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Abstract—Atmospheric powered descent guidance (APDG) can
be solved by successive convexification; however, its onboard appli-
cation is impeded by high computational cost. When aerodynamic
forces are ignored, powered descent guidance (PDG) can be con-
verted to a single convex problem. In contrast, APDG has to be
converted into a sequence of convex subproblems, each of which
is significantly more complicated. Consequently, the computation
increases sharply. A fast real-time interior point method was
presented to solve the correlated convex subproblems efficiently
onboard in the work. The main contributions are as follows: Firstly,
an algorithm was proposed to accelerate the solution of linear
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systems that cost most of the computation in each iterative step
by exploiting the specific problem structure. Secondly, a warm-
starting scheme was introduced to refine the initial value of a
subproblem with a rough approximate solution of the former
subproblem, which lessened the iterative steps required for each
subproblem. The method proposed reduced the run time by a
factor of 9 compared with the fastest publicly available solver tested
in Monte Carlo simulations to evaluate the efficiency of solvers.
Runtimes on the order of 0.6 s are achieved on a radiation-hardened
flight processor, which demonstrated the potential of the real-time
onboard application.

Index Terms—Aerodynamics, aircraft landing guidance, fast
solvers, optimization methods.

I. INTRODUCTION

POWERED descent guidance (PDG) generates thrust
magnitude and direction commands during the powered
descent phase in the landing mission of a vertical takeoff
and vertical landing (VTVL) reusable rocket. The ve-
hicle uses the engine for retropropulsion following the
commands, which realizes fuel-optimal, soft, vertical, and
pinpoint landing and satisfies certain constraints.

The PDG problem needs to be solved onboard in
real-time. The computational efficiency is critical because
the initial value has to be predicted for time offset to
compensate for the run time, and random or unpredictable
factors during time offset may lead to unacceptable errors
in the real trajectory. However, typically, the radiation-
hardened flight processors are significantly slower than
contemporary general processors, which requires algo-
rithms to be highly efficient. The challenge of the run
time is more serious in landing missions on the earth
or a planet with a thick atmosphere, where aerodynamic
forces have a significant non-linear effect on the trajectory
and further complicate the atmospheric powered descent
guidance (henceforth referred to as APDG) problem.

The powered descent architecture developed for the
Apollo Program exemplifies PDG strategies. Trajectories
are represented as polynomials parameterized in time, and
the coefficients are solved to meet specified terminal con-
ditions in Refs. [1], [2]. The method is adapted for Mars
landing missions [3]–[5]. Although polynomial guidance
is highly efficient in computation, which enables landing
missions with very limited computing power, it is not fuel-
optimal [6]. More complicated methods are applicable as
processor performance increases, which arouses interest
to generate fuel-optimal trajectories and includes more
realistic constraints. More complicated methods are appli-
cable as processor performance increases, which arouses
interest to generate fuel-optimal trajectories and includes
more realistic constraints.

Fuel-optimal PDG is the hotspot of academic research
recently [7]. Lossless convexification transforms fuel-
optimal PDG into a convex optimization problem, which
allows for the global optimal descent trajectory to be
computed with guaranteed convergence [8]–[10]. Solving
the problem by convex optimization further facilitates
enforcing convex path constraints such as minimum glide
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slope and maximum off-vertical thrust direction [8]–[12].
The guidance for fuel-optimal large diverts (G-FOLD)
algorithm [13], solving fix-time 3D fuel-optimal PDG
through lossless convexification, has been demonstrated
by test flights. The original problem is transformed into
a convex problem in G-FOLD, or more specifically, a
second-order cone-programming (SOCP) problem [14]. A
customized real-time interior point solver (Bsocp) [15] is
developed to solve SOCPs onboard.

Many promising approaches are developed for fuel-
optimal PDG besides lossless convexification. For ex-
ample, an indirect method [16]–[20] is used to obtain
the optimal descent trajectory and the optimal burn time
by solving a multivariate root-finding problem, which
can compute onboard efficiently. It also accommodates
different problem formulations and terminal constraints.
On the other hand, the indirect method is difficult to
enforce inequality constraints such as minimum glide
slope and thrust pointing direction and does not enjoy
theoretically guaranteed convergence. A stochastic pro-
cess method [21] is proposed to combine open-loop PDG
solutions with closed-loop control, which adjusts bounds
on the feed-forward optimal thrust magnitude command to
allow for sufficient feedback authority. Machine learning-
based approaches [22]–[25] are efficient in computation
and emerging in this area.

Nonlinear aerodynamic forces complicate dynamics
for reusable-rocket landing on earth or a planet with a
thick atmosphere, which makes the APDG problem more
difficult to solve. A successive convexification approach
[26] is proposed in the presence of aerodynamic drag and
new types of non-convex control constraints. The original
non-convex problem is transformed into a sequence of
SOCPs by lossless convexification and successive lin-
earization [27], [28]. The approach is extended to solve
more complex problems. Aerodynamic lift and drag are
considered in the successive solution procedure in a
2D problem [29]. Ref. [30] considers the variation of
atmospheric density with altitude. Altitude is used as an
independent variable instead of time [31] to deal with free
final time and incorporates altitude-dependent glide-slope
and thrust-direction constraints. Ref. [32] solves a gen-
eralized six-degree-of-freedom powered descent guidance
problem with aerodynamic lift and drag, which also solves
the engine ignition time and final time and tackles en-
forced constraints conditionally. Convex and non-convex
contributions are processed separately to maximize com-
putational efficiency [33]. The computation complexity
of these approaches scale poorly with the presence of
nonlinear aerodynamic forces. This results in unrealistic
computation requirements for many non-trivial landing
scenarios.

