
1

Online Trajectory Replan for Gliding Vehicle

Considering Terminal Velocity Constraint

Youngil Kim, Namhoon Cho, Jongho Park, Youdan Kim, Senior Member, IEEE

Abstract

Controlling the terminal velocity can improve the effectiveness of guided missiles. In particular, a ballistic missile

propelled by solid rocket motors can successfully accomplish its mission when it hits the target at an appropriate

speed. In this study, a method for modifying the trajectory of gliding vehicle, i.e., gliding ballistic missiles is proposed

to meet the terminal velocity constraint by reflecting the effects of the environment during a flight. The proposed

framework consisting of trajectory generation and dynamic propagation compensates for errors due to uncertainties

in real time. The trajectory generation step provides various trajectories that satisfy the given constraints based on

information about the current state. The dynamic propagation step efficiently predicts the terminal velocity for each

of the generated trajectories and finds the trajectory with the lowest terminal speed error. A numerical simulation is

performed considering various conditions to demonstrate the performance of the proposed method.

Index Terms

Terminal Velocity Constraint, Trajectory Generation, Dynamic Propagation

I. INTRODUCTION

Recently, ballistic missiles are required to perform more complicated tasks in an uncertain environment over a

wide range of flight altitudes. And, tactical missiles are undertaking a mission to destroy a concealed target in

complex terrain. At the same time, the survivability of the missiles have been threatened due to the improvement

of the air defense system.

It is very important for missiles to impact a target with an appropriate speed. A faster-than-expected terminal

speed leads not only to reduced viability of the warhead but also to excessive amount of penetration, resulting in

minor collateral damage. On the other hand, if the terminal speed is too low, it is difficult to approach the target

because the possibility of being neutralized increases. Therefore, the capability to meet the required terminal speed

through planning and control is crucial for attack effectiveness.
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However, achieving the appropriate terminal speed of the ballistic missile is a challenging problem. First, a Solid

Rocket Motor (SRM) generates different forces depending on temperature, pressure, and imperfections during the

manufacturing process. Because of the irregular nature of a thrust profile, the actual position and velocity after

burnout show discrepancy from predicted values. The thrust variance manifests itself as a large dispersion in the

initial energy of the missile for the glide phase. Second, various environmental uncertainties should be considered

in flight planning to provide a wide operating range. It is difficult to fully reflect the influence of environment

prior to launch because the atmospheric conditions including the wind cannot be accurately predicted. Third, the

maneuver is mainly confined to the vertical plane because a ballistic missile aims to reach the target as quickly

as possible. The horizontal maneuver is limited only to minor heading error correction, leaving the planner with

not enough degree-of-freedom for energy management. Fourth, prediction of the terminal velocity is difficult to be

done analytically due to the dependence on the missile dynamics. Terminal velocity is determined by the maneuver

taken by the vehicle as well as the environment [1].

Research on terminal velocity control has been conducted for launch vehicles, but in a different context concerning

orbit insertion accuracy. Perkins [2] studied a linear-tangent steering program for controlling nozzles to reach the

target. After that, various optimization methods have been proposed to modify the trajectory considering the energy.

Several iterative methods for velocity vector control to reach the target orbit were developed in [3]–[6]. Williamson et

al. [7] proposed the perturbation method to generate the optimized shuttle trajectory. Studies on energy management

were also conducted under assumptions such as neglecting the aerodynamic force and parametrizing the geometric

shape of the trajectory. Zarchan [8] developed the general energy management system. White proposed the iterative

method with Lambert’s guidance [9] and cutoff time control considering the flight time [10]. Kim and Um [11]

suggested a method to control the flight path angle of a vehicle in the boost phase. Wang et al. [12] proposed

the spline-line based energy management guidance for ascending solid rocket vehicles. Ascent trajectory design

concept was developed to increase flight performance of launch vehicle [13]. Terminal speed control has also been

studied for re-entry vehicles, however, the methods developed are not suitable for ballistic missiles. A re-entry

vehicle should fly with a velocity within a specific range to enter the atmosphere. Dong and Sushnigdha [14], [15]

designed an optimal trajectory that generated a bank angle considering the constraints within the terminal velocity.

Kraemer and Ehlers [16] showed that the energy could be regulated by creating a trajectory shape or controlling

the velocity with a specific actuator used in the re-entry vehicle. Studies have also been conducted to control the

energy by adjusting the angle of the vehicle to change its trajectory shape [17], [18]. Re-entry vehicle maneuvers

in the horizontal plane or uses actuators such as speed brakes or parachutes to control the velocity. However, it is

inappropriate for ballistic missiles to perform lateral maneuvers, which increase the length of the trajectory on the

horizontal plane, because it is important to hit the target as quickly as possible. Additionally, installing additional

actuators on the missile is inappropriate due to the bad flight characteristics at high-velocity regions resulting from

the aerodynamic characteristics caused by the structural shape of the vehicle.

On the other hand, guidance methods considering the energy management requirements have been studied for

missiles, while majority of them are focused on offline planning and computationally heavy. The approach to

design the energy-dissipating trajectories with certain path primitives is a solution to control the energy of ballistic
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missiles [19]–[23]. The Pythagorean-Hodograph (PH) curve, which is useful for adjusting the arc length, was

adopted on the horizontal plane to satisfy the required terminal velocity [24]. A deep learning-based real-time

method for a hypersonic vehicle was proposed to reach a fixed target considering energy consumption [25]. Vector

field-based method was used to generate the trajectory for satisfying the specific constraints [26], [27]. Lee et

al. [28] suggested the vector filed-based guidance law for gliding air-to-ground vehicle. The guidance law was

designed to control the speed and impact angle control of gliding vehicle. By converting the guidance problem

into a reinforcement learning problem, neural networks were trained within the available energy consumption to

generate optimal trajectories and guidance command. Li et al. [29] proposed a deep reinforcement learning-based

guidance law for trajectory generation considering uncertain environments. Another approach is to utilize predictive

methods. The terminal velocity of the vehicle can be estimated by the trajectory shape [8], [30]–[35]. Kim et al. [1]

proposed a method to determine an appropriate waypoint by predicting energy reduction according to the path of

missile assuming that the environmental model was known in advance.

