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Abstract—Coverage path planning with unmanned aerial ve-
hicles (UAVs) is a core task for many services and applications
including search and rescue, precision agriculture, infrastructure
inspection and surveillance. This work proposes an integrated
guidance and gimbal control coverage path planning (CPP)
approach, in which the mobility and gimbal inputs of an
autonomous UAV agent are jointly controlled and optimized to
achieve full coverage of a given object of interest, according to
a specified set of optimality criteria. The proposed approach
uses a set of visibility constraints to integrate the physical
behavior of sensor signals (i.e., camera-rays) into the coverage
planning process, thus generating optimized coverage trajectories
that take into account which parts of the scene are visible
through the agent’s camera at any point in time. The integrated
guidance and gimbal control CPP problem is posed in this
work as a constrained optimal control problem which is then
solved using mixed integer programming (MIP) optimization.
Extensive numerical experiments demonstrate the effectiveness
of the proposed approach.

Index Terms—Guidance and control, coverage planning, tra-
jectory planning, autonomous agents, unmanned aerial vehicles
(UAVs).

I. INTRODUCTION

VER the last years we have witnessed an accelerated
demand for Unmanned Aerial Vehicles (UAVs) and Un-
manned Aerial Systems (UASs) in various application domains
including search and rescue [[1]]-[6]], precision agriculture [[7]],
package delivery [8]], wildfire monitoring [9] and security
[10]-[12]. This high demand is mainly fueled by the re-
cent advancements in automation technology, avionics and
intelligent systems, in combination with the proliferation and
cost reduction of electronic components. Amongst the most
crucial capabilities for a fully autonomous UAV system is
that of path/trajectory planning [|13]], which play a pivotal role
in designing and executing automated flight plans, required
by the majority of application scenarios. The path planning
problem encapsulates algorithms that compute trajectories
between the desired start and goal locations. Moreover, for
many tasks such as structure inspection, target search, and
surveillance, there is a great need for efficient and automated
coverage path planning (CPP) [[14] techniques. Coverage path
planning consists of finding a path (or trajectory) which allows
an autonomous agent (e.g., a UAV) to cover every point (i.e.,
the point must be included within the agent’s sensor footprint)
within a certain area of interest.
Despite the overall technological progress in CPP tech-
niques over the last decades, there is still work to be done for
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constructing solutions to the level of realism that can support
practical autonomous UAV operations. As discussed in more
detail in Sec. [II} the vast majority of CPP approaches mainly
consider ground vehicles or robots with static and fixed sensors
(i.e., the sensor mounted on the robot is not controllable
and the size of the sensor’s footprint does not change).
These assumptions reduce the CPP problem to a path-planning
problem, where a) the area of interest is first decomposed into
a finite number of cells (where usually each cell has size
equal to the sensor’s footprint), and b) the path that passes
through all cells is generated with a path-finding algorithm,
thus achieving full coverage. In some approaches (e.g., [15]))
the generated path is adapted to the robot’s dynamic/kinematic
model at a second stage. This two-stage approach however,
usually produces sub-optimal results, in terms of coverage
performance. In addition, UAVs are usually equipped with a
gimballed sensor, which potentially exhibits a dynamic sensing
range e.g., a pan-tilt-zoom (PTZ) camera. Therefore, in order
to optimize coverage, necessitates the implementation of CPP
techniques with the ability to optimize not only the UAV’s
trajectory, but also the control inputs of the onboard gimballed
Sensor.

Specifically, in this paper we investigate the coverage path
planning problem for a known 2D region/object of interest,
with a UAV agent, which exhibits a controllable gimbal sensor
with dynamic sensing range. In particular, we propose an
integrated guidance and gimbal control coverage path planning
approach, where we jointly control and optimize a) the UAV’s
mobility input governed by its kinematic model and b) the
UAV’s gimbal sensor, in order to produce optimal coverage
trajectories. The CPP problem is posed as a constrained
optimal control problem, where the goal is to optimize a set
of mission-specific objectives subject to coverage constraints.
As opposed to the majority of existing techniques, in this
work we consider the CPP problem in the presence of state-
dependent visibility-constraints. In particular, the proposed
approach integrates ray-casting into the planning process in
order to determine which parts of the region/object of interest
are visible through the UAV’s sensor at any point in time, thus
enabling the generation of realistic UAV trajectories.

Specifically, the contributions of this work are the following:

o We propose an integrated guidance and gimbal control
CPP approach for the problem of coverage planning
in the presence of kinematic and sensing constraints
including state-dependent visibility constraints i.e., we
are simulating the physical behavior of sensor signals in
order to account for the parts of the scene that are blocked
by obstacles and thus cannot be observed by the UAV’s
sensor at a given pose.
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o We formulate the CPP problem as a constrained optimal
control problem, in which the UAV mobility and gimbal
inputs are jointly controlled and optimized according to a
specified set of optimality criteria, and we solve it using
mixed integer programming (MIP). The performance of
the proposed approach is demonstrated through a series
of numerical experiments.

The rest of the paper is organized as follows. Section
summarizes the related work on coverage path planning with
ground and aerial vehicles. Then, Section develops the
system model, Section defines the problem tackled and
Section [V] discusses the details of the proposed coverage
planning approach. Finally, Section [VI| evaluates the proposed
approach and Section [VII] concludes the paper and discusses
future work.

II. RELATED WORK

In coverage path planning (CPP) we are interested in deter-
mining the path/trajectory that enables an autonomous agent
to observe with its sensor every point in a given environment.
Early works e.g., [16]], [17], treated the CPP problem as a
path-planning problem, by decomposing the environment into
several non-overlapping cells, and then employing a path-
planning algorithm [18] to find the path that passes through
every cell. Notably, in [16]], [[17] the authors propose cellular
decomposition coverage algorithms, where the free-space of
the environment is decomposed into non-intersecting regions
or cells, which can be covered by the robot, one by one
using simple back-and-forth motions, thus covering the whole
area. Extensions [[19]—[21]] of this approach have investigated
the coverage/sweeping pattern, the sensor’s footprint and the
region traversal order for optimal coverage. In [22], the
authors propose a CPP approach based on spanning trees,
for covering, in linear time, a continuous planar area with a
mobile robot equipped with a square-shaped sensor footprint.
In the subsequent work [23]], the plannar area to be covered is
incrementally sub-divided into disjoint cells on-line, allowing
for real-time operation. The spanning tree approach presented
in [22] and [23] is extended in [24] for multi-robot systems.
In [25]], the boustrophedon cellular decomposition algorithm
(BDC) [26] is used to compute a graph-based representation
of the environment, and then a coverage clustering algo-
rithm is proposed which divides the coverage path among
multiple robots. The problem of coverage path planning has
also been investigated with multiple ground robots in [27].
The authors of [27] propose an approach that minimizes the
total coverage time by transforming the CPP problem into
a network flow problem. In [28], a graph-based coverage
algorithm is proposed for a CPP problem variation, which
enables a team of robots to visit a set of predefined locations
according to a specified frequency distribution. Another CPP
variation is investigated in [29], [30]. The authors propose
decentralized, adaptive control laws to drive a team of mobile
robots to an optimal sensing configuration which achieves
maximum coverage of the area of interest. The same problem
is investigated in [31] with heterogeneous robots that exhibit
different sensor footprints.

