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A Gaussian-Generalized-Inverse-Gaussian Joint

Distribution Based Adaptive MSCKF for

Visual-Inertial Odometry Navigation
Chao Xue, Yulong Huang, Member, IEEE, Cheng Zhao, Xiaodong Li, Lyudmila Mihaylova, Senior

Member, IEEE, Youfu Li, Senior Member, IEEE, Jonathon Chambers, Fellow, IEEE

Abstract—The visual-inertial odometry (VIO) navigation sys-
tem plays an important role in providing accurate localization
information in absolute navigation information-denied environ-
ments, such as indoors and obstruction-filled scenes. However, the
working environment may be dynamic, such as due to illumina-
tion variations and texture changing in which case the measure-
ment noise of the camera will be non-stationary, and thereby the
VIO exhibits poor navigation using the fixed measurement noise
covariance matrix (MNCM). This paper proposes an adaptive
filter framework based on the multi-state constraint Kalman
filter (MSCKF). Firstly, the MNCM is regarded as an identity
matrix multiplied by a scalar MNCM coefficient which together
with the state vector are jointly modeled as Gaussian-generalized-
inverse-Gaussian distributed to achieve adaptive adjustment of
the MNCM, from which the proposed adaptive filter framework
for the VIO navigation system is derived. The proposed adaptive
filter framework can theoretically employ a more accurate M-
NCM during the filtering and thus is expected to outperform the
traditional MSCKF. Secondly, the convergence, computational
complexity and initial parameters influence analyses are given
to illustrate the validity of the proposed framework. Finally,
simulation and experimental studies are carried out to verify
the theoretical and practical effectiveness and superiority of
the proposed adaptive VIO filter framework, where the EuRoC
datasets testing shows the proposed method is 22% and 29%
better than the traditional MSCKF in position and orientation
estimation, respectively.

Index Terms—Visual-inertial odometry navigation, adaptive
filter, multi-state constraint Kalman filter, generalized-inverse-
Gaussian distribution, non-stationary noises

I. INTRODUCTION

A. Background

The visual-inertial odometry (VIO) integrated navigation

system can provide long-term stable and reliable navigation in-

formation, and thus is widely used in unmanned systems which
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Fig. 1: Illustration for the time-varying MNCM caused by the

triangulation. b denotes the baseline during two camera frames,

and P1, P2 denote the true position of the feature points, and

P ′
1, P ′

2 denote the positions estimated by the camera.

are required to work in the absolute navigation information-

denied environment. The research on VIO thus has become

very popular in the last ten years, and extensive literature on

VIO navigation has appeared [1–10].

Despite existing VIO methods evolving towards better accu-

racy and less computation, insufficient attention has been paid

to the VIO localization performance in dynamic scenarios,

such as texture change, illumination variations and motion

blur [11–13]. The above problems may lead to time-varying

measurement noise statistics for the following reasons.

1) Time-varying temperature or external pressure may lead

to time-varying internal parameters, which results in

the inapplicability of the previously calibrated internal

parameters [14].

2) The camera accuracy is related to the distance between

the camera and the target. Taking the triangulation in Fig.

1 for example, the same parallax error angle δθ (device

error) will lead to different position errors of feature

points, i.e., δd1 and δd2, which leads to time-varying

measurement noise statistics.

3) The matching errors of camera feature points also rely on

the environment. For example, in an illumination chang-

ing and weakly textured environment with the camera

moving very fast, different feature points are easy to

identify as the same feature point, and this matching error

can cause an additional measurement error, which will

also result in time-varying measurement noise statistics.

In the above cases, inaccurate measurement statistics cog-

nition may induce estimation accuracy deterioration or even

divergence of VIO algorithms [25].
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B. Related works

The existing VIO algorithms can be segregated into two

categories, i.e., loosely-coupled VIO approaches and tightly-

coupled VIO approaches. The loosely-coupled VIO approach-

es perform the visual odometry in the front-end and fuse

the inertial measurement unit (IMU) information and visual

information in the back-end. In this method, the VIO mainly

focuses on the IMU information and regards the camera more

as an auxiliary device, which will suffer from instability in the

case of visual localization difficulty. In contrast, the tightly-

coupled VIO methods accomplish the vehicle pose estimation

using the IMU information while simultaneously correcting

the inertial navigation system (INS) errors by employing the

camera information, which can correct the drifting error of

the camera and improve the overall localization accuracy. The

tightly-coupled VIO methods consist of optimization-based

methods and filter-based methods, where the former methods

can achieve better accuracy performance while at the cost

of greater computation, these include the PTAM [1], OKVIS

[2], VINS-mono [3] and VINS-fusion [4]. The latter filter-

based methods, which are mostly based on the Kalman filter

(KF) [5–8] could be more computationally efficient but inferior

in estimation accuracy compared with the optimization-based

methods. Nonetheless, the filter-based methods have one u-

nique advantage of being able to output accurate uncertainty of

the estimates, which cannot be emulated by the optimization-

based methods. On this account, the proposed work in this

paper is a filter-based VIO algorithm.

The most typical representative method of the filter-based

VIO algorithms is the traditional MSCKF (Tra-MSCKF) [5],

which augments the most recent camera poses to the IMU

state and utilizes multiple camera poses to constrain the

positions of feature points in the three-dimensional space.

After this, extensive works based on the Tra-MSCKF have

been proposed. In 2013, Li and Mourikis proposed MSCKF

2.0 to address the estimation inconsistency problem in the Tra-

MSCKF where the linearization error makes the unobservable

azimuth information pseudo observable [6]. Sun proposed the

stereo MSCKF algorithm based on a stereo camera [9], which

improved the robustness of the Tra-MSCKF. Qiu et al. parame-

terized feature points by 1-dimensional inverse depth based on

the Tra-MSCKF, and introduced zero-velocity detection into

the algorithm to obtain a better performance [10].

The above nethods, however, have not considered the local-

ization problem in dynamic scenarios, where the localization

accuracy of VIO systems are severely affected, as discussed

in Section I-A. To address this problem, some adaptive VIO

methods have been proposed. Some works address low scene

texture and motion blur [11, 13] by the direct processing of

visual images at the front end to obtain robust feature tracking

(removing mismatching feature points). However, it is difficult

to remove all points that do not conform to the measurement

model (we call them outliers). Thus, there are always missed

outliers that enter the back-end and severely affect the fusion

process. The above considerations motivate the development

of adaptive back-end fusion algorithms to estimate unknown

and time-varying MNCM.

The MNCM estimation method has been developed into

four categories since first proposed in [21], i.e., the Bayesian

methods [16–20], correlation methods [21, 22], maximum

likelihood methods [23, 24], and covariance matching meth-

ods [27, 28]. The Sage-Husa adaptive KF belongs to the

covariance matching methods, which performs recursive max-

imum a posterior (MAP) estimation of the noise statistics

[27]. However, its estimation convergence cannot be ensured,

which may cause the filter to diverge [15]. The proposed

innovation-based adaptive KF in [25] belongs to the maximum

likelihood methods, which estimates the noise statistics by

analyzing the white innovation sequence [25]. However, it

requires a long window to collect enough data to obtain

accurate noise statistics estimates, which leads to a large

lag in noise statistics estimation. The measurement difference

method is a kind of correlation method, which computes the

measurement estimate from other measurements to avoid the

state estimate computation [22]. This method, however, has

the same problem of large lag in noise statistics estimation as

[25]. The Bayesian methods can be divided into those which

adopt a Gaussian mixture model and the VB methods [15]. The

Gaussian mixture Bayesian methods utilise multiple models to

achieve adaption [19], which suffers from large computation

burden. The proposed algorithm in [17] belongs to the VB

methods, which models the MNCM as an inverse Wishart (IW)

distribution and jointly estimates the MNCM and the state

vector. However, this method together with the above methods

are all based on an assumption that the MNCM has a constant

dimension, and are thereby not suitable for the VIO navigation

system with time-varying measurement dimensions. Some

robust adaptive KFs can adapt to time-varying measurement

dimensions such as the Huber-based KF (HKF) [29] and the

robust Student’s t-based KF (RSTKF) [30], because they do

not rely on the historical measurements to achieve adaptive

adjustment, which also makes them less effective in the case

of continuous changing environments. However, there has not

been any record of them being used in VIO systems. For

VIO back-end fusion processing for dynamic scenarios, Yue

proposed a robust adaptive filter based on fuzzy logic [31],

where the trace of the calculated innovation covariance matrix

serves as the input of the fuzzy inference to obtain the adjusted

MNCM. Shen proposed the degree of abnormality to evaluate

the ego-motion uncertainty [12], where a robust DoA-based

VIO algorithm has been proposed. Both of these algorithms

rely heavily on manual adjustment of parameters, which limits

their accuracy and practical applicability. Recently, Zhang has

proposed a VB-based adaptive stereo MSCKF (VB-MSCKF)

to accommodate time-varying MNCM [13]. However, the

matrix ℓ2 norm is used to deal with measurement dimension

mismatching, which will cause large approximation errors.

The proposed adaptive algorithm belongs to the Bayesian

methods type and has the advantages of good theoretical basis,

computational efficiency, online implementation convenience,

and time-varying MNCM tolerance.

C. Motivations for this paper

According to the above discussions about related works,

we find that the existing adaptive methods are not suitable
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for non-stationary dynamic scenarios because some of them

may require an intricate parameters tuning process so that

they cannot adapt well to different environments. Despite the

potential effectiveness of online estimation of the time-varying

MNCM, such as using the existing VB-MSCKF [13], the

following drawbacks limit its estimation accuracy

• The mean-field approximation is the core technique to

deal with the correlation between the state vector and

auxiliary parameters but it is concurrently the main error

source of the existing VB-MSCKF, which may give

rise to large errors when the state vector and auxiliary

parameters are severely coupled.

• In the VB-MSCKF method, the ℓ2 norm of the IW

distribution scale matrix at the previous time is extracted

and taken as the prior value of its diagonal elements at

the current time to realize recursive calculation of the

IW distribution parameters. This operation is generally

not accurate and may cause large approximation errors,

as will be shown in Section V and Section VI.

The above considerations motivate us that modeling the

MNCM as IW distributed may not be efficient to address the

non-stationary measurement noise statistics problem.

D. Contributions and organization of this paper

In this paper, we propose an adaptive VIO framework in

which we regard the MNCM as an identity matrix multi-

plied by a scalar parameter which is denoted as the MNCM

coefficient (MNCMC), and model the state vector and the

MNCMC as Gaussian-generalized-inverse-Gaussian (NGIG1)

distributed to achieve adaptive adjustment of the MNCM. The

contributions of this work are as follows.

• We propose a generalized adaptive NGIG-based VIO fil-

ter framework which can adapt to dynamic environments.

• The convergence proof and computational complexity

analyses are presented to show the theoretical effective-

ness of the proposed adaptive VIO filter framework.

• Various simulation and experimental tests are carried out

to verify the validity and superiority of the proposed

adaptive filter framework in engineering applications.

The structure of the remainder of the paper is as follows.

Section II gives the state space model and introduction to

the NGIG distribution in this paper. We present the proposed

adaptive NGIG-based VIO framework in Section III. Section

IV includes some discussions about the numerical calculation

problem encountered and gives two alternative methods and

corresponding properties. Simulation and experimental tests

and comparisons are carried out in Section V and Section VI,

respectively. This paper is concluded in Section VII.

II. PROPOSED NGIG JOINT DISTRIBUTION MODELLING

A. Linear state space model

We consider the following state space model
{

xk = Φkxk−1 +Dkwk

zk = Hkxk + nk
(1)

1The Gaussian distribution can also be called the normal distribution, so it
is abbreviated as NGIG here.