Note that an efficient planning algorithm enough to enable online replanning is required because the actual

trajectory deviates from the one predicted offline due to the model uncertainties. There exist multiple trajectories

satisfying the terminal velocity constraint while having the same initial and terminal conditions. Therefore, online

modification is necessary (i) to find various trajectories satisfying the terminal velocity constraint, (ii) to efficiently

predict the terminal velocity for each trajectory, and (iii) to find the most appropriate trajectory in real time.

To address the difficulties described above, an online trajectory planning method for ballistic missiles is proposed

to meet the terminal velocity constraint. The proposed method generates multiple trajectories and quickly estimates

the terminal velocity of each trajectory so that the one with the minimum velocity error can be chosen as the

solution. The proposed framework is divided into (i) a trajectory generation algorithm that finds a path satisfying

geometric constraints and (ii) a dynamic propagation algorithm that predicts the terminal velocity for a given path.

In the trajectory generation algorithm, the altitude is defined as a polynomial of the downrange, and the problem

is formulated as a Quadratic Program (QP) using a specific objective function to obtain the optimal solution.

The dynamic propagation algorithm employs numerical integration to solve the differential equation describing the

change in speed along the given path. Assuming that the vehicle perfectly generates the normal acceleration needed

to realize the given path, the speed dynamics with respect to the downrange becomes a scalar relation, which enables

efficient speed prediction.

The main contribution of this study is that the proposed method can generate a flight trajectory of a ballistic

missile satisfying the terminal velocity constraint in real time. The proposed method is capable of quick trajectory

generation while reflecting the mission requirements to have the desired form of trajectory. The combination of

convex optimization for generating feasible path candidates and scalar dynamics integration for speed prediction is

the key enabler for efficient planning. The proposed method overcomes the shortcomings of the existing methods

developed for velocity control that are not suitable for ballistic missiles. Moreover, the trajectory generation strategy

can be useful in the missile development process.

This paper is organized as follows. In Sec. II, the problem statement considered in this study is addressed.

Kinematic models and dynamic models are described, and the problem with the proposed framework is explained.
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In Sec. III, the trajectory generation algorithm and dynamic propagation algorithm are proposed. The proposed

framework generates various trajectories and calculates the terminal velocity errors. The results of numerical

simulations are shown and analyzed in Sec. IV. Finally, conclusion is given in Sec. V.

II. PROBLEM STATEMENT

A. Mission Characteristics

The trajectory of ballistic missiles considered in this study has the following characteristics. First, the missile

motion is confined mostly to the vertical plane because the missile should hit the target as quickly as possible.

Usually, the missile does not perform a horizontal maneuver unless certain constraints exist for a specific mission

or the problem of the survivability of the missile. Additionally, maneuvering only on the vertical plane conserves

the energy of the missile. It directly contributes to an increase in the operational range and a decrease in the

consumption of propellant. Second, the missile, which should satisfy the terminal velocity constraint, generally flies

along the curved trajectory in the low-altitude areas, where the air density is high enough to effectively perform

maneuvers through aerodynamic control. In high-altitude areas, the energy dissipation effect is insignificant due

to the low density of air. Accordingly, the missile should dissipate its energy at low altitudes. Because of the

conditions imposed on the maneuver plane and the altitude, ballistic missiles prefer to alternate between ascending

and descending maneuvers.

B. Model Equations

Velocity control systems such as air brakes or parachutes are not suitable for ballistic missiles flying in aerody-

namic regions at supersonic speeds. For this reason, only aerodynamic control surfaces are considered in this study

as actuators. Note that controlling the missile velocity is difficult when the missile flies in high-altitude areas, i.e.,

in low-air-density areas. In this study, the objective of the system is to satisfy the terminal velocity constraint while

the missile flies in the low-altitude region. Therefore, dynamic models of the missile in the high-air-density region

are required. Considering the usual practice that a ballistic missile is designed to perform maneuvers in only the

longitudinal direction, a dynamic model describing motion in the vertical plane is required.

The kinematic equations considered in this study can be represented as

dx

dt
= v(t) cos γ(t) (1)

dh

dt
= v(t) sin γ(t) (2)

where v is the velocity of the missile, γ is the vertical flight path angle, x is the horizontal displacement defined

to be positive in the direction from the launch point to the target, and h is the altitude of the missile. The dynamic
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equations for the missile can be represented as

dv

dt
=

T (t)−D(v, α)

m(t)
− g(h(t)) sin γ(t)

+ Ω2
er(t) cosφ(t)(sin γ(t) cosφ(t)− cos γ(t) sinφ(t) sin γ(t)) (3)

dγ

dt
=

L(t) cosσ(t)

m(t)v(t)
−

g(h(t))

v(t)
cos γ(t) +

v(t)

r(t)
cos γ(t) + 2Ω2

e cosφ(t) cosψ(t)

+
Ω2

er(t)

v(t)
cosφ(t)(cos γ(t) cosφ(t) + sin γ(t) + sinφ(t) sinψ(t)) (4)

where σ is the bank angle, φ is the roll angle, ψ is the yaw angle, r denotes the distance of the missile from the

