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Composite Adaptive Control for Anti-Unwinding
Attitude Maneuvers: An Exponential Stability

Result Without Persistent Excitation
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Abstract—This paper provides an exponential stability result
for the adaptive anti-unwinding attitude tracking control problem
of a rigid body with uncertain but constant inertia parameters,
without requiring the satisfaction of persistent excitation (PE)
condition. Specifically, a composite immersion and invariance
(I&I) adaptive controller is derived by integrating a prediction-
error-driven learning law into the dynamically scaled I&I adap-
tive control framework, wherein we modify the scaling factor so
that the algorithm design does not involve any dynamic gains. To
avoid the unwinding problem, a barrier function is introduced as
the attitude error function, along with the tactful establishment of
two crucial algebra properties for exponential stability analysis.
The regressor filtering method is adopted in combination with the
dynamic regressor extension and mixing (DREM) procedure to
acquire the prediction error using only easily obtainable signals.
In particular, aiding by a constructive liner time-varying filter,
the scalar regressor of DREM is extended to generate a new
exciting counterpart. In this way, the derived controller is shown
to permit closed-loop exponential stability without PE, in the
sense that both output-tracking and parameter estimation errors
exponentially converge to zero. Further, the composite learning
law is augmented with a power term to achieve synchronized
finite/fixed-time parameter convergence. Numerical simulations
are performed to verify the theoretical findings.

Index Terms—Exponential stability, immersion and invariance,
anti-unwinding, composite adaptive control, attitude tracking.

I. INTRODUCTION

R IGID-body attitude control has attracted ever-increasing
research attention over the past decades. The interest is

not only motivated by atmospheric and space flight applica-
tions, but also arises from some other applications ranging
from underwater/ground vehicles to rigid robotic systems [1].
The attitude dynamics for many of the aforementioned rigid-
body mechanical systems usually tend to be nonlinear and even
uncertain, making the design of attitude controllers that can
achieve satisfactory control performance a challenging task.
Several elegant solutions to the attitude control problem have
been reported in the literature since the early 1990s, such as
proportional-derivative (PD) plus feed-forward control (known
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as “PD+” control) [2], [3], inverse optimal control [4], model
predictive control [5], sliding mode control [6], geometric
control [7], etc., as well as a sophisticated combination of
these methods. This paper specifically considers the three-axis
attitude tracking control of a fully actuated rigid body with
full-state feedback. The unit quaternion, a four-parameter rep-
resentation that is computationally efficient and can globally
describe attitude without singularity, is chosen to parameterize
the rigid body orientation.

Due to the redundancy of the unit-quaternion representation,
its state space, denoted as S3 (the set of unit-magnitude
vectors in R4), is a double cover of SO(3) and, consequently,
every physical orientation corresponds to two (antipodal) unit
quaternions. It implies that the unit-quaternion tracking error
accounts for two equilibria, only one of which is considered a
priori while the other is left unstable in most existing related
works (see, indicatively, [2], [4] and references therein). In
this manner, certain control actions may cause the rigid body
to rotate unnecessarily through a large angle slew or even
almost a full revolution to reach the reference trajectory, even
if the initial configuration is very close to it, giving rise
to the unwinding problem. This phenomenon was discussed
at length in [8] from the perspective of lifts of paths and
vector fields from SO(3) to S3. In practical applications, such
unwinding inevitably leads to inefficient usage of momentum-
management devices or fuel of the rigid body [9]. Kristiansen
et al. [10] presented a discontinuous backstepping control
scheme based on the attitude error function (1 − |qe4|) (qe4
refers to the scalar part of the unit-quaternion tracking error)
to avoid the unwinding behaviors. Later, Mayhew et al. [11]
developed a hybrid control approach incorporating hysteresis-
based switching to mitigate the sensitivity of discontinuous
feedbacks presented, for example, in [10] to measurement
noises. In [12], [13], a class of modified attitude error functions
were proposed, whereby smooth control laws were obtained
for anti-unwinding attitude maneuvers. Costic et al. [14]
introduced a barrier function to design anti-unwinding adaptive
controllers in both full-state and output feedback fashions. An
alternative barrier function for unwinding avoidance was pro-
vided in [15]. Recently, Dong et al. [16] derived a sliding mode
controller, in which a specially-constructed sliding surface was
designed to avoid unwinding.

Notwithstanding the fact that the methods suggested in the
aforementioned works indeed avoid unwinding, most of them
have only been shown to deliver uniform asymptotic stability
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for the closed-loop dynamics, while requiring exact knowledge
of the inertia parameters of the rigid body. However, in
practice, the rigid body inertia properties are usually uncertain
due to, for example, fuel consumption, payload variation,
appendage deployment, etc., which limit the opportunities for
practical adoption of those anti-unwinding attitude controllers.
Adaptive control has been extensively studied as an effective
tool to handle parameter uncertainties [17]. In particular, the
successful application of adaptive control theory to the rigid-
body attitude tracking problem has been enabled by the crucial
fact that the governing attitude-tracking dynamics permits
affine regression of inertia-related terms [14], [18]–[20]. A
typical feature of these adaptive control solutions is that they
are based upon the classical certainty-equivalence (CE) prin-
ciple. In theoretical terms, the CE-based adaptive controllers
can recover the ideal closed-loop performance obtained in the
deterministic case wherein the inertia matrix is fully available,
only when the persistent excitation (PE) hypothesis holds such
that the parameter estimates rapidly converge to their true
values. Unfortunately, the PE condition is rarely satisfied in
practical scenarios, such as setpoint regulation, close-range
proximity operations, etc., hence the performance resulted by
the CE-based adaptive controllers is often seen to be poor
relative to the uncertainty-free control case. Periodic reference
signals can be injected to induce PE [19], but at the cost of
unnecessary rotations and energy consumption. To surmount
this drawback, Astolfi and Ortega [21] departed from the CE
principle and instead proposed a new paradigm, known as
immersion and invariance (I&I) adaptive control, yielding a
non-CE adaptive controller that possesses better performance.
In the I&I adaptive control framework, a function that satisfies
a certain partial differential equation (PDE) is introduced, in
combination with the learning term from the adaption law,
to generate the parameter estimates. But, for general multi-
input systems, there usually exist no solutions to the involved
PDEs. This is the so-called “integrability obstacle”. The main
approaches to overcome this problem can be classified into two
categories: regressor filtering method [22], [23] and dynamic
scaling method [24]–[26]. Note that the CE and non-CE
adaptive control methods mentioned above can only achieve
asymptotic convergence of the tracking errors, rather than
closed-loop asymptotic stability, making them fragile in the
absence of sufficient excitation; moreover, they both require
the PE condition for parameter convergence. Indeed, it is
sometimes necessary to identify the inertia parameters of the
rigid body, e.g., after docking/capture operations, after the
deployment of payloads or solar panels, etc.

Theoretically, a stronger stability result – exponential stabil-
ity – is beneficial for enhancing the robustness of the closed-
loop system and for obtaining fast and high-precision attitude
tracking performance. However, to the authors’ knowledge,
there is no previous work achieving adaptive anti-unwinding
attitude tracking with exponential stability guarantee, under
the quaternion parameterization. The technical obstacles lie in
two aspects. On the one hand, the commonly used quaternion-
based attitude error functions can hardly exhibit the algebra
properties necessary for proving the closed-loop exponential
stability, unless additional restrictions on the attitude evolution

or control gains are placed, as done in [2]. On the other hand,
the rank deficiency of information matrix necessitates the re-
strictive PE condition for parameter convergence. Overcoming
simultaneously the above two obstacles is the main motivation
of this paper. Toward this end, a novel composite I&I adaptive
control scheme is proposed by blending a prediction-error-
driven learning law into the dynamically scaled I&I adaptive
control framework. We modify the dynamic scaling factor to
an essentially bounded one following the line of [27] so that it
does not be practically used in the controller implementation,
thus greatly reducing the algorithm complexity. The designed
controller is shown to deliver exponential stability for the
closed-loop dynamics under the assumption of interval excita-
tion (IE), a condition much weaker than PE, in the sense that
both the output-tracking and estimation errors exponentially
converge to zero without causing unwinding. Such results
are partially aided by the choice of a barrier function as the
attitude error function to avoid the unwinding phenomenon,
along with the tactful establishment of two algebra properties
(see Lemmas 1 and 2 in Sec. II-D) for exponential stabil-
ity analysis. In addition, the regressor filtering approach is
adopted in conjunction with the dynamic regressor extension
and mixing (DREM) procedure recently developed in [28]
to obtain the prediction-error-driven learning law using only
easily-obtainable signals. Specifically, by virtue of a linear
time-varying (LTV) filter [29], a constructive procedure is
proposed for DREM to generate, from a set of scalar linear
regressor equations (LREs), a set of new scalar LREs in
which the new regressor satisfies the PE condition, if the
original regressor is of IE. Benefiting from the new LREs,
the extended I&I adaptive law ensures global exponential
convergence of the parameter estimation errors under the
assumption of IE, not PE. Besides, the composite adaptive law
is further generalized to achieve synchronized finite/fixed-time
parameter convergence via a slight modification.

