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Abstract—This paper proposes a receding horizon-based
information-theoretic source search and estimation strategy for
a mobile sensor in an urban environment in which an invisible
harmful substance is released into the atmosphere. The mobile
sensor estimates the source term including its location and
release rate by using sensor observations based on Bayesian
inference. The sampling-based sequential Monte Carlo method,
particle filter, is employed to estimate the source term state
in a highly nonlinear and stochastic system. Infotaxis, the
information-theoretic gradient-free search strategy is modified
to find the optimal search path that maximizes the reduction
of the entropy of the source term distribution. In particular,
receding horizon Infotaxis is introduced to avoid falling into the
local optima and to find more successful information gathering
paths in obstacle-rich urban environments. Besides, a random
sampling method is introduced to reduce the computational load
of the receding horizon Infotaxis for real-time computation.
The random sampling method samples the predicted future
measurements based on current estimation of the source term and
computes the optimal search path using sampled measurements
rather than considering all possible future measurements. To
demonstrate the benefit of the proposed approach, comprehensive
numerical simulations are performed for various conditions. The
proposed algorithm increases the success rate by about 30% and
reduces the mean search time by about 40% compared with the
existing information-theoretic search strategy.

Index Terms—Information-theoretic search, Autonomous mo-
bile sensor management, Bayesian inference, Sequential Monte
Carlo method, Dispersion modeling, Receding horizon path
planning

I. INTRODUCTION

The potential danger of accidental release of harmful chem-

ical, biological, radiological, or nuclear (CBRN) materials

into the atmosphere has significantly increased in recent years

[1]. Estimating the source term, including the source location

and release strength, is of primary importance for responding

to emergencies. Generally, atmospheric dispersion is treated

as a highly nonlinear and turbulent event with sporadic and

fluctuating sensing cues. Furthermore, in many cases, CBRN

materials are dispersed in the atmosphere as an invisible

substance. The sparse sensing cue and the invisible nature

of the substance make the source term estimation problem
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challenging. The traditional source term estimation method

employs static sensors [2], however, static sensors have a

great limitation when accidents occur in unexpected places.

In particular, this method has a limited response area as

the sensors should be installed before the accident. Thus,

search strategies using mobile sensing agents have attracted

considerable attention over the last decade, where unmanned

aerial vehicles (UAVs) are frequently used as mobile sensors

thanks to their flexibility and versatility [3]–[11].

Various mobile sensing strategies for source term estima-

tion have been proposed, which can be largely categorized

into: gradient climbing [12], the reactive strategy [13]–[16],

and cognitive/probabilistic methods [17]–[20]. The gradient

climbing method is often inspired by the behavior of bacteria

searching for nutrition [12]. However it does not work well

when the sensing cue is not continuous or frequently lost, e.g.,

in turbulent atmospheric dispersion cases. The reactive search

method is inspired by behaviors of different species, such

as finding nutrition, mating, and hunting. The mobile sensor

moves with predefined patterns such as a zigzag or spiral path

as a reaction to sensing cues [21], [22]. These methods have

the advantage of being able to find the source even if the

concentration does not change continuously, but they do not

guarantee the optimal performance. Cognitive search strategies

aim to solve the real-time source term estimation and optimal

search path planning problem [8], [17]–[20], [23], [24]. The

cognitive strategy uses the information theory to determine

the optimal search path while estimating the source term, e.g.,

Infotaxis [17], [18], [20] and Entrotaxis [19], [24]; thus, they

are often called an information-theoretic search. This approach

is proven to be robust to sparse or intermittent sensing cues,

so it is frequently used in turbulent environments on which

this study focuses.

However, many cognitive search strategies decide the action

greedily and many studies assume a gas dispersion situation

in an open space [8], [17]–[20], [23], [24]. The accidents

and disasters that require rapid response often occur in urban

or industrial environments that have numerous buildings or

structures in the search domain. In general, the search path

generated by a one step lookahead decision making, which

can be called a greedy algorithm, is inefficient in an obstacle-

rich environment. Although several existing studies for source

search in the obstacle-rich environment is conducted, many of

them assumed known environments (i.e., positions of obstacles

are given) [25], [26] and used separate obstacle avoidance al-

gorithm in unknown environments that is not tightly integrated
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with search strategies to obtain better information about the

source [27]–[30], leading to inefficient or unsuccessful source

search.

With these backgrounds in mind, this paper presents a

receding horizon-based information-theoretic source search

algorithm tightly combined with the obstacle avoidance feature

for accurate and robust source term estimation using a mobile

sensor in an unknown and complex urban environment, as

illustrated in Fig. 1. The main contribution of this study is

to propose the multi-step lookahead (i.e., receding horizon)

search path planning for source term estimation which max-

imizes the entropy reduction based on Infotaxis termed as

receding horizon Infotaxis (RHI). The proposed RHI strategy

considers the search path by using the predicted future mea-

surements based on the current estimation to obtain the best

source information while simultaneously avoiding obstacles in

urban environments.

To implement the RHI, we consider the use of two sensor

models: Gaussian sensor model [31] and binary sensor model

[32]. In particular, the binary sensor model provides detection

or non-detection measurements. Thus, it requires the fewer

number of states than that of the Gaussian sensor model that

provides the continuous concentration of a gas. Note that

the computational complexity increases exponentially as the

number of horizon steps increases as the receding horizon

method takes into account all combinations of predicted future

measurement sequences at sensing points of multiple steps

[33]. To address this issue, we utilize a random sampling

approach that uses only a few sampled future measurements

from the estimated probability distribution of the source term.

To investigate the trade off between the performance and

computation time, we propose and compare different receding

horizon Infotaxis (RHI) methods by incorporating the Gaus-

sian sensor model or binary sensor model with/without the

random sampling method: (i) RHI-G (receding horizon Info-

taxis with the Gaussian sensor model), (ii) RHI-B (receding

horizon Infotaxis with the binary sensor model), (iii) RHI-GR

(receding horizon Infotaxis with the Gaussian sensor model

and random sampling), and (iv) RHI-BR (receding horizon

Infotaxis with the binary sensor model and random sampling).

The various numerical simulations are performed to validate

the effectiveness and robustness of the proposed methods in

terms of search time, estimation accuracy, success rate and

computation time.

The remainder of this paper is organized as follows. In

Section II, the problem description, including the gas dis-

persion and sensor model, is presented. Section III describes

the estimation method for the source term based on the

sequential Monte Carlo method (i.e., particle filter). The reced-

ing horizon-based information-theoretic search path planning

algorithm is presented in Section IV. Section V provides

numerical simulation results and comparison studies. Lastly,

conclusions and directions of future work are given in Section

VI.

II. PROBLEM DESCRIPTION

The mobile sensor (e.g., UAV) to search and collect sensor

data is assumed to move in a horizontal grid map by selecting

the best action from the feasible action set u = [↑, ↓,→,←]
on the horizontal plane at each search time step; hence, this

is a sequential decision making problem. During one time

step, the agent obtains the sensor data (which normally takes

a few seconds for gas sensing [8]) at the current sensing

position, estimates the source term, computes the best action

direction (i.e., path planning), and moves to the next sensing

position determined by the selected direction with a fixed

distance in a constant speed. Since it is assumed that the

sensing time and moving time between consecutive sensing

points are fixed, the computation time for estimation and

path planning per step as well as the number of time steps

plays an important role for total source search time. Although

more feasible actions (e.g., diagonal motions or different

distances between sensing points) or trajectory planning with

a variable agent speed might improve the search performance

(in terms of the number of time steps), it would significantly

increase the computation time. Besides, it is assumed that the

mobile agent is equipped with a range sensor such as LiDAR

and it can build a local obstacle map so that it could plan

the long-term search path while avoiding obstacles without

the prior geometrical map information. Note that we mainly

consider a 2-D environment for simplicity but the developed

framework could be readily applicable to a 3-D environment.

In fact, we provide a representative simulation result for a 3-D

environment in the numerical simulation section.

From the following, the mathematical formulation of the gas

dispersion model and the sensor model will be explained: the

isotropic plume model [17] is used as the dispersion model;

and the Gaussian sensor model is used as the stochastic sensor

model [34], [35].