TABLE I: Acronyms and Nomenclatures

Notations Definitions

INS, IMU Inertial Navigation System, inertial measurement unit

dof, PDF Degree of freedom, probability density function

MAP, VIO Maximum a posterior, visual-inertial odometry

MNCM Measurement noise covariance matrix

MNCMC MNCM coefficient

KF, EKF Kalman filter, extended KF

MSCKF Multi-state constraint KF

Tra-MSCKF Traditional MSCKF

Inf-MSCKF Inflated MSCKF

HKF Huber-based KF

RSTKF Robust Student’s t-based KF

VB Variational Bayesian

VB-MSCKF VB-based adaptive stereo MSCKF

ANGIG-KF Adaptive NGIG-based Kalman fitering framework

ANGIG-KF1 MAP-based ANGIG-KF

ANGIG-KF2 Approximate mean-based ANGIG-KF

RMSE Root mean square error

PRMSE, ORMSE Position RMSE, orientation RMSE

NEES Normalized estimation error square

PE, OE Position error, orientation error

APEs, AOEs Average PEs, average OEs

IG, IW Inverse Gamma, inverse Wishart

GIG, NGIG Generalized inverse Gaussian, Gaussian-GIG

xk, x̄k, x̂k Discrete-time random variable at time k and

GIG(·; a, b, r) GIG PDF with parameters a, b, r

N (·;µ,P) Multivariate Gaussian PDF with mean vector µ

and covariance matrix P

NGIG(·, ·;µ, NGIG joint distribution with mean µ, scale matrix

P, a, b, r) P and dof parameters a, b, r

tr{·}, (·)−1, (·)T Trace, inverse and transpose operations

| · |, ‖ · ‖ Determinant operation and ℓ2 norm operations

E{·},Var{·} Mathematical expectation and variance operations

log(·), exp(·) Logarithm and exponential operations
⊗

Quaternion multiplication operation

In,0n Identity matrix and null matrix of dimension n× n

:= Defined as

(x)1:n Vector consisting of the first n elements of vector x

where Φk and Dk denote the state transition matrix and

state noise driven matrix, respectively, and nk denotes the

measurement noise vector at time k. Moreover, we note that

both Dkwk and nk obey zero mean Gaussian distributions,

i.e., Dkwk ∼ N (wk;0,DkQkD
T
k ) and nk ∼ N (nk;0,Rk),

where Rk = λkImk
. We assume that λk is slowly changing

over time. However, a fixed MNCM is used in the Tra-

MSCKF, which is not appropriate and even possibly leads to

divergence of the Tra-MSCKF. Thus, the state and the MNCM

are jointly modeled as NGIG distributed to achieve adaptive

adjustment of the MNCM. Next, the NGIG distribution will

be introduced and some of its properties will be specified.

B. NGIG joint distribution

Before introducing the NGIG joint distribution, we first

introduce the GIG distribution. The PDF of a GIG distributed

random variable λ is written as [32, 33]

GIG(λ; a, b, r) = (a/b)r/2

2Kr(
√
ab)

λ(r−1)e−(aλ+b/λ)/2 (2)

where a > 0, b > 0 and r is a real parameter, and the definition

of Bessel function Kr(·) can be found in [34].

As a family of generalized distributions, the GIG distribu-

tion subsumes the inverse Gamma (IG), Gamma, exponential
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and many other practical distributions as its special cases.

Let’s temporarily reserve the reasons why we use the GIG

distribution rather than its special cases in the joint inference

and focus on the NGIG distribution introduced next. With

(2), the NGIG distributed joint random variables (x, λ) can

be formulated as follows

p(x, λ) = N (x;µ, λΣ)︸ ︷︷ ︸
p(x|λ)

GIG(λ; a, b, r)︸ ︷︷ ︸
p(λ)

(3)

where µ and Σ denote the conditional mean and conditional

scale matrix of the state vector, respectively, and a, b, r are

parameters of the GIG distributed MNCMC. Next, the mean

and variance of the marginalized state vector x from the NGIG

joint distribution will be given for subsequent derivations.

Remark 1. To the best of the author’s knowledge, this joint

modeling of the state vector and parameters can be tracked

back to [16], in which the state and parameters are jointly

modeled as Gaussian-multiple-IG distributed. However, the

state and the parameters are assumed as independent, which

may give rise to large errors when the state vector and the pa-

rameters are severely coupled. Hence, one of the motivations

of this paper is to retain the potential correlation between the

state vector and the MNCMC. However, how to retain such

correlation becomes another problem. In this paper, we adopt

a rather simple method to establish the correlation between the

state vector and the MNCMC, i.e., we multiply the same scalar

λ by the covariance (which is actually called the scale matrix

rather than the covariance) of the state vector. The benefit of

this modeling is that a closed-form posterior solution can be

derived because if we multiply the covariance of a Gaussian

distribution by a coefficient, the GIG distribution is one of the

conjugate distributions of this coefficient. Some properties of

this modeling will be specified next.

Proposition 1. The mean and variance of the marginalized x

from the NGIG distribution are calculated as




E{x} = µ, Var{x} = λ̂Σ

E{λ} =

√
bKr+1(

√
ab)√

aKr(
√
ab)

(4)

Proof. See Appendix A.

It is notable that when the state vector and MNCMC are

modeled as NGIG distributed, the VIO navigation system can

use the time-varying MNCM rather than a constant MNCM,

which is more suitable for a non-stationary environment. The

accuracy of this MNCM is determined by the accuracy of

the distribution of the MNCMC which will be corrected in

the time update and measurement update. Furthermore, we

want to elucidate that the marginalized state vector from this

joint distribution obeys a more heavy-tailed distribution than

Gaussian, which will make the proposed adaptive framework

robust to measurement outliers to some extent. We will support

this point by means of the following proposition.

Proposition 2. The tail corresponding to the distribution

obeyed by the marginalized state vector decays slower than

Gaussian. The logarithm PDF of the marginalized state vector

Fig. 2: The marginalized state PDF under different GIG

distribution parameters.

and the Gaussian distributed state vector when x tends to

infinity are, respectively, given as follows
{

log p(y) = − log y −√
ay2 + cy

log pN(y) = −0.5y4 + cyN

where y =
√
xTx/4, and pN (y) denotes the Gaussian PDF.

Proof. See Appendix B.

Proposition 2 indicates that the state vector obeys a heavier

tail than Gaussian. To be more intuitive, the marginalized state

PDF is plotted in Fig. 2, where the subfigure on the upper

right corner is the logarithm marginalized state PDF. It can

be observed from Fig. 2 that the tails of the marginalized

state PDFs under all selected NGIG distribution parameters

are much heavier than Gaussian. Besides, different degrees of

robustness can be achieved through different GIG distribution

parameters. Overall, as opposed to assuming the outliers are

infrequent, heavy-tailed noises suppose that they occur with

a relatively high probability, which is more in line with

practical experience. As a result, the NGIG distribution has

the advantage of resisting measurement outliers, which will

make the proposed adaptive KF robust to some extent.

Remark 2. Robustness is one of the most important properties

that filtering algorithms for VIO systems should possess.

Notoriously, mismatching of feature points in adjacent frames

often occurs when VIO systems are operating, which gives

rise to localization accuracy degradation. Thus, detecting

and eliminating these outliers are necessary. On the one

hand, eliminating outliers can improve the quality of obtained

measurements and render the estimation results more accurate.

On the other hand, abundant computation can be saved

by reducing the measurement dimension. Generally, the chi-

square test is utilized to perform this task. Nonetheless, select-

ing an appropriate chi-square threshold can be challenging.

With a large threshold, the chi-square test may miss outliers

which will deteriorate the estimation accuracy. While the chi-

square test with a small threshold will be conservative so

that extensive measurement data will be eliminated. Therefore,

selecting an appropriate chi-square threshold requires much

engineering experience and generally, can not be adapted

to different scenarios. In this setting, the robustness of the

filtering algorithm can allow the chi-square test to be appro-

priately conservative because the algorithm itself can provide

additional protection for the system by reducing the impact of
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stray outliers. As a result, not only can the estimation accuracy

be improved, but also much parameter tuning time is saved.

To this end, we express the reasons for using the GIG

distribution rather than its special cases, such as the IG

distribution or the Gamma distribution. On the one hand, we

intend to derive a generalized framework that considers not

only IG or Gamma distribution, but also all special cases of

the GIG distribution. The IG or Gamma distribution are only

special cases when the parameters of the GIG distribution

satisfy a certain relationship. Hence, the parameters of the

GIG distribution are more liberal than its special cases, which

is theoretically more valuable. On the other hand, in practical

applications, different interferences may occur in the case

of different environments, which results in different types of

heavy-tailed distributions. The generalized NGIG distribution

can include more non-Gaussian cases than its special cases,

and thereby accommodate more complex heavy-tailed cases.

To sum up, the NGIG distribution has an attractive property

of being able to resist outliers. Hence, in the ensuing part,

the state vector and MNCMC are jointly modeled as NGIG

distributed to achieve an adaptive adjusting of the MNCMC,

and simultaneously, achieve an accurate estimation of the

state vector, from which the proposed adaptive NGIG-based

Kalman filtering framework (ANGIG-KF) will be derived for

VIO systems to accommodate non-stationary environments.

For brevity, we simplify DkQkD
T
k as Qk in the remainder to

denote the state noise covariance matrix.

III. AN ADAPTIVE KF BASED ON NGIG MODELING

A. The proposed ANGIG-KF

In this part, the posterior state vector and the MNCMC at

time k − 1 are modeled as NGIG distributed as follows.

p(xk−1, λk−1|z1:k−1) (5)

=N (xk−1; x̂
′
k−1, λk−1P̂

′
k−1)︸ ︷︷ ︸

p(xk−1|z1:k−1,λk−1)

GIG(λk−1; âk−1, b̂k−1, r̂k−1)︸ ︷︷ ︸
p(λk−1|z1:k−1)

where p(xk−1|z1:k−1, λk−1) denotes the conditional posterior

PDF of the state vector, and x̂′
k−1 and P̂′

k−1 denote the

conditional posterior mean and scale matrix of the state vector

at time k − 1, respectively, whose superscripts are used to

distinguish themselves from the mean and covariance of the

marginalized state vector, and âk−1, b̂k−1, r̂k−1 denote the

posterior parameters of the GIG distribution at time k − 1,

respectively.

Theorem 1. The joint prior PDF can be approximated as

p(xk, λk|z1:k−1) ≈ N (xk; x̄k, P̄k(λk))GIG(λk; āk, b̄k, r̄k)
(6)

where{
x̄k = Φkx̂

′

k−1, P̄k(λk) = ΦkλkP̂
′

k−1Φ
T
k +Qk

āk = ρâk−1, b̄k = ρb̂k−1, r̄k = ρr̂k−1

(7)

and x̄k and P̄k denote the prior mean and scale matrix at time

k, respectively, and āk, b̄k, r̄k denote the posterior parameters

of the GIG distribution at time k, respectively.

Proof. See Appendix C.

