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Multi-sensor Suboptimal Fusion Student’s t Filter
Tiancheng Li, Zheng Hu, Zhunga Liu and Xiaoxu Wang

Abstract—A multi-sensor fusion Student’s t filter is proposed
for time-series recursive estimation in the presence of heavy-tailed
process and measurement noises. Driven from an information-
theoretic optimization, the approach extends the single sensor
Student’s t Kalman filter based on the suboptimal arithmetic av-
erage (AA) fusion approach. To ensure computationally efficient,
closed-form t density recursion, reasonable approximation has
been used in both local-sensor filtering and inter-sensor fusion
calculation. The overall framework accommodates any Gaussian-
oriented fusion approach such as the covariance intersection
(CI). Simulation demonstrates the effectiveness of the proposed
multi-sensor AA fusion-based t filter in dealing with outliers as
compared with the classic Gaussian estimator, and the advantage
of the AA fusion in comparison with the CI approach and the
augmented measurement fusion.

Index Terms—Heavy-tailed noise, Student’s t filter, arithmetic
average fusion, covariance intersection, multi-sensor fusion

I. INTRODUCTION

HEAVY-TAILED noises are involved in many state es-

timation problems, e.g., tracking scenarios with ag-

ile/manoeuvering targets and outlier-corrupted measurements

[1]. In these situations even when the state space model is

linear, the performance of the predominant Kalman filter (KF)

that models the noises as Gaussian often deteriorates. This

gives rise to outlier-robust estimator based on heavy-tailed dis-

tribution such as the Student’s t for modelling the process and

measurement noises [2], [3], [4], [5], [6]. The t distribution can

be viewed as a generalized Gaussian distribution that has an

adjustable parameter referred to as the degree of freedom (dof)

to uplift the tail of the distribution [7]. As the key to drive the

Bayes recursive Student’s t filter, the joint probability density

function (PDF) of the state and process/measurement noises

is assumed to be Student’s t, and the prediction/posterior state

PDF is then approximated as Student’s t [4], [1], [5] based

on linear transformation of t distribution. Different strategies

have been further proposed for dealing with nonlinearity using

such as the Monte Carlo method [8], [9], linearization [4], and

unscented transform [5], [10].

So far, the majority of existing Student’s t filters are

implemented on the base of a single sensor except for few

exceptions that seek optimal fusion of Student’s t in the

sense of minimum variance (MV) estimation [11], [12]. First,

these fusion approaches rely restrictively on accurate knowl-

edge (or neglection) of the correlation between sensors (or

to say, the common information among sensors [13], [14],

[15]). Failure to properly account for the correction will lead

to inconsistent estimation (e.g., underestimating the actual
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squared estimate errors) and even filter breakdown. Second,

a key of the MV-oriented fusion is to get as accurate estimate

as possible which prefers actually light-tailed density and is

lack of congruity with the idea of the heavy-tailed estimator

where the robustness-to-outliers stems from a heavy-tailed

posterior. These observations motivate us to develop novel

fusion approach that does not need to calculate the inter-sensor

correlation or common information yet avoids inconsistent

estimate and preserves the heavy tail of the t estimator.

Furthermore, when a large scale sensor network that is highly

restrictive in both communication and computation is involved,

computation efficiency and tolerance to node faults are also

vital factors that need to be taken into account.

In this paper, we propose a multi-sensor Student’s t filter

which does not seek optimal fusion like MV but suboptimal,

robust fusion in tune with the heavy-tailed estimator. To

this purpose, we employ the arithmetic average (AA) density

fusion that basically merges the involved posteriors in an

appropriate way. The AA fusion, often applied jointly with

the consensus/diffusion approach and finite mixture optimiza-

tion, was first proposed for multi-target density fusion in the

presence of missing and false data [16], [17], [18], [19], [20],

[21] and has recently been extended to a single target [22], [23]

and to the classic KF [24]; see also cutting-edge reviews [25],

[26]. It has demonstrated high efficiency in computation and

tolerance to sensor fault (such as misdetection and false alarm),

and accommodates any degree of inter-sensor correlation.

More relevantly, the AA density fusion is rooted in a dispersive

finite mixture expression of the target distribution and so is

naturally robust to outlier and complies with the principle for

heavy-tailed estimator design.