Interestingly, the CPP problem has recently gained signif-
icant attention due to its importance in various UAV-based
applications, including emergency response [S], [6[, [32f],

critical infrastructure inspection [33]] and surveillance [34]. A
UAV-based coverage path planning approach utilizing exact
cellular decomposition in polygonal convex areas is proposed
in [35], whereas in [15]] the CPP problem is adapted for a
fixed-wing UAV. In [15]] the ground plane is first decomposed
into several non-overlapping cells which are then connected
together forming a piecewise-linear coverage path. At a second
stage a UAV-specific motion controller is used to convert
the generated path into a smooth trajectory which the UAV
can execute. An information theoretic coverage path planning
approach for a single fixed-wing UAV is presented in [36].
The aircraft maintains a coverage map which uses to it make
optimized control decisions on-line, in order to achieve global
coverage of the environment. In [37]], the authors propose a
clustering-based CPP approach for searching multiple regions
of interest with multiple heterogeneous UAVs, by classifying
the various regions into clusters and assigning the clusters
to the UAVs according to their capabilities. In [38[]-[40]]
CPP techniques for energy-constraint multi-UAV systems are
proposed. Moreover, in [41], a distributed coverage control
approach is proposed for a multi-UAV system. Specifically, a
coverage reference trajectory is computed using a Voronoi-
based partitioning scheme, and then a distributed control
law is proposed for guiding the UAVs to follow the ref-
erence trajectory, thus achieving full coverage. Finally, the
CPP problem has also been investigated more recently with
learning based techniques [42[], [43]]. In [42], an end-to-end
deep reinforcement learning CPP approach is proposed for an
autonomous UAV agent. The authors utilize a double deep
Q-network to learn a coverage control policy that takes into
account the UAV’s battery constraints. On the other hand in
[43], a coverage path planning system based on supervised
imitation learning is proposed for a team of UAV agents. This
approach plans coordinated coverage trajectories which allow
unexplored cells in the environment to be visited by at least
one UAV agent.

The problem of coverage path planning (CPP) is also related
to the view planning problem (VPP) and its variations, where
the objective is to find the minimum number of viewpoints
that completely cover the area of an object of interest. The
relationship between these two problems is showcased in
[44], in which the CPP problem is posed as a view planning
problem. Specifically, the authors in [44] propose an algorithm
based on the traveling salesman problem (TSP), which incor-
porates visibility constraints and finds the tour of minimum
length which allows a UAV equipped with a fixed downward
facing camera to inspect a finite sets of points on the terrain.
On the other hand, the authors in [45] propose a variation
of the original VPP problem, termed traveling VPP, where
the objective is the minimization of the combined view and
traveling cost i.e., the cost to minimize combines the view cost
which is proportional to the number of viewpoints planned,
and the traveling cost which accounts for the total distance
that the robot needed to travel in order to cover all points of
interest. In general, VPP approaches operate in a discrete state-
space setting and are mostly concerned with the selection of
an optimal sequence of sensing actions (taken from the finite
set of all admissible actions) which achieve full coverage of
the object of interest. In contrast, the proposed approach can
be used to generate continuous trajectories which are governed
by kinematic and sensing constraints. The interested reader is
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directed to [14], [46], [47] for a more detailed examination of
the various coverage path planning techniques in the literature,
including the view planning problem.

To summarize, in comparison with the existing techniques,
in this work we propose a coverage planning approach which
integrates ray-casting into the planning process, in order to
simulate the physical behavior of sensor signals and thus
determine which parts of the scene are visible through the
UAV’s onboard camera. The proposed approach takes into
account both the kinematic and the sensing constraints of the
UAV agent, to achieve full coverage of an object of interest
in the presence of obstacles. In particular, the coverage path
planning problem is posed in this work as a constrained open-
loop optimal control problem which incorporates the UAV’s
kinematic and sensing model to produce optimal coverage tra-
jectories in accordance with the specified mission objectives.
Finally, the proposed mathematical formulation can be solved
optimally with off-the-shelf mixed integer programming (MIP)
optimization tools [48].

III. SYSTEM MODEL
A. Agent Kinematic Model

This work assumes that an autonomous agent (e.g., a UAV),
is represented as a point-mass object which maneuvers inside
a bounded surveillance area YW C R2. The agent kinematics
are governed by the following discrete-time linear model [49]:

xy = Pry_1 +Tup_q, (1)

where z; = [pi(z), pi(y), ve(x),4(y)] T denotes the agent’s
state at time ¢ in cartesian (x,y) coordinates, which consists
of the agent’s position [p;(x),p:(y)]T € R? and velocity
[ve(x),4(y)]T € R? in the = and y directions. The term
us = [fi(z), fi(y)]" € R? denotes the control input, i.e., the
amount of force applied in each dimension in order to direct
the agent according to the mission objectives. The matrices ¢

and I' are given by:
0t - Ioxo 0252
I = 2
¢ -laxa |’ v -Ioxa|’ @)

Ioxo
¢ = [02><2
where dt is the sampling interval, I3x2 and Oz« are the 2 by
2 identity matrix and zero matrix respectively, with ¢ and ~
given by ¢ = (1 —n) and vy = m~16t, where the parameter 7
is used to model the (air) drag coefficient and m is the agent
mass. Given a known initial agent state x(, and a set of control
inputs {u,|t =0, ..,7 — 1}, inside a finite planning horizon of
length T', the agent trajectory can be obtained for time-steps
t =[1,..,T] by the recursive application of Eqn. as:

t—1
xp = Dlag + Z T 1y, 3)

7=0

Therefore, the agent’s trajectory can be designed and opti-
mized to meet the desired mission objectives by appropriately
selecting the control inputs {u:|t = 0,..,7 — 1}, inside the
given planning horizon of length 7. We should point out here
that although the agent kinematic model in Eqn. (I)) does not
fully captures the low-level UAV aerodynamics (which are
platform dependent), it allows us to design and construct high-
level (i.e., mission-level) coverage trajectories which in turn
can be used as desired reference trajectories to be tracked with

Fig. 1. The figure illustrates all the possible sensor FoV configurations for two
different zoom-levels &1 and &2, and for 5 different rotation angles 01, .., 05,
when the agent’s position is equal to xﬁms._ In this example, the total number
of FoV configurations is equal to |©] x |=| = 10.

low-level closed-loop guidance controllers found on-board the
UAVs [50]-[52]

B. Agent Sensing Model

The agent is equipped with a gimbaled camera with op-
tical zoom, which is used for sensing its surroundings and
performing various tasks e.g., searching objects/regions of
interest, detecting targets, etc. The camera field-of-view (FoV)
or sensing footprint is modeled in this work as an isosceles
triangle [53]], [54] parameterized by its angle at the apex ¢ and
its height h, which are used to model the FoV angle opening
and sensing range respectively. We should point out here that
any convex 2D shape can be used to model the camera FoV.
Using the parameters ¢ and h the camera FoV side length
(¢s) and base length (¢;) are computed as:

Ly =hxcos(p/2)7!, and, £, = 24, x sin(p/2). (4)

Therefore, the set of vertices (),) of the triangular FoV camera
projection, for an agent centered at the origin, and facing

downwards are given by V, = [vy, va, v3], where vy = [0,0] T,
vg = [—€p/2,—h]T and vz = [{;/2,—h] " so that:
0 —6/2 42
VO - |:0 _h _h I (5)

The camera FoV can be rotated (on the zy-plane) around the
agent’s position 2P = [p(z), p(y)] " by an angle § € © (with
respect to x-axis), by performing a geometric transformation
consisting of a rotation operation followed by a translation:

V = R(0)V, + 2P, (6)

where V is the rotated camera FoV in terms of its vertices, ¢
is the control signal and R(f) is a 2D rotation matrix given

by:
sin(6)
cos(&)} : @

RO) = | 00

We should mention here that in this work the rotation angle
0 takes its values from a finite set of all admissible rotation
angles © = {01, .., 0,5}, where |©| denotes the set cardinality.
The agent can be placed in any desired position and orientation
(i.e., pose) at some time-step ¢, by adjusting the control signals
ug and 0; € |O]ie., Vi = R(0;)V,+2}*. The agent’s onboard
camera is also equipped with an optical zoom functionality,
which can alter the FoV characteristics in order to better



