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 

Abstract— Inertial-based navigation refers to the navigation 
methods or systems that have inertial information or sensors as the 
core part and integrate a spectrum of other kinds of sensors for 
enhanced performance. Through a series of papers, the authors 
attempt to explore information blending of inertial-based 
navigation by a polynomial optimization method. The basic idea is 
to model rigid motions as finite-order polynomials and then 
attacks the involved navigation problems by optimally solving 
their coefficients, taking into considerations the constraints posed 
by inertial sensors and others. In the current paper, a continuous-
time attitude estimation approach is proposed, which transforms 
the attitude estimation into a constant parameter determination 
problem by the polynomial optimization. Specifically, the 
continuous attitude is first approximated by a Chebyshev 
polynomial, of which the unknown Chebyshev coefficients are 
determined by minimizing the weighted residuals of initial 
conditions, dynamics and measurements. We apply the derived 
estimator to the attitude estimation with the magnetic and inertial 
sensors. Simulation and field tests show that the estimator has 
much better stability and faster convergence than the traditional 
extended Kalman filter does, especially in the challenging large 
initial state error scenarios. 

 
Index Terms—Attitude Estimation, Chebyshev Polynomial, 

Inertial Sensor, Extended Kalman Filter, Polynomial 
Optimization 

 

I. INTRODUCTION 

ttitude estimation of a rigid body with low-cost MEMS 
inertial measurement unit (MIMU) sensors has received 

numerous applications, including but not limited to robotics [1], 
aerospace [2], unmanned aerial vehicle [3] and human motion 
tracking [4, 5]. The MIMU usually integrates the three-axis 
gyroscope, accelerometer and magnetometer into a module or 
chip. The magnetometer measures the local magnetic field of 
the Earth, while the gyroscope and accelerometer measure the 
angular velocity and specific force of the rigid body with 
respect to the inertial frame, respectively [6]. 

The inertial and magnetic attitude estimation has witnessed 
about forty years’ endeavors in trying to optimally fuse 
gyroscope measurements with the valid accelerometer and 
magnetometer measurements [7, 8]. Generally, the fusion 
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algorithms can be classified into three categories: 
complementary filter-based methods [9-12], Kalman filter-
based methods [7, 13-16] and optimization-based methods [17-
19]. 

The complementary filter [20] utilizes the accelerometer and 
magnetometer vector measurements to determine the attitude 
and then combines with the time integration of gyroscope by a 
proper gain. The complementary filter is a straightforward 
frequency domain approach with low computation burden. 
Though quite popular in low cost platforms [10], it does not 
consider the statistical characteristics of measurements. 

As for the Kalman filter-based attitude estimation, the most 
celebrated tool is the multiplicative extended Kalman filter 
(EKF) [21], which approximates the attitude nonlinearity by the 
first-order linearization. However, the local linearization at 
inaccurate estimate will degrade the filter performance, 
especially in the case of the large initial state error. The 
invariant extended Kalman filter [22, 23] utilizes the Lie group 
affine property and derives the error state model independent of 
the attitude to improve the stability and robustness of the 
estimation. To address the linearization issue, the unscented 
Kalman filter (UKF) is also applied for attitude estimation [24], 
which employs a set of sigma points to approximate the 
nonlinear probability distribution and propagates the statistical 
information of posteriori density. The Monte Carlo-based 
particle filter is also used for attitude estimation [25] by 
drawing a large number of random samples to approximate and 
propagate the probability distribution, which leads to a great 
computation burden. 

There are several early attempts to solve the attitude 
estimation by the optimization-based method. The works [17, 
18, 26] determine the attitude by first optimizing the objective 
function of the magnetometer and accelerometer measurements 
and then incorporating gyroscope measurements through a 
fusion algorithm. Instead of numerically integrating the 
gyroscope measurements, a more accurate and direct method is 
to optimize all the available inertial and magnetic 
measurements simultaneously [19, 27]. The paper [19] 
proposes the moving-horizon estimation method, which utilizes 
all measurements in a time window to solve the spacecraft 
attitude estimation. However, approximating the attitude 
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derivative by the first-order difference therein is not accurate 
enough, especially for the high dynamic applications. A 
continuous-time batch attitude estimation using B-splines curve 
to approximate the attitude is proposed in [27], which is not 
friendly to real time applications. 

Inspired by the collocation method, we quite recently come 
up with a continuous-time state estimation method by the 
Chebyshev polynomial optimization for general problems [28]. 
Through a series of papers, we attempt to explore information 
blending of inertial-based navigation by the polynomial 
optimization method. In [29], we have introduced the 
Chebyshev collocation method [30, 31] into the strapdown 
inertial navigation computation. This paper will further exploit 
the idea of the collocation method to derive polynomial 
optimization-based attitude estimators, which transforms the 
attitude estimation into a problem of Chebyshev coefficient 
optimization in a sliding window. Specifically, the attitude 
profile in the current window is represented by the Chebyshev 
polynomial and the unknown coefficients are then determined 
by minimizing the weighted residuals of initial conditions, 
dynamics and measurements. We apply the derived estimators 
to the attitude and bias estimation with the magnetic and inertial 
sensors and find that they have much better stability and faster 
convergence than the traditional EKF does, especially in the 
large initial state error scenarios. 

