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Abstract— This paper focuses on the joint design of transmit
waveforms and receive filters for airborne multiple-input-multiple-
output (MIMO) radar systems in spectrally crowded environments.
The purpose is to maximize the output signal-to-interference-plus-
noise-ratio (SINR) in the presence of signal-dependent clutter.
To improve the practicability of the radar waveforms, both a
multi-spectral constraint and a peak-to-average-power ratio (PAPR)
constraint are imposed. A cyclic method is derived to iteratively
optimize the transmit waveforms and receive filters. In particu-
lar, to tackle the encountered non-convex constrained fractional
programming in designing the waveforms (for fixed filters), we
resort to the Dinkelbach’s transform, minorization-maximization
(MM), and leverage the alternating direction method of multipliers
(ADMM). We highlight that the proposed algorithm can iterate
from an infeasible initial point and the waveforms at convergence
not only satisfy the stringent constraints, but also attain superior
performance.

Index Terms— MIMO radar, STAP, spectrally crowded envi-
ronment, waveform optimization, SINR.

I. Introduction

Multiple-input-multiple-output (MIMO) radar refers
to a radar system with multiple transmitters and mul-
tiple receivers. Different from traditional phased-array
radar, MIMO radar can transmit multiple independent
waveforms. Therefore, MIMO radar can leverage the
waveform diversity to improve the signal-to-interference-
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plus-noise-ratio (SINR), operate in more flexible modes,
and adapt to the complex environment more intelligently
[1]. According to the array spacing between the trans-
mitters/receivers, MIMO radar can be categorized into
two categories: statistical MIMO radar [2] and coherent
MIMO radar [3]. Statistical MIMO radar has widely
separated transmitters/receivers. Therefore, it can fully
utilize the spatial diversity to overcome the target fluc-
tuations and improve the target localization accuracy [4].
Compared with statistical MIMO radar, the transmit-
ters/receivers of coherent MIMO radar are closely spaced.
Similar to phased-array radar systems, the transmitters of
coherent MIMO radar share the same viewing angle of
the targets. Differently, the waveform diversity offered by
coherent MIMO radar enables a higher number of degrees
of freedom than phased-array radar, resulting in an im-
proved parameter identifiability [5], better target detection
performance [6], and the capability of supporting multiple
functions simultaneously [7].

An airborne early warning (AEW) system (also called
AEW and control system), which refers to a radar system
operating at a high altitude, is usually used to detect
target at a long range. When the AEW system is detecting
targets at a low altitude, it might receive strong reflections
from, e.g., ground. Owing to the AEW platform motion,
the ground clutter is extended not only in range and angle,
but also in Doppler. Therefore, a weak target is likely to be
obscured by mainlobe clutter from the same angle as the
target or by sidelobe clutter from different angles but with
the same Doppler frequency. These unfavorable factors
deteriorate the target detection performance, especially
for the slowly moving targets [8]. To boost the target
detection performance in the presence of strong clutter,
space time adaptive processing (STAP) techniques have
been proposed [8]–[10]. Through collecting waveforms
from multiple antennas and multiple pulses, the adaptive
multi-dimensional filters of STAP can form deep notches
along the clutter ridge and thus suppress the clutter power
to a low level.

Considering the superiority of MIMO radar and STAP,
researchers proposed the concept of MIMO-STAP for
future AEW systems and extensive studies have been
devoted to this area (see, e.g., [6], [11]–[15] and the
references therein). The results showed that for detection
of slowly-moving targets, MIMO-STAP achieved better
performance than conventional STAP methods. However,
these studies mainly focused on the design of receivers
for MIMO-STAP transmitting orthogonal waveforms. To
further enhance the detection performance, there have
been ever-increasing interest in jointly optimizing transmit
waveforms and receive filters for MIMO-STAP [16]–
[21]. In [16], [19], [20], the authors considered the
maximization of SINR under several practical constraints
on the sought waveforms, including the constant-envelope
constraint and the similarity constraint. A number of
algorithms were developed therein to tackle the joint
design problems efficiently. In [18], the authors extended
the algorithm in [16] to design finite-alphabet waveforms.
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In [17], [21], the authors focused on the robust design
for MIMO-STAP under circumstance of prior knowledge
mismatch. It was shown that the synthesized waveforms
based on maximizing the worst-case SINR exhibited
increased robustness.

Note that an operating AEW system not only detects
targets from hundreds miles away, but also might commu-
nicates with friendly aircrafts/ships to perform command
and control. Therefore, if the radar and the communi-
cation systems onboard share the same frequency band,
they will interfere each other. Moreover, in a spectrally
crowded environment, in which the radar has to operate
with many nearby radiators simultaneously, the possibly
severe mutual interference will degrade the system per-
formance significantly. One possible way to improve the
radar performance in spectrally crowded environments
is by transmitting intelligent waveforms [22]. In [23]–
[30], the authors considered the waveform design under
a spectral constraint. It was shown that the spectrally
constrained waveforms formed notches in the stopbands
(i.e., the frequency bands that the nearby radiators operate
in), thus enhancing the spectral compatibility of the radar
system.

In this paper, we consider the joint design of transmit
waveforms and receive filters for MIMO-STAP of AEW
systems in spectrally crowded environments. Considering
that multiple nearby radiators might be present and to
guarantee the quality of service of these radiators, we
impose a multi-spectral constraint on the waveforms.
Moreover, to minimize the distortion due to the nonlinear
effects in high power amplifier, a peak-to-average-power
ratio (PAPR) constraint is imposed. We assume that the
operating frequency band of the nearby radiators are
known a priori (see also similar assumptions in [23], [26],
[27], [29], [30]). Indeed, such prior knowledge can be
obtained by cognitive methods in [31]–[33]. Motivated by
[16], [18], we develop two cyclic optimization methods to
jointly design the waveforms and the filters. For the chal-
lenging non-convex waveform design problem (for fixed
filters), we use Dinkelbach’s transform [34] to transform
the fractional objective function into a quadratic function.
Then we resort to the coordinate-descent (CD) method
to split the quadratic problem into multiple subproblems,
and use the alternating direction method of multipliers
(ADMM) to deal with the resulting quadratically con-
strained quadratic programming (QCQP) problem (we
call it the DK-ADMM). Alternatively, we also use the
minorization-maximization (MM) technique to construct
a quadratic surrogate of the objective, and leverage the CD
and ADMM to design the transmit waveforms (we call it
MM-ADMM). We highlight that the proposed iterative
algorithm in this paper can start from an infeasible
point (i.e., a waveform not satisfying the constraints) and
the performance of the devised waveforms is insensitive
to the initial points. Moreover, the proposed algorithm
can achieve better target detection performance than the
competing algorithms.

