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ABSTRACT —Through assembling the navigation parameters as matrix Lie group state, the 

corresponding inertial navigation system (INS) kinematic model possesses a group-affine property. 

The Lie logarithm of the navigation state estimation error satisfies a log-linear autonomous 

differential equation. These log-linear models are still applicable even with arbitrarily large initial 

errors, which is very attractive for INS initial alignment. However, in existing works, the log-linear 

models are all derived based on first-order linearization approximation, which seemingly goes against 

their successful applications in INS initial alignment with large misalignments. In this work, it is 

shown that the log-linear models can also be derived without any approximation, the error dynamics 

for both left and right invariant error in continuous time are given in matrix Lie group SEଶ(3) for the 

first time. This work provides another evidence for the validity of the log-linear model in situations 

with arbitrarily large initial errors. 

INDEX TERMS—Inertial navigation system, initial alignment, invariant extended Kalman filter 

I. INTRODUCTION 

Initial alignment for inertial navigation system (INS) has been a classical and gradually reborn 

research topic. It has been widely recognized that the coarse alignment is indispensable for the 

following extended Kalman filter (EKF) based fine alignment [1]. In this respect, much effort has 

been focused on the fast coarse alignment methods investigation with optimization-based approach 

as the prominent representative [2-6]. The necessity of coarse alignment for EKF-based fine alignment 

lies in making valid the first-order linearization approximation of the navigation parameters error state 

model. That is to say, this first-order linear error state model applies only to situations with small 

initial misalignment. This is the truth until the initial alignment meets the invariant EKF (IEKF). In 

IEKF, through representing the navigation parameters as a matrix Lie group, the corresponding 

process dynamics possess a special group-affine property [7-11]. Moreover, the vector-form error 

state on the associated Lie algebra satisfies a trajectory independent log-linear differential equation. 
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Due to such striking property, the IEKF is shown to converge around any trajectory. For INS initial 

alignment, this means that with the log-linear differential equation, the IEKF is applicable even with 

arbitrary large misalignments. This has been demonstrated with successful applications and promising 

results in [8, 9, 12-16]. 

In [7], Barrau and Bonnabel have provided the rigorous proof of the strong convergence of the log-

linear differential equation in continuous time. However, it is undeniable that the log-linear 

differential equation is still derived with first-order approximation of the attitude error matrix in 

existing literatures [7, 11-18]. The promising results by IEKF with arbitrary large misalignments 

seemingly go against the common sense that the first-order linearization should be therefore only 

valid for small misalignments. Although the uncertainty propagation in discrete time for left invariant 

error is given in literature [19], it aims at providing covariance propagation for preintegration theory 

on matrix Lie group SEଶ(3)  and does not clarify the relationship between the mechanization 

procedure in inertial navigation system and the uncertainty propagation in preintegration theory. With 

this consideration, this paper aims to derive the trajectory independent log-linear differential equation 

in continuous time without any approximation. From the perspective of invariant EKF, our method is 

novel and clear for INS and can be seen as a nice connection of uncertainty propagation between the 

discrete time and the continuous time. In fact, the state transition matrices in the discrete time for both 

left invariant error and right invariant error can be obtained from the error dynamic matrices in the 

continuous time immediately as the error dynamic matrices can be treated as constants during the time 

interval [11]. Besides the rigorous proof with “control language” in [7], this work provides another 

evidence for the validity of the log-linear differential equation with arbitrary attitude misalignments 

using “navigation language”. The definition of the flow in the continuous time which plays a key role 

in the proof of the log-linear property is inexplicit in literature [7]. However, the analytical and 

concrete form of the flow is leveraged in our method. 

The remaining content is organized as follows. Section II formulates the group affine kinematic 

model of INS. In this section, the log-linear differential equation is also derived making use of the 

first-order approximation of the attitude error matrix. Through a group state decomposition procedure, 

the log-linear differential equation is derived without any approximation in Section III. Finally, 

Section IV concludes this article. 