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, DOI:10.1109/TAES.2022.3199196, 2023. (EARLY ACCESS) 4

suit the mission objectives and constraints. In particular, it is
assumed that a zoom-in operation narrows down the FoV (i.e.,
reduces the FoV angle opening () however, it increases the
sensing range h, as shown in Fig. [} In particular, we assume
that the camera exhibits a finite set of predefined zoom levels
denoted as = = {&1,...,&z/|¢& € R,& > 1}, which are used

to scale the FoV parameters. The zoon-in functionality is thus
defined for a particular zoom level £ € = as:

h'=hx¢ and, o' =@ x g, (8)

where (h/,¢’") are the new parameters for the FoV angle
and range, after applying the optical zoom level £. A visual
representation of the camera model is illustrated in Fig. [I]
We can now denote the agent’s sensing state at time-step t as
Si(0;, 27, &), which jointly accounts for the agent’s position
and orientation. The notation S;(6;,z}™,&;), is used here to
denote the area inside the agent’s sensing range determined
by the FoV vertices (i.e., the convex hull) as computed by
Eqn. (6). Therefore, the total area covered by the agent’s FoV
within a planning horizon of length 7" can thus be obtained
by:
T
Sir = Si(0:,28", &), ©)
t=1

—

where 6; € ©, & € Z and the agent position 27 has been
computed from the application of a set of mobility controls
inputs {u,|7 =0,..,t — 1} according to Eqn. ().

We should point out here that the agent kinematic and
sensing models described above can easily be extended to
3 dimensions (i.e., the agent kinematics in Eqn. (I) can
be extended in 3D by accounting for the z dimension, the
triangular 2D FoV translates to a regular pyramid in 3D,
the 2D rotation matrix R becomes a 3D rotation matrix in
3D, etc). Consequently, the proposed approach discussed in
detail in Sec[V] can also be extended in 3D environments with
some modifications. However, in order to make the analysis
of the proposed approach easier to follow and more intuitive,
the problem in this paper has been formulated in a two
dimensional space, which already has some key challenges.

IV. PROBLEM STATEMENT

Let an arbitrary bounded convex planar region C C W to
denote a single object or region of interest, that we wish to
cover with our autonomous agent, with boundary dC, as shown
in Fig. [2| The proposed approach can be used to generate
the coverage plan for the area enclosed in C in the case
where the region C is traversable. On the other hand when
C is not traversable (i.e., C represents an inaccessible, to the
agent, object or region of interest), the proposed technique is
used to generate the coverage plan for the region’s boundary
JC. For brevity, we will formulate the problem assuming the
latter scenario (i.e., generating coverage plans for covering the
boundary of a region/object of interest), however the proposed
formulation can be applied for both scenarios. In a high level
form, the problem tackled in this work can be formulated as
follows:

In (P1) we are interested in finding the agent’s mobility (i.e.,
Ur = {ug,..,ur—1}) and sensor (i.e., O = {6y,..,01},
Er = {&1,..,&r}) control inputs, over the planning horizon

Problem (P1): High-level Controller

argmin  Jeoverage (X7, Ur, Op, E7) (10a)
Ur,®r,E7
subject to: ¢t = [1,..,T]
t—1
2 =®wg+ Y O T, (10b)
7=0
zo,y ¢, V€T (10c)
aC € S1.p (10d)
T, x € X, up €U, 0t€é, ftEé (10e)

of length T, i.e., T = {1,..,T}, which optimize a certain set
of optimality criteria encoded in the state-dependent multi-
objective cost function Jeoverage(X7, Ur, ©1,27), where
Xt = {z1,.,2xr}, subject to the set of constrains shown
in Eqn. (TOb)-(I0¢). In particular, Eqn. (I0B) represents the
agent’s kinematic constraints as described in Sec. Then,
Eqn. (10c) represents obstacle avoidance constraints with a
specified set of obstacles W, and the constraint in (TOd)
(i.e., coverage constraint) is used to guarantee that during the
planning horizon the whole boundary of the region/object of
interest will be covered by the agent’s sensor FoV.

We should mention here that the notation Sj..- C Sy.p refers
to the reduced FoV coverage obtained when obstacles block
the sensor signals (i.e., camera-rays) from passing through,
thus creating occlusions. In this work we use a set of visibility
constraints to distinguish between parts of the scene p C 9C
that belong to the visible field-of-view i.e., p € S}.;- and parts
p that are occluded. In order to model the visible field-of-
view S1.; we use ray-casting to simulate the physical behavior
of the camera-rays and account for the occluded regions.
Therefore, the constraint in Eqn. (T0d), enforces the generation
of coverage trajectories, which take into account which parts
of the scene are visible through the agent’s camera at any
point in time. Finally, the constraints in Eqn. restrict
the agent’s state and control inputs within the desired bounds.
In the next section, we discuss in more detail how we have
tackled the problem discussed above.

We should mention here that in this work the following
assumptions are made: a) the agent has self-localization capa-
bility (e.g., via accurate GPS positioning), b) the environment
(i.e., object of interest, obstacles, etc.) is known a-priori, and
c) the visual data acquisition process is noise-free. However,
in certain scenarios in which the assumptions above no longer
apply, the agent’s visual localization accuracy at the planning
time is of essence in generating optimal coverage trajectories.
In such scenarios the proposed approach can be combined
with active visual localization techniques [55]], in order to
improve the agent’s visual localizability, and generate accurate
coverage trajectories.

V. INTEGRATED GUIDANCE AND GIMBAL CONTROL
COVERAGE PLANNING

In this section we design a mixed integer quadratic program
(MIQP) in order to tackle the optimal control problem of
integrated guidance and gimbal control coverage planning, as
described in problem (P1).
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A. Preliminaries

The proposed approach first proceeds by sampling points
p € OC on the region’s boundary, generating the set of points
P ={p1,.,pip|} C OC, where |P| is the set cardinality, thus
creating a discrete representation of the region’s boundary that
needs to be covered, as depicted in Fig. 2] Equivalently, a set
of points P C C are sampled from C in the scenario where
the region of interest is traversable. Essentially, the object of
interest is represented in this work as a point-cloud, which
in practice can be obtained with a number of scene/object
reconstruction techniques [56]], [57]. The coverage constraint
shown in Eqn. (T0d) can now be written as:

p €Sy, WWEP, (1)

and thus we are looking to find the optimal agent mobility
and sensor control inputs over the planning horizon, which
satisfy the constraint in Eqn. (TI)), i.e., the set of points P
must be covered by the agent’s sensor FoV. We should mention
here that the methodology used to generate P (e.g., systematic
selection or sampling procedure) is up to the designer and in
accordance to the problem requirements.

In the special scenario examined in this work, in which
the region (or object) of interest C is not traversable, and
thus acting as an obstacle to the agent’s trajectory, a set
of obstacle avoidance constraints are implemented i.e., Eqn.
to prevent collisions between the agent and the obstacle.
Intuitively, in such scenarios the agent must avoid crossing
the region’s boundary JC. We denote as AC, the piece-wise
linear approximation of the boundary OC, that contains the line
segments L, = L;; = {p;i +r(p; — pi)|r € [0,1],7 # i},
which are formed when connecting together the pair of points
(pi,pj)izj € P, such that the resulting line segments L; ;
belong to the boundary of the convex hull of P, as shown in
Fig. 2|

Let us assume that |P| points {pi,..,pp|} have been
sampled from OC, and that AC contains |P| line segments
{Lps» s Lpp }» where each line segment L, ,i = 1,..,|P]
lies on the line Lp ={z e R(EZD | & = B;}, where the line
coefficients in the vector «; determine the outward normal to
the iy, line segment and f; is a constant. The area inside the
region of interest C is thus modeled as a convex polygonal
obstacle with boundary AC defined by |P| linear equations
Lpl,z = 1,..,|P|. A collision occurs when at some point
in time ¢t € 7T, the agent’s position 2} resides within the
area defined by the region’s boundary AC or equivalently the
following system of linear inequalities is satisfied:

of 28 < B, Vie[1,..,|P]]. (12)

Hence, a collision can be avoided with C at time ¢ i.e., 2} ¢
C, when 3i € [1,..,|P|] : o) 2} > B;. This is 1mplemented

with a set of mlxed integer linear constraints as shown in Eqn.