A. Gas dispersion model

The isotropic plume model, which is an analytical gas

dispersion model for an open space [17], is used as the

dispersion model to compute the probability distribution of

the source term. The plume model assumes that the gas is

continuously released from the stationary point source located

at ps = [xs, ys]
T ∈ R

2+ with the fixed release strength

Qs ∈ R
+, and it calculates the mean gas concentration

µ(pk; θ) at the sensing location pk = [xk, yk]
T at kth time

step as:

µ(pk; θ) =
Qs

4πD|pk − ps|
exp

[−(yk − ys)V

2ζ

]

· exp
[

−|pk − ps|
λ

]

∆t,

(1)

where

λ =

√

ζτ

1 + V 2τ
4ζ

. (2)

Here, θ represents the source term parameters including the

mean wind speed V , the release strength Qs and the source

location ps and other parameters to compute the concentration

in Eq. (1). It is assumed that the wind blows in the −y
direction; thus, x represents the crosswind direction. The

isotropic effective diffusion parameter ζ affects the dispersion

in the crosswind direction when the gas is advected by the
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Fig. 1. Overall architecture of the source search and estimation algorithm: (1) The UAV obtains sensor measurements at sensing position; (2) External
environmental data are received; (3) Estimation is conducted; and (4) The optimal search path is generated by using receding horizon-based information-
theoretic source search.

mean wind velocity V . The gas particle can be maintained for

the lifetime τ . Since the coordinate axis y of Eq. (1) is aligned

to the direction of advection, rotation transformation is used

to express gas dispersion in arbitrary directions in the inertial

coordinate system for the search area as




xi

yi
zi



 =


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cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1









x
y
z



 , (3)

where the [xi, yi, zi]
T and [x, y, z]T are the relative distance

from the source in inertial and dispersion frames, respectively,

and ϕ represents the wind direction in the inertial coordinate.

B. Sensor models

The mobile sensor is equipped with a gas sensor that

measures the gas concentration. In this study, we compare

the performance of the source term estimation using two

different gas sensor models: the Gaussian sensor model and

the binary sensor model. The Gaussian sensor model directly

provides the concentration of the surrounding gas which

contains the stochastic noise while the binary sensor model

only distinguishes detection and non-detection cases. Note

that, two main parts of the search algorithm utilize the sensor

model: the particle filter and receding horizon-based search

path planning. The binary sensor model is adopted to reduce

the computational burden only for the path planning part,

which will be explained in detail later.

1) Gaussian sensor model: One of the most conservative

choices for the sensor model is Gaussian-based models [31],

[34]–[36]. Since the actual concentration detected by the sen-

sor follows the stochastic process, the Gaussian sensor model

can be employed as the sensor model to estimate source term

and predict the future measurement. The sensor measurement

ck ∈ R
+ is stochastically determined by the background

concentration µ′
k ∈ R

+. The background gas concentration

is easily influenced by the environment including the local

atmospheric temperature and wind disturbance among others.

Those environmental factors cannot be easily determined ex-

actly due to frequently changing or fluctuating characteristics.

Even though the analytical plume dispersion models calculate

the time-averaged concentration of the gas µk ∈ R
+, only

the current temporal concentration µ′
k affects the sensor mea-

surement; thus, we generate the temporal concentration µ′
k

from the analytic concentration µk from Eq. (1) by following

the Gaussian distribution. Then the sensor measurement ck is

represented as:

ck = µ′
k + vsen = (µk + venv) + vsen, (4)

where,
venv ∼ N

(

0, σ2
env

)

,

vsen ∼ N
(

0, σ2
sen

)

.
(5)

It is assumed that the standard deviation of the environmental

noise, σenv , is a constant, and the sensing noise is proportional

to the current background concentration, that is, σsen ∝ µ′
k.

Thus, the probabilities of obtaining a certain measurement
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given a source term are calculated as follows.

p(µ′
k|θ) =

1

σenv

√
2π

exp

[

− v2env
2σ2

env

]

,

p(ck|µ′
k, θ) =

1

σsen

√
2π

exp

[

− v2sen
2σ2

sen

]

,

(6)

where the source term vector θ is used to calculate the mean

concentration µ obtained by Eq. (1).

The sample maps of the time-averaged and the temporal

concentration dispersion are presented in Fig. 2(a-b), and

the sample map of the sensor measurement according to

the current temporal concentration is shown in Fig. 2(c).

The sample maps are generated by following parameters:

Qs = 2000mg/s, ζ = 10m2/s, τ = 1000s, V = 2m/s,

∆t = 1s ϕ = 220◦, σenv = 0.4mg/m3, and σsen =
0.2 · µ′

k(pk)mg/m3. Note that the sensor parameter is a

parameter that should be tuned, the chosen number in this

paper is empirically tuned based on the observations of the

custom MOX sensor.

As shown in Fig. 2(b), the gas dispersion is noisy, sparse and

frequently absent in the stochastic gas dispersion environment.

The actual sensor measurement presented in Fig. 2(c) is more

noisy than Fig. 2(b). Particularly, the mobile sensor has a

significantly high noise near the source since the modeled

sensor noise is affected by concentration at each location. It

can be observed that the contour near the source is much more

unstable in Fig. 2(c) compared with Fig. 2(a-b). This kind of

noise is one of the most significant factors, making it difficult

to use the conventional gradient climbing method for source

search in turbulent environments [12], [17].

2) Binary sensor model: The binary sensor model uses

1 (detection) or 0 (non-detection) as a sensor measurement.

Thus, the probability of a binary measurement at kth time

step bk ∈ [0, 1] is expressed as:

p(bk|θ) =
{

β if bk = 0,

1− β if bk = 1,
(7)

which is functionally equivalent to Eq. (6). This model can be

treated as a special case of the Gaussian sensor model with

only two measurement values. When the current concentration

ck is higher than the threshold b̄k, the binary sensor considers

that the gas is detected, otherwise non-detected. Thus, the

probability β can be calculated by the cumulative distribution

function (CDF) of the standard normal distribution Φ(·) [37]

as:

β = Φ

(

∆bk
σenv

)

, (8)

where

∆bk = b̄k − µ′
k, (9)

The threshold b̄k, which determines whether the sensor detects

the substance or not, is adaptively changed as:

b̄k =











λbb̄k−1 + (1− λb)ck if k > 1, ck > b̄k−1

b̄k−1 if k > 1, ck ≤ b̄k−1

ck if k = 1,

(10)

where λb is a user design parameter. Note that, unlike

previous studies [14], [38], the threshold is only updated when

the new measurement value is greater than the current thresh-

old, so the threshold increases monotonically. The decision

making utility for the search is based on the entropy of the

estimated source term (, which is explained in Section IV).

Thus, this threshold update and the corresponding utility make

the agent select the exploitative action (i.e., moving towards

the estimated source location) when the agent can find the

place containing higher concentration in the future or select

the explorative action (i.e., wandering around) otherwise.

III. SOURCE TERM ESTIMATION

The source term vector contains a set of parameters such

as the source location, gas release strength, and wind speed,

wind direction among many others. The list of parameters

depends on dispersion models but the key parameters com-

monly included are the source location and release strength.

To respond to a disaster involving the invisible hazardous

gas, estimating the source location and release strength is

of primary importance; thus, the source term vector used in

this study consists of source location and release strength,

θ = [xs ys Qs]
T ∈ R

3. We assume that the other source

parameters, such as the wind velocity and direction or gas

diffusivity, are known. This assumption is generally accepted

in many source term estimation studies [16], [18], [19], [39],

as these parameters could be determined by meteorological

data and the gas properties. From the following, we intro-

duce a method for estimating the source term vector using

Bayesian inference with the particle filter approach. As the

computational burden for calculating the state estimation using

the current measurement is not changed by the sensor model

(i.e., Gaussian or binary sensor model), we conduct the source

term estimation using the Gaussian sensor model only.