However, the straightforward application of the AA fusion

to the Student’s t distribution leads to a Student’s t mixture

which has to be approximated by a single t distribution for the

purpose of closed-formed recursive filtering. Furthermore, the

optimization of the fusion weights drives a need of Kullback-

Leibler (KL) divergence regarding t distributions which does

not admit analytical solution. To solves these challenges,

we resort to ideas in dealing with Gaussian-AA fusion [24]

through approximating calculation regarding t distributions

by that of Gaussian distributions with matched mean and

covariance. To concentrate our key contribution on Student’s t
AA fusion, the single sensor filter we employ is the Student’s

t filter based on simplified dof choice [4], [1]. All derivations

are made from first principles. As an extension of the proposed

multi-sensor Student’s t filter, the covariance intersection (CI)

[14] approach advocated originally for Gaussian fusion can

also be employed in place of the AA fusion.

The remainder of this paper is organized as follows. Back-

ground is briefly introduced in section II. The proposed

Student’s t filter based on the AA fusion approach is driven

http://arxiv.org/abs/2204.11098v1
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in section III and is extended to the CI fusion in section IV.

Simulation and comparison study are given in section V before

we conclude in section VI.

II. BACKGROUND

A. State Space Model with Student’s t Noises

We consider the following discrete-time state space model

with additive noises

xk = fk−1(xk−1) +wk−1 (1)

zk = hk(xk) + vk (2)

where k is the discrete time index, xk ∈ R
n is the state vector,

zk ∈ R
m is the measurement vector, and fk−1(·) and hk(·) are

the process and measurement functions, respectively, and wk

and vk are the process and measurement noises, respectively.

We further denote the Jacobian matrixes of fk−1(·) and hk(·)
by Fk−1 and Hk, respectively, which are useful for linearizing

the nonlinear models.

In this paper, we particularly consider the heavy-tailed

Student’s t noises, namely,

p(wk) = S(wk;0,Qk, νQ) (3)

p(vk) = S(vk;0,Rk, νR) (4)

where S(·;µ,Σ, ν) denotes the Student’s t PDF with mean

vector µ, scale matrix Σ, and degree of freedom (dof) param-

eter ν, Qk and νQ are the scale matrix and dof parameter of

the process noise, respectively.

The Student’s t distribution S(x;µ,Σ, ν) is a bell-shaped

distribution with PDF [7]

S(x;µ,Σ, ν)

=
Γ(ν+n

2
)

Γ(ν
2
)|Σ|

1
2 (πν)

d
2

(

1 +
(x− µ)TΣ−1(x− µ)

ν

)− ν+n
2

(5)

where Γ(·) represents the Gamma function. To note, the

mean and covariance of the S(x;µ,Σ, ν) are µ and ν
ν−2

Σ,

respectively. Hereafter, ν > 2.

B. Student’s t Recursion

In what follows, the initial state vector x0 is as-

sumed to have a Student’s t distribution, namely p(x0) =
S(x; x̂0,P0, ν0), and x0, wk and vk are assumed to be

mutually uncorrelated. Assume the joint distribution of the

state and process noise as Student’s t with joint dof ν′k and

parameters P′
k and Q′

k, namely,

p(xk,wk|Z1:k) = S

([

xk

vk−1

]

;

[

x̂k

0

]

,

[

P′
k 0

0 Q′
k

]

, ν′k

)

then from the rules for linear transformation of t vectors [1],

one gets

p(xk,xk+1|Z1:k+1)

= S

([

xk

xk+1

]

;

[

x̂k

x̂k+1

]

,

[

P′
k FkP

′
k

P′
kF

T
k Pk+1|k

]

, ν′k

)

(6)

The choices of parameters ν′, P′
k and Q′

k are discussed in [1].

In this work, we use the simple choice that ν′k = min(νk, νQ),

P′
k = Pk and Q′

k = Qk. The one-step state prediction results

in a t density

p(xk+1|Z1:k) = S(xk+1; x̂k+1|k,Pk+1|k, ν
′
k) (7)

where x̂k+1|k = fk(x̂k) and Pk+1|k = FkP
′
kF

T
k +Q′

k.