(13a)-(13c).

T _.pos

—a; ¥ Mbif’imsm < =B, Vt,1, (13a)
P N

Zb?’)l}llsmn < (‘73' _ 1)’ Vt’ (13b)
i=1

b(ﬁ::)glision c {0’ 1}7 Vt,i- (13c)

Specifically, the constraint in Eqn. (13d), uses the binary
variable bcoum‘m to determine whether the ¢y inequality i.e.,

af 2 < B; of Eqn. (I2) is satisfied at some time ¢ € T
by setting bCOH““’" =1, where M is a large positive constant.
Then, the constraint in Eqn. (13b) makes sure that for any
time-step ¢, the binary variable bc"“‘“‘)n is actlvated less than
|P| —1 times, to ensure that the agent’s position z2** does not
reside inside the obstacle. These constraints, can be applied
for any number of convex polygonal obstacles i) € W, that
need to be avoided, by augmenting the variable b$olsion with
an additional index to indicate the obstacle number.

B. Visibility Constraints

In the previous section we have described how the region’s
boundary OC that needs to be covered, is defined as a piece-
wise linear approximation AC, and we have also shown how
the non-traversable area inside the region of interest C, is
modeled with a set of obstacle avoidance constraints, which
are used to prevent the agent from passing-through. In this
section, we devise a set of visibility constrains, which allows
us to determine which parts of the region’s boundary are
visible (i.e., not blocked by an obstacle) through the agent’s
camera, given a certain agent pose.

In this work, we use the term camera-rays to denote the
light rays that are captured by the camera’s optical sensor.
Without loss of generality, let us assume that at each time-step
t, a finite set of camera-rays enter the optical axis, denoted
as Ky, e, = {K1,.., K|x|}, where 0;, 27", &; determine
the agent’s pose and subsequently the FoV configuration, as
illustrated in Fig. [3[a)-(b).

The individual ray K; is given by the line-segment K; =
{xp“ + s(k; — 28%)|s € [0, 1]}, where 2} is the ray’s origin
given by the agent’s position at time ¢ and x; € R? is a fixed
point on the base of the triangle which defines the camera
FoV and determines the ray’s end point. We can now define
the notion of visibility as follows: The point p; € P,i €
[1,..,|P]|] on the region’s boundary OC, which exists on the
line-segment L,, € AC is said to be visible at time-step ¢ i.e.,
pi € S{(0¢, 28, &) when:

pi € Sy(0y, 28, &) A 3K € Ko, zr e, : (K ®AC) = Ly,
(14
where the operation K ® AC is defined as the intersection of
the camera-ray K, with the set of line segments in AC, and
returns the nearest (i.e., closest distance with respect to the
ray’s origin) line-segment L € AC which the ray K intersects
with. In the case where a ray K exhibits no intersections with
any line-segment, () is returned instead. In essence, the point
p; is visible at time ¢, when both constraints in Eqn. @]) are
satisfied i.e., a) p; is included inside the agent’s camera FoV
Si (0, 27, ft) and b) there exists a camera-ray K which first
intersects with the line-segment L, which contains the point
p;. In other words there is a camera-ray K which does not
intersect with any parts of the boundary (i.e., line segments)
L € AC prior to L,,, as illustrated in Fig. [3(b).
Let the camera-ray K (i.e., K = {a}” + s(k — 2}™)|s €
[0,1]}) to have x and y cartesian coordinates given by
21 (@) + sln(x) — ()] and 2™ (y) + s[r(y) — 21 (y)]
respectively. Also, let the = and y cartesian coordinates of the
a line-segment L,, = L; ; € AC on the boundary (i.e., L; ; =
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Fig. 2. In the scenario above we are interested in finding the optimal mobility
and sensor control inputs for a single UAV agent, which enable full coverage
of the boundary OC of a given region of interest C. AC denotes the piece-wise
linear approximation of the boundary which is composed of a finite number
of line segments. The points on the boundary p; and p; are connected with
the line segment L; ; € AC, where o denotes its outward normal vector. Full
coverage is achieved when every point p € P is included inside the agent’s
sensor FoV.

{pitr(pj—pi)lr € 10,1],j # i}) o be pi(x)+r[p; () —pi(x)]
and p;(y) + r[p;(y) — pi(y)] respectively. The intersection
K ® L;; of the camera-ray with the line segment can be
computed by solving the following system of linear equations
for the two unknowns i.e., (s,7):

Kly) — 22 (y)
15)

An intersection exists if the pair (s,r) € [0,1], and the
intersection point can be recovered by substituting either s
or r into the respective line-segment equations.

Subsequently, the ray-casting process described above must
be performed for each camera-ray K, amongst all sets of pos-
sible camera-ray configurations /Cy, v ¢, and line-segments
of the boundary AC, to determine which parts of the scene
(i.e., points on the region’s boundary), are visible through the
agent’s camera at each time-step ¢ € 7. This makes the ray-
casting computation very computationally expensive. Observe
here that the agent’s position z}™ is a continuous variable,
which depends on the unknown mobility control inputs i.e.,
Eqn. (3). More importantly the direct implementation of Eqn.
(T4)-(T3) requires the inclusion of non-linear and non-convex
constraints in the control problem tackled, which are very
hard be handled efficiently. For this reason, in this work an
alternative approximate procedure is employed, which allows
the ray-casting functionality described above, to be integrated
into a mixed integer quadratic program (MIQP) which in turn
can be solved to optimality with readily available optimization
tools.

In essence the surveillance area W is first decomposed
into a finite number of cells, and then the agent’s visible
FoV is computed within each cell, for all possible camera-ray
configurations. This enables the proposed approach to learn a
set of state-dependent visibility constraints which simulate the
physical behavior of camera-rays originating within each cell,
and which can be embedded into a mixed integer quadratic
program.

Let the rectangular grid G = {c1,..,¢|g|} to denote the
discretized representation of the surveillance area VV, which is
composed of cells ¢;,i = 1,..,|G| such that U‘lgl1 ¢i=G. To
implement the logical conjunction of the visibility constraint

in Eqn. (T4) we introduce 3 binary variables namely bS¢, b**"
and b, which are defined as follows:

bgtmt 1, iffdteT,meM:peS(m,a), (16)
bxtt =1, ifffHeT  af" €c, (17)
b, =1, iff IK € K¢ : (K ® AC) = Ly, (18)

where M denotes the set of all pairwise combinations m =
(0,€) of # € © and ¢ € Z=. Hence, the total number of
FoV configurations is equal to |[M| = || x |Z| and thus
Si(0;, 287, &) is abbreviated as S;(m, 2}”"), m € M. Above,
¢ € G is a rectangular cell, part of the surveillance area W
and p € OP is a point on the region’s boundary dC which is
also connected to some line-segment L, € AC.

The binary variable bffm,t in Eqn. (T6) is activated when
the point p is included inside the mgp € M FoV configuration
when the agent’s position is x , at time-step .

Then, the binary variable bc7 in Eqn. (17) shows at which
cell ¢ the agent with position z}™ resides at any point in
time ¢. Finally the constraint in Eqn. indicates with the
binary variable bcp if the point p is visible when the agent
is inside cell ¢, where the notation Ky, . indicates the sets
of camera-ray configurations for all p0551ble combinations of
sensor inputs ¢ and &.

To be more specific, bcp is learned offline, by pre-
computing for each cell ¢ € G and for each camera-ray
K € Ky the visible part of the boundary AC via the ray-
casting process discussed in the previous paragraph. This is
illustrated in Fig. 3]c).