Unfortunately, the form of the joint distribution in (6) is not

exactly the same as that in (5), which renders the posterior

joint density not in an analytical form. It is known that to

make the joint posterior PDF at time k analytically solvable,

P̄k must be fully scaled by λk. However, it is seen from (7)

that Qk is not exactly scaled by λk, which makes P̄k not fully

scaled. To this end, we propose to approximate P̄k as follows.
{

P̄k ≈ ΦkλkP̂
′

k−1Φ
T
k + λk

θk
Qk := λkP̆k(θk)

s.t. θk = E{λk}
(8)

where θk is an auxiliary parameter which takes the value of

the mean of λk. Employing (8), we can reformulate (6) as

pθk(xk, λk|z1:k−1) ≈ N (xk; x̄k, λkP̆k(θk))GIG(λk; āk, b̄k, r̄k)
(9)

where pθk(·) represents the PDF depending on θk.

Remark 3. It can be seen from (8) that we make an approxi-

mation by assuming θk as an unknown parameter rather than

a random variable. From another point of view, we can still

consider θk as a random variable but approximately simplify

its distribution into a Dirac delta function, and then match the

first moment, i.e, the mean of the approximated distribution

and the distribution obeyed by λk, i.e., the GIG distribution

in (9). The mean is a minimum variance estimate of λk,

which utilizes the whole density information of λk and thus

is a good approximation. Moreover, this is also the simplest

approximation method, which achieves a balance between

computational burden and estimation accuracy.

Based on the assumption that the MNCMC is GIG distribut-

ed, the likelihood PDF can be formulated as the following

hierarchical Gaussian form{
p(zk|xk, λk) = N (zk;Hkxk, λkImk

)
p(λk|z1:k−1) = GIG(λk; āk, b̄k, r̄k)

(10)

where p(zk|xk, λk) denotes the conditional likelihood PDF.

Theorem 2. Exploiting (9), (10) and Bayes’ rule, the condi-

tional posterior PDF of xk can be calculated as follows

pθk(xk|z1:k, λk) = N (xk; x̂
′
k(θk), λkP̂

′
k(θk)) (11)

where the mean vector x̂′
k(θk) and the covariance matrix

P̂′
k(θk) are, respectively, calculated as





x̂′
k(θk) = x̄k +Kk(θk)z̃k

P̂′
k(θk) = (In −Kk(θk)Hk)P̂k−1

z̃k = zk −Hkx̄k

P̆zz

k (θk) = HkP̆k(θk))H
T
k + Imk

Kk(θk) = P̃kH
T
k (P

zz

k (θk))
−1

(12)

where Kk(θk) denotes the Kalman gain, and z̃k denotes the

innovation vector, and P̆zz

k (θk) denotes the modified innova-

tion covariance matrix, and Imk
denotes the identity matrix

with time-correlated dimension mk.

Proof. See Appendix D.

Remark 4. It can be seen from (9) and (11) that the state

vector xk is always correlated with the MNCMC λk in both
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TABLE II: Time update of the proposed ANGIG-KF

Function 1:
(

x̄k, P̆k, P̆
′

k

)

= TU
(

x̂
′

k−1, P̂
′

k−1,Qk,Φk, θ̂k−1

)

Calculate intermediate prior parameters of xk:

1. P̆′

k = ΦkP̂
′

k−1Φk

2. x̄k = Φkx̂k−1, P̆k = P̆′

k +Qk/θ̂k−1

the time update and the measurement update. Therefore, the

essential difference between the VB-based adaptive state esti-

mation methods and the proposed method is whether to ignore

the correlation between the state vector and the parameter. In

the VB-based methods, the correlation between the state vector

and the parameters is forcibly ignored. Although the later

fixed-point iteration can compensate for some approximate

errors, it may still lead to estimation accuracy degradation.

In contrast, the proposed adaptive method in this paper

reasonably utilizes the correlation between the state vector

and MNCMC, although new errors are introduced in the time

update. Discussing the advantages and disadvantages of these

two kinds of adaptive methods is beyond the scope of this

paper. Nevertheless, in terms of the VIO navigation system

studied in this paper, the proposed adaptive algorithm can

achieve better estimation accuracy than VB-based methods,

as will be shown in Section V-C, VI-B, and VI-C.

Theorem 3. Employing (9)-(11) and (33), the posterior PDF

of auxiliary random variable λk can be calculated as follows.

pθk(λk|z1:k) = GIG(λk; âk, b̂k, p̂k) (13)

where{
âk = āk, b̂k = b̄k +∆k, r̂k = r̄k − 0.5mk

∆k = tr{P̃zz

k (P̆zz

k (θk))
−1}, P̃zz

k = z̃kz̃
T
k

(14)

Proof. See Appendix E.

Exploiting (11) and (13), the posterior joint PDF of the

state vector and auxiliary random variable at time k can be

formulated as follows.

p(xk, λk|z1:k) = N (xk; x̂
′

k(θk), λkP̂
′
k(θk))GIG(λk; âk, b̂k, r̂k)

(15)

Using (12)–(15), we can obtain the mean and covariance of

the marginalized state vector as follows




x̂k = x̂
′

k(θk), P̂k = λ̂kP̂
′

k(θk)

λ̂k =

√
b̂kK(r̂k+1)

(√
âk b̂k

)

√
âkK(r̂k)

(√
âk b̂k

) (16)

The determination of θk is the last basic work of the pro-

posed adaptive filter framework. We have previously identified

θk as the mean of λk, and we will discuss this in more detail. In

the time update, only the prior information of λk is available.

Hence, θk can be approximated as the prior mean of λk, i.e,

θ̄k = E{λk|z1:k−1}. Whereas in the measurement update, we

provide two methods to determine the value of θk as follows

• Non-iterative: θk takes the same value as that in the time

update, i.e., θ̄k.

TABLE III: Measurement update of the proposed ANGIG-KF

Function 2:
(

x̂k, P̂k, x̂
′

k, P̂
′

k, âk, b̂k, r̂k, θ̂k
)

= MU
(

x̄k, P̆k,

P̆′

k,Hk,M, ρ, ǫ,Qk, θ̂k−1, âk−1, b̂k−1, r̂k−1, z̃k, f lag
)

If flag = 1:

Prior parameters propagation of the GIG distribution:

1. āk = âk−1, b̄k = ρb̂k−1, r̄k = ρr̂k−1

2. θ̄k = E(λk|z1:k−1)

3. P̃zz

k = z̃kz̃
T
k

Iteration initialization:

4. θ̂
(0)
k = θ̄k, â

(0)
k = āk, b̂

(0)
k = b̄k, r̂

(0)
k = r̄k

Fixed-point iteration of the unknown parameter θk:

for i = 0 : M − 1 do

5. P̆
(i+1)
k = P̆

′

k +Qk/θ
(i)
k

6. P̆
zz,(i+1)
k = HkP̆

(i+1)
k HT

k + Imk

7. ∆
(i+1)
k = tr{P̃zz

k (P̆
zz,(i+1)
k )−1}

8. â
(i+1)
k = āk, b̂

(i+1)
k = b̄k +∆

(i+1)
k , r̂

(i+1)
k = r̄k − 0.5mk

9. θ̂
(i+1)
k = E(i)(λk|z1:k)

10. If

∣

∣

∣
θ
(i+1)
k − θ

(i)
k

∣

∣

∣
/θ

(i)
k ≤ ǫ, terminate the iteration

end for

Analytical measurement update of the state vector:

11. θ̂k = θ
(Nmin)
k

12. Kk = P̃kH
T
k (P̆

zz,(Nmin)
k )−1

13. x̂′

k = x̄k +Kkz̃k

14. P̂′

k = (In −KkHk)P̆
(Nmin)
k

Actual posterior state estimate and covariance calculation:

15. x̂k = x̂′

k, P̂k = θ̂kP̂
′

k

Else: θ̂k = θ̂k−1, x̂
′

k = x̄k, P̂
′

k = P̆k, âk = āk, b̂k = b̄k, r̂k = r̄k,

x̂k = x̂′

k, P̂k = θ̂kP̂
′

k

• Iterative: θk is calculated as the posterior mean of the

auxiliary random variable λk.

The non-iterative method does not absorb the measurement

information, the advantage of which lies in its ability to reduce

the computational complexity while retaining a satisfactory es-

timation accuracy. Furthermore, the iterative method attempts

to use the measurement information to improve the estimation

accuracy. However, we can observe from (14) that parameter

θk and the posterior PDF of λk are coupled, which results

in the difficulty in determining θk. Therefore, the fixed-point

iteration method is utilized to obtain an approximate solution

of θk. That is to say, in the (i)-th iteration, θ̂
(i−1)
k at the (i−1)-

th iteration participates in the posterior parameters updating in

(14). Then θ̂
(i)
k at the (i)-th iteration is calculated as the pos-

terior mean of λk using its updated PDF at the i-th iteration,

i.e., E(i){λk|z1:k}. Obviously, the iterative method requires

the knowledge of the posterior information of λk. Therefore,

at least one iteration is needed to ensure that θ̂k absorbs the

measurement information to refine its accuracy. The iteration

will however consume many computing resources. Thus, the

iterative method can provide better estimation accuracy but

at the cost of a greater computational burden. Nevertheless,

later we will show that the iterative sequence of the proposed

algorithm can achieve convergence with few iterations, which

would prevent the iterative-based method from being too

computationally expensive. Further comparisons of these two

methods will be illustrated in Section V-A.
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The proposed robust Kalman filtering framework has now

been presented, which is summarized in Table II and Table

III, where flag is employed to determine whether to perform

an extended KF (EKF) update, as will be detailed in Table IV.

With (4) and (15), we can calculate the joint posterior PDF of

the state vector and MNCMC recursively.

B. Implementation details of the whole improved MSCKF

based on the proposed ANGIG-KF

This part provides the detailed implementation steps of

the improved MSCKF based on the proposed ANGIG-KF

to obtain a clearer view of the whole improved MSCKF

algorithm. We highlight that the proposed method can be

easily extended to the EKF framework, and the only difference

between the Tra-MSCKF and the proposed method lies in

the filter algorithm, where the former uses the traditional KF

and the latter employs the proposed ANGIG-KF. The detailed

implementations of the whole improved MSCKF using the

proposed ANGIG-KF are shown in Table IV.

Remark 5. There are several implementation details to note:

(1) Notice from step 8 in Function 2 that the parameter ak
does not change in the measurement update. Multiplying âk−1

by ρ which is less than 1, is not appropriate because it will

approach zero quickly. Thus, ak will not propagate like bk and

rk but remain constant in the whole ANGIG-KF. The influence

of the initial parameters selection on the proposed algorithm

will be discussed in detail in Section IV-C.

(2) The chi-square test will be performed at every iteration

when calling Function 2. Moreover, Hk and z̃k will be also

reconstructed at each iteration.

(3) Speaking precisely, the frequencies of the time update

and measurement update are not exactly equal because the

calculation frequency of the IMU is different from the camera

frequency. In this paper, we assume the parameters of the GIG

distribution do not propagate when there is no measurement

update. In other words, parameters ak, bk and rk are propa-

gated and updated only when the measurement update occurs.

It is reasonable because these parameters are related to the

camera accuracy which is uncorrelated with the IMU.

(4) Considering that θ̂k is a reasonable estimate of λk, we

set the posterior estimated θ̂k as the estimated MNCMC for

subsequent analyses.

Note that the mean operation in step 2 and step 9 of

Function 2 is significant during the implementation of the

whole improved MSCKF. Unfortunately, the calculation of this

mean requires calculating the Bessel function in (4), which

suffers from a numerical calculation problem under certain

conditions. In this case, the mean of λk is unavailable. In the

next section, two alternative methods are given to substitute

the mean, and some properties of the proposed ANGIG-KF

based on these two methods are specified.

IV. DISCUSSIONS ABOUT THE ANGIG-KF BASED ON

ALTERNATIVE METHODS

In this section, the discussions will be divided into two parts.