A. Bayesian inference

The Bayesian framework is used to estimate the source

term via sensor observations. The basic Bayesian inference

estimates the source term probability density function (PDF)

using the prior knowledge of the source term PDF p (θ), and

the new observation c as:

p (θ|c) = p (c|θ) p (θ)
p (c)

. (11)

The estimated PDF is sequentially updated by the Bayesian

framework; thus the posterior estimation for the source term

at (k − 1)th time step, p (θk−1|c1:k−1), is first propagated in

time with the process model to have p (θk|c1:k−1), and then

it is used as new prior knowledge for kth time step as:

p (θk|c1:k) =
p (ck|θk) p (θk|c1:k−1)

p (ck|c1:k−1)
, (12)

where the collected measurement c1:k =
[c1(p1), · · · , ck(pk)] is a sequence of observations for

each sensing position. In this study, we assume that the

source has no dynamics (i.e., stationary), which means

p (θk|c1:k−1) is the same as p (θk−1|c1:k−1). The likelihood
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Fig. 2. The examples of gas dispersion and corresponding sensor measurement map.

p(ck|θk) can be calculated by the function of the sensor model

and dispersion model. The source term vector θk is used to

calculate µk by using the dispersion model Eq. (1). The actual

sensor measurement ck is affected by the current background

concentration µ′
k which is calculated from the time-averaged

mean concentration µk. However, when we calculate the

likelihood p(ck|θk), the true current concentration µ′
k is hard

to determine. To calculate the likelihood, we can use the

marginal probability as:

p(ck|θk) = p(ck|µk) =

∫ ∞

−∞

p(ck, µ
′
k|µk)dµ

′
k, (13)

where p(ck, µ
′
k|µk) can be expressed as the product of

p(ck|µ′
k, µk) and p(µ′

k|µk), and µk does not give any addi-

tional information to calculate the probability of obtaining ck
when µ′

k is determined. Thus, the likelihood can be expressed

as follows.

p(ck|θk) =
∫ ∞

−∞

p(ck|µ′
k, µk)p(µ

′
k|µk)dµ

′
k

=

∫ ∞

−∞

p(ck|µ′
k)p(µ

′
k|µk)dµ

′
k

=

∫ ∞

−∞

N (ck − µ′
k; 0, σsen)N (µ′

k − µk; 0, σenv)dµ
′
k.

(14)

Thus, the likelihood can be treated as a convolution of

Gaussian distributions, which means it can be expressed as

Gaussian distribution again [40], as:

p(ck|θk) =N (ck;µk, σk)

=
1

σk

√
2π

exp

[

− (ck − µk)
2

2σ2
k

]

,
(15)

where

σk =
√

σ2
k,sen + σ2

k,env (16)

is the standard deviation of the likelihood function. The

marginal likelihood p (ck|c1:k−1) in Eq. (12) can be calculated

using the prior PDF and the new measurement as:

p (ck|c1:k−1) =

∫

p (ck|θk) p (θk|c1:k−1) dθk. (17)

B. Particle filter

As the PDF of the source term distribution is nonlinear and

non-Gaussian, it is difficult to compute Eq. (12) analytically

or exactly. To this end, the particle filter, one of the sampling-

based sequential Monte Carlo methods, is used to estimate

the PDF of the source term. The particle filter takes samples

(called ‘particles’) to represent the source term including the

potential source location and release strength. Each particle,

θ
(i)
k , is drawn from the proposal (importance) distribution with

its associated weight, w
(i)
k , to approximate the exact source

term PDF in Eq. (12) as:

p (θk|c1:k) ≈
Np
∑

i=1

w
(i)
k δ(θ − θ

(i)
k ), (18)

where Np is the number of the particles and δ(·) is the Dirac

Delta function. As we assume the diffusive source is time-

invariant, the sampled particles which represents the estimated

source term is not changed by time, that is, θ
(i)
k = θ

(i)
k−1 for

i = 1, . . . , Np. In this regard, we assume that the proposal

distribution for kth step equals the posterior at (k− 1)th step

as used similarly in [18], [19]. Then, the unnormalized particle

weight update based on Bayesian inference for the particle

filter can be simply expressed as:

w′(i)
k = p(ck|θ(i)k ) · w(i)

k−1, (19)

where p(ck|θ(i)k ) is calculated by likelihood function in

Eq. (15). The normalized weight can be calculated as:

w
(i)
k =

w′(i)
k

∑Np

j=1 w
′(j)
k

. (20)

In general, this type of importance sampling method could

cause degeneracy, which means that only a few particles
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will have non-zero weights. To overcome the degeneracy, the

resampling method is employed with the effective number of

samples, neff [41], given as:

neff ≈ 1
∑Np

i=1(w
(i)
k )2

. (21)

Whenever the effective number goes below a certain threshold,

the particles are resampled. Additionally, the resampled par-

ticles are subjected to the Markov Chain Monte Carlo move

step [41] to improve the diversity of the particles; this makes

the stationary source term samples θ
(i)
k change its values at

each resampling iteration.

IV. INFORMATION-THEORETIC SOURCE SEARCH

The information-theoretic source search is known to be

beneficial in the environment where the gas diffuses sporadi-

cally and stochastically such as an atmospheric gas dispersion

situation [13], [17]. Infotaxis is one of the popular information-

theoretic search methods for source seeking and source term

estimation using the information about the source [17], [18],

[20]. As it maximizes the reduction of the entropy of the

source term at each time step, the search tends to reduce

the uncertainty of the source term gradually. The Infotaxis

determines the discrete next best action by considering the

one-step lookahead (i.e., future) information, so basically it is

a greedy algorithm. Here, we propose the algorithm to find the

more efficient search path while avoiding the local optima and

obstacles by considering multi-step lookahead information.

To this end, the receding horizon concept is adopted to

plan the multi-step lookahead decision while maintaining the

computational loads manageable with the random sampling

[42]–[44].

A. Infotaxis

This subsection briefly introduces formulations of original

Infotaxis [17] and the modified version of Infotaxis with the

particle filter [18]. The Infotaxis is a popular information-

theoretic search algorithm that uses the reduction of the

entropy for estimation of the source term at each time step

with the utility function, I(uk), as given:

I(uk) = p (pk+1) [Hk]

− (1− p (pk+1))
[

Eĉ

[

Ĥk+1 (uk)
]

−Hk

]

,
(22)

where

Hk = −
∫

p (θk|c1:k) log p (θk|c1:k) dθk. (23)

The probability, p(pk+1), represents the estimated probability

of the source occurring at the next sensing position, pk+1

with a choice of the control action uk ∈ u = [↑, ↓,←,→].
The Shannon’s entropy for a source term is represented as Hk

and Eĉ [·] means the expectation over the random variable ĉ
(i.e., predicted measurements) which is determined by control

decision uk. The current optimal decision, u∗
k, is selected to

maximize the utility function, I(uk). In this study, we use

the simplified version of the utility function assuming that

p (pk+1) = 0, termed as Infotaxis II, to reduce computational

burden [18] as:

I(uk) = Hk − Eĉ

[

Ĥk+1 (uk)
]

. (24)

The particle filter makes Eq. (24) easy to be calculated.

According to Eq. (18), as the posterior probability, p (θk|c1:k),
can be represented by the weight of the particle filter, the

approximation of the Shannon's entropy using the particle filter

is expressed as:

Hk ≈ −
Np
∑

i=1

w
(i)
k logw

(i)
k , (25)

where Np is the number of particles (potential source terms)

of the particle filter. The expected Shannon’s entropy using

the possible future measurements ĉk+1 at pk+1, determined

by the current sensing position pk and control decision uk, is

calculated as:

Eĉ

[

Ĥk+1 (uk)
]

=

∫

p (ĉk+1(uk)|θk) Ĥk+1 (uk) dĉk+1,

(26)

where

Ĥk+1 (uk) = −
∫

log p(θk|c1:k, ĉk+1(uk))dθk. (27)

The expected PDF of the source term, p(θk|c1:k, ĉk+1), can

also be approximated by the particle filter. The unnormalized

weight of the potential source terms can be updated similar to

Eq. (19):

ŵ
′(i)
k+1 = p

(

ĉk+1(uk)|θ(i)k

)

· w(i)
k , (28)

where the normalized weight of ŵ
′(i)
k+1, i.e, ŵ

(i)
k+1 can be

calculated similar to Eq. (20). The expectation of the entropy

at (k + 1)th time step can then be re-expressed as:

Eĉ

[

Ĥk+1 (uk)
]

≈ −
∫

p (ĉk+1(uk)|θk)

·
Np
∑

i=1

ŵ
(i)
k+1 log ŵ

(i)
k+1dĉk+1,

(29)

By substituting Eq. (23) and (29) into Eq. (24), the approxi-

mated utility function with the particle filter can be obtained:

I(uk) =Hk − Eĉ

[

Ĥk+1 (uk)
]

≈−
Np
∑

i=1

w
(i)
k logw

(i)
k

+

∫

p (ĉk+1(uk)|θk) ·
Np
∑

j=1

ŵ
(j)
k+1 log ŵ

(j)
k+1dĉk+1.

