
Cache Placement in an NDN
Based LEO Satellite Network
Constellation

Rodrı́guez Pérez, Miguel, Senior, IEEE
atlanTTic research center, Universidade de Vigo, 36212 Vigo, Spain

Herrerı́a Alonso, Sergio, IEEE
atlanTTic research center, Universidade de Vigo, 36212 Vigo, Spain

Suárez González, Andrés
atlanTTic research center, Universidade de Vigo, 36212 Vigo, Spain

López Ardao, José Carlos
atlanTTic research center, Universidade de Vigo, 36212 Vigo, Spain

Rodrı́guez Rubio, Raúl
atlanTTic research center, Universidade de Vigo, 36212 Vigo, Spain

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/TAES.2022.3227530

Abstract— The efforts to replace the successful, albeit aging,
TCP/IP Internet architecture with a better suited one have driving
research interest to information-centric alternatives. The Named
Data Networking (NDN) architecture is probably one of the main
contenders to become the network layer of the future Internet
thanks to its inbuilt support for mobility, in-network caching,
security and, in general, for being better adapted to the needs
of current network applications. At the same time, massive satellite
constellations are currently being deployed in low Earth orbits
(LEO) to provide a backend for network connectivity. It is expected
that, very soon, these constellations will function as proper networks
thanks to inter-satellite communication links. These new satellite
networks will be able to benefit from their greenfield status and the
new network architectures. In this paper we analyze how to deploy
the network caches of an NDN-based LEO satellite network. In
particular, we show how we can jointly select the most appropriate
caching nodes for each piece of content and how to forward data
across the constellation in two simple alternative ways. Performance
results show that the caching and forwarding strategies proposed
reduce path lengths up to a third with just a few caching nodes
while, simultaneously, helping to spread the load along the network.

Index Terms— Information-centric networking, named-data
networking, satellite networking, optimization

Manuscript received XXXXX 00, 0000; revised XXXXX 00, 0000;
accepted XXXXX 00, 0000.
This work has received financial support from grant PID2020-
113240RB-I00, financed by MCIN/ AEI/10.13039/501100011033, and
by the Xunta de Galicia (Centro singular de investigación de Galicia
accreditation 2019–2022) and the European Union (European Regional
Development Fund—ERDF). (Corresponding author: M. Rodrı́guez-
Pérez). All the authors contributed equally to this work.

All authors are with the atlanTTic research center, Universidade de
Vigo, 36212 Vigo, Spain (e-mails: {miguel, sha, asuarez, jardao,
rrubio}@det.uvigo.gal).

0018-9251 © 2022 IEEE

I. Introduction

DURING the last few years we are witnessing a
commercial race for providing low-latency, high-

bandwidth Internet access with the help of massive
constellations of satellites in low Earth orbit (LEO).
Probably, the best well-known example is SpaceX’s
Startlink network, operating, as of July 2022, about 2500
satellites [1]. However, there are many other competing
networks in different completion phases [2], [3], [4].
Although the satellites in these networks will initially act
just as packet relays between pairs of ground stations,
the main benefits will be obtained when traffic can travel
directly across the constellation with the help of inter-
satellite links (ISL) [5], [6].

Almost simultaneously to this commercial interest in
satellite networks, the network research community has
started paying attention to a new networking paradigm
focused not on providing connectivity between distant
devices, but on the data acquisition itself. Several
proposals, under the umbrella of the Information Centric
Networking (ICN) paradigm [7], try to create a new global
network architecture that one day may replace the current
TCP/IP Internet. Proponents of these architectures claim
that they are better suited to current applications due
to their natural support for consumer mobility [8], in-
network caching [9], multicast transmission [10], [11] and
in-built security [12].

In this work we focus on the network caching
characteristics of an ICN network when applied to a
massive LEO satellite constellation. We will assume that
each satellite will carry four inter-satellite links (ISL) to
communicate with its four closest neighbors. Although
linking with the closest available satellites is not the only
feasible alternative [5], neither the best one, it helps to
keep things manageable and has already been proposed
by several works [13], [14]. As for the actual ICN
architecture, we will use the Named-Data Networking
(NDN) proposal [15], as it is already in a mature state. In
an NDN network, data is directly addressed by its unique
name, rather than by its location, as done by IP networks.
For this, the network uses two different kinds of packets:
Interest packets, that carry a request for a named piece
of data; and Data packets, carrying the actual data back
to the requester(s) following the reverse path used by the
Interest packet.

In this paper we explore the regular topology of
satellite networks to give answer to what appear to be
two contradictory but highly desired characteristics. On
the one hand, we want to spread the load on the network
so that information from different sources follows disjoint,
albeit equal-cost, network paths, thus maximizing network
capacity. On the other hand, traffic of Interest packets for
the same information should converge at common nodes
so as to maximize the effectiveness of in-network caching.
Thus, we provide:

1) A simple Interest forwarding strategy that, while
following the shortest path to a target producer,

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022 1

ar
X

iv
:2

21
2.

13
61

5v
1

 [
cs

.N
I]

 2
7

D
ec

 2
02

2

https://doi.org/10.1109/TAES.2022.3227530
mailto:miguel@det.uvigo.gal
mailto:sha@det.uvigo.gal
mailto:asuarez@det.uvigo.gal
mailto:jardao@det.uvigo.gal
mailto:rrubio@det.uvigo.gal

always finds the nearest cache while spreading the
load evenly across the whole network;

2) a discussion about which nodes should be involved
in caching data from each producer to maximize
cache hit-rate;

3) and an algorithm that finds the best possible cache
locations for a given satellite constellation working
in tandem with our forwarding strategy.