In the first part, the numerical calculation problem caused by

b
r
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Fig. 3: The value of the logarithm of g(b, r) with respect to

parameter b and r.

TABLE V: Parameter settings of the GIG distribution.

Parameters a b r

Value intervals 1 [1, 100] [-100, 100]

the Bessel function calculation is illustrated and two alternative

methods are given to solve this problem. In the second part, we

conduct some discussions about the properties of the ANGIG-

KF based on the previously proposed alternative methods to

verify the validity of the proposed algorithm. Finally, the

application scenarios of the proposed algorithm are presented.

A. Two alternative methods for solving the numerical calcu-

lation problem

Before giving the alternative methods, we make some expla-

nations about how the numerical calculation problem arises.

We first plot the surface of the Bessel function g(a, b, r) =
Kr(

√
ab) with respect to its parameters in Fig. 3, where a = 1,

i.e., g(b, r) = Kr(
√
b) and the logarithm of g(b, r) is selected

to make the graph clearer. The detailed parameter settings of

the GIG distribution are listed in Table V. Fig. 3 shows that

the value of g(b, r) increases extremely fast with parameter r
decreasing, which is exactly how this parameter will change

as shown in step 8 in Function 2. Although parameter b will

increase with time, leading to the increase of g(b, r) as Fig. 3

shows, this trend is far less significant than the impact when

parameter r decreases, which makes the Bessel functions in

the numerator and the denominator quickly go to infinity. Next,

we will give two alternative methods to avoid the calculation

of Bessel functions.

1) Alternative method 1: approximate mean-based ANGIG-

KF: In this method, we employ an approximate mean which is

based on the upper and lower bounds of the Bessel function ra-

tio to implement the proposed adaptive KF. It has been proven

from [43] that the Bessel function ratio Kr+1(
√
ab)/Kr(

√
ab)

can be approximated by its upper bound (UB) and lower

bound (LB) as follows [43]

r +
√
r2 + ab√
ab

︸ ︷︷ ︸

LB

≤ Kr+1(
√
ab)

Kr(
√
ab)

︸ ︷︷ ︸

True ratio

≤ r + 1.5 +
√

(r + 1.5)2 + ab√
ab

︸ ︷︷ ︸

UB

(17)

Employing (4) and (17), the approximate mean is defined as

E{λ} ≈ ω

√
b√
a
LB + (1− ω)

√
b√
a
UB (18)

where ω ∈ [0, 1] is a tuning weight regulating the distance

from LB and UB to the approximate mean. For ease of
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TABLE IV: Detailed implementations of the whole MSCKF based on the proposed ANGIG-KF.

Inputs: Nominal state and measurement noises Q0 and R0, iteration number M , forgetting factor ρ and iterative threshold ǫ.

Initialize: x̂0 = 015×1,P0, a0, b0, r0, θ̂0,P
′

0 = P0/θ̂0, f lag = 0

for k = 1 : endsteps

Step 1: Run IMU calculation to obtain the uncorrected navigation information and calculate Φk and Qk

Step 2: Run the TU function:
(

x̄k, P̆k, P̆
′

k

)

= TU
(

x̂
′

k−1, P̂
′

k−1,Qk,Φk, θ̂k−1

)

Step 3: if, the camera records an image, do update x̄k, P̆k, P̆
′

k,Qk; else do x̄k, P̆k, P̆
′

k,Qk retain unchanged. end if

Step 4: if, any of the EKF update conditions are satisfied, do { (1) obtain the feature information

(2) perform chi-square test and eliminate outliers (3) construct Hk, rk and set flag = 1 }; else do set flag = 0. end if

Step 5: Run the MU function:
(

x̂k, P̂k, x̂
′

k, P̂
′

k, âk, b̂k, r̂k, θ̂k
)

= MU
(

x̄k, P̆k, P̆
′

k,Hk,M, ρ, ǫ,Qk, θ̂k−1, âk−1, b̂k−1, r̂k−1, z̃k, f lag
)

Step 6: (1) Add the bias correction x̂k to the IMU navigation information; (2) Set the bias correction to zero, i.e., x̂k = 0. end for
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Fig. 4: Mean and mean bounds curves when b = 100.

understanding, we have plotted the errors between the true

ratio and its upper and lower bounds respectively in a finite

range when parameter b is set as 100 in Fig. 4.

Remark 6. Several caveats to note,

(1) Results are similar when b is set as other values.

(2) The bounds in [43] are not tight, as proved in [44].

However, the form of the bounds in (19) is the simplest and

fits our algorithm.

(3) The bounds in [43] only apply when r is a positive

integer. However, they still work when we remove the integer

assumption. In addition, the Bessel function ratio can be well

bounded by LB and UB when r > 0 but turns out to be too

large to be bounded when r < 0. Hence, we expand the upper

bound in [43] to bound the Bessel function ratio and set a

parameter ω to adjust the weights of UB and LB.

(4) Fig. 4 highlights that, in the finite range, the approximate

errors are bounded and tend to decrease as parameter r
decreases, which is exactly how parameter rk tends to change

with time. Thus, the bounds work well in the finite range,

although we cannot guarantee the quality of these bounds

when parameter r gets smaller. Nonetheless, simulation and

experimental results show that the approximate mean works

very well, indicating that the bounds in (19) are reasonable

(at least in all our simulation and experimental scenarios).

Define the prior LB, prior UB, posterior LB and posterior

UB at time k as




LBk =
r̄k+

√
r̄2k+āk b̄k√
āk b̄k

, UBk =
r̄k+1.5+

√
(r̄k+1.5)2+āk b̄k√
āk b̄k

L̂Bk =
r̂k+

√
r̂2k+âk b̂k√
âk b̂k

, L̂Bk =
r̂k+1.5+

√
(r̂k+1.5)2+âk b̂k√
âk b̂k

(19)

where the time indexes are omitted for brevity. With (18) and

(19), the prior and posterior approximate means of λk can be

established as follows




θ̄k ≈ ω

√
b̄k√
āk

LBk + (1− ω)

√
b̄k√
āk

UBk

θ̂
(i)
k ≈ ω

√

b̂
(i)
k

√

â
(i)
k

L̂B
(i)

k + (1− ω)

√

b̂
(i)
k

√

â
(i)
k

ÛB
(i)

k

(20)

Substituting the prior and posterior means in step 2 and step 9

of Function 2 with the prior and posterior approximate means

in (20), respectively, we can perform the approximate mean-

based ANGIG-KF.

2) Alternative method 2: maximum a posterior-based

ANGIG-KF: In this method, we utilize the MAP of the GIG

distribution for the following two reasons

• The MAP of a distribution represents the point with

the highest probability, which is also a good term for

approximating the density.

• The MAP of the GIG distribution can be obtained without

causing any numerical calculation problems.

The MAP of the GIG distribution is given as follows

MAP{λk} =
rk − 1 +

√
(rk − 1)2 + akbk
ak

(21)

which can be easily obtained without any approximations

by taking the derivative of the PDF in (2) and setting the

derivative to zero. Likewise, the prior and posterior MAP of

λk can also be substituted into Function 2 as follows




θ̄k = MAP{λk|z1:k−1} :=
r̄k−1+

√
(r̄k−1)2+āk b̄k
āk

θ̂
(i)
k = MAP(i){λk|z1:k} :=

r̂
(i)
k −1+

√

(r̂
(i)
k −1)2+â

(i)
k b̂

(i)
k

â
(i)
k

(22)

Substituting the prior and posterior means in step 2 and step

9 of Function 2 with the prior and posterior MAPs in (22),

respectively, we can perform the MAP-based ANGIG-KF.

Remark 7. We summarize these two methods as follows.

Comparing (20) and (22), we find that the MAP is also a

lower bound of the mean of λk, which establishes the relation-

ship between the approximate mean and the MAP. However,

although the mean theoretically outperforms the MAP as

discussed in [45], it is hard to tell whether the approximate

mean-based ANGIG-KF or MAP-based ANGIG-KF is better.

The reason is that although we can guarantee the mean is

wrapped in its upper and lower bounds given in (19), whether

the true mean is nearer to the upper bound or the lower
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bound is uncertain. Accordingly, the approximate mean no

longer possesses the attractive property of minimum variance.

Nevertheless, with rk decreasing, the difference between the

MAP and the approximate mean, and the difference between

the lower bound and the upper bound will also decrease

because the only distinctions between these two alternative

methods are different constants modifying from rk, i.e., rk−1,

rk and rk + 1.5, which will be less obvious in this setting.

To sum up, all these results indicate that the performance of

the approximate mean-based ANGIG-KF and the MAP-based

ANGIG-KF may be similar, as will be discussed in Section

V-C. In this paper, the tuning parameter is suggested to lie in

the range [0.4, 0.8] and Section V-C will show the proposed

ANGIG-KF2 with the tuning weight ω ∈ [0.4, 0.8] has similar

estimation accuracy.

B. Properties analyses of the two alternative method-based

ANGIG-KFs

In this part, the convergence analyses and the computation-

al complexity analyses of the two alternative method-based

ANGIG-KFs are presented first, then we give the effects of

initial parameters selections of the proposed ANGIG-KF.

1) Convergence analyses: We first give the convergence

analysis of the MAP-based ANGIG-KF, and the same re-

sult applies to the approximate mean-based ANGIG-KF by

some simple mathematical derivations. The convergence of

the fixed-point iteration process step 5–step 10 in Function

2 will be proved through confirming the boundedness and

monotonicity of the iterative sequence {θ(i)k }+∞
i=0 .

Theorem 4. The iterative sequence {θ(i)k }+∞
i=0 is bounded and

monotonic in the MAP-based ANGIG-KF.

Proof. See Appendix F.

Once the iterative sequence is bounded and monotonic, it

can at least achieve local convergence. Because when θ
(1)
k

at the first iteration is greater than the initial value θ
(0)
k , the

sequence will tend to its upper bound, and vice versa. Thus,

the fixed-point iteration process step 5–step 10 in Function 2

can be locally convergent in the MAP-based ANGIG-KF.

For the approximate mean-based ANGIG-KF, the proof

would be quite similar. Combining (18) and (19), we write

down the approximate mean at time k as follows.

E{λk} ≈ ω
rk +

√
r2k + akbk
ak

(23)

+ (1− ω)
rk + 1.5 +

√
(rk + 1.5)2 + akbk
ak

Comparing (21) and (23), we can claim that the approximate

mean is essentially the convex combination of two translated

MAPs because both terms that comprise the approximate mean

can be obtained from the MAP by simply translating parameter

rk. Hence, the iterative sequence in the approximate mean-

based ANGIG-KF has the same monotonicity as that in the

MAP-based ANGIG-KF. Likewise, the former sequence is also

bounded because both two terms in the approximate mean

are bounded. To this end, we can conclude that the iterative

TABLE VI: Computational complexities of the ANGIG-KF.

ANGIG-KF (Table 3)

step 3 m2

step 5-step 10 M(n2 +mn2 +m2n+m3 +O(m3))

step 12-step 15 2mn2 +m2n+O(m3) +mn+ n3 + n2

sequence in the approximate mean-based ANGIG-KF can be

locally convergent as well. However, it should be noted that

the convergence here does not indicate that the estimated

MNCMC can converge to the true MNCMC, but that step 5-

step 10 in Function 2 can locally converge. The convergence

accuracy will be verified in the simulation part.

2) Computational complexity analysis: In this part, the

computational complexity of the proposed ANGIG-KF is cal-

culated by counting the floating point operations involved with

multiplications of matrices and inverse of matrices. Several

notes are given first.