Earth center, m denotes the vehicle mass, Ωe is the Earth’s rotation rate, and g is the gravitational acceleration. D

and L are the drag force and the lift force, respectively, which can be represented as

D = CD(v, α)

(

1

2
ρ(h(t))v(t)

2

)

S (5)

L = CL(v, α)

(

1

2
ρ(h(t))v(t)

2

)

S (6)

where ρ is the density of the atmosphere, S is the reference area of the missile, and CD and CL are the aerodynamic

coefficients. Earth rotation and the Coriolis effect terms are not essential for the proposed framework. Therefore, the

Earth is assumed to be nonrotating, and the Coriolis effect is neglected in this study. Note that the system considered

in this study is a gliding ballistic missiles after burnout, and therefore, thrust T is treated as zero. Furthermore, term

v(t)
r(t) is negligible because r(t) is much larger than v(t). The roll angle, bank angle, and yaw angle are assumed

to be zero because the gliding ballistic missile after burnout flies in the vertical plane without movement in the

horizontal direction to improve the viability and increase the performance. Then, the dynamic equations (3) and (4)

in the burnout condition can be rewritten as follows:

dv

dt
=

−D(v, α)

m
− g(h(t)) sin γ(t) (7)

dγ

dt
=

L(t)

mv(t)
−

g(h(t))

v(t)
cos γ(t) (8)

C. Proposed Framework

The actual environment in which missiles operate is close to the mathematical model but is not exactly the same.

Therefore, the missile flies along a different trajectory from the one expected before flight. If it is possible to find

a trajectory satisfying the terminal velocity constraint while updating the information in real time, then the velocity

error can be reduced.

The method proposed in this study updates the trajectory to satisfy the terminal velocity constraint by using the

information of the current missile location as well as the target location during the flight. Fig. 1 shows the block

diagram of the gliding missile system considered in this study, which includes the schematic configuration of the

proposed framework in the guidance block.
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Dynamics

𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝐶𝑜𝑚𝑚𝑎𝑛𝑑

𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
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Optimization
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Fig. 1: Schematic Diagram of the Framework

A constrained optimization problem is solved to generate trajectories. The objective function of the optimization

is set to be a quadratic function in this study. The proposed optimal problem is solved using the sequential quadratic

programming method. The objective function can be expressed as follows:

min
C

J = K2 +R

∫ xf

xi

(

d2h(x)

dx2

)2

dx (9)

where the first term K can be selected considering some preference to the specific shape of the trajectory, and C

is the optimization variable, which will be explained in the subsequent section. For example, K can be chosen to

place a lower penalty for a path with its flight path angle closer to a specific profile so that the trajectory will be

shaped through the optimization. In a similar way, the trajectories can be generated for the missile to maneuver

mainly around a specific altitude or to follow a reference altitude profile.

The second term is related to the curvature of the trajectory. Because curvature refers to a rate of change indicating

the degree of curvature of a curve, the second term in the performance index (9) affects the curved shape of the

generated trajectory. A positive weighting factor, R, in the objective function plays the role of a tunable parameter

to produce various trajectories. With the assumption made in this study, energy should be managed by maneuvering

the missile on the vertical plane. In other words, a missile with sufficient energy should generate a large curvature

to dissipate the energy through an additional maneuver. On the other hand, a missile with a lack of energy should

fly as straight as possible toward the target to preserve its energy. In this way, the magnitude of trajectory curvature

affects the energy management of the missile, and various trajectories can be obtained by tuning R.
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III. TRAJECTORY PLANNING FRAMEWORK

A. Trajectory Generation

1) Trajectory Equation: For the flight trajectory in the vertical plane, altitudes h are expressed as the following

polynomial function of downrange x:

h(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

=
(

an an−1 · · · a0

)

















xn

xn−1

...

x0

















= CTΦ(x)

(10)

where n is the maximum degree of the polynomial, ai’s are the coefficients of the trajectory polynomial equation,

C is the vector of coefficients, and Φ is the basic formation vector of the downrange parameter x. The trajectory

generation part aims to find a C that satisfies the constraints of the trajectory.

2) Quadratic Programming Formulation: Minimizing the objective function defined in (9) can result in various

types of trajectories by adjusting R. By applying (10) to (9), the objective function can be represented as follows:

min
C

J = K2 +R

∫ xf

xi

(

d2h(x)

dx2

)2

dx

= K2 +RCTDEFETDTC

= CT (RDEFETDT )C+K2

(11)

where D, E, and F are (n + 1) by (n + 1) matrices, xi is the initial downrange, xf is the final downrange, and

the upper subscript T refers to the transpose of a matrix. The details of the derivation of the matrices D, E, and

F can be found in the appendix.

Equality constraints can be formulated by the waypoint information as

hi = h(xi) = CTΦ(xi) (12)

hf = h(xf ) = CTΦ(xf ) (13)

tan(γi) =
dh(xi)

dx
= CTDΦ(xi) (14)

tan(γf ) =
dh(xf )

dx
= CTDΦ(xf ) (15)

On the other hand, inequality constraints can be formulated by considering the mission constraints. In this study,

the minimum altitude hmin and the maximum altitude hmax of the missile are considered as follows:

hmin ≤ h(x) = CTΦ(x) ≤ hmax, ∀x (16)
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B. Dynamic Propagation

1) Model Reduction: Similar to the trajectory equation, velocity v and vertical flight path angle γ can be described

by the downrange x using the kinematic and dynamic models described in Sec. II-B as follows:

dv

dx
=

dv

dt

dx

dt

=
−D(x, α)

mv(x) cos γ(x)
−

g(h(x))

v(x)
tan γ(x) (17)

dγ

dx
=

dγ

dt

dx

dt

=
L(x, α)

mv(x)2 cos γ(x)
−

g(h(x))

v(x)2
(18)