(30)

Since the posterior source term distribution approximated

by the particle filter is highly non-linear and non-Gaussian,

the second term on the right hand side in Eq. (30) cannot

be analytically calculated. Thus, in this study, instead of the

continuous future measurement ĉk+1, the discretized measure-

ment set with the certain discretization interval, δd̂, is used as:
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d̂k+1 = [min(d̂k+1),min(d̂k+1) + δd̂k+1, · · · ,max(d̂k+1)]

= [(1)d̂k+1,
(2)d̂k+1, · · · , (Nd)d̂k+1]

(31)

where min(d̂k+1) =
(1)d̂k+1 and max(d̂k+1) =

(Nd)d̂k+1(=
min(d̂k+1) + (Nd − 1)δd̂k+1) represent the possible mini-

mum and maximum measurements at (k + 1)th time step,

respectively, and the number of discretized measurements is

represented as Nd. We set minimum and maximum possible

measurement values using the empirical three-sigma rule as

µk+1 ± 3 · σk+1. Here, µk+1 =
∑Np

i=1 µ(pk+1; θ
(i)
k )w

(i)
k rep-

resents the expected mean concentration calculated by Eq. (1)

and σ
(i)
k+1 =

√

(σenv)2 + (σ
(i)
k+1,sen)

2 as in Eq. (16). The

utility function using the discretized Gaussian sensor model

can then be re-written as:

I(uk) =Hk − E
d̂

[

Ĥk+1 (uk)
]

≈−
Np
∑

i=1

w
(i)
k logw

(i)
k

+

Nd
∑

l=1

p((l)d̂k+1|θk) ·
Np
∑

j=1

ŵ
(j)
k+1 log ŵ

(j)
k+1.

(32)

Since we use the Gaussian sensor model, the shape of

the measurement probability distribution from each potential

source term (i.e., particle) follows the Gaussian distribution.

Thus, the discretized conditional probability, p((l)dk+1|θk),
can be calculated by summation of the cumulative distribution

function (CDF) of the standard normal distribution, Φ(·) [37],

with the associated particle weight, w
(i)
k , as:

p((l)d̂k+1|θk)

=

Np
∑

i=1

[

Φ

(

∆(l+1)d̂k+1

σ
(i)
t,k+1

)

− Φ

(

∆(l)d̂k+1

σ
(i)
t,k+1

)]

w
(i)
k ,

(33)

where
∆(l)d̂k+1 = (l)d̂k+1 − µ(pk+1; θ

(i)
k ),

σ
(i)
k+1 =

√

(σenv)2 + (σ
(i)
k+1,sen)

2.
(34)

The Infotaxis strategy guides the mobile sensor to obtain a

measurement in a direction which maximizes the reduction

of the expected entropy of the potential source term PDF.

Therefore, the optimal decision u∗
k ∈ u = [↑, ↓,→,←] is

selected to maximize I (uk) as:

u∗
k = argmax

uk∈u

I (uk) . (35)

It is worthwhile noting that the original Infotaxis is a greedy

approach that uses one-step lookahead information (i.e., ĉk+1

at pk+1) only, so we call it greedy Infotaxis hereafter to avoid

confusion between the greedy Infotaxis and proposed receding

horizon Infotaxis. The simulation result for an illustrative run

using the greedy Infotaxis in an obstacle-rich environment

is shown in Fig. 3. The mobile sensor is equipped with a

LiDAR with a radius of 24 meters to create a local map of

an unknown obstacle environment. This obstacle map is used

to generate available paths for source term estimation. The

Fig. 3. The example path of the greedy Infotaxis in an urban environment.

search trajectory and particles are shown in the lower graph.

The blue star means the current mobile sensor position, the

blue line is the search trajectory, and the blue dots are particles

from the particle filter. The red dots represent the measurement

where the bigger size means higher concentration. The gray

environment is an unknown area and the visited area is

represented with black and white.

As shown in Fig. 3, the mobile sensor can be easily trapped

in a space surrounded by obstacles (represented as obstacle

trap) as it considers one-step lookahead information/control

action only, which shows the limitation of a greedy-based

algorithm in the complex environment. For instance, when the

mobile sensor encounters an obstacle and the estimated source

location happens to be at the other side of the obstacle, it first

moves one step towards the obstacle; it is expected to have

better information getting closer to the source location. At the

next step, it realizes that it cannot move any further to the

same direction due to the obstacle, so it chooses the second

best direction. However, at the next step, it attempts to move

towards the obstacle again to gain better information and this

behavior of wandering around the obstacle is repeated. By

the random nature of the greedy Infotaxis from the particle

filter, it might escape the obstacle after a while. To address

this obstacle trap issue, receding horizon-based Infotaxis is

introduced in the following section.

B. Receding Horizon Infotaxis (RHI)

In this section, we propose the receding horizon Infotaxis

(RHI) strategy using the Gaussian sensor model and binary

sensor model. A receding horizon concept is used to determine

a multi-step lookahead search path as illustrated in Fig. 4.

This method calculates the optimal decision sequence from

the utility function of multiple steps for a certain duration of

time but only takes the first control decision recursively. To

avoid generating inefficient search path, action sequence that

return to the original position after two steps are excluded

from consideration. The receding horizon method becomes

computationally expensive as the number of horizon steps in-

creases, and the computational complexity also depends on the
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dimension of future states to be considered. We consider two

sensor models to predict the future states: the Gaussian sensor

model and the binary sensor model. The Gaussian sensor

model is based on the white Gaussian noise. It can represent

different measurement values densely, but at the same time, it

increases the computational burden when predicting possible

future measurements. The binary sensor model divides the

measurement into only two values: the detection or the non-

detection based on the sensing threshold, and thus it has

less computational complexity compared with the Gaussian

sensor model. The random sampling method is also used

to further reduce the computational complexity. This method

considers only a few sampled future measurement sequences

from the estimated source probability distribution rather than

considering all possible future measurement sequences in

the receding horizon steps. From the following subsections,

several proposed RHI methods will explained in detail.

Fig. 4. An illustrative search path of multi-step lookahead decision making.
The thick blue line represents the search path, the black grids represent
buildings, and the blue star indicates the current position of the mobile sensor.
The dashed lines are possible decision paths in multiple steps where a deeper
future step corresponds to a thinner line.

1) Receding horizon Infotaxis with Gaussian sensor

model (RHI-G): The RHI using the Gaussian sensor

model is called RHI-G in this study. The mobile sen-

sor selects the optimal decision sequence for a certain

time horizon length K from the current time step k,

u∗
k:k+K−1 =

[

u∗
k, u

∗
k+1, · · · , u∗

k+K−1

]

, among all possible

decision sequences, Uk:k+K−1 =
[

u
(path)
k:k+K−1

]

1≤path≤NK
u

where u
(path)
k:k+K−1 =

[

u
(path)
k , u

(path)
k+1 , · · · , u(path)

k+K−1

]

is a

(path)th sample decision sequence and each decision (control

action) satisfies u(path) ∈ U = [↑, ↓,←,→]. The total

number of possible decision sets is equal to NK
u = 4K . The

computation of the utility function using the (path)th decision

sequence is given as:

I(u
(path)
k:k+K−1) =

K
∑

n=1

rnE
D̂

[

I
(path,m)
k+n−1

]

, (36)

where m is used to represent mth future measurement

sample which can be obtained along the (path)th decision

sequence sample. Besides, the belief ratio 0 ≤ r ≤ 1
is introduced as a discount factor, which means we less

believe the further predicted utility function. The expecta-

tion of the predicted utility function for (k + n − 1)th

time step is represented as E
D̂

[

I
(path,m)
k+n−1

]

, which is com-

puted by the future measurement permutation set D̂ =

D̂k+1:k+n−1 =
[

d̂
(m)
k+1:k+n−1

]

1≤m≤N
n−1
d

where Nd repre-

sents the number of possible discretized measurements as men-

tioned in Eq. (31). Similar to the possible decision sequence, a

sample measurement sequence is expressed as d̂
(m)
k+1:k+n−1 =

[

d̂
(m)
k+1, d̂

(m)
k+2, · · · , d̂

(m)
k+n−1

]

for the given (path)th decision

sequence as illustrated by the red dashed line in Fig. 5.