The rest of this paper is organized as follows. The inertial-
magnetic sensor measurement models are first introduced in 
Section II. Section III derives the polynomial optimization-
based inertial-magnetic attitude estimation in terms of the 
quaternion and Rodrigues vector. A linear initial algorithm is 
also proposed to provide good initial values for the 
optimization-based methods. The simulations and field tests are 
conducted in Section IV. Finally, the conclusion is drawn in 
Section V.  

II. INERTIAL SENSOR MEASUREMENT MODEL 

The gyroscope measures the angular velocity of the body 
with respect to the inertial axes as 

 b
g ib g g  y ω b n   (1) 

where the subscripts i and b denote the inertial frame (i-frame) 

and body frame (b-frame), respectively. gy  denotes the 

gyroscope measurement and 
b
ibω  denotes the true angular 

velocity in b-frame.  ~ 0,g gNn R denotes the gyroscope 

measurement white noise, and gb  denotes the gyroscope bias 

that is modeled as  

 g bgb n   (2) 

where bgn  is Gaussian white noise. When the non-gravitational 

acceleration such as motion disturbance is small, When the non-
gravitational acceleration such as motion disturbance is small, 
the accelerometer measurement roughly reflects the opposite 
direction of local gravity in the b-frame, i.e., 

 
*b n b

a n n a a   y q γ q b n    (3) 

where the subscript n represents the navigation frame (n-frame). 
Without the loss of generality, the navigation frame in this 

paper takes the definition of North-Up-East.  ~ 0,a aNn R  

denotes the measurement Gaussian noise and 
ab denotes the 

measurement noise that is modeled as 

 a bab n   (4) 

where ban  is a Gaussian white noise.  = 0 0
Tn gγ  

denotes the gravity vector in n-frame and g  denotes the 

magnitude of the local gravity. 
Tb T

n s  q η  encodes the unit 

attitude quaternion of b-frame relative to n-frame, where s is 

the scale part and η  is the vector part of 
b
nq . The operator   

denotes the quaternion multiplication, defined as 

    2 1

1 2 1 2

2 1

s s    
    

   
q q q q

η η
   (5) 

The two quaternion multiplication matrices,  


q  and  


q , are 

respectively defined by 

    
3 3

,   
T Ts s

s s

     
   

      

η η
q q

η I η η I η
    (6) 

where nI  denotes an n n  identity matrix. The skew 

symmetric matrix    is defined that the cross product 

 x y x y    is satisfied for arbitrary two vectors. The 

conjugate of the unit quaternion 
*b

nq  in (3) is defined as 

* Tb
n

T

s   ηq . 

The magnetometer triad measures the total magnetic flux 
density in b-frame, given as 

 
*b n b

m n n m y q m q n    (7) 

where my  and  ~ 0,m mNn R  denote the normalized 

magnetometer triad measurements (unit norm) and its noise, 

respectively. nm  is the normalized magnetic field in n-frame, 
expressed as  

 

cos cos

sin

sin cos

m m

n
m

m m

 



 

 
   
  

m   (8) 

where m  and m  are, respectively, the magnetic declination 

and inclination [6]. It is noted that other sensor parameters, such 
as the scale factor and misalignment, are assumed having been 
well calibrated [32, 33]. In this paper, the accelerometer and 
magnetometer measurements are only used when the external 
acceleration and magnetic disturbance retain small. Specifically, 
the norm-based detectors are applied to select the feasible 
measurements [16] 

 a ag  y   (9) 

 1 m m y   (10) 

where the first inequality represents the accelerometer detector 
and the second inequality represents the magnetometer detector, 
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  denotes the norm of a vector, and a  and m  denote the 

given thresholds of the two detectors.  
Considering the Earth rotation rate, the dynamics of the 

attitude quaternion satisfies [6] 

  2 2b b b b b n b
n n nb n ib in n  q q ωqω qω      (11) 

where 
b
nbω  denotes the body angular velocity vector with 

respect to n-frame expressed in b-frame. 
n n
in ieω ω  for the low-

speed vehicles and  cos sin 0
Tn

ie L L  ω  denotes the 

Earth’s angular velocity vector expressed in n-frame, among 

which  is the norm of the Earth rotation and L  is the latitude 
of the location. Substituting (1) into (11) and multiplying the 

conjugate of 
b
nq  on both sides, the angular velocity 

measurements can be represented as a function of quaternion 
and gyroscope bias, as 

 * *2 b b b n b
g n n n ie n g g   ωy q q q q b n     (12) 

Another popular parameter to present the attitude is the 
Rodrigues vector. It has only three components and no inherent 
constraint, but is singular for a 180   rotation [21]. Therefore, 

the Rodrigues vector is usually used to parameterize the attitude 
update in a short time interval. In this regard, the attitude in the 
time interval can be written as 

    ,0
b b
n n q q q   (13) 

where ,0
b
nq  denotes the initial attitude quaternion at the start of 

the current time window and q  denotes the quaternion 

update, which is related with the Rodrigues vector update as 

 
2

2
=

4+

TT  




g
q

g
  (14) 

reversely,  

 
2

s


 


g

η
  (15) 

where s  is the scale part and  η  is the vector part of q . 

Substituting (13) and (14) into (12), the angular velocity 
measurements can also be represented by the Rodrigues vector 
update 

  2 ,0

4 2

4

b n
g n ie g g

 


  
    



g g g
y C g C ω b n

g

 
  (16) 

where ,0
b
nC  is the initial rotation matrix corresponding to the 

initial attitude quaternion ,0
b
nq  and   C g  means a function 

that transforms the Rodrigues vector to the corresponding 
rotation matrix. 