Considering the velocity of the ballistic missile, it is reasonable to assume that g(x) ≪ v(x)2 and the second term

of (18) can be neglected. Therefore, (18) can be rewritten as follows:

dγ

dx
=

L(x)

mv(x)2 cos γ(x)
=

ρ(h(x))CL(v, α)S

2m cos γ(x)
(19)

Since the derivative of the trajectory with respect to x has the same meaning as the tangent of the flight path angle,

γ and its derivative can be obtained as follows:

γ(x) = arctan





dh(x)

dx



 = arctan(CTDΦ(x)) (20)

Comparing (19) and (20) yields the following equation.

ρ(h(x))CL(v, α)S

2m cos γ(X)
=

1

1 +





dh(x)

dx





2

d2h(x)

dx2 (21)

Then, CL(v, α) can be expressed in terms of altitude and its derivatives as follows:

CL(v, α) =
1

1 +





dh(x)

dx





2

(

d2h(x)

dx2

) 2m cos γ(x)

ρ(h(x))S
(22)

or

CL(v, α) =
1

1 + (CTDΦ(x))2
(CTDEΦ(x))

2m cos γ(x)

ρ(h(x))S
(23)

Because m and S are known missile characteristics, the lift coefficient CL at altitude h(x) and a specific down

range x can be estimated. Considering (6), the relationship between the drag force and lift force can be established

as follows:

L(v, α)

D(v, α)
=

CL(v, α)

CD(v, α)
= LDratio (24)
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where LDratio is the lift-to-drag ratio. If the aerodynamic model is known, v and α can be estimated by comparing

the values of the secondary table of the lift coefficient CL. Then, the drag coefficient CD can be estimated. Because

the lift-to-drag ratio of the missile is known, D(v, α) can be computed as

D(v, α) =
1

LDratio

L(v, α) =
1

LDratio

(

CL (v, α)

(

1

2
ρ(h(x))v2

)

S

)

(25)

Therefore, the derivative of v with respect to x can be calculated as follows:

dv

dx
=

−D(x, α)

mv(x) cos γ(x)
−

g(h(x))

v(x)
tan γ(x)

=
− ρ(h(x))v(x)SCL(v, α)

2m cos γ(x)LDratio

−
g(h(x))

v(x)
tan γ(x)

(26)

In summary, (19) and (26) with (23) and (24) describe the dynamic model with respect to the downrange.

2) Prediction of Terminal Velocity: The terminal velocity of the trajectory can be predicted by applying a simple

numerical integration of (26). In this study, the Euler method is utilized, which is more efficient than high-order

integration methods such as the 4th-order Runge-Kutta method even if it has low accuracy.

The terminal velocity can be estimated for a given path as

v(xf ) = v(xi) +

∫ xf

xi





dv (x)

dx



 dx ≈ v(xi) +
∑

j

dv (x)

dx

∣

∣

∣

∣

∣

∣

xj

∆xj (27)

Note that the step size ∆xj that affects both the computational time and the predictive accuracy can be determined

by considering a fixed time increment ∆t as follows:

∆xj = v(xj) cos(γ(xj))∆t (28)

The proposed framework is summarized as follows. First, trajectories are generated, and the terminal velocity

is efficiently calculated for each trajectory. The trajectory prescribes the altitude as a function of downrange. The

velocity and the flight path angle are the variables of system dynamics represented by the downrange. Assuming

that the aerodynamic model is known, the lift and drag forces are calculated from the geometrical properties of the

path. The terminal velocity can be obtained by propagating a scalar differential equation for the velocity along the

given path. The step size for numerical integration adjusts the trade-off between computational time and predictive

accuracy. Fig. 2 shows the flowchart of the trajectory planning framework with the described equation. Fig. 2 shows

the process of ‘Guidance’ block in Fig. 1.

Since the proposed prediction algorithm is calculated as a definite integral, divergence occurring the general

guidance algorithm do not need to consider. If the gliding missile has a much different energy than expected, the

proposed prediction algorithm will not work normally.
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Eq. (20)

Compute Drag 𝑫
Eq. (25)

Compute Lift Coefficient  𝑪𝑳
Eq. (22)

Compute  𝒅𝒗𝒅𝒙
Eq. (26)

Compute  𝒗 𝒙𝒇
Eqs. (27), (28)

Boundary
Conditions

Compute Matrices  𝑫, 𝑬, 𝑭, 𝑮
Appendix

Find C

Solve
Optimization Problem

Define Trajectory Function
Eqs. (10), (29), (31), (33)

Boundary Conditions
Eqs. (12)~(16)

Compute Objective Function
Eqs. (11) , (30), (32), (35)

Lift‐to‐drag ratio 𝑳𝑫𝒓𝒂𝒕𝒊𝒐
Eq. (24)

Fig. 2: Flowchart of the Trajectory Planning Framework
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IV. PERFORMANCE INDEX

In this section, three types of performance indices are explained. Each performance index differs by the term

K in the objective function, which is represented in (11). Note that equality and inequality constraints are already

described in Sec. III-A2.