Note that it is assumed d̂
(m)
k+1:k = ∅ when n = 1. Each

future measurement can be obtained from the discretized

measurement set using Eq. (31) where the minimum and

maximum measurements are determined by the expected mean

concentration at the corresponding sensing position with the

estimated source term as illustrated in Fig. 5.

Fig. 5. The measurement permutation sets for the (path)th decision sequence
and corresponding sensing position sequence.

For each selected decision sequence, the predicted util-

ity I
(path,m)
k+n−1 is the function of the random variable vector

d̂
(m)
k+1:k+n−1. Thus, the expectation of the RHI-G utility func-

tion component at (k + n − 1)th time step in the (path)
th

sampled decision sequence can be represented as:

E
D̂

[

I
(path,m)
k+n−1

]

=

N
n−1
d
∑

m=1

p(d̂
(m)
k+1:k+n−1|c1:k)I

(path,m)
k+n−1 , (37)

where

p(d̂
(m)
k+1:k+n−1|c1:k) = p(d̂

(m)
k+1, · · · , d̂

(m)
k+n−1|c1:k)

= p(d̂
(m)
k+n−1|d̂

(m)
k+n−2, · · · , c1:k)

· p(d̂(m)
k+n−2|d̂

(m)
k+n−3, · · · , c1:k) · · · p(c1:k)

=
n−1
∏

a=1

p(d̂
(m)
k+a|d̂

(m)
k+1:k+a−1, c1:k).

(38)

Note that
∑Nd

m=1 p(d̂
(m)
k+1:k+n−1) = 1 for a given (path)th

decision sequence. Each conditional distribution in Eq. (38) is

the marginal likelihood distribution which can be calculated

similar to Eq. (17). As we use the particle filter to estimate

the source term, each conditional probability can be calculated

as:

p(d̂
(m)
k+a|d̂

(m)
k+1:k+a−1, c1:k) =

Np
∑

i=1

p(d̂
(m)
k+a|θ

(i)
k )

· p(θ(i)k |d̂(m)
k+1:k+a−1, c1:k)

=

Np
∑

i=1

p(d̂
(m)
k+a|θ

(i)
k )ŵ

(i)
k+a−1.

(39)
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The likelihood function p(d̂
(m)
k+a|θ

(i)
k ) can be calculated using

Eq. (33) and the estimated probability of the source term. The

estimated source term probability is expressed in the particle

filter weight, ŵ
(i)
k+a−1, that is updated using Bayesian inference

as in Eq. (28) as:

p(θ
(i)
k |d̂(m)

k+1:k+a−1, c1:k) = ŵ
(i)
k+a−1

∝ p(d̂
(m)
k+a−1|θ

(i)
k )ŵ

(i)
k+a−2

∝ Πa−1
α=1p(d̂

(m)
k+α|θ

(i)
k )w

(i)
k .

(40)

The component of the RHI-G utility function for a given

(path)th decision sequence and mth measurement sequence

in Eq. (37) is calculated as:

I
(path,m)
k+n−1 =Ĥ

(path,m)
k+n−1 − E

d̂
(m)
k+n

[Ĥ
(path,m)
k+n ]

=−
Np
∑

i=1

ŵ
(i)
k+n−1 log ŵ

(i)
k+n−1

+

Nd
∑

l=1

p((l)d̂k+n|θk)
Np
∑

j=1

ŵ
(j)
k+n log ŵ

(j)
k+n,

(41)

where it is the utility function at (k+n− 1)th time step as in

Eq. (32), and ŵ
(i)
k+n−1 represents the approximated weight of

the potential source term which can be sequentially updated

similar to Eq. (28) with a given mth predicted future mea-

surement permutation d̂
(m)
k+1:k+n−1 for a given future decision

û
(path)
k−1:k+n−2. The weight ŵ

(i)
k+n is updated using the future

measurement (l)d̂k+n of (k + n)th time step.

The computational cost of this method increases exponen-

tially with the length of the time horizon as this method

requires calculating the probability of all possible future

measurement sequences and feasible decision (control action)

sequences. The computational complexity of calculating the

utility function increased by the time horizon K can be

expressed as:

O(NdNp ·NK−1
d ·NK

u ), (42)

where Nd is the number of discretized measurements, Np is

the number of particles, and Nu is the number of feasible

decisions (control actions) for each time step. The computa-

tional complexity for calculating the component of the RHI-

G utility function I
(path,m)
k+n−1 , in Eq. (41) is equal to NdNp.

The total number of future measurement sequences is NK−1
d

and the total number of possible decision sequences is NK
u .

It is necessary to reduce the computational complexity to

implement the multi-step lookahead decision making in real-

time, which will be explained in the following sections.

2) Receding horizon Infotaxis with binary sensor model

(RHI-B): The receding horizon Infotaxis with binary sensor

model (RHI-B) uses the binary sensor model to predict the

future measurement sequences. The binary sensor model has

only two possible sensing values: 1 (above threshold) or

0 (below threshold). This can reduce the total number of

possible measurement sequences significantly compared with

the Gaussian sensor model. Similar to the utility function

of the RHI-G, the utility function of the RHI-B for a given

(path)th decision sequence using the binary sensor model can

be expressed as:

I(u
(path)
k:k+K−1) =

K
∑

n=1

rnE
B̂

[

I
(path,m)
k+n−1

]

=
K
∑

n=1

rn
N

n−1
d
∑

m=1

p(b̂
(m)
k+1:k+n−1|c1:k)I

(path,m)
k+n−1 ,

(43)

where

p(b̂
(m)
k+1:k+n−1|c1:k) =

n−1
∏

a=1

Np
∑

i=1

p(b̂
(m)
k+a|θ

(i)
k )ŵ

(i)
k+a−1

(44)

I
(path,m)
k+n−1 =−

Np
∑

i=1

ŵ
(i)
k+n−1 log ŵ

(i)
k+n−1

+
1

∑

b̂k+n=0

p(b̂k+n|θk)
Np
∑

j=1

ŵ
(j)
k+n log ŵ

(j)
k+n.

(45)

The binary future measurement permutation set B̂ is given as:

B̂ = B̂k+1:k+n−1 =
[

b̂
(m)
k+1:k+n−1

]

1≤m≤2n−1
, (46)

where

b̂
(m)
k+1:k+n−1 =

[

b̂
(m)
k+1, b̂

(m)
k+2, · · · , b̂

(m)
k+n−1

]

. (47)

The number of possible measurements for each time step is

two (i.e., Nd = 2) for RHI-B. Although the computational

complexity of this method is much lower than that of RHI-

G, computational complexity still increases exponentially with

respect to the length of the time horizon as:

O(2Np · 2K−1 ·NK
u ). (48)

3) Receding horizon Infotaxis with random sampling

(RHI-R): In order to further reduce the computational com-

plexity of aforementioned approaches, we introduce the RHI

algorithm with the random sampling method (RHI-R) that

samples the future measurement sequence using the sensor

model and prior estimated source term probability distribution.

The RHI-R includes RHI-GR and RHI-BR which follow the

same methodology but using Gaussian and binary sensor

models, respectively. Here, explanations are based on RHI-BR.

Each component in the predicted future measurement sequence

at (k + n)th time step, b̂
(m)
k+n, is drawn from the estimated

source term distribution, p(b̂
(m)
k+n|c1:k, b̂

(m)
k+1:k+n−1), which is

approximated by the particle filter as:

b̂
(m)
k+n ∼ p(b̂

(m)
k+n|c1:k, b̂

(m)
k+1:k+n−1) =

Np
∑

i=1

p(b̂
(m)
k+n|θ

(i)
k )ŵ

(i)
k+n−1,

(49)

where p(b̂
(m)
k+n|θ

(i)
k ) can be calculated using Eq. (7). The

example of random sampling is shown in Fig. 6.