The rest of this paper is organized as follows: Section
II establishes the signal model and formulates the wave-
form design problem. Section III develops a cyclic method
to optimize the receive filters and transmit waveforms.
Section IV provides numerical examples to demonstrate
the performance of the proposed algorithm. Finally, con-
clusions are drawn in Section V.

Notations: See Table I.

TABLE I
List of Notations

Symbol Meaning
M Matrix
x Vector
x Scalar
IN N ×N identity matrix

(·)∗, (·)>, (·)† Conjugate, transpose, conjugate transpose
(·)1/2 Squared root of a positive semi-definite matrix
tr(·) Trace of a square matrix

|·|, ‖·‖2, ‖·‖F Magnitude, Euclidian norm (of a vector), and
Frobenius norm (of a matrix)

E{·} Expectation of a random variable
R, C Domain of the real and complex numbers
vec(·) Vectorization
A⊗B Kronecker product
Re(·) The real part of a (complex-valued) matrix
U(·) Uniform distribution

A � 0 (A � 0) A is positive definite (semi-definite)

II. Signal Model and Problem Formulation
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Fig. 1. Geometry of an airborne MIMO STAP radar.
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A. Signal Model

As shown in Fig. 1, the considered AEW MIMO radar
system has Nt transmit antennas and Nr receive antennas.
Let sn ∈ CL be the (discrete-time) baseband waveform
of the nth transmitter, where L is the code length. Let
S = [s1, s2, · · · , sNt ]> ∈ CNt×L denote the transmit
waveform matrix. Assume that the airborne MIMO radar
system transmits a burst of M pulses in a coherent pro-
cessing interval (CPI) with the pulse repetition frequency
(PRF) denoted fr. For a down-looking airborne MIMO
radar system, the received signal includes the target re-
turns, the signal-dependent clutter, and the receiver noise.
Next we present the signal model associated with these
components (we refer to [16], [18] for more details).

1) Target
Assume that the transmit waveforms are narrow-
band. Under the far-field assumption, the target
return from the mth pulse (m = 1, 2, ...,M ) can
be expressed as

Y t,m = αte
j(m−1)wtb(θt)a

>(θt)S, (1)

where αt is the target amplitude, wt = 2πft, ft
is the normalized target Doppler frequency, θt is
the target direction of arrival (DOA), a(θt) and
b(θt) are the transmit array steering vector and
the receive array steering vector at θt, respectively.
Let yt,m = vec(Y t,m), s = vec(S), and A(θt) =
b(θt)a

>(θt). Then

yt,m = αte
j(m−1)wt(IL ⊗A(θt))s. (2)

Let yt = [y>t,1, · · · ,y>t,M ]> ∈ CLMNr . Then yt
can be expressed as

yt = αV (wt, θt)s, (3)

where V (wt, θt) = d(wt) ⊗ IL ⊗ A(θt) with
d(wt) = [1, · · · , ej(M−1)wt ]> being the temporal
steering vector at the Doppler frequency ft.

2) Clutter
The clutter refers to signal-dependent interference
due to unwanted reflections, e.g., from ground, sea,
etc. The clutter can be much stronger than the
target echoes, due to the large number of clutter
patches in the iso-range rings (including the range
ring that the target is present and the neighborhood
range rings), as shown in Fig. 1. Additionally, the
clutter is distributed in Doppler domain owing to
the motion of AEW platform [8]. Assume that
there are 2P + 1 clutter rings under consideration,
and we split each clutter ring into Nc clutter
patches uniformly. Assume that the target is at the
rth range cell, the clutter associated with the mth
pulse, the (r + p)th range cell, and the kth patch
in azimuth, can be modeled by

Y c,m,p,k =αc,p,ke
j2π(m−1)fc,p,kTr

× b(θc,p,k)a>(θc,p,k)SJp, (4)

where αc,p,k, fc,p,k, θc,p,k are the amplitude, the
Doppler frequency, and the DOA of the kth clutter

patch in the (r+p)th range cell, respectively, Jp =
J>−p ∈ CL×L is the shift matrix expressed as

Jp(m,n) =

{
1, if m− n+ p = 0,

0, if m− n+ p 6= 0.
(5)

Let yc,p,k = [vec>(Y >c,1,p,k), · · · , vec>(Y >c,M,p,k)]>,
then the kth clutter patch in the (r + p)th range
cell can be expressed as

yc,p,k = αc,p,kV (wc,p,k, θc,p,k)s, (6)

where V (wc,p,k, θc,p,k) = d(wc,p,k) ⊗ J>p ⊗
A(θc,p,k), and wc,p,k = 2πfc,p,k. By considering
the clutter from the nearest 2P +1 range cells, the
clutter model can be established by

yc =

P∑
p=−P

Nc∑
k=1

yc,p,k. (7)

Assume that the signals associated with different
clutter patches are uncorrelated. Then the clutter
covariance matrix, defined by Rc(s) = E(ycy

†
c),

can be expressed as

Rc(s) =

P∑
p=−P

Nc∑
k=1

σ2
c,p,kvc,p,k(s)v†c,p,k(s), (8)

where σ2
c,p,k = E(|αc,p,k|2) denotes the average

power of the kth clutter patch in the pth range
ring, and vc,p,k(s) = V (wc,p,k, θc,p,k)s.

3) Noise
Assume that the receiver noise is white, with
power of σ2. Then the noise covariance matrix can
be written as:

Ru = E(yuy
†
u) = σ2ILMNr , (9)

where yu is the vector of receiver noise.