A. Minimization of Terminal Velocity Direction Error

The objective function in this case is defined as follows:

min
C

J = (tan γf − tan γdes)
2 +R

∫ xf

xi

(

d2h(x)

dx2

)2

dx (29)

The first term in (29) is set to satisfy the direction of the terminal velocity constraint, where γdes is the desired

vertical flight path angle at the first point. The tangent function is used instead of the flight path angle to utilize

the definition where the derivative of the trajectory has the same meaning as the tangent of the vertical flight path

angle. Equation (29) can be rewritten using (11) and the definition of matrix D as follows:

min
C

J = (CTDΦ(xf )− tan γdes)
2 +RCTDEFETDTC

=
1

2
CT 2[(DΦ(xf )Φ(xf )

TDT +RDEFETDT )]C+CT (−2 tan γdesDΦ(xf )) + (tan γdes)
2

:=
1

2
CTQ1C+CT f1 + (tan γdes)

2

(30)

B. Minimization of Deviation From a Specific Altitude

The terminal velocity of the missile is greatly affected by the flight range and flight time. The velocity reduction

due to the aerodynamic force varies because the aerodynamic force depends on the altitude. In this case, the objective

function is set to fly around a specific altitude (href ) as follows:

min
C

J =

∫ xf

xi

(h(x)− href )
2dx+R

∫ xf

xi

(

d2h(x)

dx2

)2

dx (31)

The first term in (31) is set to satisfy the altitude constraint. Now, (31) can be expanded as follows:

min
C

J =

∫ xf

xi

(CTΦ(x)− href )
2dx+RCTDEFETDTC

=
1

2
CT 2(F+RDEFETDT )C+CT (−2hrefG) + (xf − xi)h

2
ref

:=
1

2
CTQ2C+CT f2 + (xf − xi)h

2
ref

(32)

C. Minimization of Deviation From a Preference Path

The objective function can be constructed to generate new trajectories around a given reference that was obtained

previously with an offline optimization approach. The computational burden of this case may be low because the

search area is reduced by the offline setting. The flight trajectory differs from the expected trajectory because the

real environment is different from the expected environmental model. Even if an error in the trajectory occurs due
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to the uncertainty of the environment, a new trajectory can be found in a trust region near the optimal trajectory

obtained in the previous step. Even though the trajectory is optimized using the energy management waypoint

planning framework in advance [1], the obtained trajectory is not optimal due to uncertainty. Therefore, an iterative

process is needed by utilizing the current flight information to obtain a new optimal trajectory in the vicinity of

the previous optimal trajectory.

The objective function, in this case, is defined as follows:

min
C

J = ((h(x)− g(x))2 +R

∫ xf

xi

(

d2h(x)

dx2

)2

dx (33)

where g(x) is the optimal trajectory of the previous step. In this case, g(x) is obtained by scenario A of xTGT =

120km in [1]. g(x) can be constructed as follows:

g(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

=
(

bn bn−1 · · · b0

)

















xn

xn−1

...

x0

















= BTΦ(x)

(34)

The first term in (33) is to find the optimal trajectory in the vicinity of g(x). Now, (33) can be expressed as

follows:

min
C

J =

∫ xf

xi

(CTΦ(x)−BTΦ(x))2dx+RCTDEFETDTC

= CTFC−CTFB−BTFC+BTFB+RCTDEFETDTC

=
1

2
CT 2(F+RDEFETDT )C+CT (−F− FT )B+BTFB

:=
1

2
CTQ3C+CT f3 +BTFB

(35)

V. NUMERICAL SIMULATIONS

Numerical simulations are performed to verify the performance of the proposed algorithm. Different simulation

scenarios are considered with various formulation choices, including the form of the objective function (see Sec.

V-A), the constraints, the maximum degree of the polynomial trajectory (see Sec. V-B), and the time step for velocity

prediction (see Sec. V-C). Additionally, the performance of the proposed algorithm in the presence of modeling

uncertainties is studied in Sec. V-E.

The energy management waypoint planning framework presented in [1] is adopted to provide realistic problem

data for the validation of the proposed framework. Waypoints 1 and 2 are the initial point and final point, respectively,

used in scenario A in which xTGT is set to be 120km. Table I summarizes the waypoint information as the initial

point and final point.

The weighting factor R in (9) is formulated as the power of 10 as follows:

R = 10r (36)
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TABLE I: Initial Point and Final Point.

Down Range Height Velocity Flight Path Angle

Initial Point 35.24km 12.74km 834.37m/s −0.05deg

Final Point 98.84km 7.14km 384.29m/s −28.00deg

where the exponent r is a tunable parameter. Let us define Verr as the velocity error at the final point, i.e.,

Verr = Vdes − Vfinalest (37)

where Vdes is the desired velocity at the final point, and Vfinalest is the estimated terminal velocity.

Simulations are performed using MATLAB on a computer with an Intel i5-7300 CPU @ 2.5 GHz and 8 GB

RAM.

A. Various Objective Functions

Each case uses the performance index, which is explained in Sec. IV. Additionally, the degree of polynomial n

is set to be 9, and the propagation step size ∆x is defined by choosing ∆t = 1 sec.

1) Example Case 1: The performance index described in Sec. IV-A is used. The results are shown by changing

r with the interval of 0.1 units from −9 to −4. Fig. 3a) and 3b) show the simulation results of this case. Fig. 3c)

shows the velocity error with respect to r. If the value of r is excessively small or large, which means that the

value of R is extreme, numerical instability occurs. In this case, it is judged that the optimization has failed and

is not shown in Fig. 3c). Fig. 3a) shows that various trajectories are generated according to the change in r. The

velocity profile is illustrated for each trajectory, and each terminal velocity may be predicted, as shown in Fig. 3b)

and 3c). By analyzing the results of Fig. 3c), the guidance law can give the command to follow the trajectory with

the smallest velocity error.