III. INERTIAL-MAGNETIC ATTITUDE ESTIMATION BY 

CHEBYSHEV POLYNOMIAL OPTIMIZATION (ATTESTPO) 

A. Formulation of Attitude Estimation 

Without the loss of the generality, consider the attitude 

estimation on the time interval  0 Mt t , in which 1M   

inertial-magnetic samples are available at ,  0,kt k M   . 

Because the gyroscope and accelerometer biases are slowly 
changing, it is reasonable to treat them as constants in a short 
time window. Therefore, the state to be estimated in the time 
interval includes the continuous attitude and the constant 
gyroscope and accelerometer biases, which are denoted as 

      , ,   
TTb T T

n a gt t 
 

x q b b . Assume the initial state is given as 

0 0
  0 ,0 , ,   

T
b T T T
n a g

   x q b b , where ,0
b
nq , 

0ab and 
0gb denote the 

quaternion, accerlerometer and gyroscope biases at the initial 
time 0t , respectively. 

In the least squares sense [34], an optimal continuous-
discrete attitude estimation is to minimize the measurement 

residuals with respect to  tx  

 
 

   
0

min    s.t 1
t

J J J t  x v z
x

q   (17) 

where the objective functions, 
0

Jx , Jv  and J z , respectively 

denote the prior, dynamics and measurement terms. They are 
explicitly given as follows 

    

0 0 0

0

1 1

M

k k k k

T

t
T

t

p s
T T
a a m m

k k

J

J d

J

  

 





 



 

x x x

v v v

z

e e

e e

e e e e

  (18) 

where p  and s  respectively denote the number of valid 

accelerometer and magnetometer measurements in the current 
time window that are selected by the detectors in (9) and (10). 

With the measurement models (3), (7) and (12), the weighted 

residuals 
0xe , ve , ae  and me  are given as 

 
 
 
 

0 0 0 00

* *

*

*

    

2

T T T T T T
a a g g

T b b b n b
g g n n n ie n g

T b n b
a a a n n a

T b n b
m m m n n

    

   

  

 

x x

v

e W ψ b b b b

e W y q q q q b

e W y q g q b

e

ω

W y q m q

  

 

 

  (19) 

which are related to the prior, attitude dynamics and valid 
accelerometer and magnetometer measurements, respectively, 
through their corresponding weight matrices. Specifically, 
regarding the residual of initial state, 0ψ  is the initial three-

dimensional attitude error that is roughly related to the attitude 
quaternion as [6] 

 *

2 4
ˆ2 b b

n n    ψ q q
：

  (20) 

where 
b
nq  and ˆb

nq  denote the true and error-contaminated 

quaternions, respectively. The operator  
2:4
  extracts the 

second to the fourth rows of a matrix. The weight matrices are 
obtained from the Cholesky factorization of the inverse 

covariance matrix, namely, 
0 0 0

1 T x x xP W W , 1 T
g g g
 R W W , 

1 T
a a a
 R W W ,

1 T
m m m
 R W W . It should be noted that the 

covariance matrix of the initial state is defined as


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0 0

1
1

,0 ,0, ,
a gb bdiag


  

 x ψP P P P , where 
0ψP , ,0abP and ,0gbP  are 

the initial covariances of the attitude, accelerometer and 
gyroscope biases, respectively. 

B. Attitude Estimation by Chebyshev Polynomial Optimization 

To solve the infinite-dimension optimization problem in (17), 
the Chebyshev collocation method is introduced to represent 
the attitude by a finite-order Chebyshev polynomial and 
transform the continuous-time attitude estimation into a 
constant parameter optimization problem.  

The Chebyshev polynomial of the first kind is defined over 
the internal [ 1 1]  by the recurrence relation as [30] 

 
   

     
0 1

1 1

1,  ,  

2   for 1i i i

F F

F F F i

  

    

 

  
  (21) 

where  iF   is the thi -degree Chebyshev polynomial. In order 

to apply the Chebyshev polynomial, the optimization in (17) on 

 0   Mt t t  needs to be mapped into [ 1 1]    by the affine 

transformation as follows 

 0

0 0

2
  M

M M

t t
t

t t t t



 

 
  (22) 

The attitude quaternion in the time interval is then 

approximated by a Chebyshev polynomial up to order qN  as 

      
0

qN

b
n i i

i

F  


q d DF   (23) 

where id  denote the -degree Chebyshev coefficient. The 

matrices   0 1( ) ( ) ( )
q

T

NF F F    
 F    and 

0 , ,
qN

 
 D d d   are defined for compact denotation. 

Then, the derivative of the attitude quaternion is given by 

      
0

qN

b
n i i

i

F  


q d DF     (24) 

where   0 1( ) ( ) ( )
q

T

NF F F    
 F      and iF  is the time 

derivative of  that is directly obtained by taking the 

derivative of (21). That is to say 

 
   

       
0 1

1 1

0,  1,  

2 2   for 1i i i i

F F

F F F F i

 

     

 

   

 

  
  (25) 

The reason that the Chebyshev polynomial is selected as the 
basis function is for its high accuracy and efficacy in functional 
approximation. As a matter of fact, the Chebyshev polynomial 
is very close to the best polynomial approximation in the  -
norm [30]. The integral term J v

 in (18) can be numerically 

solved by the Clenshaw-Curtis quadrature formula as [30] 

    
0

N
T

i i i
i

J w  


v v ve e   (26) 

where i  denotes the Chebyshev points 

  cos ,    0,1, ,i i N i N       (27) 

and iw  denotes the weight that is determined by the integrals 

of the Lagrange polynomials [35] and N+1 is the number of 
Chebyshev points. We see that (26) requires the angular 
velocity at the Chebyshev points. In this paper, it is achieved by 
the way of the extended Floater and Hormann (EFH) 
interpolation method [36], which reconstructs the angular 
velocity from the equally-spaced time sampled angular velocity 
measurements [37]. Readers are referred to [29] for the details 
of the angular velocity reconstruction. 