The remainder of the paper is organized as follows. Sec-
tion II presents the problem formulation and mathematical
preliminaries. The composite I&I adaptive controller design
is detailed in Section III, along with rigorous theoretical anal-
yses. In Section IV, some implications are further revealed for
the key features and extendibility of the designed controller.
Simulation results, which illustrate the effectiveness of the
proposed attitude control method, are provided in Section V.
Finally, this paper is wrapped-up with concluding remarks.

II. PROBLEM FORMULATION AND PRELIMINARIES

Throughout the paper, vectors and matrices are written in
boldface, Rn denotes the n-dimensional Euclidean space, and
Rm×n denotes the vector space of m × n real matrices. In
is the n × n identity matrix. For a matrix or vector A, Aij
(respectively, Ai) denotes its (i, j)-th (respectively, i-th) entry,
while ‖A‖ denotes either the Euclidean vector norm or the
induced matrix norm. We further write | · | for the absolute
value of a scalar and sign(·) for the standard sign function.
The notation S(·) : R3 → R3×3 is a cross product operator
such that S(x)y = x × y for any vectors x,y ∈ R3. In
addition, the set of unit quaternions is given by Qu = {q =
[q>v , q4]> ∈ R3 × R | q>v qv + q2

4 = 1}.
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A. Rigid-Body Attitude Dynamics

This paper is concerned with the attitude tracking of a rigid
body, and three coordinate frames are involved in describing
the attitude motion of the rigid body, i.e., the inertial frame FI ,
the body-fixed frame FB, and the reference frame FR. In FB,
we denote by q = [q>v , q4]> ∈ Qu and ω ∈ R3 the inertial
attitude and angular velocity of the rigid body, respectively.
The kinematic and dynamic equations of the rigid body can
be described as [22]

q̇v =
1

2
(S(qv) + q4I3)ω, q̇4 = −1

2
q>v ω (1)

Jω̇ = −S(ω)Jω + u (2)

where J = J> ∈ R3×3 is the positive definite inertia
matrix of the rigid body, and u ∈ R3 is the control torque.
Further, define qr = [q>rv, qr4]> ∈ Qu as the reference
quaternion that specifies the rotation of FR from FI , and let
ωr ∈ R3 be the reference angular velocity expressed in FR.
To formulate the attitude tracking problem, an error quaternion
qe = [q>ev, qe4]> ∈ Qu is introduced to describe the relative
attitude of FB w.r.t. FR. According to the multiplication rule
of quaternions, qe is calculated as follows:

qe = q−1
r � q =

[
qr4qv − q4qrv + S(qv)qrv

qr4q4 + q>rvqv

]
(3)

where q−1
r is the inverse of qr, and “�” is the quaternion

multiplication operator. The corresponding angular velocity
error is defined as ωe = ω −Cωr, where the rotation matrix
C from FR to FB is given by

C = (q2
e4 − q>evqev)I3 + 2qevq

>
ev − 2qe4S(qev) (4)

As is well known, C satisfies the following two conditions:
‖C‖ = 1 and Ċ = −S(ωe)C. Now, the open-loop tracking
error dynamics are expressed as [14]

q̇ev =
1

2
(S(qev) + qe4I3)ωe, q̇e4 = −1

2
q>evωe (5)

Jω̇e = −S(ω)Jω + J(S(ω)Ω− Ω̄) + u (6)

where Ω = Cωr and Ω̄ = Cω̇r are defined for brevity.
Assumption 1: The inertia matrix J is diagonal and constant,

but otherwise unknown.
Assumption 2: The reference angular velocity ωr is bounded

and at least C2 continuous, and its time derivatives up to order
two, i.e., ω̇r and ω̈r, are bounded.

B. Affine Regression

To design an adaptive attitude controller for the open-loop
attitude tracking error dynamics described by (5) and (6), we
first perform a linear regression. To this end, a linear regression
operator L[·] : R3 → R3×6 is introduced such that, for
any vector x ∈ R3, there always has Jx = L[x]θ, where
θ = [J11, J22, J33, J23, J13, J12]> is the unknown parameter
vector, and L[x] has the following form

L[x] =

x1 0 0 0 x3 x2

0 x2 0 x3 0 x1

0 0 x3 x2 x1 0

 (7)

A logarithmic barrier function Vq is introduced to serve as
the attitude error function (AEF) for anti-unwinding attitude
tracking of the rigid body [15]

Vq = −α ln q2
e4, ∀α > 0 (8)

which equals to zero only when qe4 = ±1 and tends to infinity
as qe4 → 0. The latter implies that for an initial condition
satisfying qe(0) ∈ Qa, if the attitude controller u is properly
designed such that Vq ∈ L∞, then the attitude tracking error
qe would evolve strictly in Qa without unwinding. As a matter
of fact, the barrier function Vq imposes a permissible set
Qa = {qe ∈ Qu | qe4 6= 0} for the attitude tracking error qe.
To facilitate the controller design, we further define a filtered
tracking error, denoted by s ∈ R3, as follows:

s
.
= ωe + Λqev (9)

where Λ = β/sign(qe4) with β > 0 being a design constant.
Although Λ contains sign(qe4), it is a constant (i.e., Λ = β or
Λ = −β) and has the same sign as qe4(0), under the condition
that qe4(0) 6= 0 and the rotation angle is less than 180◦. This
condition is actually equivalent to qe(t) ∈ Qa ∀t ≥ 0.

From a control perspective, the target dynamics desired to
be recovered from the uncertainty case are set to

ω̇e = −kps− ξ − Λq̇ev (10)

where kp > 0 is a constant gain, and ξ = qev/qe4 (Gibbs
vector) is introduced to cancel the cross-coupling term that
will appear in the time derivative of Vq . In view of this, the
open-loop dynamics (6) is rewritten as

ω̇e =− kps− ξ − Λq̇ev + J−1[u

−S(ω)Jω + J(S(ω)Ω− Ω̄ + kps+ ξ + Λq̇ev)︸ ︷︷ ︸
Φ(·)θ

]

=− kps− ξ − Λq̇ev + J−1 (u+ Φ(·)θ) (11)

where Φ(·) ∈ R3×6 is a known regressor matrix given by

Φ(·) = −S(ω)L[ω]+L[S(ω)Ω−Ω̄+kps+ξ+Λq̇ev] (12)

C. Control Objective

Most existing results on adaptive attitude tracking control
can only achieve asymptotic convergence of the system states,
rather than closed-loop asymptotic stability, making them frag-
ile in the absence of sufficient excitation. Moreover, from the
perspective of practical controller implementation, a stronger
stability result, i.e., exponential stability, is more desirable
for achieving robust, fast and high-precision attitude tracking.
On the other hand, since the rotations around the same axis
by Euler angles 0◦ and 360◦ physically represent the same
attitude, the rigid body can certainly track a reference attitude
trajectory through performing a relative rotation no larger
than 180◦. Note, however, that the state space S3 of the unit
quaternions is a double cover of SO(3), and there are two
antipodal equilibria (i.e., qe = [0>, 1]> and qe = [0>,−1]>)
for the attitude tracking maneuvers, which may give rise to the
so-called unwinding phenomenon. In practical applications,
such a phenomenon would lead to unnecessary rotations and
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inefficient use of momentum-management devices or fuel.
Thus, the design of attitude controllers that can achieve
exponential attitude tracking without causing unwinding is of
both theoretical and practical interest.

Based on the above arguments, the control objective of the
paper is to design an adaptive control law u for the rigid-
body attitude dynamics described by (1) and (2), such that
the resulting closed-loop system is exponentially stable in the
sense that limt→∞ qe(t) = [0>,±1]>, limt→∞ ωe(t) = 0,
and limt→∞ θ̃(t) = 0 (θ̃ refers to the parameter estimation
error) at exponential rates without causing unwinding, despite
the absence of PE.

D. Definitions and Lemmas

Several definitions and lemmas necessary for the subsequent
control design and analysis are introduced in this subsection.
First, two fundamental definitions related to signal excitation
are presented as follows [17]:

Definition 1 (PE of a Signal): A bounded signal X(t) ∈
Rm×n is of PE, if there exist constants tc > 0 and ν > 0 such
that

∫ t+tc
t

X(τ)X>(τ)dτ ≥ νIm for all t ≥ 0.
Definition 2 (IE of a Signal): A bounded signal X(t) ∈

Rm×n is of IE over a time interval [ts, ts + tc], if there
exist constants ts ≥ 0, tc > 0 and ν > 0 such that∫ ts+tc
ts

X(τ)X>(τ)dτ ≥ νIm.
Next, two pivotal and interesting lemmas are provided,

which play central roles in achieving exponential stability of
the closed-loop system. We should emphasize that although
the two lemmas are established for the error quaternion qe,
they actually hold for any unit quaternion.