We should note here that the agent position is sampled
uniformly 7 times from within each cell ¢, generating a set of
camera-ray configurations {'Kgy ;|i = [1,..,n;]}. Therefore
for each candidate agent position 2£™ € i = [1,..,n,] we
seek to find the visible points on the boundary.

Thus, a point p is visible at some time-step t € T, for
some combination of sensor input controls m € M, and agent

position z}> i.e., p € S/(m, z}™) when:
|g‘ pos
Im by, AL\ oy AVS) | =1 (19)
c=1

Specifically a point p is visible when both parts of the
conjunction in Eqn. (I9) are true: a) the point is included
inside the agent’s sensor FoV which is determined by the
agent position xP* and sensor control inputs ¢ and &, and
encoded by the binary variable b 'm,¢ and b) the agent W1th

position 2} resides inside the cell ¢ € G (encoded by bct )
at time ¢, from which originates a camera-ray K € ICW@
which first intercepts the line L, which contains point p (i.e.,
encoded in the learned variable b’f,p). We should note here
that the individual terms of the logical disjunction inside the
square brackets are mutually exclusive as the agent cannot
occupy two distinct cells at the same time. The ray-casting
information encoded in b’fp has been learned offline for each
cell ¢, and thus during the optimization phase, we need to find
the agent’s pose which results in a FoV configuration which
observes point p (i.e., bp 'm.¢) and also determine whether the

agent resides inside a cell ¢ € G (indicated by bct) from
which point p is visible (as indicated by b~ -p)- In the next
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Fig. 3. The figure illustrates how the proposed approach tackles the visibility problem by simulating the physical behavior of camera rays. (a) In the coverage
problem investigated in this work, every point p € P on the boundary approximation AC of the region of interest must be covered by the agent’s sensor
FoV, shown with the pink triangle. (b) The sensor’s FoV is composed of a finite number of camera-rays K1, .., K|x| € Ky, 2P g, parameterized by the
agent’s pose as shown above. A point p is visible through the agent’s camera when it resides inside the camera FoV and exists some ray K which first
intersects the line segment L, which contains the point p. (c) We learn a set of visibility constraints by decomposing the surveillance area into a number of
cells c1, .., ¢|g|, thus creating a rectangular grid G. For each cell we learn the visible parts of the scene by checking the intersection of the boundary’s line
segments with the camera-rays for all possible combinations of camera-ray configurations ICQh ey

section, we will show how the above constraints are embedded
in the proposed coverage controller.

C. Coverage Controller

The complete formulation of the proposed integrated guid-
ance and sensor control coverage planning approach is shown
in problem (P2). Specifically, in this section we will show
how the high-level problem shown in (P1) is converted into
a mixed integer quadratic program (MIQP), which can be
solved exactly using readily available optimization tools [48]].
To summarize, our goal in (P2) is to jointly find the mobility
and sensor control inputs inside a planning horizon, which
optimize a mission-specific objective function i.e., Jcoverage
subject to visibility and coverage constraints.

1) Constraints: Guidance control is achieved by appropri-
ately selecting the agent’s mobility control inputs Up = {u; :
t € [0,..,7 — 1]} governed by its kinematic constraints i.e.
Eqn. (20b). On the other hand, sensor control is achieved
via the constraints in Eqn. (20c)-20d). More specifically,
in Eqn. we construct the FoV configurations for all
possible pairwise combinations {m = (6,£)} € M of the
sensor inputs i.e., rotational angle () and zoom-level (§).
Specifically, the continuous variable V!, represents a 2 by 3
matrix containing the sensor’s FoV vertices for the my, FoV
configuration. In essence for each zoom-level ¢ € = (which
determines the FoV parameters ¢ and h), the FoV is rotated
at the origin for each admissible angle § € ©, thus creating
a total of |[M| = |O] x |Z| FoV configurations indexed by
m as shown. Subsequently, all the FoV configurations are
translated to the agent’s position z}™ at time ¢ as shown in
Eqn. (20d). Therefore, the UAV’s pose at each time-step inside
the planning horizon is completely specified by the constraints
in Eqn.(20b)-(20d).

The constraint in Eqn. (20€), uses the function £(.) which
takes as input the vertices of the my FoV configuration at
some time ¢ i.e., Vp, ; and returns a set of linear constraints
of the form:

A,\f’myt x x < BY

n,m,t»

2y

where n = [1,..,3] and thus A}, , is a 3 by 2 matrix,
B)fm is a 3 by 1 column vector, and = is column vector
representing an arbitrary point in R2. Given two vertices
of the triangular FoV, the function £(.) works by finding

Problem (P2): Coverage Controller

arg min L7coverage (XT7 UT7 @T7 E:T) (208.)
Ur,®r,E1
subject to: ¢t = [1,..,T]
t—1
z, = ®lag + Z ST, vt (20b)
7=0
Vi = R(O)V,(€) v{(0,6)} e M (20c)
Vit = Vi, + 2 ¥Ym  (20d)
AY i BY i =LV ) Vm,n=[1,.,3]  (20e)
A i XD+ (20f)
bnxpxm,t(M - B’r]:,m,t) S M vnap7 mat
3
365 = Y bnpmi <0 Vp,m,t  (20g)
n=1
A7 By, = L(Ge) Ve, k=[1,..,4]  (20h)

A7 x ™ + (201)

D, (M — B;fyc) <M vk, c,t
4
4b§t - ng,c,t <0 Vet (20§)
k=1
[M]
Y R =1 vt (20k)
m=1
byt = Freke A (201)
. o
t T
bp,m,t A \/ (bc,t A b("c,p) vp7 m, t
c=1
T |M| ,
YD e =1 Yp  (20m)
t=1 m=1
o, 7} E U, VP €T (20n)

zo, 2 €EX, €U, €O, E€=
mell, . MlLpell,.|Plecell..|¢]
F;ﬁ,{tv bn,p,m,t € {07 1}

T
bp,m,t’ bk:,c,t7 bc,t ) bp,m,t’

I
bep €10, 1}
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the equation of the line which passes through these two
vertices. In total 3 line equations are constructed which fully
specify the convex hull of the triangular FoV i.e., a point
x € R? belongs to the convex hull of the triangular FoV iff
AY o xx < BY, ., ¥n=[1,.,3]. More specifically, A), ,
and B,‘éyt contain the coefficients of the lines which form the
triangular FoV, where in particular the matrix A}f’m’t contains
the outward normal to the ng line. We can write the line
equation which passes from two FoV vertices i.e., (v}, v}) and
(vZ,02) as azx + by = ¢, where the coefficients a = vf — vy
and b = v2 — v} define the normal on the line i.e., 77 = (a,b)
and ¢ = vgv; —vjvl, thus AY, = [a,b] and BY,,, = c
To summarize, we can determine whether an arbltrary point
x € R? is included inside the sensor’s FoV by checking if the
system of linear inequalities in Eqn. (ZI)) is satisfied.

The constraint in Eqn. 21)) is implemented as shown in (P2)

with the constraints shown in Eqn. (20f)-(20g) i.e..:

At X P+ bopm i (M = By

n,m,t

) S M? vn7p7m7t’

3
Z bn,p,m,t S Oa vpv m, t.

n=1

3p5

p,m,t

In essence, these constraints allows us to check whether
some point p € P is covered by the agent’s sensor i.e.,
p € Si(m,2™), when the agent is at position 27 at time-
step ¢, and the sensor’s FoV is at the my, conﬁguration As
we discussed earlier the matrices A), + and BY »,¢ contain the
coefficients of the sensor’s FoV for every poss1ble configura-
tion m € M and time-step ¢t = [1,..,T]. With this in mind,
we use the binary variable b, to decide whether some
point p € P, resides inside the negative half-plane which is
created by the ny, line, of the my, FoV configuration at time .
When this happens the by, 5, , + is activated and the inequality
in Eqn. (201) is satisfied i.e., Anmt xp < Br‘f’m)t. On the
other hand when AY, , xp > BY . the constraint in Eqn.
@00 is satisfied by setting b, n,p,m,t = 0 and using the large
positive constant M. Subsequently, the constraint in Eqn. (20g)
uses the binary variable p ‘m,¢ to determine whether the point
P re51des at time ¢ inside the M conﬁguratlon of the FoV.
Thus p ot is activated only when Z by p,m,+ = 3, which
signifies that the point p is covered by the sensor’s FoV.