II. PROBLEM FORMULATION 

Denote by e  the Earth-Centered-Earth-Fixed (ECEF) frame, by b  the INS body frame, by i  the 

Earth-Centered-Inertial (ECI) frame. The attitude differential equation in earth frame is given by 

 ( ) ( )e e b e e
b b ib ie b   C C ω ω C   (1) 



 

where b
ibω  is the body angular rate measured by gyroscopes in the body frame. e

ieω  is the earth rotation 

vector expressed in the earth frame. 

The differential equation of the velocity is given by 

 ( )e e b e e e
ib b ie ib ib   v C f ω v G   (2) 

where e
ibG  is the gravitational vector expressed in the earth frame and its relationship with gravity 

vector expressed the earth frame is given by 

 2 2( ) ( )e e e e e e e
ib ib ie ib ib ie eb     G g ω r g ω r   (3) 

where e
ebr  is the position vector in the earth frame. It should be noted that the velocity e

ibv  denotes the 

body velocity corresponding to the inertial frame expressed in the earth frame. It is not the usual 

ground velocity e
ebv .The relationship between e

ibv  and e
ebv  is given by 

 ( ) ( )e e e e e e e
ib eb ie ib eb ie eb     v v ω r v ω r   (4) 

The velocity provided by the GPS is virtually e
ebv  and the always referred velocity of the vehicle is 

also e
ebv  and not e

ibv . The reason for the usage of e
ibv  here is that the resulting group state model is 

group affine, which will be shown in (7) [13, 18, 19, 20]. 

The differential equation of the position e
ibr  is given by 

 ( )e e e e
ib ib ie ib  r v ω r   (5) 

It can be seen from (1) and (2) that the position error will not affect the attitude and velocity error 

propagation if we ignore the error in gravitational vector e
ibG . Moreover, the attitude e

bC , velocity e
ibv  

and position e
ibr  are assembled as group element of 2 (3)SE , that is 
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According to (1), (2) and (5), the differential equation of is given by   
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where f  is a invariant vector field defined by 
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It is shown that (7) is neither left nor right invariant nor a combination of both and therefore, the 

system is not invariant. However, the system is group affine with the model satisfying the following 

condition: 

        1 2 1 2 1 2 1 2u u u u df f f f  χ χ χ χ χ χ χ I χ     (9) 

where dI  is the group identity element with attitude matrix be identity matrix and three-dimensional 

vectors be zero vectors. Meanwhile, ( )f   is supposed to be group affine, too. As 5 5( )f I 0  , we can 

obtain that 
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Define the left-invariant group error as 
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The corresponding trajectory-independent group error model is given by 

 ( ) ( ) ( )l u l u l u d lg f f  η η η I η   (12) 

Substituting the definition of the left-invariant group error into (12) gives 
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Making use of the first-order approximation for the exponential map of SO(3), ldC  can be 

approximated as 

 33 ( )l l  dC I φ   (14) 

Substituting (14) into (13) gives 
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Define the vector form error corresponding to (11) as 
TT T T

l l l l   δx φ δv δr , where l ldv Jδv , 

l ldr Jδr , J  is the left Jacobian matrix of lφ . Then, the corresponding model can be deduced from 

(15), that is 
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Similarly, define the right-invariant group error as 
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The corresponding trajectory-independent group error model is given by 

 ( ) ( ) ( )r u r u r r u dg f f  η η η η I  (18) 

Substituting the definition of the right-invariant group error into (18) gives 
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Making use of the first-order approximation for the exponential map of SO(3), rdC can be 

approximated as 

 33 ( )r r  dC I φ   (20) 

Substituting (20) into (19) gives 
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Define the vector form error corresponding to (17) as
TT T T

r r r r   δx φ δv δr , where r rdv Jδv , 

r rdr Jδr , J  is the left Jacobian matrix of rφ . Then, the corresponding model can be deduced from 

(21), that is 
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It is shown that the trajectory-independent vector error equations (16) and (22) are derived based 

on the first-order approximation for the exponential map of SO(3). It is known that such 

approximation or linearization is only valid when the attitude error is small. However, the models (16) 

and (22) can be used to accomplish initial alignment with arbitrary large misalignment, which 

seemingly goes against the aforementioned approximation. In the following section, we will 

demonstrate that the models (16) and (22) can also be derived without any approximation. 