Lemma 1: For all qe ∈ Qa, the AEF (− ln q2
e4) satisfies

− ln q2
e4 ≤

1− q2
e4

|qe4|
(13)

Proof : See Appendix A.
Lemma 2: Given any scalar δ ∈ (0, 1), there exist two

positive constants α and α satisfying α ≥ −α ln δ2/(1 − δ2)
and α ≤ 1, such that the following inequality holds for
δ ≤ |qe4| ≤ 1:

α‖qev‖2 ≤ Vq ≤ α‖qev‖2 (14)

Proof : See Appendix B.

III. ADAPTIVE CONTROLLER DESIGN

In this section, a composite I&I adaptive control scheme is
proposed to achieve the control objective as stated in Sec. II-C.
We first construct a solvable PDE by partially reconfiguring
the regressor matrix Φ, in order to overcome the integrability
obstacle that arises in the I&I adaptive control design. Subse-
quently, a regressor filtering method is presented to eliminate
the need for unmeasurable ω̇ in I&I adaptive augmentation,
followed by a constructive DREM procedure for relaxing the
restrictive PE assumption for parameter convergence. Then, a
dynamically scaled I&I adaptive controller, augmented with
a DREM-based learning law, is designed to achieve anti-
unwinding attitude tracking with exponential convergence of
the output-tracking and parameter estimation errors, under a
weak IE Assumption.

A. Construction of A Solvable PDE

For notational concision, let

y = −Ω̄− kpΩ + kpΛqev + ξ − ΛQ(qe)Ω (15)

Decompose Φ(·) in (12) into two parts

Φ(·) = Φ1(ω,y) + Φ2(ω,Ω, qe) (16)

where we have defined

Φ1(ω,y) = kpL[ω] +L[y] (17)

Φ2(ω,Ω, qe) = −S(ω)L[ω] +L[S(ω)Ω] + ΛL[Q(qe)ω]
(18)

It is easy to check that Φ>1 (ω,y) is a Jacobian matrix, in
other terms, for all i, j ∈ {1, 2, 3}, ∂φ1i/∂ωj = ∂φ1j/∂ωi,
where φ1i and φ1j denote the i-th and j-th columns of
Φ>1 (ω,y), respectively. There therefore exists µ1 ∈ R6 such
that the following PDE holds:

∂µ1

∂ω
= Φ>1 (ω,y) (19)

As y is independent of ω, we can obtain a feasible but not
unique solution of (19) as follows:

µ1 = L>[y]ω + kpω̄ (20)

with ω̄ = [0.5ω2
1 , 0.5ω

2
2 , 0.5ω

2
3 , ω2ω3, ω1ω3, ω1ω2]>.

Unlike Φ>1 (ω,y), the sub-regressor Φ>2 (ω, ·) (for nota-
tional simplicity, the symbol “·” is used to capture all the other
arguments of Φ2 except for ω) is not a Jacobian matrix, since
for all i, j ∈ {1, 2, 3} except i = j, ∂φ2i/∂ωj 6= ∂φ2j/∂ωi,
where φ2i and φ2j denote the i-th and j-th columns of
Φ>2 (ω, ·), respectively. Consequently, there is no µ2 ∈ R6

satisfying the PDE ∂µ2/∂ω = Φ>2 (ω, ·). This is commonly
known as the “integrability obstacle”, which prevents the
classical I&I adaptive control method in [21] from being
directly applied to the problem under study. To overcome
such a restrictive obstacle, we construct a solvable PDE by
reconfiguring Φ2(ω, ·) in the following way:

∂µ2

∂ω
= Φ̂>2 (ω, ω̂, ·) (21)

with Φ̂>2 (ω, ω̂, ·) being [φ21(ω1, ω̂2, ω̂3, ·),φ22(ω̂1, ω2, ω̂3, ·),
φ23(ω̂1, ω̂2, ω3, ·)], and ω̂ a filter state determined by

˙̂ω = −ȳ − kf ω̃, ω̂(0) = ω(0) (22)

where ȳ = y + kpω + S(ω)Ω + ΛQ(qe)ω and ω̃ = ω̂ − ω.
Noting the fact that −S(ω)Jω+Jȳ = Φθ, and from (2) and
(22), it follows that

˙̃ω = −kf ω̃ − J−1(Φθ + u) (23)

A direct solution to (23) is

µ2 =

∫ ω1

0

φ̂21(τ, ω̂2, ω̂3, ·)dτ +

∫ ω2

0

φ̂22(ω̂1, τ, ω̂3, ·)dτ

+

∫ ω3

0

φ̂23(ω̂1, ω̂2, τ, ·)dτ (24)

Let µ = µ1 + µ2. Then, from (16), (19) and (21), we get

∂µ

∂ω
= Φ>(·) + Ψ>(·) (25)
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where the matrix Ψ(·) ∈ R3×6 is defined by

Ψ(·) = Φ̂2(ω, ω̂, ·)−Φ2(ω, ·) (26)

B. Regressor Filtering and DREM
From a theoretical viewpoint, extracting information about

the unknown inertia parameters from the prediction errors
requires measurement of the angular acceleration ω̇, which
is usually unavailable in practice. Various differentiators such
as fixed-point/lag Kalman smoother, high-gain observer, state
differentiator, etc., have been advocated to estimate ω̇, but they
are sensitive to measurement noise and disadvantageous to the
rigor of analysis. This motivates us to employ the regressor
filtering method to avoid the usage of angular acceleration
estimate in parameter adaptation.

Before proceeding, we rewrite (2) as Jω̇ = Wθ + u with
W = −S(ω)L[ω], and introduce a linear time-invariant (LTI)
filter H of which the transfer function is H(s) = 1

s+a , where
a > 0 is the filter time constant. Then, the filtered signals ωf ,
Wf , and uf ∈ R3 are generated by passing ω, W , and u,
respectively, through H as follows:

ωf = H[ω], Wf = H[W ], uf = H[u] (27)

with initial conditions ωf (0) = ω(0)/a, Wf (0) = 0, and
uf (0) = 0. After a simple calculation, we get

ω̇f = J−1(Wfθ + uf ) (28)

Reorganizing (28) obtains a linear regressor equation (LRE)

uf = (L[ω̇f ]−Wf )θ = Waθ (29)

As shown above, the filtered input uf contains information
about the unknown parameter vector θ and, therefore, can act
as the measurement for parameter estimation.

Since uf , ω̇f , and Wf are computable at every time
instance from the LTI filters in (27), θ can be extracted from
the LRE (29) without involving any unmeasurable signals. A
gradient-descent estimator is generally designed to estimate θ
and has the form of ˙̂

θ = −ΓW>
a (Waθ̂ − uf ) = −ΓNθ̃,

where Γ > 0 is a constant gain and N = W>
a Wa is a sym-

metric information matrix. It is important to underscore that
N is at most rank 3 and thus only positive semidefinite. Under
this situation, the parameter convergence can be achieved only
if the regressor W>

a is PE, a condition that is rarely met in
practice. The rank deficiency of N is the primary cause of
parameter convergence requiring PE. To relax the excitation
requirement for parameter convergence, the information matrix
N will be designed to possess full rank under a strictly weak
IE assumption, using the recently reported DREM technique
[28]. For that, the following is assumed for the degree of
excitation in the filtered regressor Wa.

Assumption 3: There exist ts > 0 and tc > 0 such that the
filtered regressor W>

a is of IE over [ts, ts + tc].
Following the line of [28], our first step is to construct an

extended LRE (e-LRE) with a square regressor matrix via the
Kreisselmeier’s regressor extension proposed in [30], recently
revisited in [31], [32]. The detailed construction proceeds as
follows. Pre-multiplying both sides of (29) by W>

a gives

W>
a uf = W>

a Waθ (30)

to which we apply an LTI filter K with transfer function
K(s) = 1

s+b (b > 0 is the filter time constant). To be specific,
the state-space realization of K is as follows:

Ṁ = −bM +W>
a uf , M(0) = 0 (31)

Ṅ = −bN +W>
a Wa, N(0) = 0 (32)

with the filtered signals M ∈ R6 and N ∈ R6×6. Solving

(31) and (32) readily arrives at
˙︷ ︷

M −Nθ = −b(M −Nθ),
from which it is easy to obtain the e-LRE

M = Nθ (33)

Next, the regressor mixing step is performed to obtain a set
of scalar LREs that share the same scalar regressor. We pre-
multiply the adjunct matrix, denoted by adj{·}, of N to both
sides of the e-LRE (33) to get

Yi = ∆θi, i ∈ {1, . . . , 6} (34)

with definitions in the following compact form

Y
.
= kIadj{N}M 1, ∆

.
= kI det{N} (35)

where kI > 1 is introduced, if necessary, to enhance the re-
gressor signal strength in case of a low level of excitation. But,
such a treatment inevitably magnifies the deviation between Yi
and ∆θi caused by external disturbances, measurement noises,
and some other practical factors, which in turn may decrease
the parameter estimation accuracy of the DREM estimator.
As such, kI should be judiciously chosen according to the
excitation level of the reference trajectory and the mission
requirement on identification accuracy.