B. Design Metric

In radar systems, the target detection performance is
closely related to the SINR. Through maximizing the
output SINR, the clutter can be suppressed to a low level
and then the detection performance is improved. In this
paper, we aim to maximize the output SINR through
jointly designing the transmit waveforms and the receive
filters. Let w = [w>1 , · · · ,w>Nr ]

> denote the receive filter,
with wj ∈ CML representing the filter in the jth receiver,
j = 1, · · · , Nr. The output SINR of the MIMO-STAP
radar is defined as follows

SINR(w, s) =
|w†yt|2

w†E(ycy
†
c + yuy

†
u)w

=
|αt|2|w†vt(s)|2

w†Rv(s)w
,

(10)

where vt(s) = V (wt, θt)s, and Rv(s) = Rc(s) + Ru.
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C. Transmit Waveform Constraints

Now we briefly discuss the constraints that the trans-
mit waveforms should satisfy.

1) Energy Constraint
Since the energy of transmit waveforms is limited,
the energy constraint is enforced on the sought
waveforms:

tr(SS†) = et, (11)

where et is the total transmit energy. Note that s =
vec(S). Then we can rewrite the energy constraint
as follows

s†s = et. (12)

Note also that practical radar systems use al-
most identical radio frequency amplifiers (RFA),
meaning that the transmit energies across differ-
ent antennas are usually uniform [35]. Thus, the
following uniform transmit energy constraint is
included:

s†nsn = et/Nt, n = 1, · · · , Nt. (13)

2) PAPR Constraint
To allow the RFA to operate in a saturated con-
dition as well as avoid nonlinear effects, transmit
waveform with low PAPR are desirable [36], [37].
Therefore, we also impose the PAPR constraint on
the waveforms, that is,

s†nsn = et/Nt, PAPR(sn) ≤ ρ, (14)

where 1 ≤ ρ ≤ L, n = 1, · · · , Nt, and

PAPR(sn) =
maxl|sn(l)|2

1
L

∑L
l=1 |sn(l)|2

, l = 1, · · · , L.

Particularly, if ρ = 1, the PAPR constraint is
reduced to the constant-envelope constraint:

|sn(l)| = √ps, n = 1, · · · , Nt, l = 1, · · · , L,
where ps = et/(LNt).

3) Multi-Spectral Constraint
Owing to the massive increase in the number of
radio devices and the limited spectrum resources,
radar systems may have to share the frequency
band with communication systems, which will
cause mutual interference and deteriorate the per-
formance of both systems. To improve the spe-
tral compatibility, one possible way is to control
the radar transmit waveforms to form notches in
the stopbands (i.e., minimize the energy spectral
density (ESD) of radar transmit waveforms in the
working frequency bands of communication sys-
tems). In this respect, assume that Krad licensed
radiators are coexisting with the MIMO radar
system. Let Ωk = [fk1 , f

k
2 ] denote the normalized

frequency band of the kth radiator, where fk1 and
fk2 indicate the lower and the upper normalized
frequencies, k = 1, · · · ,Krad. Note that the ESD
of the nth waveform is written as

Sn(f) = |s†na(f)|2, (15)

where a(f) = [1, ej2πf , · · · , ej2π(L−1)f ]>. There-
fore, the energy of sn leaked on the kth stopband
can be expressed as∫ fk2

fk1

Sn(f)df =

∫ fk2

fk1

|s†na(f)|2df = s†nR
k
Isn,

where the (m, l)th element of Rk
I is given by

Rk
I (m, l) =

{
fk2 − fk1 , m = l,

ej2πf
k
2 (m−l)−ej2πf

k
1 (m−l)

j2π(m−l) , m 6= l.

To enhance the spectral compatibility of the radar
signals with the licensed radiators, the following
spectral constraint is enforced on the transmit
waveforms, which is given by

s†nR
k
Isn ≤ EkI , (16)

where EkI denotes the maximum allowed inter-
ference energy of sn on the kth frequency band
(n = 1, · · · , Nt, k = 1, · · · ,Krad). Note that
when the constraint in (16) is satisfied, we can
precisely control the interference energy of each
waveform on every frequency band, meaning that
it is possible to ensure the quality of service for
each licensed radiator. In the sequel, similar to
[27], [28], [30], [38], we call the constraint in (16)
a multi-spectral constraint 1.

D. Problem Formulation

By considering the constraints in (12), (14), and
(16), we formulate the following joint design problem to
maximize the output SINR of MIMO radar in spectrally
crowded environments:

P



max
w,s

SINR(w, s)

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ,
s†nR

k
Isn ≤ EkI ,

n = 1, · · · , Nt, k = 1, · · · ,Krad.

(17)

Note that P is in general a non-convex problem, due
to the PAPR constraint. In the next section, we develop
a cyclic method to provide high-quality solutions to the
above waveform design problem.

Remark: In the formulation of (17), we have assumed
that the prior knowledge of the interference characteris-
tics and the operating frequency bands of the licensed
radiators are available. Indeed, these knowledge can be
obtained via cognitive methods (see, e.g., [31]–[33], [39]–
[41] for more details for the application of cognitive meth-
ods in radar systems). We also highlight that if the clutter
is non-stationary (e.g., due to internal clutter motion), we
will assume that the normalized Doppler frequency of

1We point out that the multi-spectral constraint is enforced on multiple
waveforms, whereas the studies in [27], [28], [30], [38] enforce the
multi-spectral constraint on a single waveform.
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the kth clutter patch in the pth range ring (i.e., fc,p,k)
is uniformly distributed around the meanf̄c,p,k, that is,

fc,p,k ∼ U(f̄c,p,k − δc,p,k/2, f̄c,p,k + δc,p,k/2), (18)

where δc,p,k rules the uncertainty of clutter Doppler fre-
quency. In this case, the clutter covariance matrix Rc(s)
can calculated by the method in [40], [42].

III. Algorithm Design

In this section, we develop cyclic optimization meth-
ods to tackle the non-convex problem in (17). For each
cyclic optimization method, two sub-problems are in-
volved at the (t+1)th iteration: the optimization of receive
filters for fixed transmit waveforms (i.e., s(t) is fixed) and
the optimization of transmit waveforms for fixed receive
filters (i.e., w(t+1) is fixed). Next we present solutions to
the two subproblems. To lighten the notations, we omit the
superscripts if doing so does not have a risk of confusion.