2) Example Case 2: In this example case, the objective function and constraints in Sec. IV-B are used. The

results are shown by changing r with an interval of 0.1 units from −7 to −3 and href with the interval of 0.5 km

units from 7 km to 20 km. To better understand the tendency, the results obtained with various desired attitudes

href for a fixed weighting r = −5 are shown in Figs. 4a) and 4b). The legends represent the desired altitude href .

Fig. 4c) shows the velocity error with respect to r and href . Fig. 4d) shows the values of r and href when the

velocity error is zero. At least one solution can be found for each href . Trajectories satisfying a given constraint

are generated in various ways, as shown in Fig. 4a). The velocity profile of each trajectory is different, as shown in

Fig. 4b), and therefore, the terminal velocity error is predicted differently. In the r = −5 case, flying at an altitude

of 12km provides the best result.

3) Example Case 3: The contents explained in Sec. IV-C are applied. The results are shown by changing r

with an interval of 0.1 units from −5 to 0. Figs. 5a) and 5b) show the simulation results of this case. The missile

maneuvers at low altitudes as the value of r approaches −5 and at high altitudes as the value of r approaches 0.

Additionally, the generated optimal trajectory is similar to g(x) as r approaches 0. Fig. 5c) represents the velocity

error with respect to r.
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Fig. 3: Simulation Results for Case 1

4) Selected Trajectory of Each Case: The best trajectory is selected, which has the smallest velocity error in

each case. In Case 2, R is also considered. Table II summarizes the results of each case.

TABLE II: Selected trajectory of each case

r href Verr T ime : TrjGen T ime : DynPro

Case 1 −7 − 5.1 m/s 0.012 sec 0.024 sec

Case 2 −5.2 12.5 km 1.8 m/s 0.011 sec 0.024 sec

Case 3 −4 − 2.9 m/s 0.013 sec 0.029 sec

The velocity error from the desired velocity shows a value of approximately within 5m/s for the conditions

considered in this study. Considering the velocity of a ballistic missile that exceeds the hypersonic speed, the error

is very small. If r is designed more closely, the velocity error will decrease. The execution time of each algorithm is
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(d) r and href when velocity error is zero (Case 2).

Fig. 4: Simulation Results for Case 2

approximately 0.01 sec, which can be implemented in real time. Figs. 6a) and 6b) show the trajectory and velocity

of the selected cases.

B. Various n

The maximum degree of trajectory can affect the shape of the optimal trajectory and thus the estimated terminal

velocity. To analyze the influence of the degree of trajectory, n is changed with the interval of 1 units from 3 to

10. The objective function and constraints are the same as in Sec. V-A3, r is set as −4, and the step size ∆x for

speed dynamics propagation is defined by ∆t being 1 sec.

Figs. 7a)–7c) show the results obtained by changing n. Different trajectories are generated when n is 3 or 4.

However, there is no significant difference when n is greater than or equal to 5. In other words, if n is less than

5, a simple trajectory shape can be generated. If n is greater than or equal to 5, a trajectory with a similar shape

can be obtained, which means increasing n further is unnecessary.
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Fig. 5: Simulation Results for Case 3

C. Various ∆t

To update the trajectory, ∆x is needed as an interval when performing the propagation. The update interval

directly affects the computational time and the results of estimation terminal velocity, as shown in (27) and (28).

When updating the trajectory information in the propagation, the final updated point may not be an exact point due

to the discretization. In this case, the terminal speed at the final point is predicted through the following process.

First, ∆x is defined by the current velocity vi, flight path angle γi, and ∆t. Second, the next downrange xi+1 and

velocity vi+1 are updated by the dynamic propagation algorithm. If the next downrange xi+1 is greater than the

downrange of final point xf , the iteration stops, and the terminal velocity is estimated by linear interpolation as
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Fig. 6: Summary of Trajectory Planning Results

follows:

vf = vi +∆vi
∆xf

∆xi

= vi + (vi+1 − vi)
xf − xi

xi+1 − xi

(38)

where the variables are defined as shown in Fig. 8.

To investigate the influence of time increment, ∆t is changed from 0.001 sec to 2.0 sec with an increment of

0.001 sec. The objective function and constraints are the same as in Sec. V-A2. Additionally, r, href , and n are

set as −4.5, 12 km, and 9, respectively. Figs. 9a) and 9b) represent the results obtained by changing ∆t. Note that

only three representative results are shown in Figs. 9a) and 9b). There is no significant difference in the trajectory

and velocity profiles by changing ∆t. Fig. 9c) shows the difference in velocity error for various ∆t. Theoretically,

the accuracy increases as ∆t decreases. However, the difference in velocity error is less than 10m/s, as shown in

Fig. 9c), which is a small value considering the velocity of the ballistic missile.

A chattering phenomenon in Fig. 9c) comes from the nonmonotonic characteristics of ∆xf . The computation time

for trajectory generation and dynamic propagation is analyzed for each ∆t, as shown in Fig. 9d). If ∆t is greater

than 0.4sec, the computation time for both trajectory generation and dynamic propagation is less than 0.01sec.

Considering the results shown in Figs. 9a) and 9b), the proposed framework produces similar trajectories even if

∆t is relatively large. Therefore, one can conclude that the proposed algorithm can efficiently predict the terminal

velocity of the missile.

D. Multiple Waypoints in Real-time

Simulations are performed for the case with multiple waypoints between the initial and final positions. The

waypoint information is assumed to be obtained using the energy management waypoint planning framework [1],

while the constraints of missiles and missions are given. Specifically, the waypoint information of scenario A in [1]
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is considered. With the first waypoint as the initial point and the third waypoint as the final point, the proposed

framework is utilized to produce the trajectory through the second waypoint. Table III describes the information of

each point.