Closely inspecting (32) reveals that the information matrix
N at any time instance t is calculated by a weighted accumula-
tion (via forward integration) of all incoming data from 0 up to
t. In this way, the rank of N will be gradually populated over
time such that N turns to be full rank at a certain moment,
if the IE condition as stated in Assumption 3 holds. In fact,
from Assumption 3, one can deduce that

N(ts + tc) ≥
∫ ts+tc

ts

e−b(ts+tc−τ)W>
a (τ)Wa(τ)dτ

≥ e−btc
∫ ts+tc

ts

W>
a (τ)Wa(τ)dτ

≥ νe−btcI6 > 0

(36)

showing that N(t) becomes full rank at t = ts + tc and
accordingly ∆(ts + tc) ≥ (νe−btc)6. However, if W>

a is only
of IE, the value of ∆ will decay to zero with time after the
end of IE, due to the exponential forgetting design in (32). In
view of this, the direct use of ∆ in designing the parameter
estimator ˙̂

θ = −Γ∆(∆θ̂−Y ), as done in [28], may lead to a
remarkable decrease in parameter convergence rate over time.
To surmount this problem, in the sequel we seek to augment
the LREs in (34) with tactfully introduced filtered states and
free terms, with the aim of generating a set of new scalar LREs

1Based on the Cramer’s rule, Yi can be calculated by Yi = kIdet(NM,i),
where NM,i is the matrix N with its i-th column replaced by M .
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that share a non-degenerate scalar regressor, under extremely
weak Assumption 3.

According to the construction in [29, Proposition 1], a linear
time-varying (LTV) filter is introduced{

χ̇ = ∆(Y −∆χ)

Ξ̇ = −∆2Ξ, Ξ(0) = 1
(37)

From (34) and (37), it is straightforward to get
˙︷ ︷

χ− θ = −∆2(χ− θ) (38)

The solution of the LTV system (38) is given by2

χ(t)− θ = exp

(
−
∫ t

0

∆2(τ)dτ

)
(χ(0)− θ)

= Ξ(t)(χ(0)− θ)

(39)

By inserting (39) into the original LREs (34), we obtain a set
of new scalar LREs as follows:

YN = ∆Nθ (40)

where YN and ∆N are defined, respectively, by

YN(t)
.
= Y (t) + kN(χ(t)− Ξ(t)χ(0)) (41)

∆N(t)
.
= ∆(t) + kN(1− Ξ(t)) (42)

with kN > 0 being a design constant.
Lemma 3: The LRE extension based on the LTV filter (37)

guarantees that:
1) The LTV filter (37) is internally stable;
2) The newly obtained scalar regressor ∆N satisfies ∆N(t) ≥

0 on t ∈ [0,∞);
3) If Assumption 3 holds, then there exists a constant ~ > 0

such that ∆N(t) > ~ on t ∈ [ts + tc,∞).
Proof : A sketch of the proof is provided here. The interested

reader may refer to [29] for additional details.
In view of (38) and the intuitive fact that ∆2(t) ≥ 0 ∀t ≥

0, it can be immediately concluded that ‖χ(t) − θ‖ is not
increasing, showing the internal stability of the LTV filter (37).
Recalling (32), we find that the information matrix N is a
symmetric positive semi-definite, which indicates that ∆(t) ≥
0 for all t ≥ 0. Besides, one can easily infer that (1−Ξ(t)) ≥
0. It is then evident from (42) that ∆N(t) ≥ 0 on t ∈ [0,∞).

Further, we consider Assumption 3 holds, that is, W>
a is of

IE. Given this, from (36) and its accompanying result ∆(ts +
tc) ≥ (νe−btc)6, there exist t∆ > 0 and o > 0 such that∫ ts+tc

ts+tc−t∆
∆(τ)dτ ≥

√
o =⇒

∫ t

0

∆2(τ)dτ ≥ o (43)

for all t ≥ ts+tc, from which it is easy to verify the following
implications:

W>
a (t) ∈ IE =⇒ ∆(t) ∈ IE

=⇒ 1− Ξ(t) ≥ 1− e−o > 0, ∀t ≥ ts + tc

=⇒ ∆N(t) > ~ = kN(1− e−o), ∀t ≥ ts + tc

=⇒ ∆N(t) ∈ PE, ∀t ≥ ts + tc (44)

where the fact that ∆(t) ≥ 0 ∀t ≥ 0 has been used in the last
two implications. �

2The term Ξ(t)Ξ(τ)−1 is indeed the state transition matrix of the LTV
system ẋ = −∆2(t)x from τ to t.

C. Composite I&I Adaptive Controller

At this point, a composite I&I adaptive controller is de-
signed by applying a dynamically scaled I&I adaptive control
method with parallel combination of a prediction-error-driven
(also called DREM-based) learning law.

Design the control law and the accompanying adaptive laws
as

u = −Φ(θ̂ + ζ) (45)

˙̂
θ = −γ[ ˙̄µ− (Φ + Ψ)>ȳ]︸ ︷︷ ︸

I&I-based learning law: Part I

−γλε︸ ︷︷ ︸
DREM-based learning law

(46)

ζ = γµ︸︷︷︸
I&I-based learning law: Part II

(47)

where γ, λ > 0 are constant gains, ˙̄µ = µ̇− (∂µ/∂ω)ω̇, and
ε ∈ R6 is the prediction error vector given by

ε = ∆N(θ̂ + ζ)− YN (48)

Actually, the composite term (θ̂+ζ) acts as the estimate of θ,
thus the parameter estimation error is defined as θ̃ = θ̂+ζ−θ.
From (40) and (48), it follows that ε = ∆Nθ̃. We underscore
that the DREM-based learning law −γλε can extract actual
information of θ from the rich historical data.

Inserting (45) into (11) yields

ω̇e = −kps− ξ − Λq̇ev − J−1Φθ̃ (49)

Bearing (2), (25), (46)-(48) in mind and recalling the defini-
tions of Φ and ȳ, we have

˙̃
θ = γ

∂µ

∂ω
ω̇ + γ ˙̄µ− γ

[
˙̄µ− (Φ + Ψ)>ȳ

]
− γλε

= γ(Φ + Ψ)>J−1 (−S(ω)Jω + Jȳ + u)− γλε
= −γ(Φ + Ψ)>J−1Φθ̃ − γλε (50)

In what follows, the dynamic scaling technique is applied to
obviate the effect of perturbation Ψ on parameter estimation.
However, for most I&I adaptive control methods with dynamic
scaling, the lower bound (or minimum eigenvalue) of the un-
known parameter needs to be known beforehand; on the other
hand, the scaling factor does not involve a damping term in
its dynamics and thus grows monotonically and continuously
under perturbed and noisy conditions. The latter may result
in “high-gain” control actions and further cause undesirable
transient behavior and robustness degradation of the closed-
loop system. To surmount the disadvantages above, inspired
by [27], a naturally bounded scaling factor R(t) that satisfies
R(t) > R0 ∀t ≥ 0 for some constant R0 > 0 is presented to
form the scaled estimation error

z =
θ̃

R
(51)

with R having the following form

R =

√
Jm

e1/(2J2
m)
· e
√

ln f(r)

Jm (52)

where Jm denotes the minimum eigenvalue of J , and f(r) is
defined as

f(r) = fm tanh(r) + 1 (53)
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In the above formula, fm > 0 can be freely chosen to adjust
the maximum value of f(r) (noting that 1 < f(r) ≤ fm + 1),
while r is a time-varying scalar satisfying r(t) > 0 ∀t ≥ 0
and is determined by

ṙ = γ
f(r)

√
ln f(r)

∂f(r)/∂r
‖Ψ‖2, r(0) > 0 (54)

Taking the time derivative of z and noting (50)-(54) lead to

ż = −γ(Φ + Ψ)>J−1Φz − γλ∆Nz −
γ

2Jm
‖Ψ‖2z (55)

Now, consider a Lyapunov-like function

Vz =
1

2γ
z>z (56)

By Young’s inequality, we deduce that

V̇z ≤ −
Jm

2
‖J−1Φz‖2 − λ∆N‖z‖2 ≤ 0 (57)

where the fact ∆N(t) ≥ 0 ∀t ≥ 0 shown in Lemma 3
has been used. Thus, the equilibrium z = 0 of the scaled
estimation error dynamics (55) is uniformly globally stable
and accordingly uniformly bounded.

The main contributions of this paper are summarized in the
following theorem.