To assess the adequacy of our proposed solution, we
simulate a large LEO constellation network to find
that, with just a few caching nodes, the number of
transmissions required to obtain a named piece of data
is just halved. This has profound positive effects both in
the used capacity and the incurred transmission delay.

The rest of this paper is organized as follows.
Section II describes the considered scenario. Then,
Section III discusses alternatives for cache placement. The
experimental results are shown in Section IV. Finally, we
lay out our conclusions in Section V.

II. Problem Description

We consider a scenario consisting in a LEO
satellite constellation with inter-satellite communication
capabilities and a set of ground stations acting as the
entry (exit) points of the orbiting network. All orbiting
and terrestrial nodes run an instance of an NDN network
protocol.

As shown in Fig. 1, satellites in a usual LEO
constellation are organized in various orbits sharing
the same inclination (planes). The relative positions of
individual satellites in the same orbital plane is kept
relatively stable and this permits to keep connections
with both the preceding and following satellites in the
same orbit. Moreover, the distance between the orbits is
also stable, permitting also connections with the nearest
satellites in the two immediate neighboring orbital planes.
Thus, assuming four inter-satellite links per satellite, this
results in a grid-like topology for the orbiting part of the
network, like the one shown in Fig. 2.

As the connectivity between ground stations and their
orbiting counterparts is subject to frequent changes, we
employ two different routing strategies. In the terrestrial
part, the satellite network topology can be simply ignored
since the LEO constellation will be used as a backbone
providing connectivity between any pair of ground
stations. Thus, for some prefixes, the LEO network will
provide the best path and will be used for routing
some Interest packets. In that case, the corresponding
ground station will simply relay the Interest packet to
any reachable overhead satellite. Then, the satellites will
forward the Interest packet to the nearest most appropriate
terrestrial node, as all the producers are assumed to stay
on the ground. Due to the grid-like connectivity topology
of the LEO network, once the target ground node has

(0, 29)

(0, 28)

(23, 28)

(23, 29)

(23, 1)

(23, 2)

(23, 3)

(0, 0)

(12, 15)

(12, 16)

(12, 17)

(12, 14)

(11, 14)

(11, 15)

(11, 16)

(11, 17)

(0, 1)

(0, 2)

(1, 3)

(0, 4)

(0, 3)

(1, 29)

(1, 28)

(1, 0)

(1, 1)

(1, 2)

(1, 4)

(23, 0)

Fig. 1. A satellite constellation with 24 orbital planes and 30
satellites in each plane with an inclination of 60º as seen from space.
We have represented the satellite identifiers and, with yellow lines, the

four possible ISL links of the satellite located at coordinates (0, 0).

been located,1 the routing is straightforward as we shall
see later.

For the rest of the article we will consider a simplified
satellite network, made up of a single constellation where
each satellite has four ISL links, two with the nearest
satellites in the same plane (the immediately ones in
front of it and behind it), and another two with the
nearest satellites in the plane to port and starboard.
Recall that the relative positions of the satellites do not
change as they travel through their orbits. Although the
connectivity pattern gets obscured at the northernmost
(and southernmost) regions of the constellation due to the
increased density, the ordering of the satellites in the same
orbital plane is not changed. The same happens with the
relative positions of the successive planes. Therefore, even
though successive orbital planes have some offset, the
resulting connectivity pattern (if the metric is the number
of hops) can be represented as a grid G. Let then G =
{N , E}, where N = {(x, y), x ∈ Z/npZ, y ∈ Z/nsZ}
is the set of satellites, represented by their coordinates
in the constellation, np and ns are, respectively, the
number of orbital planes and the number of satellites
per plane, and Z/mZ is the ring of integers modulo m.
E = {(ni, nj), ni, nj ∈ N | d(ni, nj) = 1} is the set of
ISLs inside the constellation, with d(·) a modified taxicab
metric that takes into account the modular nature of the
scenario,2 so

d(ni, nj) = d((xi, yi), (xj , yj))

= min{xi 	 xj , xj 	 xi}+ min{yi 	 yj , yj 	 yi},
(1)

where 	 is the subtraction operation in Z/mZ.
Without loss of generality, and taking into account

the symmetric nature of the satellite network, we will

1We do not delve into how this information is procured, but it can be
readily obtained if nodes use a link-state routing protocol, for instance.
2We need to use modular arithmetic to account for the fact that there
is connectivity both before the first and the last satellite of a plane and
between the first and the last planes themselves.

2 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

Fig. 2. A grid-like representation of the links between neighboring
satellites of the constellation of Fig. 1.

always consider that the exit node is the node located at
coordinates (0, 0) and only examine the behavior of those
nodes located in the top-right quadrant.3 Figure 2 depicts
an example of such a grid network, where the nodes in
the top-right quadrant have been highlighted.