If s(t) is fixed, the receive filters can be optimized by
solving the following maximization problem:

max
w

|w†vt(s)|2

w†Rv(s)w
. (19)

It can be seen that the minimum variance distortionless
response (MVDR) beamformer [43] maximizes the ob-
jective, i.e., the solution is given by

w = R−1v (s)vt(s). (20)

To optimize sn, n = 1, · · · , Nt (for fixed w(t+1)), we
note that the SINR can be expressed as

SINR(w, s) =
|αt|2|w†V (wt, θt)s|2

w†Rc(s)w + w†Ruw
. (21)

In addition,
w†Rc(s)w = s†Qs, (22)

where

Q =

P∑
p=−P

Nc∑
k=1

σ2
c,p,kV

†
c,p,kww†V c,p,k, (23)

and V c,p,k , V (wc,p,k, θc,p,k).
Let

D = V †(wt, θt)ww†V (wt, θt). (24)

Then, SINR can be expressed as

SINR(w, s) = |αt|2
s†Ds

s†Qs + β(w)
, (25)

where β(w) = w†Ruw.
Therefore, the optimization of the multiple transmit

waveforms (given w(t+1)) can be given by

Ps



max
s

s†Ds

s†Qs + β(w)

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ,
s†nR

k
Isn ≤ EkI ,

n = 1, · · · , Nt, k = 1, · · · ,Krad.

(26)

Note that Ps is a fractional programming problem.
Next we resort to the Dinkelbach’s transform [34] and
MM to replace the fractional objective with a quadratic
surrogate, respectively. Then, with the quadratic surrogate
function, we propose an ADMM algorithm to tackle
the non-convex QCQP problem. The corresponding algo-
rithms are referred to as DK-ADMM and MM-ADMM,
respectively.

A. DK-ADMM

Let s(t,l) denote the waveform in the (t, l)th iteration
of the proposed algorithm, where the superscript t denotes
the outer iteration for the cyclic optimization, and l
denotes the inner iteration for Dinkelbach’s transform. Let
f (t,l) denote the SINR associated with s(t,l). By applying
the Dinkelbach’s transform, we formulate the following
optimization problem at the (t, l + 1)th iteration

P̂s



max
s

s†T̂ s

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ,
s†nR

k
Isn ≤ EkI ,

n = 1, · · · , Nt, k = 1, · · · ,Krad.

(27)

where T̂ = T + ηI ,

T = D − f (t,l)(Q + β(w)/et · I), (28)

and η is a constant to ensure T̂ � 0.
Next we use the block coordinate descent (CD)

method to deal with the optimization problem P̂s (We re-
fer to [44] for a comprehensive review of the CD method).
To apply the CD method, we define s̄ = vec(S>). Note
that s = P s̄ [16], where P is a commutation matrix.
Therefore, the objective function of P̂s can be rewritten
as

s†T̂ s = s̄†T̄ s̄, (29)

where T̄ = P †T̂ P . Next, let us partition T̄ into Nt×Nt
blocks, each of which is an L×L matrix. Let T̄ n,m denote
the (n,m)th block of T̄ . Then s̄†T̄ s̄ can be rewritten as

s̄†T̄ s̄ = s†nT̄ n,nsn + 2Re(s†n

Nt∑
m=1
m 6=n

T̄ n,msm) + const0,

(30)
where

const0 =

Nt∑
m=1
m 6=n

Nt∑
m′=1
m′ 6=n

s†mT̄m,m′sm′ . (31)

Based on the observation in (30), we formulate the
following problem to optimize sn:

Psn


max
sn

s†nT̄ n,nsn + 2Re(b†nsn)

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ,
s†nR

k
Isn ≤ EkI , k = 1, · · · ,Krad,

(32)

Li et al.: Multi-Spectrally Constrained Low-PAPR Waveform Optimization for MIMO Radar Space-Time Adaptive Processing 5



where

bn =

Nt∑
m=1
m 6=n

T̄ n,msm. (33)

Next we use the ADMM method to deal with the op-
timization problem Psn (we refer to [45] for a tutorial
review of the ADMM method). To proceed, we reformu-
late Psn as

Psn,t,gk,z



max
sn,t,gk,z

t+ 2Re(b†nsn)

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ,
gk = B

1/2
k sn,

‖gk‖2 ≤ 1, k = 1, · · · ,Krad,

z = T̄
1/2
n,nsn, ‖z‖2 ≥ t,

(34)
where t, gk, and z are the introduced auxiliary variables,
and Bk = Rk

I/E
k
I . The augmented Lagrangian function

corresponding to Psn,t,gk,z can be expressed as

Lϑ(sn, z, t, gk, ck,d)

=− t− 2Re(b†nsn)

+
ϑ

2

{
Krad∑
k=1

(
||gk −B

1/2
k sn + ck||2 − ||ck||2

)}
+
ϑ

2

{
||z − T̄

1/2
n,nsn + d||2 − ||d||2

}
,

(35)

where ϑ is the penalty parameter, ck(k = 1, 2, · · · ,Krad)
and d are the Lagrange multiplier vectors. Then, during
the (m + 1)th iteration of the ADMM method, we carry
out the following steps in (36), shown at the bottom of
this page:

Next we present solutions to (36a), (36b), and (36c).
1) Update of s

(m+1)
n

Define

Y n = −ϑ
2

(T̄ n,n +

Krad∑
k=1

Bk), (37)

and

h =
ϑ

2
(T̄

1/2
n,n(z + d) +

Krad∑
k=1

B
1/2
k (gk + ck)). (38)

Let v = h + b. Then the update of s
(m+1)
n can be given

by

P(m+1)
sn


max
sn

s†nY nsn + 2Re(s†nv)

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ.

(39)

We can tackle the maximization problem P(m+1)
sn

leveraging the MM method [46]. To proceed, note that

(sn−s(m,j)n )†(Y n−λmin(Y n)I)(sn−s(m,j)n ) ≥ 0, (40)

where s
(m,j)
n is the waveform at the (m, j)th iteration,

and λmin(Y n) is the smallest eigenvalue of Y n. We can
derive from (40) that

s†nY nsn ≥ 2Re(s†n(Y n − λmin(Y n)I)s(m,j)n ) + const1,
(41)

where const1 = −(s
(m,j)
n )†Y ns

(m,j)
n + 2λmin(Y n)et/Nt.

Let
u(m,j) = (Y n − λmin(Y n)I)s(m,j)n + v, (42)

then the minorized problem based on (41) at the (m, j +
1)th iteration can be formulated as

max
sn

Re(s†nu
(m,j))

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ.