SOCPs are typically solved by interior point method
(IPM) solvers, e.g., SeDuMi [34], SDPT3 [35], MOSEK
[36], ECOS [37], and Coneprog [38]. Although no one
solver performs better than the others on every problem
[39], MOSEK and ECOS are competitive for fuel-optimal
PDG [15], [31]. A customized IPM solver (Bsocp) is

developed to improve fuel-optimal PDG without aerody-
namic forces [15]. Bsocp is more than twice faster than
ECOS in small problems, but ECOS is better for large
problems. The density of the equity-constraint coefficient
matrix (hereinafter called equity constraint density) also
significantly affects the computational efficiency besides
the number of solution variables. When aerodynamic
forces are introduced, the equity constraint density in-
creases. It leads to substantial growth of the density of
the coefficient matrix in linear systems to the solver for
each iterative step in the algorithm [40], [41] of Bsocp,
which severely deteriorates the computational efficiency.

Although ECOS performs better as the equity con-
straint density increases, a more efficient solver for
SOCPs is still needed urgently. On the other hand, the
sequence of SOCPs in successive convexification, each
of which is called a subproblem, is closely related. Con-
sequently, warm-starting, not supported in MOSEK and
ECOS, has the potential to gain significant acceleration by
exploiting the correlation between subproblems. However,
it is widely perceived that warm-starting is hard for IPMs
[42], [43] because IPMs typically converge slowly and
suffer from rapid variation of the gradients and Hessian
matrice of the barrier functions when the solutions are
close to the boundary of the inequity constraints and not
well-centered.

A fast interior point algorithm was proposed for corre-
lated SOCP subproblems in the successive convexification
of APDG in the work. The method, an improved version
of a classic IPM [40], [41], solves the homogeneous self-
dual embedding problem [44] with Nesterov-Todd scaling
[45] and Mehrotra’s predictor-corrector technique [46],
[47]. The main contributions are as follows: 1) Linear
systems were reformulated to exploit the sparse structure
of the specific problem, which significantly accelerated
the solution of linear systems occupying the major com-
putation in each iteration. 2) A warm-starting scheme
was introduced for acceleration using the correlation
between subproblems, which enabled each subproblem to
be run for only a few iterations. The solver developed
(called FSOCP) was applied to solve APDG using the
successive convexification approach [26], where nonlinear
aerodynamic drag is considered. The average runtime of
FSOCP was 10.5% of MOSEK and 3.4% of ECOS in
the Monte Carlo simulation to evaluate the efficiency of
solvers. Runtimes on the order of 0.6 s are achieved on
a radiation-hardened P2020NXE2KHC flight processor,
showing that the method is onboard applicable to solve
fuel-optimal APDG.

The work is organized as follows: Section II intro-
duces a classic IPM for SOCPs, which can be applied
to solve convex subproblems obtained in successive con-
vexification of APDG and serves as the framework of
the algorithm proposed. An approach is presented in
Section III to accelerate the solution of linear systems
by exploiting the sparse structure of the specific problem.
Section IV proposes the warm-starting scheme to utilize
the correlation between subproblems. Section V compares



numerical results of different SOCP solvers in APDG, and
Section VI summarizes the work.

II. A Brief Review of a Classic IPM for SOCPs

APDG is transformed into a sequence of SOCPs in
the successive convexification approach [26]. This section
introduces a classic interior point method to solve SOCPs,
which serves as the framework of the algorithm proposed.

A. SOCP Problem

SOCP is a convex optimization problem that mini-
mizes a linear function over the intersection of an affine
set and the Cartesian product of linear cones (LCs) and
second-order (Lorentz) cones (SOCs). SOCP includes
linear programming (LP), convex quadratic programming
(QP), and quadratically constrained convex quadratic pro-
gramming (QCQP) as special cases, but are less general
than semidefinite programming (SDP) [48]. It can be
applied in engineering and quantitative finance, e.g., filter
design, antenna-array weight design, truss design, and
portfolio optimization [49].

Linear cones and second-order cones are defined as
follows.

Definition 1: A linear cone is a convex set defined by

Kn
L = {v ∈ Rn : v ≥ 0}, n ≥ 1, (1)

where n is the number of dimensions; ≥ an elementwise
operator.

Definition 2: A second-order (Lorentz) cone is a
convex set defined by

Kn
S = {v ∈ Rn : v1 ≥ ∥v2:n∥}, n ≥ 2, (2)

where ∥ · · · ∥ is used instead of ∥ · · · ∥2 for simplicity.
The 1-dimensional SOC is defined as K1

S = K1
L. The

superscript of the dimension number is omitted if it is
not required to be specified in a linear cone or a SOC.

The standard form of SOCP is defined as
Problem 1: The standard form of SOCP problem

minimize
x

cTx,

s.t.
Ax = b,

x ∈ K,

K = Kl
L ×Kn1

S ×Kn2

S · · · × Knm

S .

(3)

A ∈ Rp×n is the equity-constraint coefficient matrix with
rank(A) = p ≤ n. x ∈ Rn is the solution variable, and
c ∈ Rn is the coefficient vector in the objective function.
Each element of x is constrained in a LC or a SOC.
The LC is assumed to be arranged at first in the solution
variable without loss of generality, followed by the SOCs.
Ll
L is viewed as l linear cones of dimension 1 hereinafter

for convience.
SOCP subproblems generated by the successive con-

vexification of APDG can be transformed to the standard
form by the canonicalization method described in Ref.
[15].