Theorem 1: Consider the rigid-body attitude dynamics de-
scribed by (1) and (2) under Assumptions 1 and 2. Given the
initial conditions [q(0),ω(0)] and the reference trajectories
[qr(0),ωr(0)] satisfying qe(0) ∈ Qa, if kp and kf are chosen
as kp = kf = κ(fm + 1) with κ > 0 some design constant,
then the implementation of the control law (45) in conjunction
with the parameter estimator defined in (46) and (47) leads to
the following:

1) All closed-loop trajectories converge asymptotically to an
invariant attracting manifold M given by

M .
= {θ̃ ∈ R6 | Φθ̃ = 0} (58)

as a result, the uncertain plant dynamics are ultimately
immersed into the target dynamics (10);

2) The output-tracking errors qev(t) and ωe(t) asymptoti-
cally converge to zero on t ∈ [0,∞), and the unwinding
phenomenon is strictly avoided;

3) If Assumption 3 holds, the origin of the closed-loop
system is exponentially stable on t ∈ [ts + tc,∞), in
the sense that qev(t), ωe(t), and θ̃(t) converge to zero
exponentially fast on t ∈ [ts + tc,∞).

Proof : Consider the overall Lyapunov-like function

V = Vq +
1

2
s>s+

1

2
ω̃>ω̃ + ηVz (59)

where η = 2(1/κ + %) with % > 0 is introduced just for
stability analysis. Taking the time derivative of V and noting
(5), (9), (23), (49) and (57), we have

V̇ ≤ q>ev
qe4
ωe + s>ṡ+ ω̃> ˙̃ω − ηJm

2
‖J−1Φz‖2 − ηλ∆N‖z‖2

≤− β

|qe4|
q>evqev − kps>s−Rs>J−1Φz − kf ω̃>ω̃

+Rω̃>J−1Φz − ηJm

2
‖J−1Φz‖2 − ηλ∆N‖z‖2 (60)

By Young’s inequality, we have

R ≤
√
Jm

e1/(2J2
m)
· e

(
ln f(r)

2 + 1
2J2

m

)
≤
√
Jm

√
f(r) (61a)

−Rs>J−1Φz ≤ κf(r)

2
‖s‖2 +

Jm

2κ
‖J−1Φz‖2 (61b)

Rω̃>J−1Φz ≤ κf(r)

2
‖ω̃‖2 +

Jm

2κ
‖J−1Φz‖2 (61c)

Using (61a)-(61c) in (60) and further from the fact that η =
2(1/κ+ %) and 1 < f(r) ≤ fm + 1, it follows that

V̇ ≤− β

|qe4|
‖qev‖2 −

κ(fm + 1)

2
‖s‖2 − κ(fm + 1)

2
‖ω̃‖2

− %Jm‖J−1Φz‖2 − ηλ∆N‖z‖2 (62)

Inspecting (62), it is found that V̇ (t) ≤ 0 for all t ≥ 0,
from which we establish the boundedness of V and hence
Vq . The latter, together with the fact that qe(0) ∈ Qa,
imply that there exists a positive constant δ ∈ (0, 1) such
that qe remains in a compact subset B ⊂ Qa, defined by
B = {qe ∈ Qu | δ ≤ |qe4| ≤ 1}, for all t ≥ 0; in other
words, the set Qa is positive invariant. Thus, the unwinding
phenomenon is strictly avoided during the entire mission. It is
then clear that ξ in (10) is of L∞. By integrating both sides
of (62), we know that

∫∞
0
V̇ (τ)dτ exists and is finite, which

in turn implies that qev , s, ω̃, and J−1Φz ∈ L2 ∩ L∞. By
the boundedness of qev and s, we have ωe ∈ L∞ from (9).
Further, invoking Assumption 2 and the fact that ωe, ω̃ ∈ L∞,
one can easily deduce ω ∈ L∞, so does ω̂. Based on the
above argument, it is evident from (12) that Φ ∈ L∞ and
from (21) and (26) that Ψ ∈ L∞. As the scaling factor R is
naturally bounded (see (52)), J−1Φz ∈ L2 ∩ L∞ is actually
equivalent to J−1Φθ̃ ∈ L2 ∩ L∞. In addition, the state and
regressor filtering operations H[ω] and H[W ] described by
(27) with bounded inputs generate bounded signals ωf and
Wf , respectively, which leads to the boundedness of Wa and
N . From N ∈ L∞, we show that ∆ and hence ∆N ∈ L∞.
It is now straightforward to check from (50) that ˙̃

θ ∈ L∞.
By noticing (11) and (12), we have ω̇e, Φ̇ ∈ L∞. A direct
deduction gives the conclusion that q̇ev , ṡ, ˙̃ω, and d

dt (J
−1Φθ̃)

are bounded and, accordingly, uniformly continuous. Then, by
applying Barbalat?s lemma, we guarantee that

lim
t→∞

[qev(t), s(t), ω̃(t),J−1Φ(t)θ̃(t)] = 0 (63)

From (9) and (63), it follows that limt→∞ ωe(t) = 0. In
fact, the convergence condition limt→∞ J

−1Φ(t)θ̃(t) = 0
directly contributes to the establishment of an invariant at-
tracting manifold M as defined in (58). In view of this, all
the closed-loop trajectories asymptotically converge to M,
showing that the uncertain plant dynamics will be immersed
into the target dynamics (10). Consequently, the ideal closed-
loop performance obtained in the deterministic case can be
ultimately recovered without requiring convergence of the
parameter estimates to the corresponding true values.

Next, we consider Assumption 3 holds such that ∆N(t) >
~ > 0 for all t ≥ ts + tc, as stated in Lemma 3. Under this
condition, let Z .

= [q>ev, s
>, ω̃>, z>]>. Then, recalling the
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fact that |qe4| ≥ δ (δ ∈ (0, 1)) and Lemma 2, it can be easily
shown that V in (59) is bounded by the following:

ς‖Z‖2 ≤ V (qev, s, ω̃, z) ≤ ς‖Z‖2 (64)

where ς .
= min{α, 1/2, η/2γ} and ς

.
= max{α, 1/2, η/2γ}.

Further, by invoking Lemma 1, (62) becomes

V̇ ≤ β ln(q2
e4)− κ(fm + 1)

2
‖s‖2 − κ(fm + 1)

2
‖ω̃‖2

− ηλ~‖z‖2 ≤ −ςV (65)

for all t ≥ ts + tc, where ς .
= min{β, κ(fm + 1), 2γλ~}. By

the comparison lemma, we get

V (t) ≤ V (Ts) exp(−ς(t− Ts)), ∀t ≥ Ts (66)

where Ts = ts + tc is defined hereafter for notational brevity.
This implies that V (t) → 0 uniformly exponentially fast on
t ∈ [Ts,∞), which together with (64) allow us to conclude
the exponential stability of the equilibrium point Z = 0 on
t ∈ [Ts,∞) by [33, Theorem 4.10]. Further, from (9) and the
exponential convergence of qev(t) and s(t) on t ∈ [Ts,∞),
we conclude that ωe(t) converges to zero exponentially fast
on t ∈ [Ts,∞), thus completing the proof. �

IV. IMPLICATIONS

In light of the foregoing theoretical results, the following
implications are summarized in order.

1) The key steps that permit achieving exponential stability
for the resulting closed-loop system on t ∈ [Ts,∞) are to
deduce the formulas (64)-(66) under Assumption 3 (a weak
excitation), through the judicious introduction of a DREM-
based larning term −γλε into the adaptive law (46) and our
establishment of Lemmas 1 and 2 for Vq . Strictly speaking,
the stability condition shown in this paper can be considered
as a local result, since the augmented I&I adaptive controller
itself provides exponential stability on t ∈ [Ts,∞) for the
initial conditions satisfying qe(0) ∈ D (D ⊆ B), a subset of
Qa. Although it is difficult to quantify the interior bound of
D, from a qualitative viewpoint, qe4(0) can be chosen as close
as possible to zero until the actuators under magnitude limits
cannot provide sufficient torques to ensure system stability.
Thus, the local result has a quite large domain of attraction.

Some other barrier functions, e.g., (1 − q2
e4)/q2

e4, may be
used as an alternative to Vq in (8) for achieving exponential
stability and unwinding avoidance. Additionally, it is important
to emphasize that the commonly used AEFs, for example,
2(1 − qe4) and 2(1 − q2

e4), can hardly display the algebra
properties similar to Lemmas 1 and 2, unless some additional
restrictions on the attitude convergence or high-gain feed-
back assumptions are placed. For instance, Wen and Kreutz-
Delgado [2] chose 2(1 − qe4) as the AEF and demonstrated
exponential stability, but they require qe4 → +1 such that
qe4(t) ≥ 0 holds after a finite time, whilst laying lower bounds
on the control gains to ensure that certain nonlinear terms
are adequately dominated in the Lyapunov sense. This is the
main technical barrier for most of the existing attitude control
methods to obtaining an exponential stability result, even if
the inertia matrix J is known.