Similarly, the next 3 constraints shown in Eqn. (20h) - (20)
(also shown below) use the same principles discussed above, to
determine whether the agent with position 2} resides inside
cell c € G at time t.

A%c’ Bgc = C(gc)7 Vk = [13 -74}767

Af % xf‘” + bpet(M = B ) < M, Vk,c,t,

any, — Zék,c,t <0, Ve, t.
k=1

Specifically, the constraint Eqn. (Z0h) uses the function L(gc)
on the grid cells and returns in the matrices A . and Bk o
the coefficients of the linear inequalities Wthh define the
convex hull of every cell ¢ € G in the grid. A point z € R?
resides inside a rectangular cell ¢ iff AY x x < BY, where
AY is a 4 by 2 matrix and BY is a 4 by 1 column vector.
Therefore, the constraint in Eqn. uses the binary variable

l;k c,+ to determine whether the agent’s position satisfies the kg,

inequality i.c., A7 xaf™ < BY Wk = [1,..4]. Subsequently,
200

the binary variable b, in Eqn. (20]) is activated when z}*

resides inside cell ¢ at time ¢t. Next, we make use of the
constraint in Eqn. (20K) i.e.,

M|
SRS =1, vt
m=1

to account for the fact that at any point in time ¢, only one FoV
configuration is active. In other words we would like to prevent
the scenario where more than one sets of sensor input controls
are applied and executed at some particular time-step ¢. To do
this we define the binary variable F*°' consisting of | M| rows
and T columns, such that 73!, € {0,1},Ym € M,t € T, and
we require that at each time-step ¢ only one FoV configuration
is active by enforcing the sum of each column to be equal to
one, as shown in Eqn. (20K).

We can now determine whether some point p belongs to the
visible FoV as:

4
S; 1 S o
Byl = Fom Abpin s A |\ (B2 ADS) | Vp,mt,
c=1
where the binary variable bp 'm,¢ 18 activated when the point

p € P is visible at time ¢, and specifically resides inside
the my FoV configuration ie., p € S/(m,z}™). As 1t is
shown, in the con]unctlon above, the binary variable pfmt
captures the sensor’s pose, which is determined by the agent’s
position z}* at time ¢ and sensor orientation given by the
m FoV configuration, and determines whether the point p
resides inside the sensor’s FoV i.e., constralnts in Eqn. (201)-

(20g). Then the binary variable bct checks if the agent at
time ¢ resides inside a particular cell ¢ i.e., Eqn. (20R) - (0
and together with the learned variable b » (as discussed in
Sec. [V-B), determine whether the point p is visible given that
the agent is at cell c. To summarize, a point p belongs to the
visible FoV when there exists some cell ¢ from which the point
p is visible and at time-step ¢ the agent’s position 2} resides
inside that cell ¢ and exists a FoV configuration m such that
point p is covered by the agent’s sensor at time ¢. Lastly, in
order to make sure that only one FoV configuration is active
at each time-step (i.e., one set of sensor controls is applied),
we use the FoV selector F3¢!, as shown in Eqn. (20K).

Finally, we can ensure that during the planning horizon,
every point p € P will be covered at least once by the agent’s
sensor via the constraint in Eqn. (Z0m):

T |M]|

Zszmt—l vpa

t=1m=1

where we require that there exists at least one FoV config-
uration (i.e., one set of sensor input controls) m 6 ./\/l at

some time-step t € T, such that the binary variable bp m.t 18

activated i.e., bp 'm.t = 1 for every point p € P. Therefore,
determining the agent’s mobility and sensor control inputs
such that all points are included inside the agent’s visible FoV
at some time-step during the planning horizon.
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The last constraint shown in Eqn. (20n)), implements the
obstacle avoidance constraints as discussed in Sec. [V-Al
To summarize, we have derived a set of constraints i.e.,
Eqn.(20D)-(20n) which jointly account for the agent’s kine-
matic and sensing model, integrate visibility constraints into
the coverage planning problem and guarantee full coverage
inside the planning horizon, given that a feasible solution
exists. Finally, we should note that the formulation of the
coverage controller shown in problem (P2) can be easily
extended to tackle the problem in 3D environments, however
this has been left for future works. Next, we discuss in detail
the design of the objective function, which can be used in order
to optimize a set of mission-related performance criteria.

2) Objectives: The problem of integrated UAV guidance
and sensor control which is studied in this work is a core
component for many applications and tasks including surveil-
lance, emergency response, and search-and-rescue missions.
Take for instance a UAV-based search-and-rescue mission
where the objective is to search an area of interest and locate
as quickly as possible people in need. In such scenarios,
the mission’s completion time is of the highest importance
for saving lives. In other cases the UAV’s efficient battery
utilization is imperative for the success of the mission. Mo-
tivated by the objectives and requirements discussed above
we design a multi-objective cost function Joverage t0 allow
for the characterization of several mission-related optimality
criteria, and trade-offs amongst these. In this work, Jcoverage
is composed of a set of sub-objectives, which sometimes
might be competing. More specifically, we define the overall
coverage objective Jeoverage aS:

= ('lU1J1 +U}2J2++wan), (22)

»7coverage

where .J; represents the iy, sub-objective and w; is the tuning
weight associated with the ¢y, sub-objective. Therefore, the
weights are used to emphasize or deemphasize the importance
of each sub-objective according to the mission goals. Next we
design several possible sub-objectives which can be used to
drive an efficient coverage planning mission.

Mission completion time (J1): As discussed earlier one of
the most important objectives in a coverage planning scenario
is the minimization of the mission’s completion time. In
other words, we are interested in finding the optimal UAV
control inputs (i.e., mobility and sensor controls), which when
executed allow the agent to cover all points of interest p € P
as quickly as possible, thus minimizing the time needed to
conduct a full coverage of the region of interest. This can be
defined as follows:

[Pl M| T

B=X X (e 7))

p=1m=1t=1

(23)

In essence by mlmmlzlng J1, we are minimizing the product
of the binary variable b : m.t With the factor (t/T), over the
planning horizon of length T, for all points p € P and FoV
configurations m € M. Effectively, (t/T) in Eqn. 23) acts as
a weight to bi,tm,t which increases over time. This drives the
optimizer to find the optimal mobility and sensor control inputs
which allow the agent to cover all points p € P as quickly
as possible or equivalently bp 'm.¢ 18 activated for each point
at the earliest possible time-step. Finally, we should note here

that the agent’s control inputs are directly linked with bp 't
since the agent’s pose is jointly determined by its moblhty and

sensor controls i.e., Eqn. (20c)-20d) and also bp .t is only
activated when point p is visible.

Energy Efficiency (J>): Energy-aware operation is another
essential objective for various applications. In essence we
are interested in prolonging the UAV’s operation time (i.e.,
minimizing the battery drain), by optimizing the UAV’s mo-
bility control inputs (i.e., the amount of force applied), thus
generating energy-efficient coverage trajectories. Although, the
proposed coverage planning formulation, does not directly
uses a battery model for the UAYV, it is assumed that the UAV
mobility control inputs are directly linked with the battery
usage. Therefore, energy efficient coverage planning can be
achieved by appropriately selecting the UAV’s mobility control
inputs. Specifically, it is assumed that the generation of smooth
UAV trajectories with reduced abrupt changes in direction and
speed can lead to improved battery usage, thus we define the
energy-aware coverage planning sub-objective as:

T-1 T-1
= Z e — wa 5 + Z |uel,
t=1 t=0

where we minimize a) the sum of deviations between consec-
utive control inputs and b) the cumulative magnitude of the
absolute value of individual controls, thus leading to energy
optimized coverage planning.