Previously, the utility function of the RHI is computed

while taking into account all predicted future measurement

permutation sequences. However, in RHI-BR, measurements
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Fig. 6. The example of the sampled measurement sequence for the (path)th

decision sequence.

are randomly sampled using the estimated measurement dis-

tribution in each (k + n)th time step in Eq. (49). The utility

function is calculated using the sampled future measurement

sequence. The utility function is no longer a summation of

expectation as the sampled measurements are no longer a

random variable. Thus, the utility function is calculated as:

I(u
(path)
k:k+K−1) =

K
∑

n=1

rn
Nm
∑

m=1

I
(path,m)
k+n−1

Nm

, (50)

where I
(path,m)
k+n−1 can be calculated by using Eq. (45). With

the random sampling approximation, the total number of mea-

surement sequences m is not NK
d but Nm. By applying this

sampling approach, the computational complexity no longer

increases with the number of possible future measurements

sequences along the length of the time horizon; it depends on

the number of sampled measurement sequences, Nm, which

is a design parameter. The computational complexity of this

method for the worst case is then reduced as:

O(2Np ·Nm ·NK
u ). (51)

Similarly, the computational complexity for RHI-GR is given

as:

O(NdNp ·Nm ·NK
u ). (52)

The pseudo-code of the RHI-BR at kth time step is given

in Algorithm 1. Note that, since the mobile agent has only

partial information until the end of the search and the gas

sensor measurement is highly stochastic, the future prediction

is inaccurate. Thus, we use only the first element in the optimal

decision sequence, u∗
k, for actual movement. Besides, when a

certain path from a decision sequence intersects with obstacles,

it is discarded as represented in line 8. The obstacle map

is recursively updated by using the local range sensor (e.g.,

LiDAR) observation, represented by the occupancy grid map

[45] as previously shown in Fig. 3.

V. NUMERICAL SIMULATIONS

This section provides illustrative runs of source search

and estimation using the proposed receding horizon Infotaxis

(RHI) methods including RHI-G, RHI-B, RHI-GR, and RHI-

BR. To provide comparisons and show the advantage of the

proposed approaches, three sets of experiments are discussed.

First, the search performance of the proposed methods are

compared in Section V-B. The search performance is com-

pared in terms of the success rate, the mean search time, and

the computational time. When the standard deviation of the

estimated source location is lower than a certain threshold

Algorithm 1 RHI-BR algorithm

1: ck ← obtain a new sensor measurement

2: Obsk ← Obsk−1 ▷ Update obstacle map

3: {(θk−1, wk−1)} → {(θk, wk)} ▷ Update using Eq. (19)

4: for path = 1, · · · , NK
u do ▷ For all decision sequences

5: for m = 1, · · · , Nm do

▷ For all sampled measurement sequences

6: for n = 1, · · · ,K do

7: p̂
(path)
k+n = pk + u

(path)
k+n−1

▷ Update predicted sensing positions

8: if Obsk(p̂
(path)
k+n ) == 0 then

▷ If no obstructed area

9: b̂
(m)
k+1:k+n−1

▷ Sample measurements using Eq. (49)

10: I
(path,m)
k+n−1 ▷ Calculate using Eq. (45)

11: else

12: break

13: I(u
(path)
k:k+K−1) =

∑

n r
n
∑

m I
(path,m)
k+n−1 /Nm

▷ Calculate using Eq. (50)

14: u∗
k:k+K−1 = argmax

u(path)∈Uk:k+K−1

I(u
(path)
k:k+K−1)

▷ Choose the best action

15: pk+1 = [xk+1 yk+1]
T
= [xk yk]

T
+ u∗

k

▷ Move to a new sensing position

(3m) and the mean value of the estimation is close enough

to the ground truth (3m) before reaching the maximum time

step (150 steps), the search is considered as a success. The

mean search time is averaged search time steps of successful

cases and the success rate means the ratio of the successful

cases over the Monte Carlo simulations. The computational

time is the time taken for each algorithm to decide the next

control decision per time step. It is assumed that the sensing

and moving time between grid points for each time step of the

mobile sensor are same for all simulations. Then, to show the

advantage of using the receding horizon-based approach more

clearly, the result with a specific scenario is discussed in details

in Section V-C. The proposed search strategies are compared

with the state-of-the-art source search strategy developed for

obstacle-rich environments, named IWFA-2 [30], on a realistic

scenario in Section V-D. Lastly, the hardware-in-the-loop

simulation in 3D environment is presented in Section V-E.

A. Simulation environments

This section describes the hazardous substance diffusion

scenarios in randomly generated obstacle-rich environments.

To consider the general shape of obstacles in a two-

dimensional space, we assumed obstacles consist of grids,

where the size of each grid is 9m×9m. The various obstacles

are shown in blue grids, white grids are free space, and red

circles represent gas emission source in Fig. 7. In order to

generate connected free space components from a starting

point to the source location by randomly generated obstacles,

the probability of the presence of obstacle ρ0 for each grid

must satisfy ρ0 < 1− ρc, where ρc means the site percolation

threshold [46], [47]. The ρc for the square grid is set to 0.593.
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The Graz Lagrangian (GRAL) model is adopted to simulate

the gas dispersion in the urban environment [48]. This model

is based on the Lagrangian particle dispersion model which is

one of the computational fluid dynamic (CFD) models. This

model calculates a trace of gas particles from the diffusive

source by considering gas properties and statistical environ-

ments. The three-dimensional wind model is obtained using

the Reynolds-averaged Navier-Stokes equations. The effect of

buildings (i.e., obstacles) is calculated by using the standard

k− ϵ turbulence model [48]. An example gas dispersion map

based on the obstacle map presented in Fig. 7(a) is shown in

Fig. 7(b). Note that, this GRAL model is quite realistic and

different from the ideal gas dispersion model (Eq. (1)) used

in the estimation algorithm.

(a) The example (b) The example

of obstacle map of gas dispersion

Fig. 7. The example obstacle-rich environment and corresponding gas
dispersion result using the realistic CFD model.

B. Performance comparison for various RHI methods

We examined the search performance according to the

horizon length and approximation methods of RHI in terms

of search time and success rate for the randomly generated

obstacle maps with the different obstacle generation probabil-

ities ρ0 = 0, 0.15, and 0.3. It can be considered that ρ0 = 0.3
represents an obstacle-rich environment as shown in Fig. 8(a),

ρ0 = 0.15 an environment with relatively few obstacles as

shown in Fig. 8(b), and ρ0 = 0 no obstacles.

(a) Obstacle map (b) Obstacle map

(ρ0 = 0.15) (ρ0 = 0.3)

Fig. 8. The sample maps for obstacle generation probability of ρ0 = 0.15
and 0.3.

Monte Carlo simulation results on those maps are shown

in Fig. 9. As the computational time of RHI-G increases

significantly after three steps of the horizon length (as will

be displayed in Fig. 10), it is limited to three steps. For the

fair comparison of all methods, a hundred different randomly-

generated obstacle maps are used for each ρ0 while the initial

location of the mobile sensor is fixed at (60, 60). To analyze

the source search performance influenced by decision making

when easy to estimate the source, the true gas dispersion model

for these Monte Carlo simulations is the same as the one for

estimation as in Eq. (1), that is, the GRAL model is not used

here. The simulation parameters are set as:

• Search area A = 270m×270m, wind direction ϕ = 220◦

with velocity V = 2m/s, the effective diffusivity param-

eter ζ = 10n2/s, release strength of the substance Q =
7.2kg/h = 2000mg/s, particle lifetime τ = 1000s, and

source location ps = [235m, 235m, 12m]T; and

• Feasible control actions, U = [↑, ↓,←,→], and the

moving distance of each step 9m, the standard deviation

of environmental and sensor noise are σenv = 0.4mg/m3

and σsen = 0.2 · µ(p; θ)mg/m3 respectively, the number

of particles Np = 1, 000 for the particle filter, the belief

ratio r = 0.8, binary measurement threshold update

parameter λ = 0.8, and the number of sampled future

measurement sequences Nm = 2.