• To simplify the analyses, some operations like the chi-

square test are not considered.

• The analysis is based on the stable state dimension.

• For brevity, we only take the floating point operations in

the measurement update into account.

The computational complexities of some basic steps of the

proposed ANGIG-KF are listed in Table VI. According to

Table VI, one can conclude that the total computational com-

plexities of the proposed ANGIG-KF in a single measurement

update can be calculated as follows.

flPR =m2 +M [n2 +mn2 +m2n+m3 +O(m3)] + 2mn2

+m2n+mn+ n3 + n2 (24)

where flPR denotes the floating point operations of the

proposed ANGIG-KF, respectively.

It can be seen from (24) the computational complexity of

the proposed ANGIG-KF increases linearly with the iteration

number M . Intuitively, our algorithm has greater computation-

al complexity when iteration number increases. Nevertheless,

we can observe from (24) that if we do not iterate, i.e.,

when M = 1, our algorithm will be more computationally

efficient. Generally, this case is not reasonable because the

iterative process is necessary to make the posterior solutions

more accurate. However, later in Section V-A, we will show

that the proposed ANGIG-KF still performs well without the

iterative process. That is to say, the non-iterative method-based

ANGIG-KF can achieve a satisfactory result with a small

computational burden.

C. Influences of initial parameters selections

This part firstly provides theoretical convergent value

derivations of the proposed method under a stationary scenario

to verify the effectiveness of the proposed method, and then

conducts a numerical simulation to verify the performance of

the proposed algorithm under different initial parameters.

Assumption 1. If the noise statistics are constant, the follow-

ing approximation holds

tr
{
P̃zz

k (Pzz

k )−1
}
= tr

{
P̃zz

k

(
HkP̄kH

T
k +R

)−1
}
≈ m

(25)
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Fig. 5: Percentage differences between the estimated MNCMC

and the true MNCMC.

where Pzz

k denotes the innovation covariance matrix and

satisfies Pzz

k = λP̆zz

k , and except for P̄k denotes the prior

state covariance matrix here, other quantities have the same

definitions as those in Section III.

Next, we provide analyses of the effects of different initial

parameters on the proposed algorithm under a stationary

condition. Note that the lower bound in (20) is selected due

to similar forms of the lower bound, upper bound, and MAP.

Proposition 3. Under Assumption 1, the influences of initial

parameters b̂0 and r̂0 on the proposed algorithm decay expo-

nentially over time, and the influence of initial parameter â0
reduces as â0 decreases.

Proof. See Appendix G.

Utilizing Proposition 3, it can be concluded that due to

propagation step (7), the influences of initial parameters b̂0
and r̂0 are trivial over time. Although the parameter â0 does

not propagate, its influence on the proposed algorithm is

also trivial if a small â0 is selected. In order to verify this

conclusion, a concise numerical simulation will be carried out

to verify the aforementioned conclusion.

In this simulation, the parameters Fk = 1, Hk = 1, Qk = 1,

ρ = 1− e−4, and the number of Monte Carlo runs is 10000.

Besides, we select parameter â0 in the interval [10−12, 25],
and set λ from 0.1 to 25, and randomly select some initial

parameters for b̂0 and r̂0. Note that it is not recommended

to select a smaller â0 because numerical calculation problems

will be induced. Fig. 5 plots the percentage differences be-

tween the estimated MNCMC and the true MNCMC using

the proposed algorithm. We average the percentage differences

over different λ.

Fig. 5 shows that the influences of different b̂0 and r̂0 are

small on the convergent estimated MNCMC. In addition, small

â0 ranging from 10−12 to 10−1 contributes to better estimates

of true MNCMC, which corresponds to the aforementioned

conclusion. Hence, it is recommended that â0 is selected in

the interval of [10−12, 10−1].

D. Application scenarios of the proposed algorithm

The proposed algorithm is based on an assumption that

the MNCM is a time-varying scalar multiplied by an identity

matrix in this paper. Therefore, stringently speaking, the

Fig. 6: Simulated groundtruth.

measurement noise of the sensor needs to satisfy the same

degree of variation in each dimension. This condition can

be approximately satisfied on sensors that measure in all

directions based on the same principle, such as the camera,

Global Position System, Doppler velocity log, ultra wide band

and odometry. However, the proposed algorithm may perform

poorly when each dimension of the measurement is based

on different principles, such as the liDAR and the ultra-short

baseline, whose range measurement is based on the time of

flight but the bearing measurement is generally based on the

phase difference. In this case, using a scalar to adjust the

MNCM is not appropriate. Nevertheless, the VIO navigation

system with time-varying and high dimensional measurements

is still one of the best application scenarios for verifying the

effectiveness and superiority of the proposed algorithm.

V. SIMULATION TESTS

In this section, we carry out some simulation tests to verify

the validity and superiority of the proposed ANGIG-KF using

the simulated data. A robot is assumed to move in a circle

in the x − y plane while undertaking sinusoidal movement

along the z axis, which is shown Fig. 6, and the feature

points are randomly generated on a cylinder surrounding the

trajectory. Stationary feature points are randomly generated

on the cylinder surrounding the trajectory, and every recorded

image contains 3 feature points. The update frequency of the

IMU and the camera are 100Hz and 10Hz, respectively. Note

that we do not simulate absolute localization information such

as the GNSS signal. Therefore, the localization accuracy of all

algorithms will deteriorate over time.

100 Monte Carlo runs are executed and the simulation

time is set as 250s (equivalent of 25000 INS updates) for all

scenarios. The root mean square error (RMSE) and normalized

estimation error square (NEES) are chosen as the performance

metrics of the estimation accuracy and consistency for all

compared algorithms [30]. In addition, for clearer comparison,

the RMSEs and NEESs from all algorithms are smoothed

using a moving average method with span of 100 steps.

According to the engineering experience, the nominal M-

NCMC λ0 in the normalized coordinate system is set as

λ0 = 1 which corresponds to a pixel error in the pixel

coordinate system2. The actual λk jumps between 4λ0 and 2λ0

over time. This simulation will be segregated into three parts.

2We highlight that the MNCMC actually does not have any units. We add
the units of the MNCM just to make the meaning of the MNCMC more
obvious, i.e., λ0 = 1 (pix2), where pix is the abbreviation of pixel.
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TABLE VIII: PRMSE and simulation time comparisons under

different iteration numbers.

Iteration

numbers

ANGIG-KF1 ANGIG-KF2

PRMSE1 Time1 (ms) PRMSE2 Time2 (ms)

1 0.130 7.053 0.130 7.049

2 0.130 7.699 0.129 7.836

3 0.130 8.816 0.129 8.812

4 0.130 9.750 0.129 9.969

5 0.130 10.558 0.129 11.099

6 0.130 11.533 0.129 11.695

7 0.130 12.197 0.129 12.679

In the first part, we verify that both the MAP-based ANGIG-

KF (ANGIG-KF1) and the approximate mean-based ANGIG-

KF (ANGIG-KF2) under pre-set scenario can converge as

the number of iterations increases, which provides theoretical

basis for the choice of iteration numbers. In the second part,

the estimation accuracy of all algorithms is compared in

this case to verify the superiority of the proposed ANGIG-

KF. Finally, we have some discussions about the relationship

between the MAP-based ANGIG-KF and the approximate

mean-based ANGIG-KF.

A. Convergence verification of the proposed ANGIG-KF

In this part, the convergence verifications of the proposed

MAP-based ANGIG-KF (abbreviated as ANGIG-KF1) and

approximate mean-based ANGIG-KF (abbreviated as ANGIG-

KF2) are conducted. Parameter settings are listed in Table VII

except for the iteration number N setting from 1 to 8.

TABLE VII: Parameter settings for simulation.

Algorithms Parameter settings

VB-MSCKF [13] a = 0.4, ν0 = 10,V0 = 0.1 ∗ I6

RSTKF [30] dof = 5, M = 50, ǫ = 1e− 8

HKF [29] tuning parameter γ = 1.345,M = 50, ǫ = 1e− 8

ANGIG-KF1 â0 = 10, b̂0 = 10, r̂0 = 1, ρ = 0.99

ANGIG-KF2 â0 = 1, b̂0 = 0, r̂0 = −0.5, ρ = 0.99, ω = 0.5

We list the position RMSEs (PRMSEs) and execution time3

under different iteration numbers in Table VIII to determine

which iteration number is appropriate. It can be seen from

Table VIII that the accuracy improvement stopped when

the iteration number is larger than 2. Furthermore, we can

observe from the execution time column that a mere 0.8%

accuracy improvement increases the average execution time by

10%, which indicates that the benefits attained from iterations

are not obvious and performing too many iterations is not

necessary. We attribute this result to retaining the correlation

between the state vector and the MNCMC, which renders

the initial estimated θ̂k close to the optimal solution and the

iterative sequence converges very fast. Thus, the proposed al-

gorithm will not execute iterations in the remaining simulation

tests and experimental tests. That is to say, we adopt the non-

iterative method which is mentioned in Section III-B.

3The execution time here denotes the average time running a single
Function 2.

Fig. 7: PRMSE and ORMSE curves of all algorithms.

B. Superiority verification of the proposed ANGIG-KF

In this part, the RMSEs of the existing Tra-MSCKF with

nominal MNCM [5], True-MSCKF with true MNCM [5],

RSTKF [30], HKF [29], VB-MSCKF [13] and the proposed

ANGIG-KF1 and ANGIG-KF2 are compared under the pre-

selected case. Parameter settings for all compared algorithms

are shown in Table VII. Note that the proposed ANGIG-KF is

divided into the ANGIG-KF1 and ANGIG-KF2. However, we

do not distinguish these two algorithms but will discuss them

in Section V-C. In the following comparison, the ANGIG-KF1

and ANGIG-KF2 are collectively called the ANGIG-KF.

In this case, we simulate a scenario where the MNCM

changes suddenly in steps at fixed intervals. Fig. 7 depict

the PRMSE and orientation RMSE (ORMSE) curves of the

proposed ANGIG-KF and other compared algorithms. It can

be seen from (41) that the proposed ANGIG-KF propagates

ak−1, bk−1 and rk−1 with forgetting factor ρ, which makes

the current estimated MNCM related to the historical MNCM

estimates. Nevertheless, the RSTKF and HKF only use the

current measurement to estimate the MNCM, which will be

less accurate in this MNCM setting. The estimated MNCMC

curve is plotted in Fig. 8. We can observe from Fig. 8 that even

if the MNCM changes suddenly, the proposed ANGIG-KF still

retains excellent performance, whose position and orientation

estimation accuracies are 85.48% and 3.1% better than the Tra-

MSCKF. Note that the transient performance of the estimated

MNCMC is not attractive. A sudden MNCMC change at the

current time is difficult for the proposed ANGIG-KF to capture

rapidly since the MNCMC estimate is based on historical

information. Nevertheless, we can see from Fig. 8 that the

steady performance of the ANGIG-KF is fairly good. To be

more convincing, another scenario in which the MNCMC

experiences four sudden changes is considered. Note that

only the estimated and true MNCMCs in this supplementary

scenario are shown in Fig. 9. The results are similar to Fig. 8.

Furthermore, we should explain that the estimated trajectory

of the MNCMC slightly lags behind the true trajectory, which

is because the estimated MNCMC is obtained through past

measurement data learning. As stated in [40], adaptive KF-

based learning is a reactive scheme, where the change of the

estimated noise parameters will always be delayed. Neverthe-

less, the overall tracking performance is satisfying.
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Fig. 8: Estimated MNCMC curves.

Fig. 9: Estimated MNCMC curves in the supplementary sce-

nario.