A. Forwarding Strategy

Before we delve into the specifics of the forwarding
strategy, it may be good to recapitulate how the network
layer of the NDN architecture works. In the NDN
architecture no data can be sent to the network unless
a node has previously asked for it. This pull-based
communication approach is in sharp contrast with the
IP architecture, where any node can push data to the
network as long as it knows a destination address. To
accommodate to this pull-based operating manner, NDN
defines two different types of network layer packets: the
Interest and the Data packets. Thus, when a consumer
needs to obtain some data from another node, it sends to
the network an Interest packet that specifies the name of
the requested data. Then, the NDN routers forward this
Interest packet according to the named requested content
(usually just the prefix of the name) and their configured
forwarding mechanism. However, if they have previously
seen this particular named Data, they can directly return
a copy from their cache, if they happen to have stored
it. If there is no copy, they forward the Interest packet
to the next NDN router and store the information about
it in a temporal table of pending interests, called the
Pending Interest Table, or PIT. Finally, when the Interest
reaches a producer for the requested data, it answers
with a Data packet. This Data packet flows back to the
requesting consumer(s) following the reverse path taken
by the Interest packet. As the Data packet reaches every
intermediate NDN router, they use the information stored
in the PIT to forward it to the destination while they
optionally keep a copy stored in their local cache.

Due to the grid-like topology of the satellite network,
forwarding an Interest packet towards the exit node is just

3The exit node will be different for different prefixes, so there is not a
central node of the network, but a central node with respect to a given
prefix.

a matter of selecting any of the two closer neighbors. That
is, for a satellite in the top-right quadrant, at location (i, j)
relative to the exit gateway, that means using either (i−
1, j) or (i, j−1) as the next hop node, as exemplified for
node (2, 1) in Fig. 2. From a pure forwarding perspective,
both neighbors represent an optimal choice.

However, nodes in an NDN network may cache the
contents of any previous Data packet. If the Interest packet
is forwarded to a node already holding a copy of the
requested information, it does not need to be forwarded
further and, instead, the node can reply immediately
with the copy. This results in shorter delays and avoids
unnecessary transmissions along the satellite network
and even in the satellite to ground exit link. So, it
is important to forward Interest packets in a way that
Interest packets from different nodes converge at some
common caching nodes. However, to avoid overwhelming
the storage capacity of the caches, it is better for different
nodes to cache the contents of different prefixes. At the
same time, given that all the links in the satellite network
have identical characteristics, it is important to spread
traffic to maximize the aggregated capacity. Luckily, all
these conditions can be simultaneously met if the decision
of whether to cache a piece of content depends on the
location of the candidate caching node relative to the exit
location (the center node for a given prefix). Keep in mind
that non-location aware cache management algorithms
(like those based on popularity, freshness. . .) can be used
in tandem with a location-aware one to also influence the
decision to cache a piece of content.

With all these considerations we propose the following
two simple rules for deciding the next node in forwarding
decisions:

1) Interest packets must be forwarded without
increasing distance to the primary source (the one
at the origin).

2) Interest packets should be forwarded to the closest
allowed cache.

The first rule avoids looping. Even though a caching
node closer to the current node, but further away from
the producer, may hold a copy of the content, moving
away from the center causes loops when the content is
not found in the cache.4 The second rule not only makes
the traffic converge to a caching node, but also helps to
spread the traffic across the network. Recall that caching
nodes are set at positions relative to the network center
for each named prefix.

As a result of these rules, different sets of nodes
forward to (are served by) different caching nodes.
Figure 3 shows the nodes of the top-right quadrant of a

4If nodes closer to the producer than the presumed cache forward traffic
to it, then traffic from this caching node will not be able to reach the
producer when the caching node forwards an Interest for the data for
the first time since its immediate neighbors would always forward the
Interest back to it. Certainly, one can devise mechanisms that can solve
this scenario, but we feel that the added complexity is not worth it.

RODRÍGUEZ PEREZ ET AL.: Cache Placement in an NDN Constellation 3

(0,0) (h-1,0)

(0,v-1)

Fig. 3. Top-right quarter of the constellation grid, showing the
location of the producer at the origin and three more arbitrarily placed
caches (solid colors). The colored regions show the serving cache for

each node. The satellite network is composed of np = 2h orbital
planes with ns = 2v satellites in each plane.

network with three caches and a producer at the bottom-
left corner. All nodes in the gray area are served by
the original producer at (0, 0), as being served by either
the red caching node at (3, 1) or the green one at (1, 5)
would entail either increasing the value of one of their
coordinates. This would mean forwarding Interests farther
from the producer, violating rule 1 above. Note that nodes
in the red, green and blue areas are served by nodes (3, 1),
(1, 5), and (9, 4), respectively, since the caching node in
their corresponding region is the closest cache (rule 2)
and forwarding to it gets closer to the producer (rule 1).

What follows is a discussion about where to place
caching nodes for each prefix.

III. Cache Placement

Even though every node is free to opportunistically
store any Data packet, we must select the nodes
responsible for caching the contents of a given producer.
Their location should become a convergence point of
disjoint paths towards the producer. Moreover, their
locations should also be such that they minimize the
average number of hops that an Interest packet must be
forwarded before it encounters such a caching node. This
metric clearly saves transmission capacity and minimizes
delay.