Similarly, assume the joint distribution of the predicted state

and measurement noise as Student’s t with joint dof ν′k+1 and

parameters P′
k+1|k and R′

k+1|k, namely,

p(xk+1,vk+1|Z1:k)

= S

([

xk+1

vk+1

]

;

[

x̂k+1|k

0

]

,

[

P′
k+1|k 0

0 R′
k+1

]

, ν′k+1

)

(8)

Again, a simple choice is ν′k+1 = min(ν′k, νR), P′
k+1|k =

Pk+1|k and R′
k+1 = Rk+1. Consequently, the prediction

density of the state and output can be written as

p(xk+1, zk+1|Z1:k)

= S

([

xk+1

zk+1

]

;

[

x̂k+1|k

ẑk+1

]

,

[

P′
k+1|k Hk+1P

′
k+1|k

P′
k+1|kH

T
k+1 Sk+1

]

, ν′k+1

)

(9)

where ẑk+1 = hk+1(x̂k+1|k) and Sk+1 = R′
k+1 +

Hk+1P
′
k+1|kH

T
k+1,

Then, the final Student’s t posterior is given by a t density

p(xk+1|Z1:k+1) = S(xk+1; x̂k+1,Pk+1, νk+1) (10)

where

x̂k+1 = x̂k+1|k +Kk+1(zk+1 − ẑk+1) (11)

Pk+1 = αk+1(Pk+1|k −Kk+1Sk+1K
T
k+1) (12)

νk+1 = ν′k+1 +m (13)

with

αk+1 =
ν′k+1 + (zk+1 − ẑk+1)

TS−1
k+1

(zk+1 − ẑk+1)

(ν′k+1
+m)

(14)

Kk+1 = P′
k+1|kH

T
k+1S

−1

k+1
(15)

Simply, when ν0 = νQ = νR, the above Student’s t recur-

sion differs from the classical KF merely in the calculation of

the scale matrix. To highlight this similarity, we refer to this

basic procedure as Student’s t Kalman filter (StKF), which is

the backbone of our proposed multi-sensor AA fusion StKF.

The Monte Carlo method [8], linearization [4], and unscented

transform [5], [10] can be the same applied for nonlinear StKF

as in the nonlinear KFs.

C. Suboptimal AA Density Fusion

Whenever optimal multi-sensor fusion is sought, the exact

correlation between these sensors is needed. Unfortunately,

despite ideal cases with a-priori information [27], [28], it is

practically intractable to do so. When a sensor network is

involved, it becomes even more challenging as the correlation

between more significant and complicated. Then, one may

resort to suboptimal, robust fusion which eschews underes-

timating the actual squared estimate errors [13], [14], [15]

and gains robustness. The AA fusion method is one of the

fusion methods such motivated at first [15]. In fact, the AA
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fusion has a variety of important statistic and information-

theoretic properties such as the capacity to preserve modes in

the fusing sources and to combat false alarm in addition to its

high computation efficiency; the reader is kindly referred to

[29], [25], [24], [26] for overviews of this method.

Straightforwardly, given a number of probability distribu-

tions fi(x) (of the same family or not) yielded by different

estimators i ∈ I := {1, 2, · · · , I ∈ N
+}, the AA fusion

approach approximates the target distribution g(x) by their

weighted AA

fAA(x) =
∑

i∈I

wifi(x) (16)

where w ∈ W := {w ∈ R
I |wT1I = 1, wi > 0, ∀i ∈ I} ⊂

R
I are positive, normalized fusing weights.

The mixture distribution produced by the AA density fusion

is conducive to recursive filtering calculation in two aspects:

First, a mixture of conjugate priors is also conjugate and

can approximate any kind of prior [30], [31]. Second, the

linear fusion of a finite number of mixtures of the same

parametric family remains a mixture of the same family [21],

[25]. Third, for any target density g(x), the AA ensures a better

fit on average than those fusing densities DKL (fAA‖g) ≤
∑

i∈I wiDKL(fi‖g), where the equation holds if and only if

all densities fi, i ∈ I are identical [32], [24].

Mathematically, the AA fusion minimizes the weighted sum

of the KL divergences of the fused result with relative to the

fusing densities as follows [33], [34]

fAA(x) = argmin
g∈F

∑

i∈I

wiDKL

(

fi||g
)

(17)

where F specifies the goal function space.