Fig. 10: NEES curves of all algorithms.

In addition to the estimation accuracy, the consistency4 is

also a significant metric to evaluate the algorithm. Therefore,

we plot the NEES curves of position, velocity and altitude

estimation of all algorithms in Fig. 10. It can be seen from

Fig. 10 that the Tra-MSCKF has the worst consistency, which

is due to an adventurous MNCM setting and the inability to

adjust the MNCM. Moreover, both RSTKF and HKF are not

consistent. The reason is that the existing RSTKF and HKF

are essentially robust algorithms and cannot accurately esti-

mate the time-varying MNCM. Without an accurate MNCM

estimate, the consistencies of the existing RSTKF and HKF are

not guaranteed. Furthermore, notice that the NEES of the VB-

MSCKF is not particularly conservative as we expected. The

reason is that the VB-MSCKF gives up the fixed-point iteration

4There are two important factors that can induce inconsistency of a VIO
system, i.e., parameter inaccuracy and erroneous observability. The latter one
can be solved by the FEJ technique [35] or the OC-EKF [36]. Note that this
simulation focuses on the inconsistency caused by parameter inaccuracy.

TABLE IX: ARMSEs of the VB-MSCKF under different

initial parameters.

Algorithms
Orientation

ARMSEs (deg)

Position

ARMSEs (m)

Tra-MSCKF 0.1584 0.1317

True-MSCKF 0.1484 0.0185

ANGIG-KF1 0.1513 0.0195

VB-MSCKF ν̂0=10, V̂0=0.01*I4 0.15614 0.078781

VB-MSCKF ν̂0=10, V̂0=0.01*I6 0.15614 0.078781

VB-MSCKF ν̂0=10, V̂0=0.05*I6 0.15632 0.078780

VB-MSCKF ν̂0=10, V̂0=0.1*I6 0.15599 0.078698

VB-MSCKF ν̂0=10, V̂0=0.5*I6 0.15586 0.078242

VB-MSCKF ν̂0=10, V̂0=1*I6 0.15626 0.078598

VB-MSCKF ν̂0=5, V̂0=0.5*I6 0.15625 0.07776

VB-MSCKF ν̂0=15, V̂0=0.5*I6 0.15634 0.078428

VB-MSCKF ν̂0=20, V̂0=0.5*I6 0.15632 0.078498

to pursue computational efficiency, which makes it difficult

for the VB learning process to estimate accurate MNCM

parameters. In contrast, due to retaining the correlation of

the state vector and parameters, the proposed ANGIG-KF

not only ensures consistency (closer to 9) but also takes

consideration of the estimation accuracy, which contributes

to its best performance overall. Moreover, the results of the

proposed ANGIG-KF also indicate that an accurate MNCM

not only improves the estimation accuracy, but also improves

the estimation consistency.

C. Discussions

In this part, we carry out some discussions for the remaining

issues about the performance of the existing VB-MSCKF and

the proposed algorithm, and the weight selection problem.

We have verified that the initial parameters have trivial

influences on the proposed algorithm in Section IV-C. In this

part, we show that this conclusion also applies to the VB-

MSCKF. Firstly, the influences of the initial parameters on the

existing adaptive VB-MSCKF algorithm are similar to those

on the proposed ANGIG-KF because a similar propagation

operation is selected to propagate the parameter model, i.e.,

propagate parameters with a forgetting factor ρ. As a result,

the influences of initial parameters on the VB-MSCKF is also

exponentially decaying. To substantiate this point, we have

carried out a simulation, in which different initial parameters

are selected for the VB-MSCKF. The results are shown in

Table IX. It can be seen from Table IX that the accuracy

improvement of selecting different initial parameters û0 and

Û0 on the existing VB-MSCKF is trivial, which is in concert

with the aforementioned corollary.

In addition, we show the RMSE curves of the Tra-MSCKF,

ANGIG-KF1, and ANGIG-KF2 with different tuning weight

ω = 0.4, 0.5, 0.6, 0.7, 0.8 in Fig. 11. It can be seen from Fig.

11 that the proposed ANGIG-KF2 with different tuning weight

ω = 0.4, 0.5, 0.6, 0.7, 0.8 has almost the same estimation

accuracy. Nonetheless, it still outperforms the Tra-MSCKF.

Besides, we have discussed earlier in Remark 7 that the

performance of the MAP and approximate mean may be
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Fig. 11: PRMSEs of the proposed ANGIG-KF under different

tuning weight ω = 0.4, 0.5, 0.6, 0.7, 0.8.

similar due to their similar form, and the same results can

be obtained through all foregoing RMSE curves. As a matter

of fact, if the true mean approaches its upper bound, the

approximate mean with the weight ω = 0.5 may perform

better than the MAP, while it may be inferior to the MAP if

the true mean is nearer to its lower bound. Nevertheless, the

tuning weight parameter ω is set as a constant in all simulation

tests because we do not have any prior information about the

true mean. The constant weight in this simulation is obtained

by experience.

VI. EXPERIMENTAL TESTS

In order to be more convincing, the effectiveness and supe-

riority of the proposed ANGIG-KF will be verified in various

environments through real-world datasets. In this experiment,

we carry out several tests with the aircraft EuRoC datasets [37]

provided by ETH Zurich, and the in-vehicle KITTI datasets

[38] co-founded by Toyota American Institute of Technology,

under various stationary and complex environments. Here are

some introductions to these datasets. The EuRoC datasets use

a 200Hz IMU and a 20Hz monochrome binocular camera and

the groundtruth of which is obtained by the Vicon motion

capture system. The EuRoC datasets include two scenarios:

a machine hall and an ordinary room. The KITTI datasets

contain abundant outdoor scenarios and use multiple sensors

in which a 100Hz IMU, a 10Hz stereo camera and a GPS

are utilized in our experimental tests. The groundtruth can be

provided by a high-accuracy INS/GNSS integrated navigation

system. The experimental tests are divided into three parts. In

Part I, the experimental environment and parameter settings

are presented. Experimental tests are carried out in Part II

and Part III, where Part II performs the experimental tests on

the indoor stationary EuRoC datasets and Part III focuses on

the outdoor complex KITTI datasets. Details will be given in

respective parts.

A. Experimental environment and parameter settings

Before the tests, we want to note that the experiments

require a neat and generic VIO framework which should at

least satisfy the following principles: 1) The framework only

runs the MSCKF algorithm without using any other complex

optimizations to improve the localization accuracy, such as

the online alignment. 2) All compared algorithms can be well

embedded into the framework.

Therefore, we use the OpenVINS [39] as the framework of

all compared algorithms because different algorithms can be

implemented on the VIO navigation system by simply modi-

fying the codes of the state prediction part and measurement

update part of OpenVINS. Additionally, in our experiment,

the number of the sliding windows N is set as 11 and

the maximum number of feature points participating in the

measurement update at each time step is set as 40. We conduct

comparisons among the previous mentioned algorithms in the

simulation, where we only employ the proposed ANGIG-KF2

to implement the comparison due to the similar performance

of the ANGIG-KF1 and ANGIG-KF2. To compare the per-

formance of all algorithms in experimental tests, we define

following position error (PE) and orientation error (OE) as

the performance metrics
{

PEk(m) =
√
(xk − x̂k)2 + (yk − ŷk)2 + (zk − ẑk)2

OEk(deg) =
∥∥(I

Gq
⊗

I
Gq̂

−1
)
1:3

∥∥ ∗ 180
π

(26)

where xk, yk, zk and I
Gq denote the reference values of the

global three dimensional positions and unit quaternion, respec-

tively, and x̂k, ŷk, ẑk and I
Gq̂ are their corresponding estimates

after bias correction, respectively. Besides the algorithms in

the simulation tests, the MSCKF with inflated MNCM is also

added, which is thereafter called the Inf-MSCKF. The nominal

MNCMCs are selected as 2.25 and 4 in the EuRoC datasets

and KITTI datasets, respectively.

B. EuRoC datasets

In this part, the EuRoC datasets will be tested to verify the

performance of the proposed algorithm in the case of an indoor

and stable environment. The nominal value for λ0 under the

EuRoC datasets is set as λ0 = 1 (pix2) which corresponds

to a pixel error in the pixel coordinate system. We should

note that although the environment is stable, the Tra-MSCKF

may still suffer from estimation degradation due to the wrong

cognition of the MNCM. Datasets V101-V203 and MH01-

MH05 are selected to conduct comparisons of all algorithms,

where dataset V203 is analyzed in detail as representative.

Parameter settings for all compared algorithms in the EuRoC

datasets are listed in Table X, where the weight ω is selected by

engineering experience and the selection principle of â0, b̂0, r̂0
is to set θ̂0 = λ0. The average PEs (APEs) and average OEs

(AOEs) of all tested EuRoC datasets are listed in Table XI.

TABLE X: Parameter settings of algorithms for experiments.

Algorithms Parameter settings

ANGIG-KF2 a0 = 10−8, b0 = 3.5, r0 = −0.25, ω = 0.7

VB-MSCKF [13] ν0 = 10, a = 0.4,V0 = 0.1 ∗ I6

RSTKF [30] dof = 5, N = 50, ǫ = 1e− 6

HKF [29] tuning parameter γ = 1.345,M = 50, ǫ = 1e− 6

1) Dataset V203: In the dataset V203, the camera moves

rapidly indoors and suffers from sudden shakes sometimes,

which leads to blurring of some images. The dataset V203 runs
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Fig. 12: PEs and OEs for dataset V203.

for 114.845s and 86.128m with an average speed of 2.7km/h.

The PEs and OEs of all algorithms for dataset V203 are shown

in Fig. 12. It can be observed from Fig. 12 that due to the lack

of absolute localization information, the whole PEs and OEs

are increasing moderately overall, which is unavoidable in VIO

systems. Note that the existing VB-MSCKF performs poorly

compared with other algorithms, even with the Tra-MSCKF,

which is inconsistent with the performance in the simulation.

We make the following explanations for this result. Firstly, as

illustrated in Section I-C, the inaccurate dimension matching

method based on the ℓ2 norm limits the estimation accuracy

of the VB-MSCKF. Secondly, VB-based methods require

certain iterations to compensate for the inaccuracy of the

nominal MNCM. The VB-MSCKF, however, does not perform

iterations to save computation [13], which further limits its

accuracy. In the simulation, the true state noise covariance

matrix is employed so that the overall estimation accuracy of

all algorithms is relatively high. However, authentic scenarios

in the experiment are more harsh, which are usually reflected

in unknown interference and inaccurate parameters such as

Qk. These further amplify the drawback of the VB-MSCKF.

In contrast, the proposed ANGIG-KF2 retains a satisfactory

estimation performance, which benefits from a more accurate

modeling of MNCMC and a more efficient joint inference

than VB inference, as discussed in Remark 4. It can be seen

from Fig. 12 that both the position and orientation estimation

accuracy of the proposed ANGIG-KF2 is superior than the

Tra-MSCKF and other compared algorithms. To better explain

this result, we plot the estimated MNCMC of this dataset in

Fig. 13 to understand the underlying reason for the advantage

of the proposed algorithm.

The most volatile period at around 25s is singled out for

analysis. The output curves of the gyroscope during this period

are plotted in Fig. 13(b). It is obvious that the orientation of

the camera experienced large interferences between 25s-30s,

which resulted in the severe camera shake. As a consequence,

the image the camera recorded during that time was blurred,

leading to the increase of the inaccuracy of the camera. The

proposed ANGIG-KF2 accurately captures the vehicle maneu-

vering during this time and adaptively increases the estimated

MNCMC to cope with the camera accuracy degradation, which

gives rise to its good estimation performance.
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(b) Gyroscope outputs.