A. Regular Cache Placement

One natural way to place the caches arises from
subdividing the original region, i.e., the set of nodes
served by the producer, into r2 identical subregions, like
in Fig. 4. It is straightforward to check that in such a
placement, each satellite is at most (h + v)/r − 2 hops
away from the nearest copy, where v = ns/2 is the height
of the resulting top-right grid and h = np/2 its width. It
is also quite easy to get the average distance to a cache

(0,0) (h-1,0)

(0,v-1)

Fig. 4. Top-right quarter of the constellation grid showing the
location of caches as a result of subdividing the original region into

r2 = 9 smaller identical subregions.

in the network, or equivalently, in a single subregion, as

Dreg =

∑h
r−1
i=0

∑ v
r−1
j=0 (i + j)
h
r
v
r

=
h + v

2r
− 1, (2)

where we assume that both h and v are integer multiples
of r to keep the expression simple. As all subregions are
identical, (2) is approximately the average distance in the
whole network.5

We have also to consider how many total caches
are needed for such an arrangement in the full satellite
topology. It can be easily deduced that, for r2 subregions
in a single quadrant, we need (r−1) caching nodes in each
axe and (r − 1)

2 caching nodes outside the axes. As there
are four such quadrants, each pair sharing a semiaxis, the
total number of caching nodes in the topology is

Nreg = 4(r − 1)
2

+ 4(r − 1) = 4r(r − 1). (3)

B. In-Axes Cache Placement

There is also a natural cache placement strategy that
consists in considering only nodes in the axes. In this way,
routing becomes even more straightforward. Now, Interest
packets can be forwarded directly first to the nearest axis,
and then to the producer. This ensures that the packet will
come across a caching node in the process. Obviously, if
the forwarding node is aware of the precise location of the
nearest cache, or of on which axis it resides, it can still
use this information to forward the Interest packet even to
the furthest axis if that results in reaching a closer caching
node.

Figure 5 shows the area of influence of several caching
nodes located in the axes of a grid network. Note how
the further away from the center (where the producer is
located), the greater area of coverage of each cache. The
location of the caching nodes must be carefully chosen, to
minimize the average distance to a cache in the network.

We can formalize the area covered by each cache
in the following way. Consider two sets of ordered
caches, one in the vertical axe V = {(0, v1), . . . , (0, vV)}
and the corresponding set in the horizontal one H =
{(h1, 0), . . . , (hH , 0)}. Then, the set of nodes served by

5Non caching nodes in the axes are taken into account twice. However,
the global effect in the average distance is very small for sufficiently
large networks.

4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

(0,0) (h-1,0)

(0,v-1)

c4c2

c1

c3

Fig. 5. Top-right quarter of the constellation grid showing the
regions covered by each of the caches located in the axes. In this

specific scenario c1 = v1 and c2 = h1.

node (hi, 0) ∈ H—resp. (0, vi) ∈ V—is A(hi) =
{(x, y) |hi ≤ x < hi+1, y < vk}, where vk =
max(vj |(0, vj) ∈ V ∪ {(0, v)} and vj < hi+1) and
hH+1 = (h, 0)—resp. for A(vi)—. To obtain the average
distance to a cache, we have to first obtain the sum of the
distances from every node to its nearest cache and divide
it by the number of nodes. As we can see, the regions
are defined by three parameters: the positions of two
consecutive caches in one axis, and a single cache in the
other axis. If we define ‖A(hi)‖ = ‖(hi, hi+1, vk)‖ (resp.
‖A(vi)‖ = ‖(vi, vi+1, hk)‖) as the sum of the distances
in the A(hi) region, we get

‖(a1, a2, b)‖ =

a2−1∑
i=a1

b−1∑
j=0

d((i, j), (a1, 0))

=

a2−1∑
i=a1

b−1∑
j=0

(i + j − a1)

= b(a2 − a1)
a2 − a1 + b− 2

2
.

(4)

The average distance in this setup is thus

Daxes =
‖A(0)‖+ ‖H‖+ ‖V‖

hv

=
‖A(0)‖
hv

+

∑
hi∈H‖A(hi)‖+

∑
vi∈V‖A(vi)‖

hv
,

(5)

where A(0) is the set of nodes served directly by the
producer.6

We prove in Appendix A that placing the caches in
an interleaved way (. . . < hi < vj < hi+1 < vj+1 < . . .)
minimizes (5).

C. A Fast Algorithm to Compute the Optimal in-Axes
Cache Locations

Our next step is to obtain the optimal location of the
caches in the axes for a given number N of total caches.
To keep the notation simple, we will ignore the 0-valued
dimension in each of the caches, so that (hi, 0) becomes

6As in the case of the regular cache placement, the value is exact for
a single quadrant. For the whole network it is a good approximation
when the constellation is large enough.

directly hi—resp. (0, vi) becomes vi—and, using the fact
that the caches are interleaved, work directly with the
vector C = {c1, c2, . . . , cN} = H∪V , where each element
represents either a cache location in H or in V . The
problem is thus to find C that minimizes (5), that is, that
minimizes

‖C‖ = ‖(0, c2, c1)‖+ ‖(c1, c3, c2)‖
+ ‖(c2, c4, c3)‖+ ‖(c3, c5, c4)‖+

(6)

Sadly, it is not possible to minimize this function
analytically, but the procedure shown next finds the
optimal locations in less than hN iterations.7 The
procedure detailed in Algorithm 1 sets the initial location
of the caches to those closest to the producer. That is,
for a solution with N caching nodes, they initially hold
positions ci = i, 1 ≤ i ≤ N . After the initialization, our
algorithm displaces the furthest cache to more distant
locations until the cost stops decreasing (lines 6–14).
Then, it tries with the next one (lines 5–14), and so on.
When all the caches have been tried, it tries to move
the caches again starting with the furthest one (loop of
lines 3–15) if the inner loops have found a better solution
(finish set to false in line 12). If finish is still true after
the loop in lines 5–14 ends, then no better solution has
been found and the procedure ends.