Note that, the performance of the one horizon step in Fig. 9

indicates the search performance of the greedy Infotaxis. As

shown in Fig. 9(a) and (c), there is no significant difference

in success rate for ρ0 = 0 and 0.15 cases, and even using

the greedy Infotaxis, the source term can be estimated with

a probability of more than 90%. However, in the obstacle-

rich environment (ρ0 = 0.3), the success rate of source term

estimation using the greedy Infotaxis is only about 60%,

while success rates of proposed algorithms using the receding

horizon concept increase as the length of horizon increases.

The success rate of the proposed algorithms is about 90%
when it uses six horizon steps.

The proposed RHI-G and RHI-B can find the source with

fewer mean search time steps than that of the greedy Infotaxis

in no-obstacle environments. The performance of algorithms

using the sampling method (RHI-GR and RHI-BR) with a

few sampled future measurement sequences (Nm = 2) gets

even worse as the horizon increases as shown in Fig. 9(b)

whereas RHI-BR with the enough number of samples (Nm =
10) shows improvements with longer horizon steps. As the

obstacle ratio increases, the mean search time for all cases

is significantly reduced as the horizon length increases as

shown in Fig. 9(d) and (f). RHI-B shows the best performance,

followed by RHI-GR and RHI-BR when it uses six horizon

steps. Since the search performances of RHI-BR and RHI-GR

are good enough with a few sampled measurement sequences

(Nm = 2) compared with greedy Infotaxis, the large number

of measurement sampling case (Nm = 10) is not considered

in obstacle environments.

The computation time using MATLAB on a desktop com-

puter with an Intel(R) Core(TM) i7 7700 CPU @ 3.60 GHz

is compared to check the computational efficiency of the

proposed algorithms. The computation time of each algorithm
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(a) Success rate (ρ0 = 0) (b) Mean search time (ρ0 = 0)

(c) Success rate (ρ0 = 0.15) (d) Mean search time (ρ0 = 0.15)

(e) Success rate (ρ0 = 0.3) (f) Mean search time (ρ0 = 0.3)

Fig. 9. The results of Monte Carlo simulation with various approximation methods and horizon length under obstacle maps.
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Fig. 10. The results of Monte Carlo simulation with various approximation
methods and horizon length under ρ0 = 0.3 obstacle probability map.

per one time step according to the length of the receding

horizon is shown in Fig. 10. As explained in Section IV-B,

RHI-G has the highest computational burden, followed by

RHI-B and then the random sampling-based approaches. RHI-

BR (Nm = 2) has the lowest computational cost than as

expected.

From above Monte Carlo simulation results, it can be

concluded that as the horizon length increases, the success

rate increases in the obstacle-rich environment, but there is no

significant difference among proposed algorithms. The mean

search time is decreased as the horizon length increases in the

environment even with a few or no obstacles, and there are

some differences between algorithms. The random sampling

method can decrease the computational burden at the cost of

the increased search time steps.

The Gaussian sensor-based RHI-G (and RHI-GR) has al-

most the similar search performance to binary sensor-based

RHI-B (and RHI-BR) in terms of mean search time and

success rate, but it requires much longer computation time.

Thus, RHI-B could be a suitable choice particularly for

obstacle environments while RHI-BR showing the reasonable

performance could be used instead when the mobile agent has

not enough computing power. The RHI-G could be a solution

when the computation time does not significantly affect the

search performance by using a powerful computer onboard the

unmanned ground or sea surface vehicles for not time-critical

release/monitoring scenarios.

C. Illustrative run

This section describes an illustrative run of the proposed

RHI-BR algorithm which has a reasonably low computational

complexity and good search performance. The gas dispersion

map is generated by the GRAL model as shown in Fig. 7. The

following parameters are used for simulations:

• Search area A = 270m×270m, wind direction ϕ = 220◦

with velocity V = 2m/s, the effective diffusivity param-

eter ζ = 10n2/s, release strength of the substance Q =
7.2kg/h = 2000mg/s, particle lifetime τ = 1000s, and

source location ps = [235m, 235m]T; and

• Feasible control actions, U = [↑, ↓,←,→], and the

moving distance of each step 9m, the standard deviation

of environmental and sensor noise are σenv = 1mg/m3

and σsen = 0.2 · µ(p; θ)mg/m3 respectively, the number

of particles Np = 1, 000 for the particle filter, the belief

ratio r = 0.5, binary measurement threshold update

parameter λ = 0.8, and the number of sampled future

measurement sequences Nm = 2.

The search paths of the greedy Infotaxis and RHI-BR for

this scenario are shown in Fig. 11 and Fig. 12, respectively.

The probability of the release strength Q is presented in the

upper graph as a histogram, where the red dashed line and

blue line represent the ground truth and estimated mean of

the gas release strength, respectively. The search trajectory

and particles are shown in the bottom graph. The blue line is

the search path history, and the blue dots are particles from the

particle filter. The red dot marks represent the measurement

and the bigger size means a higher concentration. The gray

environment represents an unknown (unvisited) area while the

visited area is covered with white (empty space) and black

(walls or obstacles) colors. Note that, the mobile agent is

assumed to have a laser scanner (e.g., LiDAR) which provides

the range to obstacles within 24 meters radius omnidirec-

tionally. The greedy Infotaxis method presented in Fig. 11 is

trapped around obstacles multiple times. Since the estimated

source location is behind the obstacles, the mobile agent tries

to pass through the building to get better information but

the agent is blocked by the building corner; thus, the agent

wanders around the building corner for a while and manages

to escape sometimes. This behavior occurs quite often in this

complex urban environment.

The proposed RHI-BR with the five horizon steps yielded

significantly improved performance. RHI-BR can escape

quickly from the obstacle traps that the areas marked by green

and yellow dashed rectangles. The proposed method enables

to obtain better information of the source while avoiding

obstacles considering multiple future steps. Thus, the mobile

agent can find the source efficiently and estimate the source

term correctly as shown in Fig. 12.

D. Performance comparison on realistic conditions

In this section, we conduct the search performance compar-

ison of various algorithms including the proposed approaches

using the realistic dispersion map generated by the GRAL

model [48]. The RHI-BR approach is compared with a simpler

version of the receding horizon algorithm that uses the same

feasible paths as the RHI-BR (i.e., not stuck in the environ-

ment) but with only a utility value of the first location in the

path rather than the summation of predictive utilities along

the path. This is termed Infotaxis with RH-path planning. In

addition, we compare RHI-BR with three and five horizon

steps against state-of-the-art algorithm called IWFA-2 (Info-

tatxis with forbidden area-2) [30]. We present the outstanding

performance of the proposed method, RHI-BR with three and

five horizon steps with three sampled measurement sequences,

in the obstacle-rich urban environment (ρ0 = 0.3). Each

algorithm is tested in ten different maps and a hundred Monte

Carlo simulations for each map. The starting location for the
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(a) 21st time step (b) 61st time step

(c) 91st time step (d) 450th time step

Fig. 11. The result of the greedy Infotaxis source term estimation in a complex obstructed area.

mobile agent is chosen randomly, and for the same map,

the random initial locations are saved and used for different

algorithms.

The Infotaxis with path planning considers the future path

in the same way as the proposed algorithm, but this algorithm

uses only the utility that can be obtained at the first location

of each path when determining the optimal path. The IWFA-2

avoids revisiting some areas by marking as them forbidden

areas while conducting the greedy Infotaxis strategy [30]. Al-

though IWFA-2 outperforms the greedy Infotaxis, this method

only considers the geometrical information and it is still based

on the greedy approach. Monte Carlo simulation results for

the averaged search performance over various maps for each

algorithm are shown in Table I.

Note that SR represents the success rate, MST means the

total mean search time step, and CT is the computation time.