B. Classic IPM for SOCPs

The classic method introduced [40], [41] is a primal-
dual path-following IPM solving the primal and dual
problems of SOCP simultaneously. It has a rich verifica-
tion history and forms the basis of a real-time custom IPM
solver without aerodynamic forces that has been flight-
tested [15]. The key idea of the algorithm is tracking
the central path loosely to the optimal solution of a
bilinear homogeneous self-dual (HSD) problem [44]. The
HSD problem fully describes the properties of the primal
problem and the dual problem and can be initialized
trivially. The HSD model is optimized by a Newton
method, and Nesterov-Todd scaling [45] is applied to
make the problem numerically well-conditioned. Besides,
Mehrotra’s predictor-corrector method [46], [47] is used
to correct the search directions. We merely describe the
algorithm without deviation because of limited pages.

The primal problem (Problem 1) and its dual problem
are closely related, so modern IPMs use the information
from one to progress the other by solving them simulta-
neously [42]. The dual problem of SOCP is given by

Problem 2: The dual problem of SOCP

maximize
y

bTy

s.t.

ATy + s = c,

s ∈ K.

(4)

y ∈ Rp and s ∈ Rn are the solution variables of the dual
problem, and b ∈ Rp is the coefficient vector in the dual
objective function.

In the algorithm, the approach introduced by Nesterov
and Todd [45] is applied to scale the searching direc-
tions, which improves numerical stability and accelerates
convergence with low computational cost. The scaling
variables for the ith cone include positive scalar θ and
symmetric matrix G.

(
θ(i)
)2

≜

√√√√ (
s(i)
)T

Q(i)s(i)(
x(i)
)T

Q(i)x(i)
, (5)

where Q(i) ≜ 1 for LCs and Q(i) ≜ diag(1,−1, · · · ,−1)
for SOCs. G(i) is also 1 for LCs and

G(i) ≜ −Q(i) +
(e(i) + q(i))(e(i) + q(i))

T

1 +
(
e(i)
)T

q(i)
(6)

for SOCs, where

q(i) ≜
s(i)/θ(i) + θ(i)Q(i)x(i)√

2
(
x(i)T s(i) +

√
x(i)TQ(i)x(i)s(i)TQ(i)s(i)

) ,
(7)

and e(i) = (1, 0, · · · , 0)T . For convience, we also define
the unit vector as

e ≜

((
e(1)
)T

, · · · ,
(
e(l+m)

)T)T

. (8)
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Then, the cone is scaled as

x̄(i) ≜ θ(i)G(i)x(i), s̄(i) ≜ (θ(i)G(i))
−1

s(i). (9)

Solution variables x and s are scaled as

x̄ ≜ D−1x, s̄ ≜ Ds, (10)

where

D ≜ (ΘG)
−1

,

Θ ≜ blkdiag
(
θ(1), · · · , θ(l), θ(l+1)In1

, · · · , θ(l+m)Inm

)
,

G ≜ blkdiag
(
G(1), · · · ,G(l+m)

)
.

(11)
Most computation in the classic IPM is used to

solve linear systems, which obtains the Newton direc-
tion. Denote the current estimation of the solution by
z = (x,y, s, κ, τ), where κ, τ ∈ K are relax variables.
The linear system is

A∆x− b∆τ = w1

−AT∆y + cτ −∆s = w2

bT∆y − cT∆x−∆κ = w3

X̄D∆s+ S̄D−1∆x = w4

κ∆τ + τ∆κ = w5,

(12)

where
w1 ≜ − (1− ν) (Ax− bτ)

w2 ≜ − (1− ν)
(
−ATy + cτ − s

)
w3 ≜ − (1− ν)

(
bTy − cTx− κ

)
w4 ≜ µνe− X̄S̄e−Exs

w5 ≜ µν − κτ − Eκτ

X̄ ≜ mat (x̄) , S̄ ≜ mat (̄s)

µ ≜
xT s+ τκ

m+ l + 1
,

(13)

Exs ∈ Rn approximates second-order term ∆X̄∆S̄e.
In equation (13), mat(h),h ∈ K is the block arrow-

head matrix associated with the cone constraint K, which
characterizes the complementarity condition in SOCP. It
is defined as

mat(h) ≜ blkdiag
(

arrow
(
h(1)

)
, · · · , arrow

(
h(l+m)

))
,

arrow
(
h(i)
)
≜


h(i), i ∈ {1, · · · , l} , h

(i)
1

(
h
(i)
2:ni−l

)T
h
(i)
2:ni−l

h
(i)
1 Ini−l−1

 , i ∈ {l + 1, · · · , l +m} ,

(14)
where h ∈ K is a solution variable; h(i) a subvector of
h in the linear cone if i = 0 or the ith SOC if i ∈
{1, · · · ,m}; blkdiag(· · · ) a block diagonal matrix with
given diagonal blocks; I the identity matrix.

The classic IPM applies Mehrotra’s predictor-
corrector method, which increases the efficiency by using
a second-order correction of the search direction. The
method is summarized as Algorithm 1, where Maximum
Newton step size is the maximum step size that keeps the

Algorithm 1 Overview of the classic IPM for SOCP
Input: problem parameters A, b, c, and K, initial value
z0 = (x0,y0, s0, κ0, τ0), maximum iteration number
Niter, and coefficient δ0, δ1 ∈ (0, 1), (δ0 = 0.995, δ1 = 0.9
by default).
Output: Solution z = (x,y, s, κ, τ) and solver sta-
tus.