Sensor Control Effort (J3): The last objective aims to mini-
mize the sensor deterioration due to excessive and/or improper
usage i.e., by reducing the utilization of the gimbaled sensor
during the mission. This allows us to maintain the sensor’s
healthy status and prolong its lifespan. For this reason, we
define as sensor control effort the deviation between successive
FoV configurations and thus J3 is defined by:

(24)

T—1 M|
=Y D NFES = FLIB, (25)
t=1 m=1

which favors the generation of coverage trajectories which
achieve full coverage with minimum gimbal utilization.

To summarize, in this section we have described a set
(not exhaustive) of sub-objectives, which can be used to
compose the overall multi-objective cost function Jeoverage
for the coverage path planning problem we examine in this
work. These sub-objectives can be prioritized depending on the
problem requirements, while new ones can be added according
to the mission specifications. We should mention here that
the objective .J3 described above can also be incorporated
into the objective J5 i.e., energy efficiency, to account for
the overall energy expenditure (i.e., energy expenditure from
motion control and from gimbal control) of the system.

VI. EVALUATION
A. Simulation Setup

In order to evaluate the proposed integrated guidance and
gimbal control coverage approach we have conducted a thor-
ough simulation analysis. More specifically, the evaluation is
divided into three parts. In the first part we investigate the
effect of the visibility constraints on the coverage planning
behavior. In the second part of the evaluation we showcase
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Fig. 4. The figure illustrates the impact of the visibility constraints on the generated coverage trajectories. (a) Visibility constraints are enabled, (b) Visibility
constraints disabled. The visibility constraints simulate the physical behavior of camera-rays, therefore allowing the agent to distinguish between visible and

occluded points.

the proposed approach for various mission related optimality
criteria, and finally in the third part, we analyze the generated
coverage trajectories for various parameters of the inputs.
The simulation setup used for the evaluation of the proposed
approach is as follows: The agent kinematics are expressed
by Eqn. (I) with 6t = 1s, agent mass m = 3.35kg and
drag coefficient = 0.2. For demonstration purposes, the
control input (i.e., input force) u; = [f¢(x), fi(y)] is bounded
in each dimension according to |f:(z|y)| < 3N, and the
agent velocity is bounded according to |v¢(z|y)| < 2m/s. The
agent’s FoV angle is set to ¢ = 30deg, and the sensing range
h = Tm. The camera zoom-levels are set to = = {1,2},
thus the camera characteristics for zoom-level £ = 1 and
& = 2 are given by (¢ = 30,h = 7) and (¢ = 15,h = 14)
respectively. In total we consider 4 camera rotation angles i.e.,
© = {85, 28, 28,85} which are used to rotate the camera
FoV according to Eqn. (7)), leading to a total of 8 possible FoV
configurations i.e., |M| = 8. We have used the ray-tracing
procedure with || = 5 camera-rays in a surveillance region
W that has a total area of 60 x 20m?. The region/object of
interest C is represented by a bell—shag)ed curve (as illustrated

in Fig. , given by f(z) = a x exp %:l))z with a, b and
c set to 10, 40 and 2 respectively. The region of interest is
assumed to be non traversable, and thus we are interested in
generating coverage trajectories to cover a total of 11 points
P = {p1,..,p11} sampled from the region’s boundary OC.
Finally, we should mention that the visibility constraints have
been learned on a discretized representation G of the surveil-
lance area, where G contains 16 square cells (as illustrated
in Fig. ) of size 10m x 5m. To summarize, the visibility
constraints have been learned according to Sec. with
M| = 8,|P| = 11, |G| = 16,ns = 15 and |AC| = 11. The
results have been obtained with Gurobi v9 solver, running on
a 2.5GHz laptop computer.

B. Results

1) Visibility Constraints: With the first experiment, shown
in Fig. [f] we aim to investigate the impact of the visibility
constraints on the trajectory generation process, and gain
insights on the coverage planning behavior of the proposed
approach. Specifically, Fig. ff[a) shows the coverage trajectory,
agent velocity, and mobility control inputs, within a planning
horizon of T" = 10 time-steps when the visibility constraints

are enabled, whereas Fig. [b) shows the exact same scenario
with the visibility constraints disabled. The region of interest
is shaded in pink (i.e., the bell-shaped curve), the agent’s
trajectory is marked with —{—, the agent’s start and stop
positions are marked with x and x respectively, and the points
on the boundary to be covered are marked with e. The figure
also shows the FoV configuration at each time-step, indicated
by the isosceles triangles, where the black solid lines and the
gray dashed lines correspond to the first (1) and second (¢5)
zoom-levels respectively. Finally, the agent’s trajectory and the
points to be covered are color-coded according to the time-step
which are observed, as shown in the figure legend. Therefore,
according to Fig. a), point p; (colored dark blue) is covered
at time-step ¢ = 2, point py (colored light blue) is covered
at t = 3, point p3 (colored light green) is included inside the
agent’s FoV at t = 4, point p4 (colored black) is the first point
to be viewed by the agent at time-step ¢ = 1, and so on and so
forth. We should mention that for this experiment we have set
Jecoverage = 1 (i.€., we are minimizing a constant), and thus the
solely goal of the optimization in this experiment is to satisfy
the coverage constraints (i.e., cover all points).

As we can observe from Fig. f{a), the agent starts from the
left side of the bell-shaped curve, and appropriately selects its
mobility and sensor control inputs which achieve full coverage.
More importantly, we can observe that although the FoV can
extend all the way through the object of interest (e.g., att =1
points py and pg are inside the FoV), the use of visibility
constraints, which simulate the physical behavior of camera-
rays, allow the identification of occlusions (e.g., at t = 1 point
ps is occluded, and becomes visible at ¢ = 7 as shown).
Therefore, the agent can identify at each time-step which
points are visible through its camera and plan its coverage
trajectory as needed. For this reason, in this test the agent
goes over the bell-shaped curve, towards the other side of the
curve, in order to cover the occluded points i.e., at t = 7 points
p7 and pg are covered, at ¢ = 8 point pg is covered, at ¢t = 9
the point pg is covered and the remaining points (p1p and p11)
are covered at time-step t1o. In addition, it is shown that the
obstacle avoidance constraints restrict the agent from passing
through the object of interest. On the other hand, observe from
Fig. @|b) that when the visibility constraints are disabled, the
agent cannot distinguish between visible and occluded parts of
the scene i.e., at t = 1 the points pg and pg (colored black) are
occluded but observed, similarly point p; (colored green) is
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Fig. 5. The figure illustrates the generated coverage planning trajectories over a planning horizon of length 20 time-steps, for 3 different sub-objectives. (a)
Mission completion time (.J1), (b) Energy efficiency (J2), and (c) Sensor control effort (J3).

occluded at ¢ = 5 but it is observed as shown in the figure. This
is because the sensor’s visible FoV is not modeled adequately
without the use of the visibility constraints, and as a result the
generated trajectory does not resembles a realistic coverage
path.