(43)

In [47], an algorithm is provided to solve the above
problem. Particularly, if ρ = 1, this problem has a closed-
form solution

s(m,j+1)
n (l) =

√
psexp(jarg(u(m,j)(l))), (44)

where s(m,j+1)
n (l) and u(m,j)(l) denote the lth element of

s
(m,j+1)
n and u(m,j), respectively.

2) Update of z(m+1) and t(m+1)

Let q = T̄
1/2
n,nsn−d, then the update of z(m+1) and t(m+1)

can be given by

P(m+1)
z,t

min
z,t

ϑ

2
||z − q||2 − t

s.t. ||z||2 ≥ t.
(45)

It is evident that if t = ‖z‖2, the objective function
achieves the smallest value. As a result, we can obtain
the solution to P(m+1)

z,t through solving the following
unconstrained optimization:

min
z

ϑ

2
‖z − q‖2 − ||z||2. (46)

s(m+1)
n = arg min

sn
Lϑ(sn, z

(m), t(m), g
(m)
k , c

(m)
k ,d(m)), (36a)

(z(m+1), t(m+1)) = arg min
z,t

Lϑ(s(m+1)
n , z, t, g

(m)
k , c

(m)
k ,d(m)), (36b)

g
(m+1)
k = arg min

gk
Lϑ(s(m+1)

n , z(m+1), t(m+1), gk, c
(m)
k ,d(m)), (36c)

c
(m+1)
k = c

(m)
k + g

(m+1)
k −B

1/2
k s(m+1)

n , (36d)

d(m+1) = d(m) + z(m+1) − T̄
1/2
n,ns

(m+1)
n , (36e)
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Assume that ϑ > 2. Then the optimal solution to z is
shown as follows

z =
ϑq

ϑ− 2
. (47)

3) Update of g
(m+1)
k

Let xk = B
1/2
k sn − ck. Then the update of gk can be

given by

P(m+1)
gk

{
min
gk
||gk − xk||2,

s.t. ||gk||2 ≤ 1.
(48)

Obviously, the solution to P(m+1)
gk is given by

gk =

{
xk, ||xk||2 ≤ 1,

xk/||xk||, ||xk||2 > 1.
(49)

We sum up the proposed ADMM algorithm in Algo-
rithm 1, where the algorithm terminates if ‖r(m+1)‖ < ξ
or the algorithm reaches a maximum number of iterations,
ξ > 0 is a small user-defined value, and

r(m+1) =z(m+1) − T̄
(m+1)
n,n s(m+1)

n

+

Krad∑
k=1

(g
(m+1)
k −B

1/2
k s(m+1)

n ). (50)

Algorithm 1: ADMM algorithm for Psn .

Input: et, Nt, R̄n,n, ρ, Rk
I , EkI , and ξ.

Output: s
(t,l+1)
n .

1 Initialize: m = 0, s(m)
n , z, t, gk, ck, d and ϑ.

2 repeat
// Update of s

(m+1)
n

3 j = 0, s(m,j)n = s
(m)
n ;

4 repeat
5 Compute u(m,j) by (42);
6 Update s

(m,j+1)
n by solving (43);

7 j = j + 1;
8 until convergence;
9 s

(m+1)
n = s

(m,j+1)
n ;

// Update of z(m+1)

10 q(m) = R̄n,ns
(m)
n − d(m);

11 z(m+1) = ϑq(m)/(ϑ− 2);
12 t(m+1) = ‖z(m+1)‖22;

// Update of g
(m+1)
k

13 Update g
(m+1)
k by (49);

14 c
(m+1)
k = c

(m)
k + g

(m+1)
k −B

1/2
k s

(m+1)
n ;

15 d(m+1) = d(m) + z(m+1) − R̄
1/2
n,ns

(m+1)
n ;

16 m = m+ 1
17 until ‖r(m)‖ < ξ;
18 s

(t,l+1)
n = s

(m+1)
n .

B. MM-ADMM

Substituting (20) into (10), we rewrite SINR as

SINR(s) = |αt|2v†t(s)R−1v (s)vt(s), (51)

According to [48, Lemma 1], SINR(s) is minorized by:

− s†Rs + 2Re(c†s) + const2, (52)

where c = V †(wt, θt)R
−1
v (s(k))V (wt, θt)s

(k), const2 =
−tr(BkRu),

R =

P∑
p=−P

Nc∑
k=1

σ2
c,p,kV c,p,kBkV

†
c,p,k,

and Bk = uku
†
k, uk = R−1v (s(k))V (wt, θt)s

(k), the
superscript “k” denotes the kth iteration in the MM-based
algorithm. Let R̂ = µI − R, where µ is set to ensure
R̂ > 0. By omitting the constant terms, the optimization
of s can be formulated as

Ps



max
s

s†R̂s + 2Re(c†s)

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ,
s†nR

k
Isn ≤ EkI ,

n = 1, · · · , Nt, k = 1, · · · ,Krad.

(53)

Let c = P c̄, and the objective function of Ps can be
rewritten as

s†R̂s + 2Re(c†s) = s̄†R̄s̄ + 2Re(c̄†s̄), (54)

where R̄ = P †R̂P . Next, let us partition R̄ and c̄ into
Nt ×Nt and Nt × 1 blocks, each of which are an L× L
matrix and an L×1 vector, respectively. Let R̄n,m and cn
denote the (n,m)th and the nth block of R̄ and c̄. Then
s̄†R̄s̄ + 2Re(c̄†s̄) can be rewritten as

s̄†R̄s̄ + 2Re(c̄†s̄) = s†nR̄n,nsn + 2Re(f †nsn) + const3
(55)

where fn = 1
2

∑Nt
m=1
m 6=n

R̄n,msm + cn,

const3 =

Nt∑
m=1
m6=n

Nt∑
m′=1
m′ 6=n

s†mR̄m,m′sm′ +

Nt∑
m=1
m 6=n

c†msm.

By using (55), we formulate the following problem to
optimize sn:

Psn


max
sn

s†nR̄n,nsn + 2Re(f †nsn)

s.t. s†nsn = et/Nt,

PAPR(sn) ≤ ρ,
s†nR

k
Isn ≤ EkI , k = 1, · · · ,Krad.

