Gbps)
data-rate is sufficient for the validation and demonstration of
the CCSDS-123.0-B-2 Hybrid Entropy Coder.

A large set of test images from the CCSDS corpus of
images [18] along with several images from the PRISMA
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Hyperspectral mission [19] launched March 2019, with mul-
tiple compression configurations was applied by the EGSE
PC for the validation of the Hybrid Entropy Coder. Table IV
displays the achieved throughput for some notable images
used in the validation process. These figures were validated by
SpaceFibre link analyser software installed in the EGSE PC
along with performance counters instrumenting the IP Core
in the XCKU040 FPGA. Images were compressed with in
lossless (A∗ = 0) and near-lossless (A∗ > 0) mode, always
operating at ∼1 sample-per-cycle efficiency in agreement
with the data rate estimation of Equation 9. The presented
CCSDS-123.0-B-2 Hybrid Entropy Coder IP Core achieved
305 MSamples/sec (4.88 Gbps) throughput performance.

V. COMPARISON WITH PREVIOUS WORK

The previous issue of the standard, CCSDS-123.0-B-1,
describes only lossless compression and is considered a mature
solution for on-board hyperspectral compression. Issue 2,
shares many implementation similarities to Issue 1, regarding
the lossless compression option, therefore implementation
of Issue 1 are considered comparable prior work. Multiple
implementations have been presented in the literature designed
for various trade-offs and devices such as FPGAs and GPUs,
as well as Systems-on-a-chip (SoC). SHyLoC 1.0 [11] and
SHyLoC 2.0 [12] implementations, available at the European
Space Agency (ESA) IP Cores library to be licensed for
space missions, research and/or commercial use, under specific
conditions, provide a feature complete implementation of
CCSDS-123.0-B-1 and CCSDS-121.0-B-2 algorithms, as a
technology agnostic IP Core suitable for FPGA and ASIC
technologies. Moreover, SHyLoC IP Cores provide wide and
versatile parameterization and configuration options enabling
reduced complexity and footprint when dealing with FPGA
devices with a limited amount of resources. Other implemen-
tations provide high-throughput by using a either a single
compression engine, [9], [23], [24], [25] and leveraging the
interleaved processing of BIP pixel order format that enables
deep pipelining presented for the first time in [26] or by
exploiting the CCSDS-123.0 image segmentation and task-
level parallelism along with Commercial Off-the Shelf (COTS)
FPGA SoC technologies [27], [28], [29], achieving state-of-
the-art throughput performance [30]. Implementation on GPU
devices [31], [32], [33] utilize GPUs and heterogeneous
CPU and GPU systems to parallelize the CCSDS-123.0-B-
1 standard by exploiting image segmentation and task-level
parallelism, achieving very high-throughput, but higher energy
consumption when compared to FPGA implementations.

Due to the recent release of Issue 2, there are few known
implementations of CCSDS-123.0-B-2 in literature to date,
none of which involved the VHDL RTL implementation of the
Hybrid Entropy Coder or the full CCSDS-123.0-B-2 standard.

In [34] the authors present a parallel implementation in
software of the near-lossless CCSDS-123.0-B-2 standard for
the evaluation of the RC64 many-core rad-hard processor [35].
However, they implement only the Sample Adaptive Entropy
Coder while the Hybrid Entropy Coder was not considered
due to implementation challenges related to throughput per-
formance. This parallelization scheme achieves high speed-up

when all 64 cores are used, with maximum throughput of 0.45
MSamples/sec, and limited performance when there are idle
cores.

In [36], the authors propose parallel implementations of both
Issue 1 and Issue 2 of CCSDS-123.0-B-2 in software with
OpenMP targeting different space qualified CPUs (i.e. GR740,
LS1046). Their work suggests ways of splitting data and as-
signing jobs among the available CPU cores, for both lossless
and near-lossless predictor and hybrid entropy encoder.

The Fast Lossless Extended (FLEX) algorithm [20], [21],
[22] is the algorithmic basis for CCSDS-123.0-B-2 and the
Hybrid Entropy Coder is an extension of the FLEX’s orig-
inal hybrid entropy coder, therefore FLEX implementations
can be considered for comparison purposes. Experimental
results for the FLEX entropy coder targeting the Virtex 5
FX130T FPGA technology reach a maximum frequency of
168.8 MHz and a throughput of 24 MSamples/sec using (7
cycles/sample). For the whole FLEX compressor a throughput
of 3.4 MSamples/sec was achieved at 82.5 MHz maximum
frequency (24 cycles/sample). Although a direct comparison
with FLEX entropy coder in terms of maximum frequency is
not appropriate because this paper considers a next-generation
space-grade FPGA platform, the proposed Hybrid Entropy
Coder architecture achieves 7 times higher throughput per-
formance in terms of samples/cycle. Table V summarizes the
comparison of RTL implementation of FLEX Hybrid Entropy
Coder with the presented work.