Following the commonly used strategy to handle the 
constraints in the collocation-based optimal control [38], the 
continuous unit quaternion constraint in (17) is discretized at 
the Chebyshev points as 

   1   0,1, ,b
n k k N  q    (28) 

Substituting the Chebyshev approximations (23), (24), (26) 
and the discretized constraints (28) into (17), we can 
reformulate the estimation task for the time window of interest 
as  

  
 

 

0, ,
min   

s.t. 1   0,1, ,

a g

b
n k

J J J

k N

 

 

x v z
D b b

q 

  (29) 

where the estimation parameters include the Chebyshev 
coefficient and the accelerometer/gyroscope biases. Equation 
(29) is a constrained nonlinear squares problem, which can be 
transformed to an unconstrained nonlinear least squares by the 
augmented Lagrangian method and then solved by the 
Levenberg-Marquardt algorithm [39]. Once the coefficients are 
determined, the continuous attitude quaternion as a function of 
time will be finally acquired by (23). 

It should be noted that (29) is a constrained optimization that 
is generally more time-consuming than an unconstrained 
optimization. On the other hand, the above optimization 
problem can be reformulated as an unconstrained one using the 
Rodrigues vector. To avoid its singularity at a 180   rotation, 

however, we consider the Rodrigues vector update in the short-
time window. Specifically, the Rodrigues vector update is 

approximated by a Chebyshev polynomial up to order gN  as 

  
0

( ) ( )
gN

i i
i

F  


 g h HF   (30) 

where ih  denote the -degree Chebyshev coefficient, and

0, ,
gN

 
 H h h   denotes the combined matrix of Chebyshev 

coefficients. Then, the derivative of the attitude quaternion is 
given by 

  
0

( ) ( )
gN

i i
i

F  


 g h HF     (31) 

By analogy with the quaternion estimation, the Rodrigues 
vector update estimation can be formulated as 

 
 

 
0, ,

min   
a g

J J J x v z
H b b

  (32) 

where the estimation parameters include the Chebyshev 
coefficient and the accelerometer/gyroscope biases. The 
weighted residuals of initial state and 
accelerometer/magnetometer measurements are obtained by 

thi

iF

thi
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substituting (13) and (14) into (19), and the weighted residual 
of attitude dynamics is obtained from (16), given as 

 2 ,0

4 2

4

T b n
g g n ie g

 


   
     
  

v

g g g
e W y C g C ω b

g

 
  (33) 

With the optimized Chebyshev coefficients, the attitude 
quaternion in the window is readily obtained by substituting (30) 
into (13) and (14).  

In summary, the approximations involved in the proposed 
batch estimators include the attitude profile approximation by 
the Chebyshev polynomial in (23) or (30), the Clenshaw-Curtis 
quadrature in (26) and the angular velocity interpolant by the 
EFH strategy. With the increased order of Chebyshev 
polynomial, the errors incurred by Chebyshev approximation 
and Clenshaw-Curtis quadrature will decay towards zero [30]. 
Additionally, the EFH interpolant is also likely very close to 
optimality for time-equispaced samples [40]. In this regard, the 
proposed attitude estimator by polynomial optimization 
(AttEstPO) is nearly optimal in the least squares sense. 

To meet the requirement of real-time applications, the above 
optimizations are expected to be solved recursively on 
consecutive short-time windows. The estimation result at the 
end of the current window can serve as the prior for the next 
window, but the required covariance estimation is not directly 
available. In view of the strategy in the moving horizon 
estimation [41], the multiplicative EKF, with the linearized 
dynamics and measurements at the AttEstPO estimate, can be 
resorted to compute the state covariance. The multiplicative 
EKF, also known as the error-state EKF, estimates the error 
state (instead of the original state) to avoid the over-
parameterization issue of the attitude [6]. The error state is 
defined as the estimate subtracting the truth, i.e., ˆ  x x x , 

except that the definition of attitude error follows (20). The 
linearized error-state dynamics is expressed as  

   x B x Gw   (34) 

where the error state is a 9-dimensional vector 
T

a g     x ψ b b , the dynamic noise is 

T

g ba bg
  w n n n  and the matrices are 

 

3 3

3 3
3 3 3

3 3 3
3 3 3

   

n
bn

b

 
   

    
   

 

C 0 0
0 0 C

B G 0 I 0
0 0 0

0 0 I

  (35) 

where n0  denotes an n n  zero matrix. The multiplicative 

EKF covariance prediction from 1kt   to kt  is given as 

    9 1 9

T T
k k k k k k kT

   P I B P I B G Q G   (36) 

where the covariance update interval is set to 1k kT t t  . 