(56)

Note the similarity between (56) and (32). Thus, we can
use Algorithm 1 to tackle (56).

C. Algorithm Summary and Computational
Complexity Analysis

We summarize the proposed multi-spectrally con-
strained waveform design algorithm in Algorithm 2,
where ε1, ε2 > 0 are user-defined small values. The
computational complexity of the proposed algorithm at
each iteration is analyzed in Table II. To alleviate the
computational burden, we calculate Rc(s) and Q by the
method in [18, Appendix C]. We can see that if P and Nt
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TABLE II
Computational complexity analysis

Algorithm 1 Algorithm 2
Computation Complexity Computation Complexity

u(m,j) O(L2) Rc(s) O((2P + 1)(MNr)3LNt(Nt + L))

s
(m,j+1)
n O(L) w O((LMNr)3)

q(m) O(L2) D O((LNt)2)

z(m+1) O(L) Q O((2P + 1)(LN3
t M

2N2
r + L2N3

t MNr))

t(m+1) O(L) β(w(t+1)) O(LMNr)

g
(m+1)
k - or O(L) f (t,l) O((LNt)2)

c
(m+1)
k O(L2) T̄

(t,l)
n,n or R̄

(t)
n,n O((LNt)2)

d(m+1) O(L2) b
(t,l)
n or f

(t)
n O((Nt − 1)L2)

- - Bk or R O(L3M2N2
rNt + L2M2N2

rNt)
- - c O(L3M2N2

rNt + L2N2
t )

is large, the computational complexity of DK-ADMM is
higher than that of MM-ADMM; otherwise, if L is large,
the computational complexity of MM-ADMM is higher
than that of DK-ADMM.

Algorithm 2: Multi-spectrally constrained
waveform design for MIMO STAP.

Input: Ru, V (wt, θt), µ, ε1, ε2,
Output: sopt and wopt.

1 Initialize: t = 0, s(t)n , n = 1, · · · , Nt.
2 repeat

// Update of w(t+1)

3 Compute Rc(s
(t)) by (8);

4 Rv(s
(t)) = Rc(s

(t)) + Ru;
5 w(t) = R−1v (s(t))vt(s

(t));
// Update of s(t+1)

6 for DK-ADMM Algorithm do
7 l = 0, s(t,l) = s(t);
8 repeat
9 Compute D, Q, and β(w(t+1));

10 Compute f (t,l);
11 Compute T̄

(t,l)
n,n and b(t,l)n ;

12 for n = 1 to Nt do
13 Update s

(t,l+1)
n using Algorithm 1;

14 end
15 l = l + 1;
16 until |f (t,l+1) − f (t,l)|/f (t,l+1) < ε1;
17 s

(t+1)
n = s

(t,l)
n ;

18 end
19 for MM-ADMM Algorithm do
20 Compute B

(t)
k , R(t), and c(t);

21 Compute R̄
(t)
n,n and f (t)

n ;
22 for n = 1 to Nt do
23 Update s

(t+1)
n using Algorithm 1;

24 end
25 end
26 t = t+ 1;
27 until |SINR(t+1) − SINR(t)|/SINR(t+1) < ε2;
28 sopt = s(t+1);
29 wopt = w(t+1).

D. Extension to Multiple Space-Frequency
Constraints

In some situations, the directions of the licensed
radiators might be approximately known. Assume that
the direction of the kth licensed radiator belongs to
Θk = [θk1 , θ

k
2 ], where θk1 and θk2 are the lower and upper

angles, respectively, k = 1, · · · ,Krad. Therefore, the
energy of s leaked on the kth space-frequency band can
be expressed as∫ vk2

vk1

∫ fk2

fk1

|s†θa(f)|2dfdθ =

∫ vk2

vk1

s†θR
k
Isθdθ = s†F k

Is,

where vk1 = sin(θk1 ), vk2 = sin(θk2 ), sθ = vec(a>(θ)S) =
(IL ⊗a>(θ))s, F k

I = Rk
I ⊗U , the (p, q)th entry of U ∈

CNt×Nt is given by

U(p, q) =

{
vk2 − vk1 , p = q,

ej2πv
k
2 (q−p)dt/λ−ej2πv

k
1 (q−p)dt/λ

j2π(q−p)dt/λ , p 6= q,

and we have assumed that the transmit array is a uniform
linear array (ULA) with inter-element spacing denoted
dt. Then we can enforce a space-frequency constraint to
control the energy leaked on the space-frequency band.
When multiple space-frequency constraints and the PAPR
constraint are imposed, the optimization of s (at each
iteration) can be formulated by the following:

Ps



max
s

s†Ds

s†Qs + β(w)

s.t. s†s = et,

PAPR(s) ≤ ρ,
s†F k

Is ≤ EkI ,
k = 1, · · · ,Krad.

(57)

Similarly, we can use Algorithm 2 to tackle the above
optimization problem.

IV. Numerical Examples

In this section, numerical experiments are conducted
to evaluate the performance of the proposed algorithm.
The considered MIMO radar system has Nt = 4 trans-
mitters and Nr = 4 receivers, where both transmit array
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and receive array are assumed to be ULAs, with inter-
element spacing dt = 2λ and dr = λ/2, respectively
(λ is the wavelength). The radar system is at an altitude
of ha = 9000 m and moving with a constant speed of
va = 75 m/s. The total transmit energy of the waveforms
is et = 1. The waveform has a bandwidth of 800 kHz
and a duration of T = 200µs, sampled with a frequency
of fs = 800 kHz (i.e., the code length is L = 160).
Additionally, we use a linear frequency modulated (LFM)
waveform with a chirp rate of γs = 3.5 × 109 s−2

as the initial waveform for all the transmit waveforms
(Note that such waveforms do not satisfy the multi-
spectral constraint, meaning that the initial waveforms
are infeasible). The radar transmits M = 16 pulses in
a CPI with a constant PRF of fr = 1000 Hz. The
target of interest is at an azimuth of 0◦, and a range of
Rt = 12728 m. To establish the clutter model, we assume
that P = 3 and Nc = 361 clutter patches are uniformly
distributed in each iso-range ring. Additionally, σ2

c,p,k =
1, p = −P, · · · , P, k = 1, · · · , Nc. The noise power is
σ2 = 1. Krad = 3 licensed radiators are coexisting
with the AEW radar system. The normalized frequency
bands of the licensed radiators are Ω1 = [0.2218, 0.2773],
Ω2 = [0.4609, 0.6132], and Ω3 = [0.7223, 0.76328]. The
maximum allowed interfered energy of each waveform
on these bands are E1

I = −35 dB, E2
I = −35 dB,

and E3
I = −30 dB, respectively. Regarding the ADMM

algorithm, we set the penalty parameter to ϑ = 4, and the
maximum number of iterations to 1000. For the stopping
criterion of the ADMM algorithm, the Dinkelbach’s trans-
form, and the cyclic optimization, we set ξ = 5× 10−10,
ε1 = 3×10−3, and ε2 = 3×10−4, respectively. Finally, the
experiments are conducted on a standard PC with Intel(R)
Core(TM) i7-9750H CPU and 16GB RAM.