The above minimization holds for any fusing weights belong

to W. A suboptimal weighting solution, referred to as the

diversity preference solution [24], is given as

wsubopt = argmax
w∈W

∑

i∈I

wiDKL(fi‖fAA) (18)

Combining (17) and (18) results in the suboptimal AA

fusion as follows [24]

(wsubopt, fAA) = argmax
w∈W

min
g∈F

∑

i∈I

wiDKL(fi‖g) (19)

III. PROPOSED MULTI-SENSOR STKF BASED ON AA

DENSITY FUSION

In this section, we first highlight an important statistical

property of the AA density fusion. This property facilitates

approximating the AA of Student’s t densities by a single t
distribution. The suboptimal fusing weights are driven from the

information-theoretic optimization (19) via moment-matched

Gaussian approximation to t distribution, leading to the sub-

optimal AA fusion based multi-sensor StKF.

A. Statistics of AA Density Fusion

With regard to a finite mixture, there are two important

properties: First, the moments of the mixture are the convex

combination of those of the sub-posteriors, i.e.,

EfAA
[xk] =

∑

i∈I

wiEfi [xk], (20)

where Ef [x] denotes any moment of the variable x with dis-

tribution f(x) and (20) can be easily seen from the definition

of the n-th order moment En
f [x] ,

∫

xnf(x)dx. In particular,

on the first order moment n = 1 which is the mean of the

density, i.e., x̂i ,
∫

xfi(x)dx, we have x̂AA =
∑

i∈I wix̂i.

Second, the variance of the mixture is driven as

PfAA
,

∫

(x− EfAA
[xk]) ()

T
fAA(x)dx

=
∑

i∈I

wi

∫

(x− EfAA
[xk]) ()

T
fi(x)dx

=
∑

i∈I

wi

∫

(x− Efi [xk] + x̃i) ()
T
fi(x)dx

=
∑

i∈I

wi

(
∫

(x− Efi [xk]) ()
T
fi(x)dx + x̃ix̃

T
i

)

=
∑

i∈I

wi

(

Pfi + x̃ix̃
T
i

)

(21)

where x̃i := Efi [xk]− EfAA
[xk] and (a)()T := (a)(a)T .

B. Averaging Student’s t Densities

Consider the AA of t densities Si(xk; x̂i,k,Pi,k, νi,k), i ∈ I

fS
AA(xk) =

∑

i∈I

wiSi(xk; x̂i,k,Pi,k, νi,k) (22)

According to (20) and (21), we have

EfS

AA
[xk] =

∑

i∈I

wiESi
[xk]

=
∑

i∈I

wix̂i,k (23)

PfS

AA
=

∑

i∈I

wi

(

PSi
+ x̃ix̃

T
i

)

=
∑

i∈I

wi

( νi,k
νi,k − 2

Pi,k +
(

x̂i,k −
∑

i∈I

wix̂i,k

)()T
)

(24)

This leads to our following key result which ensures the

closed-from recursion of the StKF, namely the fusion of

Student’s t posteriors remains t distributed, if the AA fusion

is employed for multi-sensor density fusion.

Proposition 1. The first and second moment matched-based t
density approximation to the weighted mixture of Student’s t
densities as in (22) is given by

SAA(xk) ≈ S(xk; x̂AA,PAA, νAA) (25)

x̂AA =
∑

i∈I

wix̂i,k (26)

PAA =
νAA − 2

νAA

PfS

AA
(27)

where PfS

AA
[xk] is given in (24) and one may choose νAA =

mini∈I{νi,k} to preserve the heaviest tail of all fusing densi-

ties or choose their average νAA = 1

|I|

∑

i∈I νi,k .
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C. Suboptimal Weight for Averaging Student’s t Densities

Substituting Student’s t densities and the moment-matched

approximation (25) into the suboptimal weighting solution

(18) yields

wsubopt = argmax
w∈W

∑

i∈I

wiDKL(Si‖f
S
AA) (28)

≈ argmax
w∈W

∑

i∈I

wiDKL(Si‖SAA) (29)

Unfortunately, both (28) and (29) do not admit analytical

solution. In spite of numerical approximation methods such

as the Monte Carlo method, we propose a further simplified

alternative based on the similarity between the Student’s t and

Gaussian distributions as follows

Proposition 2. The KL divergence between Student’s t
distributions Si(x) = S(x; x̂i,