2) The composite I&I adaptive controller derived in this
paper preserves the key features of the I&I adaptive control
methodology via establishment of an invariant attracting man-
ifold M defined in (58), while achieving local exponential
stability for the closed-loop system on t ∈ [Ts,∞) under a
weak IE Assumption. Apart from this, an essentially bounded
scaling factor R in (52) is introduced, instead of a single term
r determined generally by [25]

ṙ = γΓr‖Ψ‖2r, any Γr > 1/(2Jm) (67)

to construct the scaled estimation error z. This modification
offers two prominent advantages for control design and anal-
ysis: (i) it eliminates the need for the minimum eigenvalue of
J in designing the scaling factor dynamics (54), as discussed
in [26], [27], [34]; (ii) only constant gains kp and kf are
chosen for the target dynamics (10) and the state filter (23),
respectively, rather than dynamic ones involving r that sustains
unlimited growth under perturbed and noisy conditions due to
the lack of damping (see (67)), which avoids causing high-
gain control and hence undesirable transient behavior of the
closed-loop system. The latter implies that a scaling factor is
not necessarily required to deal with the perturbation resulting
from the regressor reconfiguration; in fact, it is introduced just
for analysis and would not be used in controller implementa-
tion, thus significantly reducing the algorithm complexity.

3) Concerning the DREM-based gradient descent estimator
˙̂
θ = −Γ∆(∆θ̂ − Y ) derived based upon the LRE (34), it
has been claimed in [28], [31] that non-square integrability
of the scalar regressor ∆ is required to ensure asymptotic
parameter convergence, which further becomes exponential
by imposing the PE condition. However, both the conditions
∆ /∈ L2 and ∆ ∈ PE can hardly be fulfilled in practice.
Actually, W>

a in many cases has only a weak IE, so does ∆,
hence the gradient estimator usually fails to achieve consistent
parameter convergence. For the cases satisfying IE, a deter-
minant detection and updating freeze mechanism, recently
used in the composite learning control methods [34]–[36],
can be introduced to ensure non-degradation of ∆ after the
end of excitation. But, if ∆ is determined in such a manner,
the estimator will lose alertness to parameter variations. To
circumvent the above problems, an LTV filter (37) borrowed
from [29] is applied to extend the scalar LREs in (34) to
(40), yielding a new scalar regressor ∆N that satisfies PE
when W>

a is only of IE, as dictated by Lemma 3. Thus, the
excitation requirement for exponential parameter convergence
is significantly relaxed without resorting to a freeze operation.
In addition, due to exponential forgetting design in (31) and
(32), Y and ∆ discount the obsolete information about the
unknown parameters, in favour of new information that is
conveyed by recent data. Benefiting from this property, the
learning law −γλε in (46) constructed by the extended LRE
(40) has the potential to achieve on-line identification of the
time-varying inertia parameters, under a sufficient excitation.
We underscore that the equality (39) only holds when θ is
constant, and that Ξ accumulates historical data via forward
integration. As a consequence, for a time-varying θ, there is
a perturbation term appearing in (40), leading to a parameter
estimation error. Periodic re-initialization of the LTV filter (37)
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may be effective to improve the estimation accuracy, and the
re-initialization rule is left for future research.

4) At this point, we shall show that the adaptive law
(46) can be generalized to achieve finite/fixed-time parameter
convergence. To start with, a continuous vector function of the
following form is introduced

dxcι .= ‖x‖ιSignn(x) (68)

where ι > 0 and Signn(x) is the so-called norm-normalized
sign function [37]

Signn(x)
.
=


x

‖x‖
, if x 6= 0

0, if x = 0
(69)

Then, the adaptive law (46) is modified as

˙̂
θ = −γ[ ˙̄µ− (Φ + Ψ)>ȳ]− γ (λε+ Θ) (70)

with Θ bing a power term defined by

Θ = λ1dεcι1 + λ2dεcι2 (71)

where λ1,λ2 > 0 are adaption gains, ι1 ∈ (0, 1), and ι2 >
1. This results in slight modifications of the estimation error
dynamics (50) and the scaled error dynamics (55) as follows:

˙̃
θ = −γ(Φ + Ψ)>J−1Φθ̃ − γ (λε+ Θ) (72)

ż = −γ(Φ+Ψ)>J−1Φz−γλ∆Nz−γ
Θ

R
− γ

2Jm
‖Ψ‖2z (73)

As per the definitions of Sigιn(·) in (68) and Θ in (71), it
is easy to check that z>Θ/R ≥ 0 always holds for all t ≥
0. Thus, the above modifications will not affect the results
presented in Theorem 1. As for all t ∈ [Ts,∞), it has ∆N(t) >
~, whereby we further get

z>(Θ/R) ={
λ1∆ι1

N R
ι1−1‖z‖ι1+1 + λ2∆ι2

N R
ι2−1‖z‖ι2+1, if θ̃ 6= 0

0, if θ̃ = 0

Consider again the Lyapunov-like function Vz in (56). Then,
using the above equation in V̇z yields

V̇z ≤ −λ~‖z‖2 − λ1~ι1Rι1−1‖z‖ι1+1 − λ2~ι2Rι2−1‖z‖ι2+1

≤ −2λγ~Vz − c1V
ι1+1

2
z − c2V

ι2+1
2

z (74)

for all t ≥ Ts, where c1
.
= (2γ)

ι1+1
2 λ1~ι1Rι1−1

m and
c2

.
= (2γ)

ι2+1
2 λ2~ι2Rι2−1

m are defined for brevity, and the
constant Rm > 0 denotes the minimum value of R on
t ∈ [Ts,∞). From (74) and the finite/fixed-time stability
theorem [38], [39], it can be concluded that the equilibrium
point z = 0 of the scaled estimation error dynamics (73) is
fixed-time (respectively, finite-time) stable on t ∈ [Ts,∞), if
λ1, λ2 6= 0 (respectively, λ1 6= 0 and λ2 = 0). As the scaling
factor R > 0, θ̃ also converges to zero in finite/fixed time,
and the settling time Tf for finite and fixed-time parameter
convergence can be estimated, respectively, as

Tf ≤
1

λγ~(1− ι1)
ln

2λγ~V
1−ι1

2
z (Ts) + c1
c1

(75)

Tf ≤ Ts +
2

c1(1− ι1)
+

2

c2(ι2 − 1)
(76)

Apart from the finite/fixed-time convergence property, an
interesting phenomenon called “synchronized convergence” is
also observed for θ̃. By synchronized convergence we mean
that all the elements of θ̃ converge to zero almost at the same
time. A concise analysis is provided below to illustrate this
new phenomenon. Consider that limt→∞ J

−1Φ(t)θ̃(t) = 0
(see (63)) and the convergence can be made arbitrarily fast by
tuning the learning gain γ, the first term on the RHS of (72)
can be guaranteed to decay much faster than θ̃. As such, we
ignore this term in (72) showing that

˙̃
θ = −γ (λε+ Θ) (77)

From (71) and (77), it is easy to verify that, for any θ̃i, θ̃j 6= 0,
i 6= j, d

dt (θ̃i/θ̃j) = 0 always holds, from which we claim
that any nonzero θ̃i and θ̃j , i, j ∈ {1, 2, ..., 6}, i 6= j are
proportionable to each other. Thus, θ̃i and θ̃j converge to
zero almost at the same time, indicating the synchronized
convergence. We should emphasize that the above analysis is
established by ignoring the term −γ(Φ+Ψ)>J−1Φθ̃ in (72),
which makes the formula (77) approximately hold. This is the
reason why we claim that all the elements of θ̃ converge to
zero almost at the same time. Although the new property lacks
theoretical rigor to some extent, the parameter convergence
rates across all components can be tuned in a well-balanced
way and, therefore, is preferable for on-line identification.

V. NUMERICAL SIMULATIONS

In this section, numerical simulations are carried out to show
the effectiveness and key features of the composite I&I adap-
tive control scheme developed in this paper. Consider the rigid-
body attitude dynamics described by (1) and (2), where the in-
ertia matrix is given by θ = [20, 17, 15, 1.4, 0.9, 1.2]> kg ·m2.
The reference attitude is set to [25]: qr(0) = [0, 0, 0, 1]> and
the velocity profile ωr = ωr13 rad/sec, where 13 = [1, 1, 1]>

and ωr is of the form

ωr = 0.3(1− e−0.01t2) cos t+ te−0.01t2(0.08π + 0.006 sin t)

This setting evidently generates a non-PE reference trajectory.
To verify the anti-unwinding capability of the proposed adap-
tive control algorithm, two sets of initial body attitudes that
correspond to the same physical orientation but render opposite
signs of qe4(0) are considered in the following simulations:
• Case 1: qv(0) = q0 and q4(0) =

√
1− q>v (0)qv(0)

• Case 2: qv(0) = −q0 and q4(0) = −
√

1− q>v (0)qv(0)

with zero rate, where q0 = [0.33,−0.3,−0.62]>. It is shown
that qe4(0) > 0 for Case 1 and qe4(0) < 0 for Case 2. All
the following simulations are performed using the fixed-step
ODE 4 (Runge-Kutta) solver with a sample step of 0.01 sec.