When the measurement at time kt  comes, the covariance is 

updated by 

  
1T T

k k k k k k k k k k

     P P P Η H P H R H P   (37) 

where kR  and kH  denote the measurement noise covariance 

and linearized measurement matrices, respectively. For the 

accelerometer and magnetometer, the matrix kH  is 

respectively written as 

 .
, 3 3

, 3 3

b n
k m n

b n
k a n

   

    

H C m 0 0

H C γ I 0
 (38) 

Note that the matrices kG , kH  and kB  in (36) and (37) are 

calculated using the AttEstPO estimate. In contrast, the 
covariance propagation of EKF is performed at the current state 
estimate, which is usually inferior to that by AttEstPO because 
the latter is a kind of local smoothing using all information 
during the current time window and EKF only uses information 
up to the current time. Taken as an example, Fig. 1 illustrates 
the state and covariance propagation between two adjacent 
windows, where the state estimate and its covariance at the end 
time of window k serve as the initial condition for window k +1.  

From the theoretical perspective, the proposed AttEstPO 
algorithm only makes a Gaussian assumption of the prior and 
does not introduce any approximations of nonlinear dynamics 
and measurements in the time interval of interest. This feature 
is a significant advantage over the well-known linearization-
based EKF that approximates the nonlinearity by successive 
Taylor expansion at current estimate. In this regard, the 
AttEstPO is promising to obtain a better estimation at the price 
of time delay, as shown in Section IV. 

C. Chebyshev Coefficient Initialization 

A fine initialization of Chebyshev coefficients is required for 
the above nonlinear optimization. In this subsection, we present 
a linear algorithm to acquire the initial attitude Chebyshev 
coefficients by assuming approximately known biases and 

correct initial attitude. Multiplying 
b
nq  on both sides of the 

attitude dynamics (12) and the accelerometer/magnetometer 
measurement in (3) and (7), ignoring the measurement noises 
and using the quaternion multiplication property in (5), we have 

 

   

   

     

4 1

4 1

4 1

 

2

b
a n

b
m n

b b
g n n

t t

t t

t t t











 

ρ q 0

ρ q 0

ρ q q 0

  (39) 

where the matrices are readily defined as 

 

    

   

      

 n
a a a

n
m m

n
g g g ie

t t

t t

t t t

 



 

       

     

       

ρ y b γ

ρ

ω

y m

ρ y b







  (40) 

 
Fig. 1. Estimated state and its covariance propagation (the state and covariance 
at the end of Window k are served as the initial condition for Window k+1). 
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Substituting the quaternion Chebyshev polynomial (23) into 
(39) yields 

 

   

   

   

4 1

4 1

4 1

a

m

g

t vec

t vec

t vec













a D 0

a D 0

a D 0

  (41) 

where  vec D  is formed by stacking the columns of D  and the 

involved matrices are defined as 

 

     

     

        42

T
a a

T
m m

T T
g g

t t t

t t t

t t t t

  

  

    

a F ρ

a F ρ

a F ρ F I







  (42) 

where   denotes the Kronecker product. Note that the identity 

property      1 2 3 3 1 2
Tvec vec A A A A A A  has been used 

in deriving (41), where 1A , 2A , 3A  are matrices of appropriate 

dimensions. Using the quaternion multiplication property and 
the definition of the attitude error in (20), a correct initial 
attitude means 

    * *
0 0 ,0 ,0 0 3 12:4

2:4

2 2b b b b
n n n n  





 
          

 
ψ q q q q 0  

 (43) 

Approximating 
b
nq  by Chebyshev polynomial, (43) is 

written as 

   3 1initvec A D 0   (44) 

where   *
0 ,0

2:4

2 T b
init n

      
A F q . Assume the initial 

biases are roughly known, the coefficient D  can be obtained 
by using all available measurements and the initial attitude in 
the current time window as 

    min    s.t.  =1vec vec
D

A D B D   (45) 

where the constraint term denotes the unit norm of the initial 
quaternion, which helps ensure a non-zero solution. The 

matrices A  and B  are known matrices as follows 

 
 0 4

TT T T T
init g a m

T 

   

 

A A A A A

B F I
  (46) 

TABLE I 
 INERTIAL-MAGNETIC ATTITUDE ESTIMATION BY POLYNOMIAL OPTIMIZATION  

 Qua-AttEstPO Rod-AttEstPO 

Input: 
Chebyshev order qN  or gN  , initial state 

0x  with associated covariance 0P , inertial and magnetic measurements 

     , ,    0,1, ,g i a i m it t t i My y y   and the measurement noise covariances , ,g a mR R R   

Step 1: 
Interpolate angular velocity measurement by EFH and obtain angular velocity at Chebyshev points 

     0,1, ,g i i N y    

Step 2: 
Compute Chebyshev polynomial coefficients of quaternion 

b
nq  by homogenous least squares (Eq. (45)) 

   min    s.t  =1vec vec
D

A D B D  

Step 3: 

Obtain quaternion Chebyshev coefficients and sensor biases 
by solving constrained nonlinear least squares (Eq. (29)) 

 
 

 

0, ,
min    

 s.t. 1   0,1, ,

a g

b
n k

J J J

k N

 

 

x v z
D b b

q 
 

Acquire initial coefficients of the Rodrigues vector g  using 

quaternion Chebyshev coefficients (Eq. (47)) 

   1

0

0

1/ 2 1 22
cos  cos

Ng

g g g

P

i
i

kN N N

k i k

P P P

 




   
    