Algorithm 1 Algorithm for finding the best cache
locations along the axes.

1: C = {1, 2, 3, . . . , N}, cN+1 = h
2: lowest cost← ‖C‖
3: repeat
4: finish← true
5: for all i ∈ {N, . . . , 1} do
6: while ci + 1 < ci+1 do
7: C′ = {c1, c2, . . . , ci + 1, ci+1, . . . , cN}
8: current cost← ‖C′‖
9: if current cost < lowest cost then

10: lowest cost← current cost
11: C ← C′
12: finish← false
13: else
14: break while loop
15: until finish = true

This simple procedure finds the optimal cache
locations as can be derived from Lemma 1 that shows
that if moving a cache further from the producer reduces
the total cost and moving the previous one also reduces
the cost, then moving both reduces the cost even more.
This ensures that when we advance an outer cache to
find a local optimum we are not going to miss a global
optimum resulting from moving only inner caches.

LEMMA 1. Let C = {c1, c2, . . . , ci, . . . , cn} be a set of
ordered cache locations and ∆iC = {c1, c2, . . . , ci +

7From now onwards, we will assume for clarity a square network with
h = v, although the results can be easily extended to the general
scenario.

RODRÍGUEZ PEREZ ET AL.: Cache Placement in an NDN Constellation 5

1, . . . , cn}. Then, if both ‖∆iC‖ < ‖C‖ and ‖∆i−1C‖ <
‖C‖, it holds that ‖∆i−1∆iC‖ < ‖∆i−1C‖.

Proof:
For ‖∆i−1∆iC‖ < ‖∆i−1(C)‖ to be true, it must hold that
‖∆i−1C‖ − ‖∆i−1∆iC‖ > 0.

According to (6),

‖∆i−1C‖ = ‖(0, c2, c1)‖+ ‖(c1, c3, c2)‖+ ‖(c2, c4, c3)‖
+ · · ·+ ‖(ci−3, ci−1 + 1, ci−2)‖
+ ‖(ci−2, ci, ci−1 + 1)‖
+ ‖(ci−1 + 1, ci+1, ci)‖
+ ‖(ci, ci+2, ci+1)‖+ · · ·

(7)
‖∆i−1∆iC‖ = ‖(0, c2, c1)‖+ ‖(c1, c3, c2)‖+ ‖(c2, c4, c3)‖

+ · · ·+ ‖(ci−3, ci−1 + 1, ci−2)‖
+ ‖(ci−2, ci + 1, ci−1 + 1)‖
+ ‖(ci−1 + 1, ci+1, ci + 1)‖
+ ‖(ci + 1, ci+2, ci+1)‖+ · · · .

(8)

So ‖∆i−1C‖ − ‖∆i−1∆iC‖ > 0 expands to

‖∆i−1C‖ − ‖∆i−1∆iC‖ = ‖(ci−2, ci, ci−1 + 1)‖
− ‖(ci−2, ci + 1, ci−1 + 1)‖+ ‖(ci−1 + 1, ci+1, ci)‖
− ‖(ci−1 + 1, ci+1, ci + 1)‖+ ‖(ci, ci+2, ci+1)‖

− ‖(ci + 1, ci+2, ci+1)‖. (9)

If we apply (4) and perform some straightforward
simplifications, we get that ‖∆i−1C‖ − ‖∆i−1∆iC‖ > 0
iif

0 < ci−1(ci+1 + ci−2 − ci−1 − 2)

+ ci+1(ci+2 − 2ci) + ci−2 − 1
(10)

2ci−1 − ci−2 + 1 < ci−1(ci+1 + ci−2 − ci−1)

+ ci+1(ci+2 − 2ci).
(11)

We also know that ‖∆iC‖ < ‖C‖. If we repeat the
same procedure as before, we get that

0 < ci−1(ci+1 + ci−2 − ci−1) + ci+1(ci+2 − 2ci − 1)

ci+1 < ci−1(ci+1 + ci−2 − ci−1) + ci+1(ci+2 − 2ci).
(12)

So, (10) is true iff

ci+1 ≥ 2ci−1 − ci−2 + 1. (13)

Considering that ‖∆i−1C‖ < ‖C‖, we find that

0 < ci−2(ci + ci−3 − ci−2) + ci(ci+1 − 2ci−1 − 1)

cici+1 > ci(2ci−1 − ci−2 + 1) + ci−2(ci−2 − ci−3).
(14)

So, from (14) we obtain that

ci+1 > 2ci−1 − ci−2 + 1 +
ci−2(ci−2 − ci−3)

ci
> 2ci−1 − ci−2 + 1,

(15)

as ci−2 > ci−3.