Fig. 13: Estimated MNCMC and gyroscope outputs in dataset

V203.

2) Other datasets: For other datasets in the EuRoC dataset-

s, we directly list the APEs, AOEs and execution times

during single implementation of all algorithms in Table XI.

It can be seen from Table XI that our algorithm outperforms

others in most cases. The Inf-MSCKF is inferior to the Tra-

MSCKF in most cases, which indicates that the experience

MNCM setting is more reasonable in EuRoC datasets. On

average, the orientation and position estimation accuracies of

proposed ANGIG-KF2 are improved by 22.20% and 29.41%

with respect to the Tra-MSCKF, respectively, and 24.33%

and 37.5% with respect to the Inf-MSCKF, and 11.60% and

36.51% with respect to the VB-MSCKF, and 10.66% and

22.58% with respect to the RSTKF, and 19.69% and 26.38%

with respect to the HKF. Thus, we can basically deduce that

the essential solution of the accuracy degradation of the Tra-

MSCKF is the ability to adaptively adjust the MNCM rather

than inflate the MNCM. Moreover, note that the RSTKF has

a rather good performance in datasets V102-V202, MH03 and

MH05. Our explanation is that the experimental environments

are worse than the simulation, which highlights the advantage

of the robust algorithms. The robust HKF, however, does not

perform well due to its inherent shortcoming of not consider-

ing the measurement noise statistics. Despite that the RSTKF

performs better than the proposed ANGIG-KF2 occasionally, it

consumes much larger computation to achieve this advantage.

Next, to show the consistency of all algorithms, we draw the

3-sigma bound5 curves of all algorithms for dataset V101 in

Fig. 14, where the first three rows are position 3-sigma bounds

and the last three rows are orientation 3-sigma bounds. Before

we analyze the consistency of all algorithms, some caveats are

given as follows.

5The principle of evaluation consistency of the 3-sigma bound is to judge
whether the true error is within the theoretical allowable error range (i.e., plus
or minus three times of estimated standard deviation for Gaussian distributed
state vector). If the bound curves do not wrap at least 99.74% of the error
curve, we consider this estimate to be inconsistent.
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TABLE XI: APEs and AOEs of all tested EuRoC datasets.

NO. Dataset Performance metrics Tra-MSCKF [5] Inf-MSCKF [5] VB-MSCKF [13] ANGIG-KF2 RSTKF [30] HKF [29]

V101

AOE (deg) 0.851 0.607 1.169 0.749 0.829 0.802

APE (m) 0.071 0.636 0.085 0.050 0.074 0.086

Time (ms) 12.252 12.608 12.257 12.737 24.120 39.481

V102

AOE (deg) 1.284 1.481 0.517 0.693 0.483 1.185

APE (m) 0.135 0.159 0.126 0.105 0.111 0.139

Time (ms) 12.950 13.612 13.330 13.987 25.922 38.752

V103

AOE (deg) 0.813 0.968 1.004 0.793 1.159 1.044

APE (m) 0.092 0.095 0.119 0.102 0.078 0.008

Time (ms) 13.431 13.881 13.749 14.543 24.023 39.860

V201

AOE (deg) 1.481 1.715 0.894 1.198 1.323 1.461

APE (m) 0.094 0.110 0.150 0.084 0.120 0.098

Time (ms) 12.081 12.168 12.359 12.302 23.138 33.644

V202

AOE (deg) 0.903 0.908 1.171 0.852 0.849 0.880

APE (m) 0.116 0.122 0.152 0.111 0.135 0.117

Time (ms) 12.631 12.852 12.809 13.736 23.057 36.683

V203

AOE (deg) 1.293 1.228 2.091 1.056 1.510 1.778

APE (m) 0.139 0.172 0.250 0.099 0.138 0.168

Time (ms) 13.570 14.418 13.824 14.647 21.172 37.034

MH01

AOE (deg) 1.440 1.281 1.114 1.077 1.439 1.375

APE (m) 0.179 0.204 0.230 0.091 0.160 0.172

Time (ms) 11.357 12.098 11.736 11.950 19.289 14.423

MH02

AOE (deg) 0.879 1.259 0.776 0.596 0.679 0.852

APE (m) 0.131 0.161 0.144 0.096 0.119 0.127

Time (ms) 11.412 11.462 12.296 12.034 19.358 14.277

MH03

AOE (deg)) 2.364 2.112 1.388 1.781 1.795 1.565

APE (m) 0.216 0.227 0.164 0.173 0.158 0.163

Time (ms) 11.666 12.350 11.914 12.323 20.650 16.407

MH04

AOE (deg) 0.847 1.125 0.595 0.369 0.594 0.829

APE (m)) 0.358 0.416 0.330 0.197 0.305 0.368

Time (ms) 11.118 11.220 11.295 11.795 18.759 14.001

MH05

AOE (deg) 1.017 0.829 0.853 1.078 0.785 0.971

APE (m) 0.335 0.379 0.324 0.212 0.307 0.351

Time (ms) 11.494 11.829 11.529 11.601 19.621 16.952

Mean
Meano (deg) 1.198 1.229 1.052 0.930 1.041 1.158

Meanp (m) 0.170 0.192 0.189 0.120 0.155 0.163

• Since the true state vector in this paper is heavy-tailed

distributed, its error bounds should theoretically be a little

larger than that in the Gaussian distribution to cover at

least 99.74% of the error curve. Nevertheless, we still

draw the 3-sigma curves for convenience.

• Since the state vector defined in this paper is the inertial

navigation error, the obtained filter standard deviation is

essentially the standard deviation of the inertial navi-

gation error state rather than the navigation estimate6.

Therefore, stringently speaking, the bound curves in Fig.

14 do not actually reflect the consistency of navigation

estimate. Fortunately, the inertial navigation error is cor-

rected to zero at every posterior moment, which renders

the two standard deviations mathematically equivalent.

It can be seen from Fig. 14 that the consistency of the

Inf-MSCKF is slightly better than the Tra-MSCKF due to an

inflated MNCM setting. Nevertheless, all except for the pro-

posed ANGIG-KF2 have severe inconsistent position estimates

while the orientation estimates of all algorithms are mostly

consistent, which verifies the good quality of the estimates

6The navigation estimate denotes the corrected INS updating estimate using
the filter posterior state estimate

of the proposed algorithm. The reason for this superiority

stems from an outstanding MNCMC estimate, which benefits

the right cognition of the true MNCM of the system and

concurrently improves the consistency of the estimate.

C. KITTI datasets

In this part, we carry out tests in outdoor environments

which are divided into two scenarios, i.e., urban and highway.

The nominal MNCMC is set as 1.5 pixel standard deviation,

and â0 = 10−8, b̂0 = 5.75, r̂0 = −0.5. Other parameter

settings retain the same as Table X. Detailed APEs and AOEs

of all algorithms in the two scenarios are listed in Table XII.

1) Urban scenario: For the urban scenario, we use dataset

2011 10 03 drive 0027 which is collected in the urban area

(we will thereafter call this dataset Urban). In this scenario,

the vehicle is frequently diverted on a road, which may

lead to the feature points tracking missing due to the big

perspective changing. Additionally, although the road is highly

textured, abundant shadows exist along the road, for which the

measurement accuracy of the camera is extremely susceptible.

Furthermore, it is worth noting that the data between 37.5s and

195s are selected in this test due to the IMU measurements
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Fig. 14: 3-sigma bound curves of all algorithms for dataset V203.

missing at around 35s and 196s according to the timestamp of

the dataset. In this setting, the trajectory runs for 157.5s and

1133.5m at an average speed of 26km/h. Fig. 15 gives the PEs

and OEs of all algorithms. We can see from Fig. 15 that in

the urban area, all algorithms suffer from certain estimation

accuracy degradation compared with the indoor results tested

in the EuRoC datasets, especially the existing VB-MSCKF,

which means the outdoor localization is more challenging than

indoor localization. Note that the performance of the VB-

MSCKF degrades more in the dataset Urban, which is due

to the much worse environment in this dataset (frequent di-

version, shadows, shakes). Note that the estimation accuracy of

the Inf-MSCKF is improved compared with the Tra-MSCKF,

which means an inflated MNCM is more reasonable in this

scenario. Nonetheless, both the orientation and position esti-

mation performance of the proposed ANGIG-KF2 are superior

to other algorithms, which is 19.40% and 19.87% better than

the Tra-MSCKF, and 4.57% and 3.69% than the Inf-MSCKF,

and 79.16% and 80.70% better than the VB-MSCKF, and

37.79% and 38.06% better than the RSTKF, and 40.09% and

40.12% better than the HKF. Moreover, the execution time

of the proposed ANGIG-KF2 is not significantly increased

compared with the VB-MSCKF, but its estimation accuracy is

much better than the VB-MSCKF.

To better analyze the impact on the estimated MNCMC of

the outdoor complex environment, the true trajectory and the

estimated MNCMC curve are drawn in Fig. 16. We list several

typical spots where the MNCMC is most likely to present

time-varying characteristics, including the diversion, shadows

and moving objects (unexpected pedestrian appearance). In

Fig. 16(b), frequent fluctuations of the estimated MNCMC

from 90s to 140s may stem from continuous diversions during

the movement, as circled by the red ellipse in Fig. 16(a). Due

Fig. 15: PEs and OEs for dataset Urban.

to four turns and occasional shakes, the accuracy of the camera

is very unstable. Moreover, the sharp rise at about 180s is due

to a series of shadows appearing at the end of the trajectory.

Nonetheless, even if the measurement accuracy of the camera

is very unstable, the proposed ANGIG-KF2 can reasonably

adjust the MNCM estimate according to the obtained camera

measurement to achieve an approximate tracking of the true

MNCM and obtain good position and orientation estimation

accuracy.

2) Highway dataset: Finally, we use the dataset

2011 10 03 drive 0042 to test the performance of all

algorithms under high-speed scenarios, where the vehicle

moves on a straight highway with a speed of about 78km/h

(denoted as dataset Highway). It is clear from Table XII that

the performances of all algorithms are much worse than those

under the urban case, and the VB-MSCKF even diverges

in this dataset. We should first explain the reason that the

execution time of the VB-MSCKF in this dataset is less than
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TABLE XII: APEs and AOEs of all tested KITTI datasets.

NO. Sequence Performance metrics Tra-MSCKF [5] Inf-MSCKF [5] VB-MSCKF [13] ANGIG-KF2 RSTKF [30] HKF [29]

Urban

AOE (deg) 3.717 2.759 14.379 2.633 4.816 5.001

APE (m) 11.736 8.748 65.435 8.425 15.182 15.706

Time (ms) 15.911 16.740 16.829 17.140 34.953 49.879

Highway

AOE (deg) 5.406 5.427 24.034 5.361 5.520 5.512

APE (m) 23.494 30.274 1098.726 21.899 39.050 26.089

Time (ms) 11.588 11.803 11.315 12.149 16.168 16.443

Turn

Turn + Shadow

Turn + Shake

Turn + Pedestrian

A series of Shadows

Start point
End point

(a) Trajectory of the datasets Urban.
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(b) Estimated MNCMC in the urban area.

Fig. 16: True trajectory and estimated MNCMC.

the Tra-MSCKF. Due to the divergence of the VB-MSCKF, its

estimated trajectory has been completely separated from the

true trajectory. Thus, almost all feature points are identified

as outliers and eliminated by the chi-square test, which saves

much execution time for the measurement update. Hence,

the VB-MSCKF consumes less execution time than the

Tra-MSCKF, which also indicates that too little execution

time may not be good, as it means less information (both

useful information and outliers) can be utilized and processed.