A. Nominal Performance

In this subsection, the designed composite I&I adaptive
controller is simulated for Case 1 under a nominal (i.e.,
perturbation-free) scenario, in order to support the theoretical
findings. The control parameters are selected as α = 0.5,
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β = 0.1, a = 5, b = 0.5, kN = 8, γ = 25, λ = 0.01,
κ = 0.5, and fm = 2. As the reference trajectory is weakly
exciting, kI = 1× 109 is introduced into (35) to enhance the
regressor signal strength. In addition, the initial conditions of
the LTV filter (37) and the parameter estimator (46) are set
as χ(0) = 0 and θ̂(0) + ζ(0) = [10, 30, 8, 0, 0, 0]> (in fact,
ζ(0) = 0), respectively.

From Figs. 1(a) and 1(b), it is shown that the attitude
and angular velocity tracking errors (qev and ωe) converge
asymptotically to zero. Note that an IE condition is satisfied
during the initial phase of the mission such that ∆N(t) ∈ PE
after Ts = 4 sec, as clearly seen in Fig. 1(d). So, more
precisely speaking, qev and ωe are exponentially convergent
on t ∈ [Ts,∞]. The control torques commanded by the derived
controller are plotted in Fig. 1(c), where we observe that
the torque demands are smooth and remain time-varying at
the steady state to ensure tracking of the assigned reference
trajectory (qr and ωr). The time responses of Φθ̃, ∆N, and
θ̃ are depicted in Fig. 1(d), from the left subplot of which it
is clear that Φθ̃ converges asymptotically to zero, indicating
that the closed-loop system trajectory is indeed attracted to the
invariant manifold M. Thus, the uncertain attitude dynamics
will be ultimately immersed into the target dynamics (10),
which contributes to the recovery of the deterministic-case
closed-loop performance (no inertia uncertainties). As can be
seen in the top left subplot of Fig. 1(d), the extended scalar
regressor ∆N(t) turns to be strictly positive ( =⇒ ∆N(t) ∈ PE)
after Ts = 4 sec, only under an extremely weak IE condition.
This result is consistent with Lemma 3, and directly helps
achieve the exponential parameter and tracking error conver-
gence on t ∈ [Ts,∞), without resorting to the restrictive
PE condition. The parameter convergence with good transient
behaviors is observed in the bottom left subplot of Fig. 1(d).

To examine the role played by the DREM-based learning
law −γλε on parameter convergence, the three-dimensional
(3-D) motion trajectory of the principle inertia estimates is
provided in Fig. 2, in which the blue and red arrows show
the parameter update information (directions and magnitudes)
based only on the I&I-based learning law and only on the
DREM-based learning law, respectively, at regular intervals.
Please notice that even though Ts = 4 sec, ∆N is very small
at Ts and gradually increases until to t ' 12 sec. Bearing
this in mind, the initial point in Fig. 2 is taken at t = 5 sec
for more clear illustration. By observing the arrows in Fig. 2,
we intuitively see that the two learning laws synchronously
drive the estimates of the principle inertia parameters in two
linearly independently directions to their true values. This
shows the importance of the DREM-based learning law in
ensuring parameter convergence, in the absence of PE. To
further justify the finite/fixed-time convergence property of the
generalized parameter estimator (70), we simulate the finite-
and fixed-time adaption cases in which the gains in Θ are set
to λ1 = 0.01, λ2 = 0 and λ1 = λ2 = 0.01, respectively,
and the power of numbers are identically chosen as ι1 = 0.85
and ι2 = 1.1. The time responses of |θ̃i|, i = 1, 2, ..., 6 under
finite- and fixed-time adaptation extensions are depicted in Fig.
3. The estimation results obtained from the original estimator
is also provided (see the left subplot of Fig. 3) to serve as

baseline for convergence time comparisons. As clearly seen
in Fig. 3, the inclusion of Θ in the adaptive law allows us to
achieve synchronized parameter convergence in a finite time,
and moreover, the fixed-time adaptation extension delivers
faster convergence rate than the finite-time one.

B. Comparison Results

A nominal scenario is likewise considered here, whereas
the initial body attitude is changed to Case 2 to further
show the efficiency of the proposed composite I&I adaptive
controller (denoted as CI&IAC) in unwinding phenomenon
avoidance. For comparison purposes, apart from the CI&IAC,
two classical adaptive controllers are also simulated:

1) Filter-based Non-CE Adaptive Controller in [25] (de-
noted as NCEAC): This controller is derived using the I&I
adaptive control method with dynamic scaling, which has
been shown to offer some advantages over most existing
adaptive control algorithms. The reader is referred to
[25] for the design details of NCEAC, and the design
parameters are chosen as kp = 0.48, kv = 1, kr = 0.2,
k = 0.01, kH = 0.1, k1 = k2 = k3 = 1, Γ = 50I3,
v = 0.5, and ε = 0.00001. Note that although the
proposed CI&IAC is partially inspired by the NCEAC,
it gives substantial improvements. As dictated by The-
orem 1, the CI&IAC preserves all the key features of
the NCEAC, while achieving exponential parameter and
tracking error convergence without causing unwinding.

2) CE-based Adaptive Controller in [14] (denoted as
CEAC): The CEAC with full-state feedback not only
achieves asymptotic attitude tracking, but is capable of
avoiding the unwinding phenomenon by introducing a
potential function 1

2q
>
evqev/(1 − q>evqev) to ensure that

qe4(t) 6= 0 for all t ≥ 0. The structure of the CEAC
is detailed in [14] with its design parameters given as
α = 10, K = 10, and Γ = 0.02.

It is noteworthy that the initial values of the parameter
estimates for the above two controllers are chosen the same
as that of the proposed CI&IAC. In addition, to permit a fair
comparison, the design parameters of the NCEAC and the
CEAC are judiciously tuned by trial and error to obtain similar
tracking error convergence rates as the CI&IAC.

As can be seen in Figs. 4(a) and 4(b), all the three controllers
achieve asymptotic convergence of the tracking errors qev
and ωe, but quantitatively speaking, the proposed CI&IAC
delivers the best transient performance, as it ensures UES of
the closed-loop system after Ts = 4 sec, which is not the case
for the NCEAC and the CEAC. Note that qev and ωe under
the CEAC exhibit very slow convergence trends, and a long
simulation time is needed to see their asymptotically conver-
gent behaviors. This is because the CE-based estimator cannot
guarantee parameter convergence due to nonsatisfaction of the
PE condition, which in turn renders the control performance of
the CEAC to be arbitrarily poor. In contrast, the CI&IAC and
the NCEAC deviate significantly from the CE principle and
effectively overcome the above deficient inherent in the CEAC,
through introducing an invariant attracting manifold. Thus,
they delivers satisfactory tracking performance even in the
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Fig. 1. Control performance illustration.

Fig. 2. 3-D motion trajectory of the principle inertia estimates.

absence of PE condition. In addition, from the bottom subplot
of Fig. 4(a), we find that both the CI&IAC and the CEAC drive
qe to converge to the nearest equilibrium [0,−1]>, while the
NCEAC fails, instead it steers qe to [0, 1]>, leading to the
unwinding phenomenon (as will soon be witnessed in Fig. 6).
The norms of the control torques commanded by the three
controllers are plotted on a semilogarithmic scale as shown in
Fig. 4(c), from which it is observed that the torque demands
due to the CI&IAC and especially the CEAC are higher than
that of the NCEAC during the initial transient. This may
be caused by the introduction of potential functions in the
CI&IAC and the CEAC to achieve unwinding avoidance. The

comparison results in terms of parameter estimation error are
depicted in Fig. 4(d), in which we recognize that the CI&IAC
achieves exponential parameter convergence after Ts = 4 sec,
without PE, while the other two controllers fails to obtain such
a result, indicating that the DREM-based learning law −γλε
is instrumental for relaxing the PE condition.

The 3-D motion trajectories of the body frame FB w.r.t.
the reference frame FR observed in FR are provided in Figs.
5 and 6 to better illustrate the attitude tracking processes of
the three controllers under Cases 1 and 2. In Figs. 5 and
6, the mutually perpendicular solid lines (red, green, and
blue) denote the axes of FR, while the dashed counterparts
denotes the initial axes of FB; moreover, the initial and
desired attitude orientations are marked by “solid dot” and
“asterisk”, respectively. Inspecting Fig. 5 reveals that, for Case
1 (qe4(0) > 0), all three controllers can track the prescribed
reference trajectory via a rotation less than 180◦, but intu-
itively, the proposed CI&IAC renders a smoother trajectory
with less fluctuation when compared with the NCEAC and
the CEAC. For Case 2 (qe4(0) < 0), it is clearly shown from
Fig. 6 that the tracking trajectories from the CI&IAC and the
CEAC remain the same as in Fig. 5, without suffering from
the unwinding phenomenon. However, the NCEAC exhibits a
unnecessarily long rotation path due to unwinding.