-20

-15

-10

-5

 0

 5

 10

 15

 20

-30 -20 -10 0 10 20 30

S
a
te

lli
te

 i
n
 P

la
n
e
 (

in
d
e
x
)

Orbital Plane (index)

'cs-cache-1000.txt' u ($2-30):($1-21):5

 1

 10

 100

Fig. 6. Number of transmission carried out by each node in a 60×42
grid network with 1000 randomly placed clients requesting the same

data originally produced at node (0, 0). The circles show the locations
of each caching node.

It is easy to extend this result for arbitrary
advancements of either ci−1 or ci. On the one hand,

‖∆j
i−1∆iC‖ = ‖

j︷ ︸︸ ︷
∆i−1∆i−1 . . .∆i−1 ∆iC‖ < ‖∆j

i−1C‖ by
Lemma 1, as long as ci−1 + j < ci, because Lemma 1
does not place any other restriction on the value of ci−1.
On the other hand, ‖∆i−1∆k

i C‖ < ‖∆i−1∆k−1
i C‖ if, as

by hypothesis, ‖∆k
i C‖ < ‖∆

k−1
i C‖.

IV. Experimental Results

We have tested the previous results with the help
of a newly developed routing module [16] for the
ndnSIM [17] NDN network simulator. We have also
released the software used to calculate the optimal cache
placement [18].

We have simulated a 60×42 grid network to have a
setup that can be representative of a current commercial
one [19], even though the developed routing module
supports arbitrary satellite shells. In the first experiment,
we just wanted to test the behavior of the caches and
the routing algorithm. To this end, we calculated the
location of the five caching nodes in the top-right quadrant
{(11, 0), (18, 0), (24, 0), (0, 8), (0, 15)}.8 Then we enabled
the NDN cache in all these nodes, and the corresponding
ones in the three remaining quadrants. Finally, with
a producer located at the center—node (0, 0)—, we
requested the same content from 1000 random locations.
Consumers at each location ask just once for the content,
so the same content is requested 1000 times. Figure 6
shows the number of transmissions performed by each
node during the whole experiment. Nodes in both axes
concentrate most of the transmissions, as the routing
algorithm drives the requests towards the axis with the
closest allowed cache. Also note that the mechanism is
able to alleviate the load near the producer since the
number of transmissions carried out by nodes close to the

8Note that the caches are still intercalated. Cache (0, 24) cannot be in
the vertical axe, because its maximum size is (0, 21).

6 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000

A
v
e
ra

g
e
 P

a
th

 L
e
n
g

th

Number of Clients

No caches
2×1 caches
2×5 caches

2×10 caches

Fig. 7. Evolution of the average path length vs. the number of
clients. Hashed lines represent the theoretical values.

producer is, in fact, similar to those near caching nodes.
Finally, one can discern in the figure the areas covered
by each caching node, as nodes in the boundaries perform
few transmissions as no traffic is directed to those regions,
and intensity grows higher the closer to a caching node.

The next experiment tests the accuracy of the
theoretical results. In the same network scenario as before,
we measured the average transmission path length until
the data is obtained for different amount of caching
nodes and a growing number of randomly placed clients.
The experiment has been repeated 25 times, varying the
location of each client. Figure 7 shows the results obtained
when there are no caching nodes, and for one, five and
ten caching nodes in the positive parts of the axes (and
the corresponding set of caching nodes in the negative
parts, thus the 2 × n notation). The theoretical values
were calculated according to (5) for the cache locations
resulting from Algorithm 1. When the number of clients
is very small, there is a great variability in the results, as
clients can be at very different distances from the caches
or the producer. As the number of clients increases, and
they get more evenly placed in the network, the variability
diminishes, and we can observe that the resulting average
path length converges to the theoretical value.

The simulation length also plays an important role in
the results. To show this, we have repeated the previous
experiment but, this time, modifying the simulation length
for a constant value of 1000 randomly placed clients.
The request from each client happens at a random instant
during the whole simulation. As before, each simulation
was repeated 25 times, varying the location of the clients.
The results in Fig. 8 show that, when the simulation
duration is short, the results are much better than those
predicted by (5). The reason for this is that, with short
simulation lengths, all the requests from the different
clients happen in a very short interval, so a second request
from a different client can reach a node that has still
pending a previous request from another client, even if
it is not a caching node. As NDN coalesces requests for
the same Interest, the effect is similar as caching. When
the request is finally satisfied by a downstream node, all

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 10 100 1000

A
v
e
ra

g
e
 P

a
th

 L
e
n
g

th

Simulation Length (s)

No caches
2×1 caches
2×5 caches

2×10 caches

Fig. 8. Evolution of the average path length vs. the simulation
length. Hashed lines represent the theoretical values.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350 400 450

A
v
e
ra

g
e
 D

is
ta

n
ce

 t
o
 N

e
a
re

st
 C

o
p

y

Total Number of Caches

Regular Caches
In-Axes Caches

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 5 10 15 20 25

Fig. 9. Comparison of cache efficacy between regular and in-axes
cache placement strategies for a 24×24 satellite constellation.

the pending requests will get a copy of the requested
Data. As the simulation duration increases, the number
of simultaneous requests decreases and the only effective
data saving measure is the caching mechanism.9

Finally, we would like to pay attention to the different
compromises between the two considered alternatives for
cache placement: regular cache placement and in-axes
cache placement. To this end we have calculated the
resulting average path length and the total number of
caching nodes needed for both alternatives for a simple
24×24 network. We can observe in Fig. 9 the average
distance from a node to the nearest cache for both the
regular and the in-axes cache placement strategies. It is
evident that the greatest reduction in average distances
happens for just a few caching nodes. For instance, there
is a 45 % reduction for just 4 caching nodes and a 64 %
reduction for 16 nodes. From there, as the number of
caching nodes increases, the improvement is marginal.
For a small number of caching nodes, both strategies
produce very similar results, although only the regular
cache placement strategy is able to use a very high

9The longest simulation lengths are only included to show the
asymptotic behavior of the algorithm. In an actual LEO constellation,
the satellite serving a given producer changes every few minutes.