νi−2

νi
Pi, νi) and Sj(x) =

S(x; x̂j ,
νj−2

νj
Pj , νj) is approximated as that between

their moment-matched Gaussian distributions Ni(x) =
N (x; x̂i,Pi) and Nj(x) = N (x; x̂j ,Pj). This leads to an

analytically approximate weight solution

wsubopt ≈ argmax
w∈W

∑

i∈I

wiDKL(Si‖SAA) (30)

≈ argmax
w∈W

∑

i∈I

wiDKL

(

Ni(x̂i,Pi)‖NAA(x̂AA,PAA)
)

(31)

= argmax
w∈W

∑

i∈I

wi

[

νi
νi − 2

tr
(

P−1

fS

AA

Pi

)

+ log
det(PfS

AA
)

det( νi
νi−2

Pi)

+ (x̂i − x̂AA)
TP−1

fS

AA

(x̂i − x̂AA)

]

(32)

There is another alternative approximation rather than

the above exact moment matching. That is, ignore the dof

of the Student’s t distribution and treat its scale matrix

as a covariance, i.e., DKL(Si(x̂i,Pi, νi)‖Sj(x̂j ,Pj , νj)) ≈
DKL(Ni(x̂i,Pi)‖Nj(x̂j ,Pj)). This will lead to a novel an-

alytical weight solution as follows, c.f., (32),

wsubopt

≈ argmax
w∈W

∑

i∈I

wi

[

νi
νi − 2

tr
(

P−1

fS

AA

Pi

)

+ log
det( νAA

νAA−2
PfS

AA
)

det(Pi)

+
νAA − 2

νAA

(x̂i − x̂AA)
TP−1

fS

AA

(x̂i − x̂AA)

]

(33)

Obviously, both approximations will converge to the real KL

divergence as the dof goes to infinite ν → +∞. To illustrate

the approximation accuracy, we consider some examples for

ν = 3 as given in Fig. 1. As shown, both methods achieve

the minimum value at the same point when the involved

two (t or Gaussian) densities have the same means, from

which they both monotonously increase faster or slower, as

well as the real KL divergence, with the increase of the

distance between the means of two densities. This confirms the

consistency of the approximation of both methods that a larger

approximate divergence indicates a larger real divergence. To

gain more insight, note that the solution to (28) should satisfy

the following ‘middle distribution’ equation [35], [24]

DKL(Si‖SAA(wsubopt)) = DKL(Sj‖SAA(wsubopt)) (34)
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Fig. 1: Gaussian-based approximation to KL divergence be-

tween two Student’s t densities with dof ν = 3.

Therefore, one can evaluate how much the above equation

is satisfied to evaluate whether the solutions provided by (32)

or (33) are accurate. We illustrate here the accuracy of (32)

again by examples for ν = 3 in Fig. 2. It shows that the

AA fusion resulted by the proposed suboptimal fusing weights

(32) complies well with equation (34), especially when the

fused distributions have similar covariances. In the case that

two Student’s t distributions have the same scale matrix (as

shown in the right-upper sub-figure of Fig. 2), the result meets

greatly the ‘middle distribution’ equation (34) and confirms the

effectiveness of (32). This is an important finding: although

the Gaussian-t approximation/substitution can be inaccurate,

the fusing weights yielded by (29) and (32) can be close with

each other and so be gratifying (close to the optimal solution

satisfying (34)). These being said, more accurate, analytical

calculation or approximate method is desirable. Approaches

such as mode approximation [36] and variational inference

[3], [37] are notable.

As a final result based on simplified choice of the dof and

Gaussian-t approximation, (32) (or (33)) and (25) constitute

the overall information-theoretic optimization-based subopti-

mal AA fusion of Student’s t as follows, c.f. (19)

(wsubopt,SAA) ≈ argmax
w∈W

min
g∈F

∑

i∈I

wiDKL(Si‖g) (35)

where F(Rnx

S ) → R specifies the Student’s t function space.