  
  

h g q  

Compute Rodrigues vector Chebyshev polynomial coefficients 
and sensor biases by nonlinear least squares (Eq. (32)) 

 
 

0, ,
min     

a g

J J J x v z
H b b

 

Step 4: 

Obtain attitude quaternion (Eq. (23)) 

   
0

   
qN

b
n i i

i

F 


 q d  

Obtain Rodrigues vector update and transform it to quaternion 
(Eqs. (30), (13) and (14)) 

0

( ) ( )
gN

i i
i

F 


  g h      0  b b
n n  qq q g，   

Step 5: 
Compute estimate covariance by multiplicative EKF using AttEstPO estimated attitude (Eqs. (36)-(37)) 

   9 1 9

T T
k k k k k k k T

   P I B P I B G Q G   
1T T

k k k k k k k k k k

     P P P Η H P H R H P  
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where    0

TT T
g g g N   A a a   is the matrix formed by the 

fitted angular velocity at Chebyshev points, 

   
T

T T
a a j a kt t 

 A a a  and    
T

T T
m m l m pt t 

 A a a   

respectively denote the matrices from accelerometer and 

magnetometer measurements and the timestamp in ma  and aa  

denotes all the feasible measurement times that are detected by 
(9) and (10). The minimization in (45) is a homogenous least 
squares problem of the quaternion Chebyshev coefficients, 
which can be solved by the generalized singular value 
decomposition [42]. 

As for the attitude estimation problem in the form of the 
Rodrigues vector in (32), the initial coefficients can be readily 
obtained by transforming the obtained quaternion coefficients 
in (45) to the corresponding Rodrigues vector update 
coefficients as 

   1

0

0

1 / 2 1 22
cos  cos

Ng

g g g

P

i
i

kN N N

k i k

P P P

 




   
    

  
  

h g q  

 (47) 

where 0i  is the Kronecker delta function, yielding 1 for 1i   

and zero otherwise. The exact coefficients could be obtained 

only if the number of summation terms, 
gNP , approaches 

infinity [35].    g q transforms the quaternion update to 

the Rodrigues vector update as shown in (15), among which 

 q is obtained from (13) using the resultant  b
n q  by (45).  

Hereafter, we name the proposed attitude quaternion and 
Rodrigues vector estimation by polynomial optimization as 
Qua-AttEstPO and Rod-AttEstPO, respectively. Table I lists 
their main steps. The algorithm input includes the user-defined 
time-window size, the Chebyshev polynomial order for attitude 
approximation, the feasible sensor measurements in the current 
window and the initial state with the associated covariance. 
After the estimation is completed, the state and covariance at 

Fig. 2. Euler angle errors of Qua-AttEstPO, Rod-AttEstPO and EKF across 100 
Monte-Caro runs.  
 

 

Fig. 3. Gyroscope bias errors of Qua-AttEstPO, Rod-AttEstPO and EKF across 
100 Monte-Caro runs.  
 

Fig. 4. Accelerometer bias errors of Qua-AttEstPO, Rod-AttEstPO and EKF 
across 100 Monte-Caro runs. 
 

Fig. 5. Average attitude errors across 100 Monte-Caro runs for Qua-AttEstPO, 
Rod-AttEstPO and EKF with the associated 2-standard deviation bound. 
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the end of current time window are exploited as the initial state 
and covariance for the next time window.  

IV. SIMULATIONS AND EXPERIMENTS 

A. Simulation Results 

In this section, simulations are conducted to evaluate the 
proposed Qua-AttEstPO and Rod-AttEstPO algorithms, against 
the popular multiplicative EKF. The estimate state in EKF 
includes the attitude, gyroscope and accelerometer biases. 
Interested readers are referred to [7] for more details about the 
EKF implementation. 

Assume a 9-axis MIMU rotating at a fix position (longitude: 
112 deg, latitude: 28 deg height: 0 m) under the classic coning 
motion for 20 seconds. The attitude time trajectory is described 
by the quaternion as 

       cos 2 sin 2 0 cos sin
Tb

n t t       q , where the 

coning frequency 0.74  rad/s   and the coning angle 

10 deg  . The sampling frequency of the MIMU is set to 

100Hz. The biases of gyroscopes and accelerometers are 

assumed to be  0.5 0.3 0.2 deg
T

  and   20.1 0.2 0.2 m/s
T

 , 

respectively. The root power spectral density of the gyroscope 

measurement noise of each axis is set to 1 h , and the noise 

standard deviations of the normalized magnetometer and 
accelerometer measurements in each axis are set to 0.02 and 

20.01 m s , respectively. 

For all algorithms, the initial gyroscope and accelerometer 
biases are set to zeros and the statistics of the random noises are 

Fig. 6. Average gyroscope and accelerometer bias errors across 100 Monte-
Caro runs for Qua-AttEstPO, Rod-AttEstPO and EKF with the associated 2-
standard deviation bounds. 
 

 
Fig. 7. Average attitude errors across 100 Monte-Caro runs for Qua-AttEstPO
with different window sizes. 
 

Fig. 8. Average gyroscope and accelerometer bias errors across 100 Monte-
Caro runs for Qua-AttEstPO with different window sizes. 
 

 
Fig. 9. Average attitude errors across 100 Monte-Caro runs for Qua-AttEstPO, 
Rod-AttEstPO and EKF with the associated 2-standard deviation bounds for 
small initial attitude error. 