0 50 100 150 200 250 300 350 400 450

CPU time(s)

20.5

21

21.5

22

22.5

23

23.5

24
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N

R
(d

B
)

Constant-envelope
 = 2
 = 3

Energy constraint

Constant-envelope
 = 2
 = 3

Energy constraint

Solid line: DK-ADMM Dash line:MM-ADMM

Fig. 2. Convergence of SINR versus CPU time. et = 1. vt = 52.5
m/s. E1

I = E2
I = −35 dB, E3

I = −30 dB.

First, we analyze the convergence of the proposed al-
gorithm. Fig. 2 shows the SINR curves of the proposed al-
gorithm versus the CPU time, under the PAPR constraints
of ρ = 1 (i.e., the constant-envelope constraint), ρ = 2,
ρ = 3, and ρ = L (i.e., the energy constraint), respectively,

TABLE III
SINR at convergence

SINR (dB) ρ = 1 ρ = 2 ρ = 3 ρ = L

DK-ADMM 23.8059 23.8101 23.8101 23.8102
MM-ADMM 23.6952 23.7439 23.7794 23.7795

TABLE IV
CPU time needed to reach convergence

CPU time (s) ρ = 1 ρ = 2 ρ = 3 ρ = L

DK-ADMM 380.843 177.167 166.941 141.049
MM-ADMM 403.326 383.573 366.424 318.698

where the target velocity is vt = 52.5 m/s (i.e., ft = 0.35).
Note that for both DK-ADMM and MM-ADMM, the
SINR monotonically increases as the iterations, which
confirms the convergence of the proposed algorithm. The
SINR of the waveforms synthesized by the DK-ADMM
algorithm and the MM-ADMM algorithm at convergence
is shown in Table III. We can see that a larger PAPR corre-
sponds to a higher SINR, because of the larger feasibility
region. In addition, even the stringent constant-envelope
constraint is enforced on the waveforms, the SINR of the
synthesized low-PAPR waveforms is very close to that
of energy-constrained waveforms. Moreover, the SINR
achieved by the DK-ADMM algorithm is slightly higher
than that of the MM-ADMM algorithm. Regarding the
CPU time to reach convergence, as shown in Table IV,
the DK-ADMM algorithm is faster than the MM-ADMM
algorithm. Interestingly, the results therein also imply that
a larger PAPR results in a faster convergence.

Fig. 3 presents the ESDs of the designed waveforms.
The three stopbands are shaded in gray with red dash-
dot lines. The blue lines indicate the ESDs of the initial
waveforms, and the yellow lines denote the ESDs of
the designed waveforms. From Fig. 3, we can observe
that all the transmit waveforms form deep nulls in the
stopbands and satisfy the spectral constraints. In other
words, the designed waveform can precisely control the
energy leaked on the stopbands, which enhance the
coexistence between the radar system and other radio
frequency systems. Moreover, we can observe that the
ESDs of the waveforms synthesized by the DK-ADMM
algorithm is smoother than by the MM-ADMM algorithm.
Considering that the DK-ADMM algorithm achieves a
larger SINR in a shorter time and the associated ESDs
of the synthesized waveforms are smoother, we use the
DK-ADMM algorithm to synthesize the multi-spectrally
constrained waveforms in the sequel.

Next we analyze the space-time cross-ambiguity
(STCA) function of the devised waveforms under dif-
ferent constraints, where the STCA function is defined
as [16]

Pw,s(θ, f) = |w†V (θ, f)s|2, (58)

where V (θ, f) = d(f) ⊗ IL ⊗ A(θ), and d(f) =
[1, · · · , ej2π(M−1)f ]>. Fig. 4 shows the STCA function
of the constant-envelope waveforms and the energy-
constrained waveforms. We can observe the mainlobes
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Fig. 3. ESDs of the designed waveforms. The blue and the yellow lines represent the ESDs of the initial waveforms and the optimized
waveforms. et = 1. E1

I = E2
I = −35 dB, E3

I = −30 dB. (a) and (e): Constant-envelope waveforms. (b) and (f): ρ = 2. (c) and (g): ρ = 3. (d)
and (h): Energy-constrained waveforms.

of all the STCA functions at zero spatial frequency
(which corresponds to an azimuth of 0◦) and a normalized
Doppler frequency of 0.35. Additionally, these functions
form deep nulls along the clutter ridges. Therefore, the
devised waveforms and filters can successfully suppress
the clutter and improve the SINR performance.

(a) ρ = 1 (b) ρ = 1

(c) ρ = L (d) ρ = L

Fig. 4. STCA of the designed waveforms. et = 1, vt = 52.5 m/s.
E1

I = E2
I = −35 dB, E3

I = −30 dB. (a) 3D STCA function of the
constant-envelope waveforms. (b) Top view associated with (a). (c) 3D

STCA function of the energy-constrained waveforms. (d) Top view
associated with (c).