In this case, the algorithm is easy to diverge. Furthermore, the

orientation and position estimation accuracy improvement of

the proposed algorithm compared to other algorithms in this

case is also limited, which is 0.8% and 11.05% better than the

Tra-MSCKF, and 1.21% and 27.66% than the Inf-MSCKF,

and 2.88% and 43.92% better than the RSTKF, and 2.74%

and 16.06% better than the HKF.

We make the following explanations for this result. Images

recorded in high-speed scenarios can easily become blurred,

which weakens the ability of the system to extract feature

points. Besides, the captured feature points can be lost quickly

due to the high speed of the system. Furthermore, the system

moves most of the time in a straight and stationary line, where

the gyroscope and the accelerometer lack motivation. Hence,

little information can be utilized to estimate the biases of the

gyroscope and the accelerometer. Therefore, all these reasons

explain that localization of the VIO navigation system in a

high-speed scenario can be troublesome and difficult.

Overall, through all the above simulation and experimental

results, it can be concluded that the proposed algorithm can

well accommodate non-stationary environments and provide

accurate and consistent localization information for VIO nav-

igation systems.

VII. CONCLUSION

In this paper, a novel ANGIG-KF for the VIO navigation

system was proposed by jointly estimating the state vector

and the MNCMC which are modeled as NGIG distributed,

then the implementations of the improved MSCKF based on

the proposed ANGIG-KF are detailed. A numerical calculation

problem is introduced and two alternative methods based on

the MAP and approximate mean are, respectively, proposed

to address it, where the convergence, computational com-

plexity, and initial parameters influence analyses are given to

illustrate the validity of the proposed framework. Simulation

and experimental dataset tests demonstrated that the proposed

algorithm can achieve a good tracking performance of the true

MNCM, which contributed to the better estimation accuracy

and consistency over other algorithms.

VIII. APPENDIX

A. Proof of Proposition 1

The mean and covariance matrix of the state vector can be

obtained with the PDF of the state vector which is calculated

by integrating λ of (3), i.e.,

E{x} =

∫
x

∫
p(x, λ)dxdλ

=

∫∫
(xN (x;µ, λΣ)dx)×GIG(λ; a, b, r)dλ

=

∫
µ×GIG(λ; a, b, r)dλ = µ (27)

Var(x) = E{(x− x̂)(x− x̂)T } =

∫
x̃x̃T

∫
p(x, λ)dxdλ

=

∫∫ (
x̃x̃TN (x;µ, λΣ)

)
dx×GIG(λ; a, b, r)dλ

=

∫
λΣ×GIG(λ; a, b, r)dλ = λ̂Σ

where x̃ = x− x̂ , and E{λ} can be found in [32].
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B. Proof of Proposition 2

Without loss of generality, we let Σ = In. First, we

marginalize λ in the joint NGIG distribution as

p(x) =

∫
p(x|λ)p(λ)dλ =

exp{−0.5λxT
x}√

|2πλIn|
(a/b)p/2

2Kr(
√
ab)

× λ(r−1) exp{−0.5(aλ+ b/λ)}dλ (28)

= (2π)−0.5n (a/b)p/2

2Kr(
√
ab)

∫
λ(r−0.5n−1)

× exp{−0.5(aλ+ (b+ xTx)/λ)}dλ

By introducing the term
2Kr′ (

√
ab′)

(a/b′)r′/2
, equation (28) can be

reformulated as

p(x) = (2π)−0.5n (a/b)r/2

Kr(
√
ab)

K
r
′ (
√

ab′ )

(a/b
′
)r

′
/2

∫
GIG(λ; a, b′, r′)dλ

= (2π)−0.5n (a/b)r/2

Kr(
√
ab)

K
r
′ (
√

ab′ )

(a/b
′
)r

′
/2

(29)

where b′ = b+xTx and r′ = r− 0.5n. Here we focus on the

tail characteristic of the PDF, thus xTx and b′ can be assumed

to approach +∞. Then, using the approximation Kr(x) ≈√
π
2x exp{−x}, |x| → +∞ of equation (1.5) in [44], we can

obtain the following approximation,

Kr′(
√
ab′) ≈

√
π

2
√
ab′

exp{−
√
ab′} (30)

With (30), the logarithm PDF of the state vector is written as

log p(x) = − 1
4 log(b+ xTx))−

√
a(b+ xTx) + cx

≈ − 1
4 log(x

Tx)−
√
axTx+ cx

(31)

We can obtain log p(y) = − log y−√
ay2+cy , where 4 log y =

log(xTx). The logarithm PDF of the Gaussian distributed state

vector can be formulated as log pN (y) = −0.5y4+cyN
, where

pN (y) denotes the Gaussian PDF.

It is evident that the Gaussian PDF pN (y) decays faster than

p(y) when y, i.e., xTx tends to infinity because parameter a
retains constant and bounded.

C. Proof of Theorem 1

Employing Bayes’ rule, the joint prior PDF

p(xk, λk|z1:k−1) can be written as

p(xk, λk|z1:k−1) = p(xk|λk, z1:k−1)p(λk|z1:k−1)

=

∫
p(xk|xk−1)p(xk−1|λk, z1:k−1)p(λk|z1:k−1)dxk−1

≈N
(
xk;Φkx̂

′
k−1,Φkλk−1P̂

′

k−1Φ
T
k +Qk

)
p(λk|z1:k−1)

where the approximation is based on the assumption that

λk is very close to λk−1. Note that according to Bayes’

rule, the prior PDF of the MNCMC can be calculated as

p(λk|z1:k−1) =
∫
p(λk|λk−1)p(λk−1|z1:k−1)dλk−1, which

is unavailable because the dynamic model p(λk|λk−1) is

unknown. In this paper, we utilize a similar method in [41] to

propagate the GIG distribution parameters with the forgetting

factor ρ, which is shown in (7).

D. Proof of Theorem 2

According to Bayes’ rule and (9) and (10), we can obtain

pθk(xk, λk|z1:k) =
p(zk|xk, λk)pθk(xk, λk|z1:k−1)

pθk(zk|z1:k−1)
(32)

∝N (zk;Hkxk, λkImk
)N (xk; x̄k, λkP̆k(θk))︸ ︷︷ ︸

pθk
(xk|z1:k−1,λk)

p(λk|z1:k−1)

where pθk(xk|z1:k−1, λk) denotes the conditional prior PDF

of the state vector. Using the Gaussian integral formula [42],

we can obtain

pθk(zk|z1:k−1, λk)

=

∫
N (zk;Hkx̄k, λkImk

)N (xk; x̄k, λkP̆k(θk))dxk

=N (zk;Hkx̄k, λkP
zz

k (θk)) (33)

where Pzz

k (θk) is given in (12). Hence, with (32) and (33),

the conditional posterior PDF of the state vector can be

analytically calculated as (12).

E. Proof of Theorem 3

According to Bayes’ rule, we can obtain

pθk(xk|z1:k−1, λk)p(zk|xk, λk)

=pθk(zk|z1:k−1, λk)pθk(xk|z1:k, λk) (34)

Employing (6), (11) and (33), we can attain

p(xk, λk|z1:k) ∝ N (xk; x̂
′
k(θk), λkP̂

′
k(θk)) (35)

×N (zk;Hkx̄k, λkP
zz

k (θk))GIG(λk; āk, b̄k, r̄k)

Taking the logarithm of both sides of (35), we can obtain

log p(xk, λk|z1:k)
+ (r̄k − 1) log λk − 0.5(ākλk + b̄k/λk) + cλk

= logN (xk; x̂
′
k(θk), λkP̂

′
k(θk))− (r̄k − 0.5mk − 1) log λk

− 0.5(ākλk + (b̄k +∆k)/λk) + cλk
(36)

where cλk
denotes a constant independent of λk, and ∆k

is given in (14). Through matching the coefficients, we can

update the posterior parameters of the GIG distribution as

shown in (14) without changing the conditional posterior

density of xk.

F. Proof of Theorem 4

First, we prove that the iterative sequence {θ(i)k }+∞
i=0 is

monotonic in this case. From Function 2, we can obtain

θ̂
(i)
k =

r̂
(i)
k −1+

√

(r̂
(i)
k −1)2+â

(i)
k b̂

(i)
k

â
(i)
k

(37)

=
r̄k−0.5mk−1+

√

(r̄k−0.5mk−1)2+āk(b̄k+∆
(i)
k )

āk

where ∆
(i)
k = tr{P̃zz

k (Hk(P̆
(i−1)
k )HT

k + Imk
)−1}.

If θ̂
(i−2)
k < θ̂

(i−1)
k , we can easily attain

tr{P̃zz

k (P
zz,(i−2)
k )−1} < tr{P̃zz

k (P
zz,(i−1)
k )−1}. Employing

(37), we can obtain θ̂
(i−1)
k < θ̂

(i)
k , which means {θ(i)k }+∞

i=0 is

monotone increasing. In the same way, θ̂
(i−1)
k < θ̂

(i)
k will be
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monotone decreasing if we set θ̂
(i−2)
k > θ̂

(i−1)
k . Therefore,

the sequence {θ(i)k }+∞
i=0 is monotonic.

Next, we will prove the sequence {θ(i)k }+∞
i=0 is bounded.

According to (37), θk > 0, which makes the modified

innovation covariance matrix Pzz

k (θk) positive-definite. Then,

we can obtain ∆
(i)
k ≥ 0, which makes

θ
(i)
k

≥ r̄k − 0.5mk − 1 +
√

(r̄k − 0.5mk − 1)2 + āk b̄k

āk
(38)

where parameters āk, b̄k, r̄k tend to stabilize over time.
According to (12), we can obtain Pzz

k (θk) > Imk
, which

can derive the following inequality

θ
(i)
k

<
r̄k − 0.5mk − 1 +

√

(r̄k − 0.5mk − 1)2 + āk(b̄k + tr{P̃zz

k
})

āk
(39)

Inequality (39) indicates that the sequence {θ(i)k }+∞
i=0 is

upper bounded if the residual vector z̃k is bounded, which is

easy to satisfy in engineering applications. Thus, utilizing (38)

and (39), the sequence {θ(i)k }+∞
i=0 is bounded.

G. Proof of Proposition 3

Following (20), we have

λ̂l =
r̂l+

√
r̂2l +âlb̂l

âl

(40)

Using (7), (14) and Assumption 1, we can obtain




âl = â0
b̂l = ρlb̂0 + · · ·+ ρ2∆l−2 + ρ∆l−1 +∆l

r̂l = ρlr̂0 − · · · − 0.5ρ2m− 0.5ρm− 0.5m

(41)

To obtain the average λ̂l in the statistical sense, we average

both sides of (40), and employing Jensen’s inequality [46]

to deal with the square root operation in (40), and using

the sum formula of a geometric sequence. Then (40) can be

reformulated as follows.

lim
l→+∞

E{λ̂l} ≤
−0.5m
1−ρ +

√
(−0.5m

1−ρ )2 + λâ0m
1−ρ

â0
(42)

The difference dλ between liml→+∞ E{λ̂l} and λ can be

written as

dλ ≤ −(1−ρ)λ2

((
√
0.25m2+λm+0.5m)/â0+(1−ρ)λ)

< 0 (43)

It can be seen from (41) and (43) that the influences of b̂0
and r̂0 on dλ decay exponentially over time, and the absolute

value of dλ reduces when â0 decreases.
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