III. VECTOR ERROR MODELS DERIVATION WITHOUT APPROXIMATION 

A. GROUP STATE MODEL RECONSTRUCTION 

In order to derive the models (16) and (22) without approximation, the group state model (7) is 

firstly reconstructed through group state decomposition. In recent few years, the concept of attitude 

matrix composition has been used in attitude determination or estimation based initial alignment [2-

6] and invariant EKF [11]. Denote the initial inertially fixed body frame as 0b  , the initial inertially 

fixed earth frame as 0e  , the attitude matrix e
bC  can be decomposed as 

 0 0

0 0

e be e
b e b bC C C C   (23) 

Similar to the decomposition of attitude matrix, the navigation state which is embedded into matrix 

Lie group   can also be decomposed as [19, 21, 22, 24] 

 0( )e btχ χ χ χ   (24) 

where 
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( )t   can be seen as the concrete definition of flow in the continuous time for navigation state. It 

is worth noting that the position part is related with the velocity which is consistent with our intuitive. 

It is easy to verify that ( )t   is a group automorphism and owns the log-linearity property and 

satisfies [19] 
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where the operator ( )  is used to map the vector in Euclidean space to elements of Lie algebra. 

Combining equation (8) and equation (25d)，we can obtain that f(Φ୲(𝜒)) = 𝑓(𝜒),which is will be 

used for many times. 

It is shown that 0χ  is the initial extended pose and is constant. bχ is a local increment and the 

kinematic equation of bχ  is given by 
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where U is defined in (7). It can be easily obtained that the initial value of bχ  is 5I , that is error-free. 

Similarly, eχ is a global increment and the kinematic equation of eχ  is given by 
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where W is defined in (7). It can also be easily obtained that the initial value of eχ  is 5I , that is also 

error-free. It should be noted that the group state decomposition is also the key point for accurate 

preintegration in inertial based robotics applications [19, 21-24]. The preintegration is another striking 

property of the group affine system besides the trajectory-independent invariant error propagation. 

With the initial navigation state 0

0 ,0 ,0( , , )e e e
b ib ibC v r , the navigation state defined in equation (24) can 

be written separately as 
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Since the initial value and inputs of model (28) are both error-free, eχ  will not introduce error in 

χ . In other words, the error of χ  only comes from 0χ  (initial error) and bχ  (measurement error of 

the inertial sensors). In order of facilitate the following derivation, we can combine 0χ  and bχ  as 
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Combining 0χ  and bχ  is similar with the procedure that combines 0

0

e
bC  and 0b

bC  as in [6]. From 

(25a) and (25c), it can be known that 
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The kinematic equation of bχ  is given by 
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which has a same form as (27). However, different with bχ  that has an error-free initial values, the 

initial value of bχ  is 0χ , which is unknown and may be far from the true value. The unknown value 

0χ  is also the reason for large misalignment in initial alignment. 

B. VECTOR FORM LEFT-ERROR MODEL DERIVATION WITHOUT APPROXIMATION 

According to the group state decomposition (24), the left-invariant group error in (11) can be re-

derived as 

 1 1ˆˆl b b
  η χ χ χ χ    (36) 

Moreover, substituting equation (36) into equation (12), the left-invariant group error model (13) 

can be reorganized as 
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Let ,0lη  be the initial left-invariant group error and its associated Lie algebra can be denoted by the 

vector ,0lδx . The matrix Lie group is related to its associated vector form in Euclidean space through 

the exponential map, that is 
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Define the following group error 
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The decomposition of the error state can be thought of as shifting the navigation state inside the 

exponential mapping using the group Adjoint operator definition, then the log-linear error dynamics 

can be recovered. The decomposition is similar to the rotation matrix decomposition in [11], and we 

believe that it is reasonable. Moreover, the subsequent results do confirm that the decomposition is 

correct. 