The search performance of Infotaxis with RH-path planning

is similar to that of IWFA-2; this is better than Infotaxis but

worse than using the sum of predictive utilities in the path

(i.e., RHI-BR). Besides, the search performance using the

Gaussian sensor model is slightly higher than using the binary

sensor model in all cases, but the Gaussian sensor model

requires a longer computation time. Note that considering

future paths that do not fall into local minima (e.g., dead-
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(a) 21st time step (b) 31st time step

(c) 71st time step (d) 108th time step

Fig. 12. The result of the receding horizon Infotaxis source term estimation using the five horizon steps and the three sampled binary sensor measurement
sequences in a complex obstructed area.

end) improves the search performance to some extent, but

considering the future predictive utilities provide even better

performance without a significant increase in computation

time. The search performance of RHI-BR (3 steps) is better

than IWFA-2 and Infotaxis with Gaussian sensor and five steps

horizon length path with less computation time. Although the

computing time of RHI-BR (5 steps) is the longest (i.e., 0.05

seconds) among the comparisons, it is fast enough comparing

the gas sensing time and moving time. Note that, typically, the

gas sensing time and moving time between sensing positions

of the mobile agent is the order of a few seconds. Since

the true gas dispersion is generated by a realistic GRAL

model in these simulations, which is different from the gas

dispersion model used by the agent for estimation (Eq. (1)),

the success rate of algorithms is worse than that shown in

Fig. 9. Although model inconsistency between the ideal gas

distribution and GRAL model reduces the search performance

to some extent, the success rate of RHI-BR is still above 80%

thanks to the robustness of the particle filter and receding-

horizon approach. The simulation results of the algorithms that

has the best performance among the same algorithms (i.e.,

Infotaxis, IWFA-2, Infotaxis with Gaussian sensor and five
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TABLE I
AVERAGED PERFORMANCE COMPARISON FOR DIFFERENT ALGORITHMS.

Horizon

length

Sensor

model

SR

[%]

MST

[steps]

CT

[sec]

Infotaxis 1
Binary 49.4 80.6 0.0011

Gaussian 51.1 80.4 0.0084

IWFA-2 1 Gaussian 68.0 78.2 0.0084

Infotaxis

with

RH-path

planning

3
Binary 67.5 76.6 0.0018

Gaussian 68.0 77.5 0.0081

5
Binary 70.0 78.0 0.0027

Gaussian 70.5 77.3 0.0091

RHI-BR
3 Binary 81.4 77.0 0.0053

5 Binary 83.5 74.6 0.0490

step horizon length path planning, and RHI-BR with 5 steps)

for each map are shown in Fig. 13

Fig. 13. The performance comparison for different algorithms in various
randomly generated maps and GRAL dispersion model.

In 8 map, the proposed algorithm (i.e., RHI-BR) has a

slightly lower success rate than Infotaxis with path planning,

but it can find the source faster. In 10 map, it moves slightly

more than IWFA-2, but it can be seen that it has higher success

rate. Except two maps, the proposed RHI-BR algorithm shows

the best performance in terms of success rate and number of

search moves in all maps.

E. Hardware-in-the-loop simulation in a 3-D environment

The previous simulations consider only 2-D environments

assuming the fixed altitude of the mobile sensor (i.e., UAV).

However, if the UAV altitude is far from the height of the

source origin, the search performance could be significantly

degraded. Thus, in this section, 3-D environments are con-

sidered. Besides, to verify the feasibility of the proposed

algorithm in real 3-D environments, we perform the hardware-

in-the-loop simulation (HILS) (or processor-in-the-loop simu-

lation (PILS) depending on the research community) by using

the RaspberryPi 4 board as the onboard computer suitable

for a small-sized multirotor drone. Note that, although there

are some real outdoor drone experiments in an open space

Fig. 14. The hardware-in-the-loop simulation system.

environment (i.e., without obstacles) [7], [9], [10] including

our previous work [8], flight experiments in obstacle-rich

environments are not yet reported due to the difficulty of

making actual gas dispersion strong enough to be detected

by a real gas sensor in such complex environments. So, here,

we use the HILS system instead of real flight as illustrated in

Fig. 14.

In the HILS system, the onboard computer performs source

term estimation using the particle filter and decision making

using RHI-BR. There are two environmental simulators: one

for simulating realistic gas dispersion in an obstacle-rich en-

vironment using the GRAL simulator (explained previously),

and the other for simulating the realistic dynamics and control

of a drone with the PX4 autopilot code in a Gazebo simulator.

The drone model that is used in Gazebo is IRIS quadrotor

UAV. The current state is calculated through an extended

Kalman filter (EKF) using IMU and GNSS sensors in the

simulation. The autopilot calculates motor power based on

its current state for stabilization and control. The Gazebo

simulation calculates the wind lift forces generated by rotating

motors and propellers. The PID controller is adopted to control

the UAV velocity.

The gas dispersion simulator provides noisy gas concen-

tration measurements to the drone onboard computer, and

the drone simulator gives the current position and LiDAR

measurements. The HILS system is run on the robot operating

system (ROS).

For 3-D HILS, the previous gas dispersion model in Eq. (1)

is extended to 3-D by replacing the 2-D location of the source

and the UAV with 3-D ones in the equation. The feasible

action set is changed to u = [↑, ↓,→,←,⇑,⇓] where ⇑ and

⇓ represent the altitude change and the movement distance

between time steps is fixed at 9m for all six directions. The

height of the true source is 12m and the initial height of the

UAV is set to 3m. The wind is assumed to be blown only

horizontally. The building generation probability ρ0 = 0.3
and the other environmental parameters are the same as the

previous 2-D simulation.

The HILS result for an illustrative run is shown in Fig. 15.

The proposed algorithm successfully estimates the source term

in a 3-D environment by including altitude control in the

feasible action set. The total search time for 3-D HILS can
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(a) Environment (b) Altitude history

(c) Search path (3-D view) (d) Search path (top view)

Fig. 15. The illustrative run of hardware-in-the-loop simulation.

TABLE II
THE COMPUTATION TIME FOR DIFFERENT ENVIRONMENTS.

Desktop

(MATLAB, 2D)

Desktop

(MATLAB, 3D)

Onboard RPI

(C++, 2D)

Onboard RPI

(C++, 3D)

Computation

Time
0.0058 sec 0.0244 sec 0.0994 sec 0.493 sec

be found in Fig. 15 (b). The computation times for RHI-BR

(3 steps) in different environment setup are shown in Table II.

As the gas sensing generally takes a couple of seconds while

hovering over the sensing location per search time step [7],

[8] as explained in Section II, the computation time of about

half second for the 3-D onboard case is still not that long

for real-time applications comparing sensing time (about three

seconds) and movement time (about five seconds). Besides, a

more powerful onboard computer could be used if needed.

VI. CONCLUSIONS AND FUTURE WORK

Information-theoretic source search planning was formu-

lated as receding horizon path planning to maximize the

entropy reduction for the estimated source term. The binary

sensor model and random sampling method were introduced to

reduce the computational complexity of the receding horizon

approach for real-time decision making. The proposed search

method shows much better performance in an obstacle-rich

environment compared with the existing greedy Infotaxis and

a state-of-the-art IWFA-2 algorithm for source search in an

obstacle-rich environment.

There are several future extensions to improve the perfor-

mance of the proposed approach and make it more prac-

tical. First, considering more feasible actions for each step

(e.g., diagonal motions, different step sizes between sensing

points) or trajectory planning with a variable agent speed

could increase the search performance. However, to utilize a

larger number of actions or optimization, the decision making
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(i.e., path planning) algorithm should be further improved so

that the computational time does not increase exponentially.

Besides, if the movement distance for each step is variable,

it can be included in the utility function to minimize the

total travel cost along with the entropy reduction. An efficient

waypoint-sampling method in a continuous domain, such as

the rapidly-exploring random tree (RRT) [49], [50], could be

combined with the proposed receding horizon-based Infotaxis

strategy to improve the search performance. Second, employ-

ing a more complex and realistic dispersion model (e.g.,

considering a time-varying release rate) could improve the

estimation performance rather than analytical gas dispersion

models. However, if we employ a complex model such as the

CFD model or puff-based model, the computational burden

could be greatly increased when predicting the expected gas

concentration particularly for the particle filter; thus, a trade-

off between the fidelity of the model and computational

complexity needs to be carefully considered. Third, in this

study, the monotonically increasing binary sensor threshold

and fixed decay factor is introduced, but these terms should be

further investigated in case of the changing source parameters

or strong turbulent and unstable environment conditions. We

also plan to develop the source search algorithm using the

deep reinforcement learning approach to calculate and predict

complex gas dispersion and decide optimal search paths in

real-time. Lastly, a field experiment using the proposed method

in obstacle-rich environments will be considered for future

work.
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