D. Algorithm Flow of AA-Fusion StKF

When multiple sensors cooperate with each other, commu-

nication will be involved which needs to take into account the

inter-sensor connection topology and constraints. There are

considerable relevant research, including those for AA fusion

[16], [17], [38], [20], [23]. However, to avoid distracting the

readers’ attention, we ignore the communication issue and

assume that the sensors have direct access to each other,

analogous to the centralized network with feedback. We also

assume that the sensors are synchronized and coordinated in

the same coordinate system. The overall procedure of the
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Fig. 2: KL divergences of the fused Student’s t with relative

to each of the two fusing Student’s t densities with dof ν = 3
based on the suboptimal fusing weights (32).

proposed multi-sensor AA-StKF for totally S interconnected

sensors is summarized in Algorithm 1. All parameters of the

state space model are assumed known by default.

IV. EXTENSION OF CI FUSION

As addressed so far, the proposed Student’s t AA fusion

approach relies on approximating the calculation over t distri-

bution by that over Gaussian. Therefore, many other Gaussian

fusion approaches such as the covariance intersection (CI) [14]

and inverse CI [39] can be applied in place of the AA fusion

for multi-sensor Student’s t filter design. Here, we briefly

address the extension of the CI fusion. The CI fusion of t
densities Si(xk; x̂i,k,Pi,k, νi,k), i ∈ I can be written by

fS
CI(xk) ∝

∏

i∈I

(Si(xk; x̂i,k,Pi,k, νi,k))
wi (36)

The above fusion is not analytically evolvable due to

the non-integrability of the poly-t (product of Student’s t
distributions) distribution. By using Gaussian distributions

Ni(xk; x̂i,k,
νi,k

νi,k−2
Pi,k) to approximate the corresponding

Student’s t distributions Si(xk; x̂i,k,Pi,k, νi,k), i ∈ I with

the same first and second moments, the CI fusion is given

as follows

x̂CI = PCI

∑

i∈I

wi(νi,k − 2)

νi,k
P−1

i,k x̂i (37)

PCI =

(

∑

i∈I

wi(νi,k − 2)

νi,k
P−1

i,k

)−1

(38)

where

wCI = argmin
w∈W

Tr(PCI) (39)

With regard to Algorithm 1, the above formulation is

amount to using (39), (37) and (38) to replace (32)/(33) in

Step 7, Step 8.2) and Step 8.3), respectively. This leads to a

multi-sensor CI fusion-based StKF.

Algorithm 1 One Filtering Iteration of Proposed Multi-Sensor

AA-Fusion StKF

Input: {Ss(xk; x̂s,k,Ps,k, νs,k), zs,k+1}s=1,··· ,S

Output: {Ss(xk+1; x̂s,k+1,Ps,k+1, νs,k+1)}s=1,··· ,S
1: for each sensor s = 1, · · · , S in parallel do
2: One-step state prediction as in (7) in the following steps:

1) x̂s,k+1|k = fs,k(x̂s,k),
2) Ps,k+1|k = Fs,kPs,kF

T
s,k +Qs,k

3) ν′
s,k = min(νs,k, νs,Q)

3: Update the prediction as in (10) using the new mea-
surement zs,k , including the following steps:

1) ν′
s,k+1 = min(ν′

s,k, νs,R)
2) z̃s,k+1 = zs,k+1 − hk+1(x̂s,k+1|k)
3) Ss,k+1 = Hs,k+1Ps,k+1|kH

T
s,k+1 +Rs,k+1

4) αs,k+1 =
ν′

s,k+1
+z̃

T
s,k+1

S
−1

s,k+1
z̃s,k+1

ν′

s,k+1
+ms

5) Ks,k+1 = Ps,k+1|kH
T
s,k+1S

−1

s,k+1

6) x̂s,k+1 = x̂s,k+1|k +Ks,k+1z̃s,k+1

7) Ps,k+1 = αs,k+1(Ps,k+1|k −Ks,k+1Ss,k+1K
T
s,k+1)

8) νs,k+1 = ν′
s,k+1 +ms

4: end for

5: for each sensor s = 1, · · · , S in parallel do

6: Exchange parameters {x̂s,k+1,Ps,k+1, νs,k+1} among

inter-connected sensors. Suppose that at the end, sensor

s receives {Si(xk+1; x̂i,k+1,Pi,k+1, νi,k+1)}i∈Is,k
.