1: Initialize the current solution z = z0;
2: for i = 0, · · · , Niter − 1 do
3: Set Exs = 0, Eκτ = 0, ν = 0;

{Predictor}
4: Solve linear system (12) to obtain the direction

denoted as (∆xp,∆yp,∆sp,∆κp,∆τp);
5: Calculate Maximum Newton step size αp;
6: Set αp = min(αp, δ0);
7: Set Exs = mat(∆xp)mat(∆xp)e, Eκτ = ∆κp∆τp,

ν = min
(
δ1, (1− αp)

2
)
(1− αp);

{Corrector}
8: Solve linear system (12) to obtain the direction

denoted as (∆xc,∆yc,∆sc,∆κc,∆τc);
9: Calculate Maximum Newton step size αc;

10: Set αc = min(αc, δ0);
11: Set z = z+ αc (∆xc,∆yc,∆sc,∆κc,∆τc);
12: Exit and output the solution and solver status if

stop criteria are satisfied;
13: end for

updated solution in the cone constraint. Typically, cold-
starting is performed using

z0 = zc ≜ (xc,yc, sc, κc, τ c) = (e, 0, e, 1, 1) . (15)

See Ref. [40] for the details of the stop criteria.

III. Accelerating the Solution of Linear Systems

Solving linear system (12) consumes most of the com-
putation in the classic IPM, which requires acceleration.
The section presents an approach to reduce computation
by reformulating linear systems, which exploits the sparse
structure of the specific problem.

The linear system is transformed into two linear
systems with the coefficient matrix AD2AT in the orig-
inal algorithm [15], [40], [41], which symmetrizes the
coefficient matrix and reduces dimensions. A is sparse
when dynamics are relatively simple, and D is also
sparse when SOCs are relatively few. Therefore, the
method is highly efficient in applications such as PDG
without aerodynamic forces. However, although A and
D still have good sparsity structures in general when
they are complicated by introducing aerodynamic forces,
the number of nonzero elements (hereinafter called nnz)
of AD2AT increases sharply so that the computational
efficiency decreases seriously.

Our research is motivated by the following ideas: 1)
nnz(AD2AT ) is typically much larger than 2nnz(A) +
nnz(D2) when A and D are sparse and D is block
diagonal. 2) When overall nnz of the coefficient matrix is



constant, the sparsity increases with increased dimensions,
and the computation of LDL decomposition typically
decreases. Consequently, A, D2, and AT are used as
separate blocks in the coefficient matrix based on the two
points above with higher dimensions and typically smaller
nnz. Therefore, less computation is required compared to
the methods using AD2AT as coefficient matrice in most
cases.

Linear system (12) can be written in a matrix form as
A 0 0 0 −b
0 −AT −I 0 c

−cT bT 0 −1 0
S̄D−1 0 X̄D 0 0

0 0 0 τ κ



∆x
∆y
∆s
∆κ
∆τ


︸ ︷︷ ︸

u

=


w1

w2

w3

w4

w5

 ,

(16)
where u is the increment of the solution.

Some important properties of Nesterov-Todd scaling
are useful to simplify the linear system, which are intro-
duced by Theorem 1.1.5 in Ref. [41] as

s = Θ2G2x

G−2 = −Q+ 2 (Qq) (Qq)
T
.

(17)

Equation (17) is combined with (10), (11), and (13)
to obtain

X̄ = S̄. (18)

Then, linear system (16) is equivalent to
0 AT I 0 −c
A 0 0 0 −b
I 0 D2 0 0
0 0 0 1 κ/τ

−cT bT 0 −1 0


︸ ︷︷ ︸

B0


∆x
∆y
∆s
∆κ
∆τ


︸ ︷︷ ︸

u

=


−w2

w1

ŵ4

w5/τ
w3


︸ ︷︷ ︸

w0

,

(19)
where B0, u, and w0 are notations of the corresponding
terms, and

ŵ4 = D
(
X̄
)−1

w4. (20)

It is shown in [40] that any matrix-vector product involv-
ing the matrices D, D−1, mat(·), and mat(·)−1 can be
carried out in O(n) complexity, where n is the dimen-
sion of the matrix. Consequently, (20) can be computed
efficiently.

Since it is typically more convenient to handle a
symmetric coefficient matrix than a non-symmetric one,
matrix B0is transformed into

B0 =
0 AT I 0 0
A 0 0 0 0
I 0 D2 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

B̂

+


−c
−b
0

κ/τ
−1/2

0
0
0
0
1


︸ ︷︷ ︸

R1


0
0
0
0
1

−c
b
0
−1
−1/2


︸ ︷︷ ︸

R2

T

,

(21)
where B̂, R1, and R2 are notations of the corresponding
terms.

Then, linear system (19) is rewritten as(
B̂+R1R

T
2

)
u = w0. (22)

The Sherman-Morrison formula is used to solve linear
system (22), which obtains

u = B̂−1w0 − B̂−1R1

(
I+RT

2 B̂
−1R1

)−1

RT
2 B̂

−1w0.

(23)
Three linear systems need to be solved to compute
increment u by (23), and they are denoted as

B̂u0 = w0

B̂u1 = (R1)1

B̂u2 = (R1)2,

(24)

where vectors (R1)1 and (R1)2 are the first and second
columns of R1, respectively; u0, u1, and u2 are interme-
diate variables. The structures of B̂ and (R1)2 are used
to obtain

u2 = (0, 0, · · · , 0, 1)T . (25)

Then, u can be computed as a linear combination of u0,
u1, and u2 by the form

u = u0 − (u1,u2)
(
I+RT

2 (u1,u2)
)−1

RT
2 u0, (26)

where
(
I+RT

2 (u1,u2)
)−1

RT
2 u0 can be computed

cheaply because RT
2 (u1,u2) is a 2× 2 matrix.