The first, full implementation of the CCSDS-123.0-B-2
standard, although using High-Level Synthesis (HLS), was
presented in [37]. The CCSDS-123.0-B-2 compressor devel-
oped for the ESA CHIME space mission includes a High-
Level Synthesis (HLS) implementation of the near-lossless
predictor and re-uses the VHDL RTL implementation of the
Block-Adaptive encoder as implemented for the SHyLoC [11]
IP Core. The Hybrid Entropy Encoder was not considered,
and thus, comparisons are not appropriate. The compressor
in [37] meets CHIME mission requirements of data rate up
to 2 Gbps (@16bppb, 125 MHz), with the HLS-generated
near-lossless Predictor requiring more than 1 cycles/sample,
which the authors plan to improve in future implementations
in VHDL RTL.

CONCLUSION

In this paper, we introduced an efficient architecture and
a high-throughput hardware implementation of the CCSDS-
123.0-B-2 Hybrid Entropy Coder. The introduced architecture
exploits the systolic design pattern to provide modularity and
latency insensitivity in a deep and elastic pipeline, as well as
an innovative approach on the Low Entropy Coder’s codetable
lookup design, and achieves a constant high-throughput im-
plementation in space-grade SRAM FPGA technology ( 305
MSamples/s operating at 1 sample/cycle) with a small FPGA
resource footprint. The introduced architecture is validated and
demonstrated on a commercially available Xilinx KCU105 de-
velopment board hosting a Xilinx Kintex Ultrascale XCKU040
SRAM FPGA, and thus, is directly transferable to the Xil-
inx Radiation Tolerant Kintex UltraScale XQRKU060 space-
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TABLE V: Comparison with implementation of FLEX’s Hybrid Entropy Coder

Implementation LUTs FFs DSP48Es BRAMs Frequency Throughput
(MHz) (Cycles/Sample)

FLEX Hybrid Entropy Coder 3341 1293 16 27 168.8 7[20], [21], [22]

This work 5085 3322 17 1 305 1

grade devices for space deployments. Moreover, state-of-the-
art SpaceFibre (ECSS-E-ST-50-11C) interface and test equip-
ment were used in the validation platform to match space
deployment. To the best of our knowledge, this is the first
published fully-compliant architecture and high-throughput
implementation of the CCSDS-123.0-B-2 Hybrid Entropy
Coder, also targeting space-grade FPGA technology.
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from Universitat Autònoma de Barcelona (UAB) for providing
the software golden model for the CCSDS-123.0-B-2 algo-
rithm. Part of this research has received funding from the
Hellenic Foundation for Research and Innovation (HFRI) and
the General Secretariat for Research and Technology (GSRT)
under the 1st call for H.F.R.I. Research Projects for the support
of Post-doctoral Researchers under grant agreement No 990
and part of it has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 776151.

REFERENCES

[1] Low-Complexity Lossless and near-Lossless Multispectral and Hyper-
spectral Image Compression, Issue 2 - Recomended Standard (Blue
Book), CCSDS-123.0-B-2, Consultative Committee for Space Data Sys-
tems (CCSDS).

[2] Lossless Multispectral and Hyperspectral Image Compression, Issue 1
- Recomended Standard (Blue Book), CCSDS-123.0-B-1, Consultative
Committee for Space Data Systems (CCSDS).

[3] Low-Complexity Lossless and near-Lossless Multispectral and Hyper-
spectral Image Compression - Draft Informational Report, Consultative
Committee for Space Data Systems (CCSDS).

[4] M. Klimesh, “Low-Complexity Lossless Compression of Hyperspectral
Imagery via Adaptive Filtering,” The Interplanetary Network Progress
Report, vol. 42, no. 163, p. 10, 11 2005.

[5] ——, “Low-Complexity Adaptive Lossless Compression of Hyperspec-
tral Imagery,” in Satellite Data Compression, Communications, and
Archiving II, vol. 6300. International Society for Optics and Photonics,
9 2006, p. 63000N.

[6] “Radiation Tolerant Kintex UltraScale XQRKU060 FPGA Data Sheet,”
p. 101, 2020.

[7] P. Chatziantoniou, A. Tsigkanos, and N. Kranitis, “A High-Performance
RTL Implementation of the CCSDS-123.0-B-2 Hybrid Entropy Coder
on a Space-Grade SRAM FPGA,” in 7th International Workshop on
On-Board Payload Data Compression (OBPDC), 9 2020, p. 8.

[8] M. Hernandez-Cabronero, A. B. Kiely, M. Klimesh, I. Blanes,
J. Ligo, E. Magli, and J. Serra-Sagrista, “The CCSDS 123.0-B-2 Low-
Complexity Lossless and Near-Lossless Multispectral and Hyperspectral
Image Compression Standard: A comprehensive review,” IEEE Geo-
science and Remote Sensing Magazine, pp. 0–0, 2021.

[9] A. Tsigkanos, N. Kranitis, G. Theodorou, and A. Paschalis, “A 3.3 Gbps
CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression
Hardware Accelerator on a Space-Grade SRAM FPGA,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 9, no. 1, pp. 90–103,
2021.

[10] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis, “Link-Level Flow
Control and Buffering,” in Microarchitecture of Network-on-Chip
Routers: A Designer’s Perspective, G. Dimitrakopoulos, A. Psarras, and
I. Seitanidis, Eds. New York, NY: Springer, 2015, pp. 11–35.
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