2) Coverage Objectives: The purpose of the next ex-
periment is to investigate in more detail different coverage
planning strategies by optimizing the sub-objectives discussed
in Sec.[V-C] More specifically, we will show how the coverage
plan changes when optimizing the mission completion time
(J1), the energy efficiency (Js), the sensor control effort (J3),
and a weighted combination of those. Figure [5] shows the
coverage planning trajectories along with the agent position,
velocity, and input force over time for the same scenario,
when optimizing the individual sub-objectives Ji, J2, and J3,
within a planning horizon of length 20 time-steps. As it can be
seen from Fig. [5[a), when optimizing the mission completion
time (J1), the set of 11 points P is fully covered at time-
step 7. Note that the agent’s trajectory and the points to be
covered are color-coded according to the time-step at which
the coverage occurs. In this sense the last point in Fig. 5fa)
which is color-coded light green is covered at time-step 7. The
time-step at which all points are covered is also shown in the
agent position plot, and marked with a black circle. We should
point out here that for visual clarity the graphs show the FoV
configurations only for the time-instances for which a point
is included inside the sensor’s FoV. Next, Fig. |§Kb) shows the
coverage trajectory for the sub-objective which minimizes the
agent’s energy expenditure. As it is shown, in this scenario the
applied input force which is used for guidance is driven to zero
over time. In addition we can observe that the agent moves
in small increments (i.e., consecutive positions are close to
each other) as opposed to the previous scenario, also indicated
by the velocity plot. Also, observe how the agent utilizes its

Jo =10J1 +0.5J2 +0.1J3 Ty = 0.1J1 +10J3 + 0.5J3
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Fig. 6. The figure illustrates the coverage planning trajectories over a planning
horizon of 20 time-steps, for two different multi-objective cost functions. (a)
Ja =10J1 +0.5J2 + 0.1J3, and (b) Jp = 0.1J1 + 10J2 4 0.5J3.

sensor to achieve full coverage (which occurs at time-step
20), while optimizing for energy efficiency. In this scenario,
6 out of the 8 camera FoV configurations are used over the
planning horizon, until full coverage is achieved. Finally, Fig.
PBlc), shows that the minimization of the sensor control effort
(J3), forces the agent to complete the mission by utilizing
just 1 out of the 8 possible FoV configurations. Essentially,
in this scenario the camera remains fixed as shown in the
figure. In this scenario full coverage was achieved at time-step
14 as shown in the graph. Also observe that in this scenario
the mobility controls fluctuate significantly as opposed to the
previous scenario.

These three different sub-objectives can be incorporated
into a multi-objective cost function, as discussed in Sec.
and by adjusting the emphasis given to each sub-objective
the desired coverage behavior can be obtained as shown
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Fig. 7. The figure illustrates the coverage plan for two different scenarios
which exhibit a traversable area of interest, indicated by the pink shaded
rectangle. (a)(b) The agent’s coverage plan when the area of interest is
approximated by |P| = 15 equally spaced points shown as e, (c)(d) The
agent’s trajectory used to cover |P| = 15 points uniformly sampled from the
area of interest. The numbers on the trajectory indicate time-steps.

in the next experiment i.e., Fig. [f] More specifically, we
have run the coverage planning with two different multi-
objective cost functions i.e., J, = 10J; + 0.5J2 + 0.1J3
and J, = 0.1J; + 10J5 + 0.5.J3 shown in Fig. [6(a) and Fig.
[lb) respectively. In both scenarios we aim to optimize for
energy efficiency by including, and appropriately weighting
sub-objective Jo in the multi-objective cost function. As it is
illustrated the applied force is minimized and driven to zero
for both scenarios. However, due to the higher emphasis given
to Jy in the second scenario, [, optimizes energy savings
more aggressively also indicated by the generated coverage
trajectory. Observe that in objective J, greater emphasis is
given to mission completion time (i.e., J;), which results in
faster coverage (at time-step 7). On the other hand in 7, full
coverage is achieved at time-step 17. Finally, we observe that
by weighting more on the sub-objective J3 in J;, allows the
agent minimize the gimbal rotations by maintaining the camera
fixed and at the same time optimize for energy efficiency as
shown in Fig. [6[b).

Our next experiment shows the behavior of the proposed
coverage planning approach for a traversable region of interest,
indicated by the pink shaded rectangle shown in Fig.[7] In this
scenario, without loss of generality, we assume an obstacle-
free region of interest. More specifically, in Fig. [7[a) the region
of interest is approximated with a total of |P| = 15 equally
spaced points (shown as e), which need to be covered by the
agent, initially located at (z,y) = (5,5) (shown as *). Figure
[7[b) shows the agent’s coverage trajectory when optimizing
the coverage objective J = 0.1J; + J inside a planning
horizon of length 7" = 12 time-steps. In this scenario, the
agent’s FoV angle ¢ and sensing range h are set to 35deg,
and 5m respectively, and the camera can be rotated in 5 ways
ie, © = {-85,-42.5,0,42.5,85}. In order to make the
illustrations easier to read, in this scenario we do not make use
of the zoom functionality i.e., = = {1} which leads to a total
of 5 possible FoV configurations i.e., |[M| = 5. As shown
in Fig. [7(b) the agent’s mobility control inputs and camera
rotations are appropriately selected and optimized according
to the coverage objective J to achieve full coverage of the
region of interest, i.e., as shown in the figure the points are

Z20t [T =20
® ——¢ =40
£ s} 1—8—¢ =060
S ¢ =80
S0 M 1 =0 = 100
3 5¢ 1
h=5 h=8 h=11 h=14
Sensing range ()
Fig. 8. The figure shows the mission completion time for various pa-

rameter configurations of the FoV, ie., ¢ € {20,40,60,80,100} and
h e {5,8,11, 14}.

colored-coded according to the time-step they are observed by
the agent. Next, Fig. [7[(c)(d) shows the same setup for 15 points
which are sampled uniformly from the region of interest. As
shown in Fig. [7/(d) the generated coverage plan enables the
agent to cover all 15 points over the planning horizon.

Our last experiment investigates how various configurations
of the FoV parameters ¢ and & (i.e., opening angle and sensing
range) affect the coverage performance and more specifically
the mission completion time. For this experiment, we use the
simulation setup discussed in the beginning of this section,
with = = {1} and optimizing J;. We perform 50 Monte
Carlo trials, where we sample the agent position randomly
within a disk of radius 5m centered at (x,y) = (30,6) for
each combination of the parameters (¢, h) € ® x H, where
® € {20,40,60,80,100}deg and H = {5,8,11,14}m. In
particular, Fig. [8] shows the average coverage completion time
for all configurations of the parameters. As we can observe the
time needed for full coverage drops from 20sec to below 15sec
when we increase the sensing range from A = 5bm to h = 14m
for the scenario where the angle opening is set to ¢ = 20 deg.
Similarly, for fixed sensing range set at h = 5m, the coverage
time reduces approximately by 50% as the angle opening
increases from 20deg to 100deg. Overall, as we can observe
the from Fig. [§] the mission completion time improves as the
FoV increases both in terms of ¢ and h. Finally, observe that
the extremities of the bell shaped object of interest are 10m tall
(at the very top) and 10m wide (at the base), which means that
without the use of the proposed visibility constraints and with
a camera configuration of ¢ = 100deg and i = 14m, the UAV
agent could have observed all points and finish the mission
in a couple of seconds, as the entire object of interest would
have been included inside it’s sensor’s footprint. However, this
erroneous behavior is prevented in this work by the integration
of ray-casting into the proposed coverage controller.

VII. CONCLUSION

In this work we have proposed an integrated guidance and
gimbal control approach for coverage path planning. In the
proposed approach the UAV’s mobility and sensor control
inputs are jointly optimized to achieve full coverage of a given
region of interest, according to a specified set of optimality
criteria including mission completion time, energy efficiency
and sensor control effort. We have devised a set of visibility
constraints in order to integrate ray-casting to the proposed
coverage controller, thus allowing the generation of optimized
coverage trajectories according to the sensor’s visible field-
of-view. Finally, we have demonstrated how the constrained
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optimal control problem tackled in this work can be formulated
as a mixed integer quadratic program (MIQP), and solved
using off-the-shelf tools. Extensive numerical experiments
have demonstrated the effectiveness of the proposed approach.
Future directions include the extension of the proposed ap-
proach in 3D environments, the evaluation of the proposed
approach in real-world settings, and extensions to multiple
agents.
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