Based on the above derivation, the linear system (12)
can be solved. The first two equations in linear system
(24), where the coefficient matrices are symmetric and
typically sparse, are solved firstly. Then the results are
combined with cheap operations.

Another way to utilize the sparse structure is the
sparsification of SOCs. The ith SOC Kni

S generates a
ni × ni dense-matrix block in matrix D in terms of
(6) and (11), which leads to heavy computation when
dimension ni is large in direct methods for linear systems.
High-dimension SOCs should be sparsified utilizing their
internal sparsity to lessen computation.

The matrix block in D corresponding to Kni

S is
denoted by D(i). By definitions (6) and (11), and the
property of Nesterov-Todd scalings (17), D(i) satisfies(

D(i)
)2

=
(
θ(i)G(i)

)−2

=
(
θ(i)
)−2

(
−Q(i) + 2

(
Q(i)q(i)

)(
Q(i)q(i)

)T)
(27)

Then, the linear system(
D(i)

)2
h1 = h2 (28)

for vectors h1,h2 ∈ Rni is equivalent to

h2 =
(
θ(i)
)−2

(
−Q(i)h1 + 2

(
p(i)
)(

p(i)
)T

h1

)
=
(
θ(i)
)−2 (

−Q(i)h1 +
√
2h3p

(i)
)
,

(29)

where
p(i) = Q(i)q(i)

h3 =
√
2
(
p(i)
)T

h1.
(30)

YUSHU CHEN ET AL.: FAST ALGORITHM FOR ATMOSPHERIC PDG 5



Equation (29) can be written in the matrix form

D̂(i)

(
h1

h3

)
=

(
h2

0

)
, (31)

where

D̂(i) ≜
(
θ(i)
)−2

(
−Q(i)

√
2p(i)

√
2
(
p(i)
)T −1

)
. (32)

Matrix D̂(i) is sparse since Q(i) is a diagonal matrix.
However, its dimension is ni + 1 instead of ni. The
additional row and column neutralize the advantage in
sparsity with low ni. We observed that

nnz
((

D(i)
)2)

= n2
i

nnz
(
D̂(i)

)
= 3ni + 1

nnz
((

D(i)
)2)

> nnz
(
D̂(i)

)
if ni ≥ 4.

(33)

Therefore, dense matrix block
(
D(i)

)2
in the D2 term of

B̂ is replaced with sparse-matrix block D̂(i) when ni ≥ 4.
Coefficient matrix B̂ is transformed into matrix B in the
form

B =

 0 AT ÎT

A 0 0

Î 0 D̂

 . (34)

In the definition,

D̂ ≜ blkdiag
(
D̃(1), · · · , D̃(l+m)

)
D̃(i) ≜

D̂(i), if ni ≥ 4(
D(i)

)2
, if ni < 4,

(35)

where a 1D linear cone is viewed as a 1D SOC, and
Î is identity matrix I with additional rows of zeros
corresponding to additional rows in D̂. The two lower
right diagonal ones in B̂ are removed since corresponding
equations can be solved immediately.

The the first two equations in linear system (24) are
transformed into

Bŵ1 = w̃1

Bŵ2 = w̃2,
(36)

where the right-hand sides w̃1 and w̃2 denotes w0 and
(R1)1 with additional elements of zeros corresponding to
the additional rows in D̂, respectively, and the last two
terms are removed.

Solving linear system (36) is the most time-consuming
in the IPM. Fortunately, the two equations share the same
coefficient matrix, so the decomposition can be reused to
reduce computation.

An efficient customized solver is developed to solve
indefinite linear systems (36) by LDL decomposition with
dynamic regularization and iterative refinement [37]. The
approximate minimum degree (AMD) method [50] is
applied to compute permutations, which reduces nnz after
decomposition. Symbolic decomposition is performed to
exploit the sparsity of given problem structures, which
are reusable when the problem structures are unchanged.

Algorithm 2 Method to accelerate the solution of linear
systems in the classic IPM for SOCP
Input: problem parameters A, b, c, and K, current
estimation of solution z = (x,y, s, κ, τ), additional terms
Exs, Eκτ , and ν.
Output: Vector u =
(∆x,∆y,∆s,∆κ,∆τ)T .

1: Calculate D̂ by (35) and record the additional row
numbers as Ia;

2: Set the coefficient matrix B by (34);
3: Calculate w0 by (19) and (R1)1 by (21);
4: Set w̃1, w̃2 by adding zeros in terms Ia of w0, (R1)1,

and remove the last 2 terms, respectively;
5: Solve linear system (36) to obtain ŵ1 and ŵ2;
6: Set u0 and u1 by removing terms Ia of ŵ1 and ŵ2,

respectively;
7: Append the last 2 terms of w0 and (R1)1 to u0 and

u1, respectively;
8: Calculate u by (26).

It is computed before real-time missions, and saved in
files consisting of sequences of operand positions, which
are loaded into memory before solving. The coefficient
matrix is decomposed in the solving process according to
the operand positions saved, so redundant operations to
process zero elements are avoided. The manner is as effi-
cient as the code generation approach [15], [51] because
the operations executed are roughly the same. However,
the codes do not change with problem structures, so no
recompiling is required to accommodate different problem
sizes.