TABLE II 
 RMSE OF FINAL ATTITUDE ESTIMATES 

 Roll (deg) Yaw (deg) Pitch (deg) 

EKF 4.884 12.364 2.233 
Qua-AttEstPO 0.026 0.082 0.026 
Rod-AttEstPO 0.026 0.077 0.015 
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assumed to be known. The Chebyshev polynomial orders of 
both quaternion and Rodrigues vector approximation are set to 

6q gN N  , the time window size is set to 0.1 seconds and the 

number of Chebyshev points in the window is set to 1 7N   . 

In practical scenarios, the initial level angle (roll and pitch) can 
be readily obtained by the accelerometer leveling, but the yaw 
is more difficult to determine by the magnetometer due to the 
magnetic disturbance nearby. Thus, a 180 deg initial yaw error 
is assumed to fully assess the performance of different 
algorithms. Specifically, the initial orientation errors of roll, 
yaw and pitch are assumed as Gaussian noises with zero mean 

and the standard derivation of  5 180 5  deg .  

Figures 2-4 plot the attitude, gyroscope and accelerometer 
bias errors across 100 Monte Carlo runs. We see that the Qua-
AttEstPO and Rod-AttEstPO are much superior to EKF in terms 
of stability and convergence speed. The average of absolute 
estimation errors is defined to quantity the estimation accuracy 
as 

    
 

 
 

, ,
1

1
ˆ

L
l l

i i k i k
l

k
L




  x x   (48) 

where L denotes the number of Monte Carlo runs, and i and k 
denote the i-th state component at time k. For brevity, Figs. 5-6 
respectively plot the norm of the average errors for attitude and 
gyroscope/accelerometer biases. The 2  bounds are 

calculated by twice the averaged square root of diagonal 
elements of the covariance matrix. For a consistent filter, the 
estimation error should stay below the 2  derivation bounds 

with a possibility of 95% [43]. Figures 5-6 indicate that both 
Qua-AttEstPO and Rod-AttEstPO are consistent estimators, 
while the EKF is too optimistic. The RMSE of the estimate at 
the end of simulation is listed in Table II. It shows that the Rod-
AttEstPO is marginally better than Qua-AttEstPO, which may 
be arguably owed to the fact that the parameter dimension of 
Qua-AttEstPO is higher than that of Rod-AttEstPO and solving 
the constrained optimization in Qua-AttEstPO may be less 

accurate than the unconstrained optimization in Rod-AttEstPO. 
However, due to the singularity of the Rodrigues vector at a 

180   rotation, it is not recommended to utilize the Rod-

AttEstPO with a large window size. Therefore, we only use 
Qua-AttEstPO for a large window computation in the sequel. 
Figures 7-8 plot the average attitude and sensor bias errors of 
Qua-AttEstPO with different window sizes, namely, 0.1/1/5/20 
seconds. The Chebyshev polynomial orders are respectively set 
to 6, 40, 150, and 300. We see that the estimation accuracy 
improves along with the increased window size. Larger window 
size means the algorithm employs more sensor information to 
estimate the state, which causes a larger time delay. Since the 
algorithm cannot execute until all the measurements in the 
current window come in. Note that the generalized singular 
value decomposition of a high-dimension matrix as in (45) is 
time-consuming. Therefore, the initialization of Chebyshev 
coefficients for AttEstPO in a larger window is carried out by 
fitting the states acquired by AttEstPO of 0.1s window size. 

All of the proposed algorithms are implemented with the 
function ‘lsqnonlin’ on the MATLAB platform. The average 
time cost across 100 Monte Carlo runs is listed in Table III. The 
time costs of Rod-AttEstPO and Qua-AttEstPO with 0.1s 
window size are respectively about 3 and 10 times larger than 
that of EKF, which can ensure a real-time algorithm execution 
for 20-second data. Although the computation burden of Qua-
AttEstPO increases dramatically along with the window size, it 
can still be used for batch estimation.  

The average attitude error across 100 Monte Caro simulation 
runs for small initial attitude error is plotted in Fig. 9. The initial 
attitude error is presumed as Gaussian noise with zero mean and 

 5 10 5  deg  standard deviation, the window size is 0.1s and 

the Chebyshev polynomial order is 6, and other settings are the 

TABLE III 
COMPARISON OF COMPUTATION TIME 

Algorithm 
(Window Size) 

Rod-AttEstPO 
(0.1s) 

Qua-AttEstPO 
(0.1s) 

Qua-AttEstPO 
(1s) 

Qua-AttEstPO  
(5s) 

Qua-AttEstPO 
(20s) 

EKF 

Time Cost 0.91 s 3.37 s 4.93 s 25.4 s 52. 5 s 0.35 s 

 

 
Fig. 11. The rough attitude trajectory obtained from the integration of the 
calibrated gyroscope measurements. 

 

 
Fig. 10. The MIMU installation in the experiment. The MIMU is placed in the 
center of the dodecahedron and five Vicon markers are attached on the edges 
to acquire the true attitude of the dodecahedron. 
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same with the above. The three algorithms achieve similar final 
accuracy, but the convergence speed of Qua-AttEstPO and 
Rod-AttEstPO is faster than that of EKF and the EKF appears 
inconsistent either in the first several seconds. 