7: Calculate the AA fusing weights wsubopt via (32) or

(33), based on (24) and (26).
8: Calculate the AA-fused Student’s t density as in (25)

including the following steps:

1) νs,k+1 ← 1

|Is,k|

∑
i∈Is,k

νi,k+1 (or νAA =

mini∈Is,k
{νi,k})

2) x̂s,k+1 ←
∑

i∈Is,k
wix̂i,k+1

3) Ps,k+1 ←
νs,k+1−2

νs,k+1
PfS

AA
[xk+1] using (24)

9: end for

10: Steps 5-9 may be performed for multiple iterations in the

case of decentralized sensor network, like what is done

for average consensus [16], [22], [20], [23].

V. SIMULATIONS

We consider a single target tracking problem. Following

the literature [4], [5], we simulate abnormal noises of a

significant magnitude (much higher than the normal case)

which randomly occur with probabilities to assume outliers af-

fecting the state process and the measurement, independently.

The state of the target xk = [px,k, ṗx,k, py,k, ṗy,k]
T consists

of planar position [px,k, py,k]
T and velocity [ṗx,k, ṗy,k]

T.

At time k = 0, it is randomly initialized as x0 ∼
N (x;µ0,P0), where µ0 = [1000m, 20m/s, 1000m, 0m/s]T

with P0 = diag{[500m2, 50m2/s2, 500m2, 50m2/s2]}, where

diag{a} represents a diagonal matrix with diagonal a. The

target moves following a nearly constant velocity motion given

as (with the sampling interval ∆ = 1s)

xk =









1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1









xk−1 +









∆
2

2
0

∆ 0

0 ∆
2

2

0 ∆









uk−1 (40)
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where the process noise uk ∼ N (u;02m/s2, r2I2m2/s4).
Here, the process noise standard deviation r is defined with

the outlier probability po as follows
{

r = 5,with probability 1− po
r = 50,with probability po

(41)

We consider only two sensors. Both sensors s = 1, 2 have

the linear measurement model zs,k = Hs,kxk+vs,k as follows

Hs,k =

[

1 0 0 0
0 0 1 0

]

,vs,k =

[

vk,1
vk,2

]

(42)

with vk,1 and vk,2 as mutually independent zero-mean Gaus-

sian noise with the same standard deviation Rs.

The measurement noise standard deviations of two sensors

are defined with outlier probability too as follows (independent

with that of the process noise and with each other sensor):
{

R1=20m,with probability 1− po
R1=200m,with probability po

(43)

{

R2=10m,with probability 1− po
R2=100m,with probability po

(44)

We test different outlier probabilities po from 0 (when there

is no outlier) to 0.2. In each case of po, the simulation is per-

formed for 1000 Monte Carlo runs, each having 100 filtering

steps. The target trajectory is randomly generated according

to the process model with an random initial state in each

run. The process and measurement noises are approximated by

Student’s t noise with the normal mean and covariance/scale

parameters as specified, and with dof νQ = νR = 3. The

root mean square error (RMSE) of the position or velocity

estimates is used for filter evaluation

RMSEk =

√

√

√

√

1

M

M
∑

i=1

(x̂i
k − xi

k)
T(x̂i

k − xi
k) (45)

where x̂i
k is the position or velocity estimate of the real state

xi
k at time k in run i and M is the number of runs.

Both StKF and KF are simulated. The KFs are ini-

tialized by N (x;µ0,P0) and the StKFs are initialized by

S(x;µ0,
ν0−2

ν0
P0, ν0 = 3). Both StKFs and KFs are imple-

mented in both noncooperative manner (using only sensor

1’s measurement) and two-sensor cooperative manner. In the

latter, we compare the proposed AA, CI fusion with the

augmented measurement (AM) approach [3] (a.k.s. centralized

batch fusion [12]). In the AM approach, two sensors’ measure-

ments are cascaded/augmented as a joint zk = Hkxk +vk as

follows:

zk =

[

z1,k
z2,k

]

,Hk =

[

H1,k

H2,k

]

,vk =

[

v1,k

v2,k

]

(46)

In addition, the AA fusion has been implemented in two

means, one using uniform weights (w1 = w2 = 0.5) referred

to as ‘unAA fusion’ and the other using the suboptimal weight

(referred to as AA fusion by default) as given in (32) in section

III-C. In both cases, the AA fusion of two Gaussian PDFs

results in a Gaussian mixture of two components for which

a merging scheme based on moment matching is needed to

maintain closed-form KF recursion.