The method presented to solve linear system (12) is
summarized as Algorithm 2. It accelerates the solution
of linear systems in lines 4 and 8 in Algorithm 1,
which consumes most of the computation in the IPM.
APDG experiments in Section V shows that the method
decreases coefficient matrix nnz significantly and compu-
tation sharply compared with the classic approach.

IV. Warm-starting for Correlated SOCP Subproblems

This section presents a warm-starting scheme that
significantly accelerates the solution of correlated SOCP
problems in scenarios such as successive convexification.
The scheme uses rough estimates of the previous solution
to generate warm-starting points, which enables each
subproblem to be processed for only a few iterations.

It is widely perceived that warm-starting of IPMs is
difficult [43]. If the solution to the previous problem is on
the boundary of the feasible region, it may be also close
to the boundary in the new problem. When the estimate
of the solution is close to the boundary, the gradients
and Hessians of the barrier functions change rapidly.
Therefore, IPMs generally behave poorly if the solution
is not well-centered, which produces either ill-conditioned
linear systems or noneffective searching directions [42].



Solutions are typically on the boundary in many real
problems, so cold-starting usually performs better than
using the previous solution directly for warm-starting.

Ref. [42] presents a warm-starting scheme by initial-
izing with a linear combination of the optimal solution
of a previous problem and the cold-starting point with
a predefined weight, which keeps the initial value away
from the boundary of the feasible region. The scheme
is extended by using an inexact solution to the previous
problem and a problem-dependent weight.

The previous SOCP is denoted by Po, and its pa-
rameters are denoted by Ao,bo, co. The current SOCP
is P and its parameters are A,b, c. The two problems
share the same cone constraint K. (xo,yo, so) is an
inexact solution of Po. Then, warm-starting point zw =
(xw,yw, sw, κw, τw) is calculated as

xw = λxo + (1− λ) e

yw = λyo

sw = λso + (1− λ) e

κw = (xo)
T
so/k

τw = 1,

(37)

where the weight

λ = max (1− 1/ (∥A∥∞ + ∥b∥∞) , λ0) . (38)

λ0 is a predefined parameter (0.999 by default).
The work studies the conditions under which the

warm-starting scheme improves the worst-case iteration
complexity and summarize the results in Ref. [52]. The
research serves as the theoretical basis of the scheme,
but it is too long to be included in this work. We prove
that an infeasible IPM for SOCPs compatible with the
warm-starting scheme, has O

(√
k log (1/ϵ)

)
worst-case

iteration complexity to obtain a solution or an infeasi-
bility certificate. Although the complexity is the same as
the best-known worst-case complexity [53] of IPMs for
SOCPs, it had only been proven for several feasible IPMs
that are inconvenient for warm-starting. When weight λ is
close to 1, the warm-starting scheme can reduce required
iterations compared with cold-starting.

V. Simulation Results

The section presents numerical results to demonstrate
the effectiveness and performance of the IPMs proposed
to solve APDG. Firstly, a sample scenario of powered
rocket landing is introduced to investigate the correctness
of the solution and the computational efficiency. Secondly,
Monte Carlo simulations are performed to evaluate the
performance of different IPM solvers. The experiments
are run on a workstation with an AMD Ryzen 7 5800H
CPU (3.2-4.4GHz).

A. Sample Scenario of Powered Rocket Landing

A sample scenario of powered rocket landing is pre-
sented. The following assumptions are made: 1) Force

acting on the vehicle are thrust, gravity, and aerodynamic
drag, and lift is negligible. 2) The vehicle is sufficiently
close to the surface, so surface curvature and changes in
gravity are ignored. 3) The bandwidth of vehicle’s attitude
control is sufficiently high to decouple the translational
and rotational dynamics [15]. Therefore, the vehicle is
modeled as a 3 degree-of-freedom (DOF) point-mass
subject under the last assumption and does not include
attitude dynamics. Inequity constraints include the max
velocity, fuel mass limits, glide-slope cone, commanded
thrust range, maximum throttling rate, and maximum tilt
angle, see [26] for details.

A Cartesian coordinate system is used, and its origin
is the landing point. X ,Y, and Z directions are east, north,
and up, respectively. Variables are defined as follows:
r ∈ R3 is the position; v ∈ R3 is the velocity; a ∈ R3 is
acceleration; T ∈ R3 is thrust; Da ∈ R3 is aerodynamic
drag; g ∈ R3 is gravity acceleration; m is mass; t is
time; tf is the final time; ρ is the air density; Isp is the
specified impulse of the rocket motor; Sref is the drag
reference area; CD is the coefficient of drag; ρ0 is the
air density at the landing position; mdry is dry mass;
vmax is the maximum speed; [Tmin, Tmax] is the range of
thrust magnitude;

[
Ṫmin, Ṫmax

]
is the range of the thrust

changing rate; θT,max is the maximum tilt angle; θgs is
the maximum gliding-slope cone angle; r0,v0 m0, and
tf,0 are the initial values of r,v,m, and tf .

The aerodynamic drag is expressed as

Da(t) = −CDSref

2
ρ0 exp (−crhory) ∥v(t)∥v(t), (39)

where the air density decays exponentially according to
the altitude ry, and crho is a constant.