C. Robustness Validations

At this point, we examine the robustness of the simulated
controllers against external disturbances and measurement
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Fig. 3. Time responses of |θ̃i|, i = 1, 2, ..., 6 under finite- and fixed-time adaptation extensions.
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Fig. 4. Control performance comparisons of different controllers under the nominal scenario.

noises. The disturbance of the following form [34]

ud = 10−4 ×

 3 cos(0.2t) + 4 sin(0.06t)− 10
−1.5 sin(0.04t) + 3 cos(0.1t) + 15

3 sin(0.2t)− 8 sin(0.08t) + 5

Nm

is introduced into the attitude dynamics (2). The attitude
measurement noises are modeled following the method in
[40]. Towards this end, we rewrite the body attitude as
q = [n̂> sin(ψ/2), cos(ψ/2)]>, where n̂ and ψ are known
as the Euler eigenaxis and eigenangle, respectively. Within
this setting, the noisy measurements of q are generated by
randomly perturbing the true n̂ with uniform distribution in
a spherical cone centered around it. The cone half-angle is

set here to 0.1 deg. In addition, the measurement noises with
mean zero and standard deviation 10−3 rad/sec are added to
the feedback of ω. The simulation scenario in Sec. V-B is
repeated under simultaneous consideration of both external
disturbances and measurement noises described above. In
order to clearly illustrate the comparison results in terms of
steady-state performance, the simulation duration is prolonged
to 100 sec.

The performance comparisons of different controllers under
the perturbed scenario are presented in Fig. 7. By comparing
Figs. 7(a) and 7(b) with Figs. 4(a) and 4(b), we find that all
the controllers suffer in performance degradation, especially
the steady-state accuracy, when external disturbances and mea-
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(a) CI&IAC (b) NCEAC (c) CEAC

Fig. 5. 3-D attitude tracking trajectories observed in FR for Case 1.

(a) CI&IAC (b) NCEAC (c) CEAC

Fig. 6. 3-D attitude tracking trajectories observed in FR for Case 2.

surement noises are present. The attitude and angular velocity
tracking errors only converge to small residual sets around
the origin, rather than zero. From a practical viewpoint, the
I&I-based adaptive controllers – CI&IAC and NCEAC – still
exhibit acceptable steady-state performance and outperform
the CEAC. We further underscore that the proposed CI&IAC
preserves the transient-state behaviors, that is, it can steer the
tracking error to converge exponentially fast to the steady-
state values, and moreover, it performs slightly better than
the NCEAC. The control torque norms of all three controllers
are depicted in Fig. 7(c), in which some burrs are observed
due to the noisy feedback signals. From Fig. 7(d), it is clear
that the CI&IAC can still ensure parameter convergence with
an acceptable accuracy in the perturbed scenario. Further, to
quantitatively compare the steady-state performance, the root
mean square (RMS) values, denoted as rms(·), of the tracking
and estimation errors at the steady state (40 sec − 100 sec)
under different controllers are summarized in Table I. As
can be seen, the CI&IAC shows smallest RMS values of
tracking and estimation errors among all three controllers. In
summary, the proposed CI&IAC has an inherent robustness
against external disturbances and measurement noises.

VI. CONCLUSION

This paper addresses the problem of quaternion-based adap-
tive controller design for anti-unwinding rigid body attitude
tracking, in the presence of inertia uncertainties. A composite
I&I adaptive control scheme is proposed, which essentially en-

TABLE I
RMS VALUES OF THE TRACKING AND ESTIMATION ERRORS.

RMS valuea

Method rms(qev) rms(ωe), rad/sec rms(θ̃), kg ·m2

CI&IAC 4.803× 10−4 9.234× 10−4 0.1433
NCEAC 6.165× 10−4 0.0012 5.2812
CEAC 0.0094 0.0181 12.7127
a It is taken as the maximum RMS value across all vector components.

sures exponential stability of the resulting closed-loop dynam-
ics under a strictly weak IE condition, and consequently, guar-
antees exponential convergence of both the output-tracking
and parameter estimation errors to zero without causing un-
winding. The key ideas behind permitting exponential stability
without requiring PE are two-fold: 1) a logarithmic barrier
function is used as the attitude error function for unwinding
avoidance, along with the tactful establishment of two algebra
properties for exponential stability analysis; 2) by virtue of a
constructive LTV filter, an LRE extension procedure is pro-
posed for DREM to generate a persistently exciting regressor,
based on which a DREM-based learning law is presented
for relaxing the dependence of parameter convergence on
the PE condition. Saliently, the control algorithm developed
preserves all the key beneficial features of the I&I adaptive
control methodology and does not involve any dynamic gains.
In addition, the composite learning law is augmented with
a power term to achieve the synchronized finite/fixed-time
parameter convergence. Finally, simulation results show the
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Fig. 7. Control performance comparisons of different controllers under the perturbed scenario.

effectiveness and superiority of the proposed method.

APPENDIX A
PROOF OF LEMMA 1

Two cases are considered to complete the proof.
Case 1: qe4 ∈ (0, 1]. For analysis, we introduce an auxiliary

variable defined by h(qe4) = (1−q2
e4)/qe4+ln q2

e4. Via simple
algebraic manipulations, it is shown that

∂h(qe4)

∂qe4
= − (1− qe4)2

q2
e4

≤ 0 (A1)

in the set qe4 ∈ (0, 1], indicating that h(qe4) is a non-
increasing function of qe4. Thus, h(qe4) ≥ h(1) = 0 holds
in this case, which coincides with the result in (13).

Case 2: qe4 ∈ [−1, 0). In this case, let us define h(qe4) =
−(1−q2

e4)/qe4 +ln q2
e4. Following a similar reasoning as Case

1, it is not difficult to check that ∂h(qe4)/∂qe4 ≥ 0 and hence
h(qe4) ≥ h(−1) = 0 in the set qe4 ∈ [−1, 0), so that (13) is
also obtained.

Combining the above two cases warrants Lemma 1. �

APPENDIX B
PROOF OF LEMMA 2

Let us first prove that α‖qev‖2 = α(1 − q2
e4) ≤ Vq . To

facilitate the analysis, similar to the proof of Lemma 1, we
here define h1(qe4) = −α ln(q2

e4) − α(1 − q2
e4). Taking the

partial derivative of h1(qe4) w.r.t. qe4 gives

∂h1(qe4)

∂qe4
= − 2

qe4
(α− αq2

e4) (B1)

since α ≤ α and q2
e4 ≤ 1, an intuitive observation reveals that

(α − αq2
e4) ≥ 0. With this in mind, one can claim that for

qe4 ∈ (0, 1], ∂h1(qe4)/∂qe4 ≤ 0, while for qe4 ∈ [−1, 0),
∂h1(qe4)/∂qe4 ≥ 0. From the above, together with the
fact that limqe4→0 h1(qe4) = +∞, it can be concluded that
h1(qe4) ≥ h(±1) = 0. Thus, α(1 − q2

e4) ≤ −α ln q2
e4 always

holds for any α ≤ 1, so does the inequality α‖qev‖2 ≤ Vq .
Next we prove that Vq ≤ α‖qev‖2 = α(1 − q2

e4) holds for
any |qe4| ∈ [δ, 1). To this end, define an auxiliary variable in
the set δ ≤ |qe4| ≤ 1 as follows:

h2(qe4) =
− ln q2

e4

1− q2
e4

(B2)

whose partial derivative w.r.t. qe4 is given by

∂h2(qe4)

∂qe4
=
−2(1− q2

e4)− 2q2
e4 ln q2

e4

qe4(1− q2
e4)2

(B3)

For brevity, we denote by P (qe4) the numerator of (B3).
Taking its partial derivative w.r.t. qe4 gives

∂P (qe4)

∂qe4
= −4qe4 ln q2

e4 (B4)

from which it is not difficult to check that ∂P (qe4)/∂qe4 >
0 for qe4 ∈ [δ, 1) and ∂P (qe4)/∂qe4 < 0 for qe4 ∈
(−1,−δ]. Consequently, the the maximum value of P (qe4)
takes limqe4→±1 P (qe4) = 0 in the set δ ≤ |qe4| < 1,
indicating that P (qe4) < 0 for all |qe4| ∈ [δ, 1). In view of this,
from (B3), it is clear that ∂h2(qe4)/∂qe4 < 0 for qe4 ∈ [δ, 1)
and ∂h2(qe4)/∂qe4 > 0 for qe4 ∈ (−1,−δ], whereby one can
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observe that h2(qe4) < − ln δ2/(1− δ2) for any |qe4| ∈ [δ, 1).
By using simple arithmetic operations, we can conclude that
−α ln q2

e4 < −α(ln δ2/(1−δ2))(1−q2
e4) for any |qe4| ∈ [δ, 1).

As α ≥ −α ln δ2/(1 − δ2), it can be further claimed that
−α ln q2

e4 < α(1 − q2
e4) holds ∀ |qe4| ∈ [δ, 1). In addition, it

is noted that −α ln q2
e4 = α(1 − q2

e4) = 0 when |qe4| = 1.
Based on the above argument, we can draw the conclusion
that −α ln q2

e4 ≤ α(1− q2
e4) holds for any |qe4| ∈ [δ, 1].

Furthermore, it can be readily verified that − ln δ2/(1 −
δ2) > 1 strictly holds for 0 < δ < 1. This directly contributes
to the fact that ᾱ > α, thus completing the proof. �
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