The real target trajectory and the estimates of the KFs/StKFs

in one trial are given in Fig. 3. The position and velocity

RMSEs of these filters are given in Fig. 4 and Fig. 5,

respectively. The average position and velocity RMSEs over all

filtering times against outlier probability are given in Fig. 7 and

8, respectively. First of all, all fusion methods gain increased

estimation accuracy as compared with the noncooperative

filters, indicating that these fusion approaches are effective.

More specifically, there are several main findings:

1) The StKF-AA using the suboptimal fusing weights (32)

performs the best in position estimation accuracy as

long as po > 0.03 and in velocity estimation accuracy

as long as po ≥ 0.08. Further on, the variance of the

fusion weight assigned to sensor 1 in StKF-AA is given

in Fig. 6, with an average level about 0.45. This is

reasonable since sensor 1 has a larger measurement

noise covariance as compared with sensor 2. Indeed,

the default AA fusion using optimized weights performs

better than that using uniform weights and also the CI

fusion, based on whether KF or StKF.

2) Most StKFs outperform their corresponding KFs using

the same fusion approach in position accuracy when

po ≥ 0.02 except for the StKF-CI that performs better

than KF-CI only when po > 0.04. This demonstrates

the advantage of the Student’s t filter in dealing with

outlier/heavy-tailed noises as compared with Gaussian

filters. In contrast, when there is no outlier (po = 0),

the KFs outperform the StKFs, regardless of the fusion

approach. This is simply because there is no need to

maintain a heavy-tailed posterior for a purely linear

Gaussian system.

3) When there is no outlier, the KF-AM is optimal for

the linear Gaussian system. When there exist outliers,

the AM approach performs worse than the AA fusion

in position accuracy, using whether KF or StKF. The

reasons are twofold: First, the AM approach that seeks

MV becomes disadvantageous in dealing with outliers.

Second, when the outlier is independent across sensors,

the AM approach suffers from a higher actual measure-

ment outlier probability which is calculated by

1−
∏

i∈I

(1− pio) > max
i∈I

pio (47)

where pio is the outlier probability of sensor i.

Two final remarks are to be highlighted. First, the per-

formance of the basic StKFs using a simplified choice of

the dof as addressed is expected to be improved if the dof

can (online) adapt with the probability of outlier. Notably,

a recent work proposes to combine Gaussian and t on the

base of a probabilistic framework so that to adapt the tail

[40]. This remains a valuable, open problem. Second, the CI

fusion seeks MV yet covariance consistent fusion which does

not have as good fault-tolerant capacity as the AA fusion

does [24] and so the forced Gaussian-t approximation may

not suit it. As shown, when the outlier probability is small

(po < 0.04), the CI-StKF is disappointing although it is good

when po > 0.1. It remains open how to optimally apply

Gaussian fusion approaches to the Student’s t distributions.
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Fig. 3: The real target trajectory and estimates of noncoop-

erative and two-sensor-fusion KFs/StKFs in one trial using

po = 0.05
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Fig. 5: The velocity RMSEs of noncooperative and two-sensor-
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Fig. 7: Average position RMSEs against outlier probability
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VI. CONCLUSION

This paper proposes a multi-sensor Student’s t filter

based on the AA density fusion approach. An information-

theoretic optimization formulation based on moment-matched

Gaussian-t approximation is used to drive the suboptimal

fusion weights and the t distribution merging procedure to en-

sure closed-form Student’s t recursion. The fusion framework

accommodates any Gaussian fusion approaches such as the CI.

Simulation based on target tracking using various probabilities

of outlier has demonstrated the promising performance of the

proposed multi-sensor AA fusion-based t filter in dealing with

outliers as compared with the multi-sensor KFs/StKF based on

either augmented measurement or covariance intersection.

This work, however, is limited to simplified choice of the

dof of the Student’s t PDF and inaccurate yet reasonable

Gaussian-t approximation for closed-form t-AA fusion and

for fast and analytical fusing weight design. Improvement can

be expected if these limitations are removed or reduced. In

particular, a valuable future research is to online adapt the dof

of the t density according to the probability (and even the

expected magnitude) of outliers.
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