To assess the impact of initial points on the per-
formance of the designed algorithms, various randomly
generated waveforms are set to be the initial points, where

the random waveforms are constant-envelope waveforms
with modulus of

√
ps and phases following a zero-mean

Gaussian distribution. The SINRs at convergence and the
associated CPU time for different initial points are shown
in Fig. 5, where 50 Monte Carlo trials are conducted.
Table V and Table VI show the maximum, the average,
and the minimum value of the SINR at convergence and
the CPU time needed to reach convergence for the dif-
ferent PAPR-constrained waveforms (i.e., ρ = 1, 2, 3, L).
From Fig. 5 and the results in Table V and VI, we find
that the SINR of the designed algorithm is insensitive to
the initial points, but the convergence speed is affected
by the initial points. To show that the synthesized wave-
forms satisfy the spectral constraint, we randomly select
a set of the results and plot the ESDs of the designed
waveforms in Fig. 6. The results indicate that compared
with the initial waveforms, the waveforms devised via the
proposed algorithm achieve better spectral compatibility.
Interestingly, the spectrum of the waveforms initialized
by randomly generated waveforms is not as smooth as
that in Fig. 3.

TABLE V
SINR at convergence

SINR (dB) Maximum Average Minimum
Constant envelope 23.736 23.696 23.419

ρ = 2 23.777 23.750 23.569
ρ = 3 23.778 23.751 23.553

Energy constraint 23.782 23.755 23.706

In the following, we analyze the impact of spectral
notch depths on the achieved SINR. Fig. 7(a) shows the
achieved SINR with respect to different spectral notch
depths and compares with that of the waveforms devised
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Fig. 5. The impact of initial waveforms on SINR and CPU time.
Random waveforms are used as the initial point. et = 1, vt = 52.5
m/s. E1

I = E2
I = −35 dB, E3

I = −30 dB. (a) SINR. (b) CPU time.

TABLE VI
CPU time needed to reach convergence

CPU time (s) Maximum Average Minimum
Constant envelope 484.717 329.859 253.514

ρ = 2 384.215 288.868 229.881
ρ = 3 372.878 255.552 199.061

Energy constraint 298.581 227.069 151.206

via the algorithm in [30] 2, which is initialized by a
heuristic initialization via alternating optimization with
MM (HIVAM) or a heuristic initialization via alternating
optimization with CD (HIVAC) method. For simplicity
we assume that E1

I = E2
I = E3

I = EI . It can be seen that
as the notch depth goes deeper, the waveforms devised
via the proposed algorithm attain higher SINR than those
synthesized by the algorithm in [30]. This is because
that the algorithm in [30] needs to scale the energy of

2It should be noted that the algorithm in [30] focuses on designing
constant-envelope waveforms for a SISO radar system. Herein, we
extend this algorithm to deal with the MIMO case. However, it is
difficult for the algorithm in [30] to secure a feasible initial point to
satisfy both the equality constraint s†s = et and the multi-spectral
constraint. Therefore, when using the algorithm in [30] to design the
constant-envelope waveforms, we replace this equality constraint with
the inequality constraint s†s ≤ et.
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Fig. 6. ESDs of the designed waveforms. The blue and yellow lines
represent the ESDs of the initial random waveforms and the optimized

waveforms. et = 1. E1
I = E2

I = −35 dB, E3
I = −30 dB. (a)

Constant-envelope waveforms. (b) ρ = 2. (c) ρ = 3. (d)
Energy-constrained waveforms.

the waveforms to satisfy the multi-spectral constraint. To
see this, Fig. 7(b) draws the energy of the waveforms. It
can be observed that as the notch depth goes deeper, the
energy of the waveforms devised via the algorithm in [30]
drops to a low level (to satisfy the stringent multi-spectral
constraint), while the energy of the waveforms devised
via the proposed algorithm always reaches the highest
possible level. Since the SINR performance improves with
the waveform energy, the performance of our waveforms
is superior to that of the waveforms devised via the
algorithm in [30].

Fig. 8 compares the SINR of the waveforms devised
via the proposed algorithm versus the normalized target
Doppler frequencies with the algorithm in [30], where
the performance of the energy-constrained waveforms is
also included as a benchmark. From Fig. 8, we can see
that the waveforms devised via the proposed algorithm
achieve better detection performance than those devised
via the algorithm in [30], especially at the low Doppler
frequency area.

Next, we assess the robustness of the proposed algo-
rithm with respect to the Doppler uncertainty of the clutter
patches. Fig. 9 shows the SINR of the constant-envelope
waveform versus the normalized Doppler frequency un-
der different clutter uncertainty. Note that the Doppler
uncertainty degrades the target detection performance,
especially in the low Doppler frequency region (about
2 ∼ 3 dB loss in this area). However, the proposed
algorithm still achieves better radar detection performance
than the competing algorithms.

Finally, we extend the proposed ADMM algorithm to
deal with the multiple space-frequency constraints. Fig. 10
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analyzes the SINR of the proposed algorithm versus the
CPU time, where the spatial regions associated with the
three radiators are Θ1 = [−60◦,−25◦], Θ2 = [20◦, 60◦],
and Θ1 = [25◦, 70◦], respectively, E1

I = E2
I = E3

I = −35
dB. The inter-element spacing is set to be dt = λ/2 and
dr = 2λ. The elevation of the target of interest is set to be
φ = 10◦. The MIMO radar transmits M = 24 pulses in a
CPI. The results show the monotonically increasing SINR
of the waveforms synthesized by the proposed algorithm.
Fig. 11 shows the spectral distribution of the synthesized
waveforms over the spatial-frequency domain. We can
see that the synthesized waveforms can precisely control
the energy leaked on the spatial-frequency domains corre-
sponding to the radiators, further improving the spectral
coexistence of the MIMO radar system and the nearby
radiators.

V. Conclusions

We derived efficient algorithms to design low-
PAPR waveforms for airborne MIMO radar in spectrally
crowded environments. The purpose was to maximize the
output SINR by jointly optimizing the transmit wave-
forms and receive filters. To tackle the multi-spectrally
constrained waveform optimization problem, we devel-
oped two iterative algorithms. which were based on
cyclic optimization, Dinkelbach’s transform, MM, and
ADMM. Results showed that the waveforms devised via
the proposed algorithm not only improved the detection
performance of airborne MIMO radar, but also attained
better spectral compatibility.

Possible future work includes the design of filter banks
to account for unknown target Doppler (see, e.g., [49]
for a discussion on this topic), the investigation of the
correlation properties of the designed waveforms, and
the performance analysis of the waveforms on hardware.
It’s also crucial to develop computationally efficient algo-
rithms to design the waveforms in real time. Finally, the
theoretical analysis for the convergence of the proposed
ADMM algorithm will be left as a future topic.
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