RODRÍGUEZ PEREZ ET AL.: Cache Placement in an NDN Constellation 7

number of caching nodes. However, when the number of
caching nodes is small, the in-axes strategy provides much
more flexibility. Recall that, as shown in (3), the regular
cache placement strategy places stringent conditions on
the possible total number of caching nodes.

V. Conclusions

The recently deployed massive LEO satellite
constellations serving as communication backends
for packet switched networks are an opportunity to
explore new network architectures that can be better
suited to the job than the ubiquitous TCP/IP one. The
NDN architecture, for instance, with its inbuilt network
caching capabilities, may be used instead of custom
CDN solutions to alleviate scarce network capacity and,
at the same time, reduce content delivery delay. This
paper explores the issue of cache placement considering
the very regular structure of a satellite constellation.

We have made a proposal able to simultaneously
spread traffic through the network, maximizing resource
utilization and global capacity, and to concentrate related
traffic—traffic to a common producer—on a handful of
network paths. Thus, by placing caching nodes in these
network paths, we can obtain high cache hit rates. In
our proposal, the decision about whether to cache a
piece of data depends on the relative locations of the
forwarding node and the producer. As different nodes
are responsible for caching different pieces of content,
the memory requirements for the caching memory of the
routers are equalized.

We have compared two different strategies for
establishing the location of caching nodes relative to
the producers: an in-axes alternative that places the
caching nodes either in the same orbital plane or in
different orbital planes, but similar latitude; and a second
alternative that divides the constellation into regular
regions, each one served by a single caching node. For
the in-axes cache placement strategy, we have presented
a linear-cost algorithm to obtain the optimal location
of a given number of caching nodes that minimizes
path lengths. Experimental results show that most of the
performance is gained with just a few caching nodes per
piece of content and that, for a small number of caching
nodes, both alternatives produce similar results, although
the in-axes approach is more flexible.

Future work includes exploring the possibility to apply
these cache placement algorithms in other regular network
structures, like, for instance, the power grid.

Acknowledgements

We wish to sincerely thank Margarita González-
Romero for her insights and suggestions for dealing with
the proof of Lemma 1.

Appendix

About the Interleaved Cache Placement

LEMMA 2. The optimum way to place the caches in the
axes is in an interleaved manner, that is, hi < vi < hi+1.

Proof:
Consider a non-interleaved optimum solution to the
problem H = {h1, . . . , hi, vj , hk, . . . , hn} and V =
{v1, . . . , vi, hj , vk, . . . , vn}, where hi < vi < hi+1.

According to (6), the cost of this solution is
‖H ∪ V‖ = ‖(0, v1, h1)‖+ ‖(h1, h2, v1)‖+ ‖(v1, v2, h2)‖

+ · · ·+ ‖(hi, vj , vi)‖+ ‖(vi, hj , vj)‖
+ ‖(hj , vk, vj)‖+ ‖(vj , hk, vk)‖
+ · · ·+ ‖(vn−1, vn, hn)‖.

(16)
If we swap now vj and hj , so that
H′ = {h1, . . . , hi, hj , hk, . . . , hn} and V ′ =
{v1, . . . , vi, vj , vk, . . . , vn}, now the cost becomes

‖H′ ∪ V ′‖ = ‖(0, v1, h1)‖+ ‖(h1, h2, v1)‖+ ‖(v1, v2, h2)‖
+ · · ·+ ‖(hi, hj , vi)‖+ ‖(vi, vj , hj)‖
+ ‖(hj , hk, vj)‖+ ‖(vj , vk, hk)‖
+ · · ·+ ‖(vn−1, vn, hn)‖.

(17)
The difference

‖H ∪ V‖ − ‖H′ ∪ V ′‖ = hihjvi − hjv
2
i − hkv

2
j

+
(
hjhk − hivi + v2i

)
vj

−
(
hjvj − v2j

)
vk

= vj
(
v2i + vjvk − vjhk − hivi

)
− hj

(
v2i + vjvk − vjhk − hivi

)
> 0

(18)
if

vj > hj , (19)

that is true because it is just a hypothesis of Lemma 2,
and
v2i + vjvk − vjhk − hivi > hivi + vjvk − vjhk − hivi

> hivi + vjhk − vjhk − hivi

> 0,
(20)

which is easy to check as both hi < vi and hk < vk.