The fuel consumption dynamic is given by

ṁ = −∥T(t)∥ / (Ispg) . (40)

The problem is transformed into a sequence of SOCPs
using the successive convexification approach [26] with
minor modifications as follows: 1) When upper bounds
of the thrust regions and acceleration error are introduced
as penalty terms in the objective function, the average
value on each time grid point is used instead of the
root square sum, which avoids the application of high-
dimension SOC constraints to save computation. 2) The
trajectory obtained in each successive convexification step
(hereinafter referred to as the SC step) is verified by nu-
merical simulations using the programmed thrust profile
on fine time grids. The algorithm terminates when the
simulated landing position and velocity errors are below
predefined error bounds. The parameters required are
defined as follows: ωm,f , ωη,∆t, ωη,T , and ωκ,a,R are the
coefficients in successive convexification, corresponding
to mass, change of time step, change of trust, and accel-
eration error, respectively. kf and kfine are the number
of time steps in the original and fine grids, respectively;
ϵr and ϵv are the error bounds of landing positions and
velocity errors, respectively.

The parameters of the experiment are listed in Table. I.
Figs. 1, 2, and 3 present the programmed trajectory, veloc-
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TABLE I: Parameters of the Powered Rocket Landing Experiment

Parameter Value Parameter Value Parameter Value Parameter Value

ρ0 1.225 kg/m3 crho 0.0001 Sref 10 m2 g [0, -9.8, 0]T m/s2

CD 0.5 mdry 30,000 kg Isp 300 s r0 [-1,000, 4,000, 500]T m
vmax 340 m/s m0 40,000 kg tf,0 35 s v0 [-50, -200, -100]T m/s
Tmin 300 kN Tmax 1,000 kN Ṫmin -100 kN/s Ṫmax 100 kN/s
θT,max 30◦ θgs 80◦ Niter 60 kf 30
ωm,f 1.0 kg−1 ωη,∆t 0.1 s−1 ωη,T 0.01 kN−1 ωκ,a,R 500,000 s2/m
kfine 300 ϵr 2 m ϵv 0.2 m/s

Fig. 1: 3D overview of the fuel-optimal trajectory. Lines
intersecting the trajectory represent scaled thrust vectors.

ity, trust, and mass obtained by our algorithm (FSOCP).
The results are obtained with a fast version of warm-
starting (called 1-step warm starting), in which each
SOCP problem is solved with only 1 iteration step. There
are a total of 40 steps in the example. The trajectory ends
at the origin point, with zero speed and a vertical thrust
vector, showing that vertical soft-landing is performed
(see Fig. 1). Thrust performs bang-coast-bang maneuver
(see Fig. 2 (d)). Fig. 2 (e) shows that the thrusts tilt angles
are bounded by θT,max = 30◦, although they seem to be
large in Fig. 1 due to small vertical scale. The maximum
tilt angle constraint is activated during the first stage of
descending.

Then, the computation time of FSOCP is compared
with the results of SDPT3 [35], MOSEK [36], ECOS [37],
and Coneprog [38]. The experiment runs 100 times, and
the average results are presented. FSOCP is implemented
in C, and other solvers are called in Matlab. Since Matlab
scripts are typically slower than C, we include all the
run time for our algorithm and consider only the time to
solve SOCPs for other solvers to make fair comparisons.
Then, the reported run time of MOSEK and ECOS are
unaffected by Matlab, because they solve SOCPs solely
with mex files, which are efficient libraries written in C,
C++, or Fortran. We also ignore the setup time for ECOS,
which is reusable according to its algorithm [37]. Part
of the work for SDPT3 and Coneprog still needs to be
completed with Matlab scripts, which adversely affects
their computational efficiency.

Table. II shows the run time. FSOCP (c) and (wn) de-
note FSOCP with cold-starting and n-step warm-starting,
respectively. FSOCP (c) is more than twice faster than
MOSEK in the experiment, which is the fastest among
the publicly available solvers. FSOCP (w1) further accel-
erates roughly by a factor of 3, showing that warm-starting
is effective in successive convexification. It requires more
SC steps, but consumes low run time, because only 1
iteration is performed in each SC step. MOSEK and
ECOS are also efficient in computation, and the former is
faster. SDPT3 and Coneprog are much slower than other
solvers. Table. II also shows the fuel cost and landing
error obtained by numerical simulations on fine grids.
Landing errors of different solvers do not vary a lot,
because the successive convexification terminates when
the errors meet the requirements. The fuels remaining
for FSOCP, SDPT3, MOSEK, Coneprog, and FBSOCP
are roughly the same, which exhibits fuel optimality, but
ECOS requires much more fuels.

The work develops FBSOCP, a variant of FSOCP
using the classic IPM [15], [40], [41], to verify the
effectiveness of our approach for accelerating the solution
of linear systems. Another example is added by ignoring
the aerodynamic forces and keeping other parameters
unchanged (hereinafter called NAPDG), and the problem
is converted to a single SOCP according to Ref. [15]. The
coefficient matrix sparsity of FSOCP and FBSOCP in the
two experiments are compared in Table. III. The run time
of FSOCP, MOSEK, ECOS, and FBSOCP in NAPDG is
2.55, 11.1, 19.3, and 4.86 ms, respectively. The classic
IPM is efficient in NAPDG, which matches the results
in Ref. [15]. FSOCP is faster than FBSOCP, because it
reduces the number of nonzero elements (nnz) of the
coefficient matrix, and increases the dimension, which
makes the problem sparser. The efficiency of FBSOCP
severely degrades since nnz surges 9.7 times in APDG.
FSOCP (c) is 16.9 times faster than FBSOCP because
it improves sparsity by reducing nnz and increasing the
dimension significantly.

Fig. 4 compares the running times per SOCP of
solvers for different problem sizes, and Table. IV presents
the corresponding configuration of SOCPs. FSOCP (cold-
starting), MOSEK, and ECOS scale well as time steps
increase. FSOCP is the fastest for all configurations.
MOSEK is more efficient than ECOS in small problems,



Fig. 2: Velocities and thrust: (a), (b), and (c) are the east, north, and up components of the velocities, respectively;
(d), (e), and (f) are the magnitude, tilt angle, and azimuth angle of the thrusts.