TABLE III: Initial Point, Intermediate Point and Final Point.

Downrange Height Velocity Flight Path Angle

Initial Point 35.24km 12.74km 834.37m/s −0.05deg

Intermediate Point 98.84km 7.14km 384.29m/s −28.00deg

Final Point 104.80km 5.80km 365.00m/s −28.00deg

Figs. 10a) and 10b) show the simulation results, in which a line is the profile of the missile, a circle denotes the

initial point, a square denotes the final point, and a diamond denotes the intermediate waypoint.
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Fig. 7: Simulation Results with Various n



19

Downrange

Final Point

𝒙𝒊 𝟏 𝒙𝒊 𝒙𝒊 𝟏𝒙𝒇

𝑷𝒊 𝟏, 𝒗𝒊 𝟏
𝑷𝒊, 𝒗𝒊

𝑷𝒊 𝟏, 𝒗𝒊 𝟏𝑷𝒇, 𝒗𝒇

𝚫𝒙𝒊 𝟏 𝚫𝒙𝒊
𝚫𝒙𝒇

Fig. 8: Propagation point near the final point.

30 40 50 60 70 80 90 100

Down Range [km]

7

8

9

10

11

12

13

H
e

ig
h

t 
[k

m
]

Trajectory 1

Trajectory 2

Trajectory 3

(a) Trajectory of the missile by varying ∆t.

30 40 50 60 70 80 90 100

Down Range [km]

350

400

450

500

550

600

650

700

750

800

850

V
e

lo
c
it
y
 [

m
/s

]

Trajectory 1

Trajectory 2

Trajectory 3

(b) Velocity of the missile by varying ∆t.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 t [sec]

0

1

2

3

4

5

6

7

8

 V
e

rr
 [

m
/s

]

(c) Difference of velocity error by varying ∆t.
(d) Calculation time by varying ∆t.

Fig. 9: Simulation Results with Various ∆t

As shown in Fig. 10a), the vehicle maneuvers well from the initial point to the final point through the intermediate

point. The velocity error at the path point is 0.7 m/s, and at the final point is −1.5 m/s. The missile flies according
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Fig. 10: Simulation Results with Multiple Waypoints

to the purpose of the proposed framework.

E. Influence of Uncertainty in Real Time

Real-time simulations are conducted considering uncertainty in the environmental model. The objective function

and constraints are the same as in Sec. V-A1. To reflect uncertainty, random values within a certain range are added

to the position (x, h), velocity (v), and flight path angle (γ) of the missile at each time step as follows:

x(i+ 1) = x(i) + xu(i) (39)

h(i+ 1) = h(i) + hu(i) (40)

v(i+ 1) = v(i) + vu(i) (41)

γ(i+ 1) = γ(i) + γu(i) (42)

where xu, hu, vu and γu are uniform random values. Considering the operating range of the missile and the general

degree of error of the inertial navigation system, the ranges of xu, hu, vu, and γu are constrained within 10 m,

10 m, 5 m/s, and 0.1 deg, respectively. Monte Carlo simulations are performed to verify the performance against

uncertainty. Table IV shows the Monte Carlo simulation results under the influence of uncertainty.

TABLE IV: Velocity Error with Uncertainty.

Number of Simulations Average Standard Deviation

300 3.42m/s 8.17

According to the Monte Carlo simulation, the lowest terminal velocity error is 0.2m/s and the highest terminal

velocity error is 14.7m/s. The simulation results in Table IV show that the average velocity errors are within 1%.
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It is confirmed that even if uncertainty enters randomly, a trajectory is generated in the direction of reducing the

velocity error by generating an appropriate trajectory in real time. Figs. 11a) and 11b) show the three representative

profiles of the trajectory and velocity responses.
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(b) Velocity of the missile with uncertainty.

Fig. 11: Simulation Results with Uncertainties

F. 6-DOF Simulation in Real Time

In the previous sections, numerical simulations were performed in a 3-DOF environment. Here, numerical

simulations are performed in a 6-DOF environment to determine whether the proposed algorithm can be applied

to the developed missiles. The 6-DOF simulation is constructed based on Fig. 1. The equations for the 6-DOF

simulations are as follows:

X = m(u̇+ qw − rv) +mgsinθ (43)

Y = m(v̇ + ru− pw)−mgcosθsinφ (44)

Z = m(ẇ + pv − qu)−mgcosθcosφ (45)

L = Ixxṗ− Ixz ṙ + qr(Izz − Iyy)− Ixzpq (46)

M = Iyy q̇ − rp(Ixx − Izz) + Ixz(p
2 − r2) (47)

N = −Ixz ṗ+ Izz ṙ + pq(Iyy − Ixx) + Ixzqr (48)

where p, q, r are angular rates, L,M,N are moments in roll, pitch, and yaw directions, respectively, u, v, w are

each axis component of velocity, and X,Y, Z are force element on each body axis. I denotes the moment of inertia.

Table V summarizes the information of the initial and final points.

Aerodynamic coefficients CL and CD are defined as a function of velocity and angle-of-attack considering the

shape of the missile. The proposed framework is applied after burnout with a true navigation model. It is assumed

that the missile considered in this study is symmetrically equipped with four fins. In the 6-DOF simulation, the
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TABLE V: Initial Point, Intermediate Point and Final Point

Down Range Cross Range Height Velocity Flight Path Angle

Initial Point 0.0 km 0.5 km 30.0 km 850.0 m/s −30.0 deg

Final Point 50.0 km 0.05 km 10.0 km 400.0 m/s −40.0 deg

performance index explained in Sec. IV-A is used. Proportional navigation guidance law is used for horizontal plane

guidance.