Taking derivative of both sides of (39) gives 
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Substituting (35) into (40) and using equation (25d) we can get 
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which means that the group error defined in (39) is also a solution to the group error dynamics 

equation (37). In the derivation, a nice property of function defined in equation (8) is used, that is 

,0 ,0( )) )( ( l ltf fη η . The detailed derivation is omitted in order to save space.  

According to the relationship between the matrix Lie group and its associated Lie algebra, (39) can 

be rewritten as 
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where 1Ad b
χ  is the Adjoint operator of 1
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According to (42) we can get the following equation 
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Taking derivative of both sides of (44) gives 
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          (45) 

which is just the model in (16). It is shown that there is no approximation from (38) to (45). That is 

to say, the trajectory-independent vector error state model (16) can be derived without any 

approximation. Now, this can be understandable that why the error state model derived through “first-

order linearization” can be applied in initial alignment with arbitrary large misalignments. 

C. VECTOR FORM RIGHT-ERROR MODEL DERIVATION WITHOUT 

APPROXIMATION 

Next, we make use of similar procedure to derive the vector form right-error model (22) without 

any approximation. 

The right-invariant group error model (19) can be reorganized as 

 ( )r r r rf  η Wη η W η  (46) 

Let ,0rη  be the initial right-invariant group error and its associated Lie algebra can be denoted by 

the vector ,0rδx . Similar to (38), we can get 

 ,0 ,0 m ,0exp( ) exp ( )r r r
 η δx δx   (47) 

Define the following group error 
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Taking derivative of both sides of (48) gives 

 1 1 1 1
,0 ,0 ,0( ) ( ) ( )r e r e e r e et e et r et

      η χ η χ χ η χ χ η χ χ χ    (49) 

Substituting (25) into (42) gives 
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which means that the group error defined in (48) is also a solution to the group error dynamics 

equation (46). 

Similar to (42), (48) can be rewritten as 
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where Ad eχ  is the Adjoint operator of eχ  and is given by 
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According to (51), we can get 

 ,0Ad er r χδx Fδx   (53) 

Taking derivative of both sides of (53) gives 

0

0 0

0 0 0 0

3 3 3 3

3 3 ,0

3 3 3 3

3 3

3 3 3 3

( )

[( ) ( )( )] ( )

[( ) ( )( )] ( ) ( )

( )

( ) ( )

( )

 













  
 

       
          

 
   
  



e e
ie e

e e e e e e
r ib ie ib e ie e r

e e e e e e e e e
ib ie ib e e ie e ie e

e
ie

e e
ib ie

e
ie

t

ω C 0 0

δx G ω v C ω C 0 δx

v ω r C C ω C ω C

ω 0 0

G ω 0

0 I ω

0

0 0

0 0

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 ,0

3 3 3 3 3 33 3

,0

( )

( )

Ad

    

   

  

   
      
        

 e

e
e

e e e
ib e e r

e e e
ib e e

r r r r

t

χ

C 0 0 I 0 0

v C C 0 0 I 0 δx

0 I Ir C 0 C

F Fδx F δx

           (54)  

which is just the model in (22). It is shown that there is no approximation from (47) to (54). That is 

to say, the trajectory-independent vector error state model (22) can be derived without any 

approximation. 

It should be noted that the above derivations are all based on the fact that the error in gravitational 

vector caused by the position is ignored. If this error is also considered, the velocity error differential 

equation will have global state components, that is to say, it is not trajectory-independent as shown in 

[14]. 

IV. CONCLUSION 

Through matrix Lie group decomposition, this work derives the log-linear error state model for the 

group affine system without any assumption. The corresponding derivations can provide an explicit 

explanation why the log-linear error state model can be used to perform INS initial alignment with 

arbitrary large misalignments. 
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