B. Experiment Results 

The experiment is conducted using the Xsens MTW unit with 
the sample frequency of 100 Hz. The bias stabilities of 
gyroscope and accelerometer are 10 deg/h and 0.1 mg, 
respectively. The power spectrum densities of gyroscope, 
accelerometer and magnetometer noises are respectively 

0.01 deg/s/ Hz , 20 μg/ HZ  and 0.2 mGauss/ Hz . A Vicon 

motion capture system is used to provide the true attitude 
relative to its inherently-defined reference frame. As shown in 
Fig. 10, the MIMU is fixed at the center of a regular 
dodecahedron, with five Vicon markers attached on the edges 
of the dodecahedron. The Vicon system tracks the attitude 
change by the markers. In view of the magnetic material in the 
dodecahedron, the magnetometer is calibrated before the 
experiment [32, 33]. In the experiment, the unit stays stationary 

on a bench for about 90 seconds, then is picked up and rotated 
around itself for about 40 seconds, and finally put back on the 
bench at the same attitude. Two datasets are collected to test the 
proposed algorithms. The two datasets produce similar results, 
so we only show one dataset result in this paper for brevity. The 
rough attitude time trajectory is plotted in Fig. 11, which is 
obtained by integrating the gyroscope measurements with the 
gyroscope bias roughly calibrated by averaging the static 
gyroscope outputs before the rotation. 

Due to the attitude misalignment between the MIMU and 
dodecahedron, their attitudes are not exactly the same. However, 
the relative rotation angle of the MIMU body frame, denoted by 

 
 
0

b t

b
 , should be identical with that of the Vicon. Specifically, 

the attitude quaternion estimate  
 b t

n t
q  of the MIMU is 

transformed to the relative attitude quaternion  
 
0

b t

b
q  by 

multiplying the conjugate of the MIMU initial quaternion ,0
b
nq , 

 
Fig. 14. Gyroscope bias estimate results across 100 Monte-Caro runs for Qua-
AttEstPO, Rod-AttEstPO, EKF and the reference in the experiment. 

 
Fig. 15. Average of relative rotation angle errors across 100 Monte Carlo runs
for Qua-AttEstPO, Rod-AttEstPO and EKF in the experiment. 

 
Fig. 12. Relative rotation angle of the reference Vicon system in the experiment 
(Upper left is the details of the first 10 seconds). 

 

 
Fig.13. Relative rotation angle errors across 100 Monte-Caro runs for Qua-
AttEstPO, Rod-AttEstPO and EKF in the experiment. 
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i.e.,  
   *

,00

b t b b
n nb

tq q q . Then, the relative rotation angle can be 

computed by 

 
 
 

 
  0 0

1
2arccosb t b t

b b
    q   (49) 

where 
 
 
0

1

b t

b
 
 q  denotes the first element of  

 
0

b t

b
q  and the 

relative angle is defined on  0  . The error of the relative 

rotation angle is defined as 

  
 
0

b t

vicon b
       (50) 

where vicon  is the relative rotation angle of the Vicon system, 

which is similarly computed from the Vicon’s attitude output. 
Figure 12 plots the relative rotation angle from the Vicon 
system, where the variation during the first 10-second static 
outputs indicates that the accuracy of relative rotation angle is 
about 0.3 deg. 

The window size of Rod-AttEstPO and Qua-AttEstPO is 
0.1s and the Chebyshev polynomial order is 6. A set of Monte 
Carlo runs are also performed in the experiment by intentionally 
randomizing the initial conditions. Specifically, the initial 
gyroscope and accelerometer biases are set to zeros and the 
initial attitude error is set to Gaussian noise with zero mean and 

 5 180 5  deg  standard deviation. Figures 13-14 plot the 

relative rotation angle error and the gyroscope bias across 100 
Monte Carlo runs, where the reference gyroscope bias is 
roughly obtained by averaging the static gyroscope outputs 
before the rotation. It can be seen that the results of Qua-
AttEstPO and Rod-AttEstPO for different initial state values are 
quite similar in each run, which demonstrates the superior 
stability of AttEstPO in face of large initial attitude errors. And, 
the average of relative rotation angle errors in Fig. 15 also 
highlights the accuracy superiority of Qua-AttEstPO and Rod-
AttEstPO over EKF. The RMSEs of relative rotation angle at 
the end of experiment are about 1.1, 0.03, 0.02 degrees for EKF, 
Qua-AttEstPO and Rod-AttEstPO, respectively. 

V. CONCLUSION 

Attitude estimation by way of inertial-magnetic sensors is 
vital for many applications. Traditional linearization-based 
EKF is prone to divergence in the challenging scenarios with 
large initial state error. To improve the estimation stability and 
convergence speed, this paper introduces the Chebyshev 
collocation method into the attitude estimation, resulting in the 
so-called Qua-AttEstPO and Rod-AttEstPO algorithms. They 
essentially transform the quaternion/Rodrigues vector 
estimation into constrained/unconstrained least squares 
problem in a time window of interest. Due to the inherent 
singularity of the Rodrigues vector, Rod-AttEstPO is only 
suitable for a short time window. Simulation and field test 
results show that the Qua-AttEstPO and Rod-AttEstPO 
algorithms have similar accuracy with each other and perform 
quite well under large initial errors. Increasing the size of time 
window in Qua-AttEstPO can further improve the estimation 
accuracy yet at the price of time delay. Therefore, Qua-
AttEstPO with a large window size can be treated as a batch 

attitude estimation method. Our future work will explore the 
advantage of the polynomial optimization-based estimation in 
other navigation applications, e.g., INS/GNSS integrated 
navigation.  
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