REFERENCES

[1] J. McDowell
Startlink Statistics
Jul. 2022. [Online]. Available: https://planet4589.org/space/
stats/star/starstats.html

[2] UK Space Agency
£18m for OneWeb satellite constellation to deliver global
communications
Feb. 2019. [Online]. Available:
https://www.gov.uk/government/news/
18m-for-oneweb-satellite-constellation-to-deliver-global-communications

8 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

https://planet4589.org/space/stats/star/starstats.html
https://planet4589.org/space/stats/star/starstats.html
https://www.gov.uk/government/news/18m-for-oneweb-satellite-constellation-to-deliver-global-communications
https://www.gov.uk/government/news/18m-for-oneweb-satellite-constellation-to-deliver-global-communications

[3] J. D. Hindin, M. M. Lottenbach, and C. A. Keisner
Application for authority to launch and operate a non-
geostationary satellite orbit system in ka-band frequencies
Federal Communications Commission, p. 36, Jul.
2019. [Online]. Available: https://web.archive.org/web/
20190706025649if /https://licensing.fcc.gov/myibfs/download.
do%3Fattachment key%3D1773656

[4] Telesat
Telesat Lightspeed LEO Network
May 2020. [Online]. Available: https://www.telesat.com/
leo-satellites/

[5] D. Bhattacherjee and A. Singla
Network topology design at 27,000 km/hour
In Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies. Orlando
Florida: ACM, Dec. 2019, pp. 341–354.

[6] H. Pan, H. Yao, T. Mai, N. Zhang, and Y. Liu
Scalable Traffic Control Using Programmable Data Planes in a
Space Information Network
IEEE Network, vol. 35, no. 4, pp. 35–41, Jul. 2021, conference
Name: IEEE Network.

[7] T. Koponen et al.
A Data-Oriented (and Beyond) Network Architecture
SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp. 181–192,
Oct. 2007.

[8] Z. Xia
Adapting Named Data Networking (NDN) for Better Consumer
Mobility Support in LEO Satellite Networks
Wireless Networks, p. 10, 2021.

[9] C. Ghasemi, H. Yousefi, and B. Zhang
Far Cry: Will CDNs Hear NDN’s Call? In Proceedings of the
7th ACM Conference on Information-Centric Networking, ser.
ICN ’20. New York, NY, USA: Association for Computing
Machinery, Sep. 2020, pp. 89–98.

[10] S. Lederer, C. Mueller, C. Timmerer, and H. Hellwagner
Adaptive multimedia streaming in information-centric networks
IEEE Network, vol. 28, no. 6, pp. 91–96, Nov. 2014.

[11] B. Rainer, D. Posch, and H. Hellwagner
Investigating the Performance of Pull-Based Dynamic Adaptive
Streaming in NDN

IEEE Journal on Selected Areas in Communications, vol. 34,
no. 8, pp. 2130–2140, Aug. 2016.

[12] R. Tourani, S. Misra, T. Mick, and G. Panwar
Security, Privacy, and Access Control in Information-Centric
Networking: A Survey
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp.
566–600, 2018.

[13] M. Handley
Delay is Not an Option: Low Latency Routing in Space
In Proceedings of the 17th ACM Workshop on Hot Topics in
Networks. Redmond WA USA: ACM, Nov. 2018, pp. 85–91.

[14] A. U. Chaudhry and H. Yanikomeroglu
Laser Intersatellite Links in a Starlink Constellation: A
Classification and Analysis
IEEE Vehicular Technology Magazine, vol. 16, no. 2, pp. 48–56,
Jun. 2021.

[15] L. Zhang et al.
Named data networking
Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[16] M. Rodrı́guez Pérez
Simulation environment for trying cache placement strategies
on a grid-like NDN network
Jun. 2022. [Online]. Available: https://github.com/
ICARUS-ICN/ndn-grid-cache

[17] ndnSIM authors
ndnSIM: NS-3 based NDN simulator
Jun. 2022. [Online]. Available: https://github.com/
named-data-ndnSIM/ndnSIM

[18] M. Rodrı́guez Pérez
Fast in-axis cache placement algorithm for grid-like NDN
networks
Jun. 2022. [Online]. Available: https://github.com/
ICARUS-ICN/fastgridcache

[19] C. G. Bassa, O. R. Hainaut, and D. Galadı́-Enrı́quez
Analytical simulations of the effect of satellite constellations on
optical and near-infrared observations
Astronomy & Astrophysics, vol. 657, p. A75, Jan. 2022.

RODRÍGUEZ PEREZ ET AL.: Cache Placement in an NDN Constellation 9

https://web.archive.org/web/20190706025649if_/https://licensing.fcc.gov/myibfs/download.do%3Fattachment_key%3D1773656
https://web.archive.org/web/20190706025649if_/https://licensing.fcc.gov/myibfs/download.do%3Fattachment_key%3D1773656
https://web.archive.org/web/20190706025649if_/https://licensing.fcc.gov/myibfs/download.do%3Fattachment_key%3D1773656
https://www.telesat.com/leo-satellites/
https://www.telesat.com/leo-satellites/
https://github.com/ICARUS-ICN/ndn-grid-cache
https://github.com/ICARUS-ICN/ndn-grid-cache
https://github.com/named-data-ndnSIM/ndnSIM
https://github.com/named-data-ndnSIM/ndnSIM
https://github.com/ICARUS-ICN/fastgridcache
https://github.com/ICARUS-ICN/fastgridcache

	I Introduction
	II Problem Description
	A Forwarding Strategy

	III Cache Placement
	A Regular Cache Placement
	B In-Axes Cache Placement
	C A Fast Algorithm to Compute the Optimal in-Axes Cache Locations

	IV Experimental Results
	V Conclusions
	Appendix
	REFERENCES