TABLE II: Comparison of Solvers in the Powered Rocket Landing Experiment

Solver Run time (ms) SC step Position error (m) Velocity error (m/s) Fuel remained (kg)

FSOCP (c) 27.0 3 0.672 0.068 3,123.9
FSOCP (w1) 10.0 40 0.684 0.069 3,123.2
SDPT3 3,177.1 4 0.685 0.071 3,114.8
MOSEK 68.2 4 0.677 0.069 3,114.9
ECOS 158.5 6 1.893 0.134 2,247.9
Coneprog 8,419.2 4 0.937 0.104 3,078.0
FBSOCP 456.9 3 0.664 0.068 3,123.7

TABLE III: Comparision of sparsity of FSOCP and the classic IPM (FBSOCP)

PDG without aerodynamic forces PDG with aerodynamic forces

Solver nnz Dimension Run time (ms) nnz Dimension Run time (ms)

FSOCP (c) 5,567 1,478 2.55 12,102 2,397 27.0
FBSOCP 8,455 437 4.86 82,201 533 456.9
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Fig. 3: Mass time history.

TABLE IV: Configuration of SOCPs for different problem
sizes

Time steps Solution variables LCs SOCs

30 870 281 155
50 1,430 461 255
100 2,830 911 505
200 5,630 1,811 1,005
300 8,430 2,711 1,505
400 11,230 3,611 2,005

but the latter scales better. Coneprog and SDPT3 are not
included in Fig. 4 because their run time is too long.

B. Monte Carlo Simulation

The performance of solvers is evaluated by Monte
Carlo simulations with random initial conditions obtained
by adding zero-mean Gaussian noise to the initial condi-
tion in Table 1. The standard deviation of noises added on
the initial position components, velocity components, and
fuel mass are 500 m, 50 m/s, and 300 kg, respectively.
Other parameters in the powered rocket landing experi-
ment are unchanged. The maximum number of SC steps

Fig. 4: Mean run time per SOCP for different problem
sizes.

TABLE V: Comparison of solvers in the Monte Carlo
simulation

Solver Success Run time SC Fuel remained
rate (ms) step (kg)

FSOCP (c) 84.2% 65.7 7.4 2,953.8
FSOCP (w1) 81.8% 8.2 32.3 2,984.7
FSOCP (w5) 82.5% 10.3 9.7 2,998.0
MOSEK 83.3% 78.0 4.84 2,985.6
ECOS 59.1% 240.9 9.68 2,416.8

is 120 for 1-step warm-starting of FSOCP, and 30 for
other cases. The algorithm terminates and returns with a
failure when the maximum SC step number is exceeded.

The experiment runs 10,000 times and the average
results are reported in Table. V. The success rate and
fuel remaining of FSOCP and MOSEK are roughly at
the same level, which is much larger than those of ECOS.
FSOCP (c) is faster and generates a higher success rate
compared with MOSEK. FSOCP (w1) has the highest
computational efficiency, and its run time is 10.5% of
MOSEK and 3.4% of ECOS. Although its success rate
is slightly lower than that of MOSEK, the latter has to
predict the initial value in real cases for a much larger
time offset (e.g., several seconds on a flight processor) in
the presence of random or unpredictable factors, which
may generate an unacceptable error. FSOCP (w5) is still
7 times faster than MOSEK, and the gap in the success
rate is much smaller.

The average run time of FSOCP (w1) is approximately
0.6 s on a P2020NXE2KHC radiation-hardened flight
processor (1 GHz), where APDG takes 1 of the 2 CPU
cores. The result shows the algorithm is suitable for
onboard implementation [54]. It is worth noting that
simply scaling the 8.2 ms runtime from Table. V by
4.4 GHz/ 1 GHz obtains 0.036 s, which underestimates
the runtimes by an order of magnitude. The result is
consistent with the findings in Ref. [15].

In contrast, the average run time of FBSOCP is
approximately 30 s on P2020NXE2KHC. An existing
fast solver may require several seconds onboard. Random
or unpredictable factors may cause unacceptable errors
during the long time offset, which may lead to the failure
of landing missions. However, new control instructions
are calculated based on the predicted initial state, making
it difficult to compensate for unpredictable errors gener-
ated in the running time. The methods proposed reduce
the time to update control instructions significantly. As a
result, it may reduce the effect of unpredictable errors and
ultimately enhance the success rate of landing missions.

VI. Conclusions

The work presented a fast interior-point method for
solving the SOCP subproblems in fuel optimal atomsperic
powered descent guidance (APDG). The innovation points
were twofold: 1) The solution of linear systems, which



costs most of the computation, was accelerated by an
algorithm to exploit the sparsity of the problem structure.
2) A warm-starting scheme was proposed to utilize the
correlation between subproblems, which enabled each
subproblem to be solved for a few iterations. The method
proposed was efficient for the correlated convex sub-
problems obtained in successive convexification. It was
9 times faster than MOSEK in Monte Carlo simulations
performed to evaluate the efficiency of solvers in APDG,
while the latter was the fastest publicly available solver
tested in the problem. It cost approximately 0.6 s on a
radiation-hardened flight processor, demonstrating that the
method is applicable to solve real-time onboard APDG.
Additionally, the approach may be useful to accelerate the
solution of correlated SOCPs in successive convexifica-
tion for various applications.
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