To demonstrate the performance of the proposed framework in various environments, simulations are performed

for various cases. First, the results are analyzed compared to IAC, which is the optimal impact angle control. Second,

the simulation results are compared by changing the final required velocity, which show that the proposed algorithm

provides results satisfying various final conditions even under the same initial conditions. The final velocity modified

for comparison is 350 m/s. Third, the results for 6-DOF system considering wind and without considering wind

are compared. It is possible to study the robustness of the proposed framework with respect to the wind, which is

one of representative disturbances. The wind with a maximum speed of 20m/s is considered. Finally, the effect

on the drag is studied. Drag is a parameter that interferes with the analytical approach for the terminal velocity

problem. Moreover, the drag coefficient is the most unpredictable parameter. By studying the effects of the drag,

the limitation of the proposed framework can be investigated. In this simulation, the error for the drag is set as 5%.

Table VI summarizes various 6-DOF simulation results. In each simulation, the guidance command is fixed near

the final point, 5sec before reaching the final point, to prevent the divergence of the guidance command. The results

show that there exist small errors in altitude, herr, and flight path angle, γerr, in all simulations. IAC is a guidance

law that reduces the terminal flight path angle error while flying to the final point, and the proposed framework

considers a performance index to meet the terminal flight path angle. The performance of the proposed framework

can be represented by the terminal velocity error, verr, in Table VI. Simulations are constructed by C language on

the same computer using previous simulations.

TABLE VI: 6-DOF Simulation Results

herr Verr γerr

IAC −0.30 km −74.5 m/s 0.34 deg

Replanning −0.17 km 0.6 m/s 0.91 deg

Replanning + |Vf | = 350 m/s −0.18 km −5.4 m/s 0.81 deg

Replanning + Wind −0.17 km −6.9 m/s 0.89 deg

Replanning + Drag −5% −0.16 km −22.4 m/s 0.96 deg

Replanning + Drag +5% −0.17 km 12.4 m/s 0.91 deg

The terminal velocity error of the proposed framework is a very small compared to IAC. The missile using the

proposed method flies by the generated trajectory, even if the terminal speed varies. Wind increases the terminal
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velocity error because the wind continuously affects the missile until the missile reaches the target point. Drag

force has more influence than other factors. As described in (26), the velocity is greatly affected by drag force.

Therefore, if drag different from expected is continuously reflected, the terminal velocity error will inevitably

increase. Assuming that the range of the terminal speed error is within 10% of the terminal speed, if the uncertainty

of drag force is entered as −9%, the error range is exceeded. Even if an unexpected effects such as wind and

drag are applied, the error is not large considering the velocity of the ballistic missile. Fig. 12 shows the results of

6-DOF simulation.
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(e) Acceleration Command: Vertical
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(f) Acceleration Command: Horizontal

Fig. 12: 6-DOF Simulation Results

While it is natural to satisfy the terminal velocity conditions, it can increase areas to be designed in the autopilot,
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which can burden developers, and if they have to fly in limited areas for diplomatic and safety reasons, it can

burden trajectory generation.

The computation time in a 6-DOF environment was calculated to determine whether or not it can be implemented

in real-time. Because ∆t directly affects the computation time, computation time is analyzed for various ∆t. Initial

and final points in Table V were used. For the proposed framework, the computation time is defined as the time

including the process of generating the trajectory. And predicting the velocity error was measured. Simulations

were performed by changing the parameter r 100 times to obtain the results in various environments. The average

computation time of the 6-DOF simulation by varying ∆t is summarized in Table VII.

TABLE VII: Average Computation Time of 6-DOF by varying ∆t

∆t 0.001 sec 0.01 sec 0.1 sec 1.0 sec

Average Time 0.266 sec 0.042 sec < 0.001 sec < 0.001 sec

As described in Sec. V-C, the parameter ∆t does not significantly affect the prediction terminal velocity. The

computation time is less than 0.001 sec, which means that the proposed framework can be implemented and operated

in the actual platform.
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VI. CONCLUSIONS

Achieving a desired velocity at the final time is a challenging design problem in gliding vehicle guidance. The

problem cannot be solved analytically because the nonlinearity and the model dependency of the velocity dynamics

prohibit closed-form prediction. To address this problem, a trajectory planning framework was proposed for gliding

missiles to achieve the desired terminal velocity considering the uncertainties in the environment. A quadratic

programming formulation was adopted for trajectory generation. A family of trajectories can be generated depending

on the objective function and constraints in the optimization problem. The trajectory equation was constructed to

express the altitude as a function of the downrange to predict terminal velocity with a reduced number of equations

instead of solving entire motion equations. The Euler method was utilized to predict the terminal velocity for each

trajectory. Simulations were performed with various design parameters to validate the performance of the proposed

framework. Simulation results showed that the proposed trajectory planning method provides appropriate trajectories

satisfying the terminal velocity constraints.

APPENDIX

Matrix D

Matrix D is the certain form deriving the derivative term of the trajectory, h(x), as

dh(x)

dx
= nanx

n−1 + (n− 1)an−1x
n−2 + · · ·+ 2a2x+ a1
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where
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Matrix E

Matrix E is the certain form deriving the second derivative of the trajectory.

d2h(x)

dx2 = n(n− 1)anx
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where
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Matrix F

Matrix F is the matrix form integrating the square of the second derivative of the trajectory.

∫ xf

xi

(

d2h(x)

dx2

)2

dx

=
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where
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Matrix G

Matrix G is the matrix form integrating the trajectory.
∫ xf

xi

h(x)dx = CT
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where

G =
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