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Abstract—Multitarget tracking in the interference environ-
ments suffers from the nonuniform, unknown and time-varying
clutter, resulting in dramatic performance deterioration. We
address this challenge by proposing a robust multitarget tracking
algorithm, which estimates the states of clutter and targets simul-
taneously by the message-passing (MP) approach. We define the
non-homogeneous clutter with a finite mixture model containing
a uniform component and multiple nonuniform components. The
measured signal strength is utilized to estimate the mean signal-
to-noise ratio (SNR) of targets and the mean clutter-to-noise
ratio (CNR) of clutter, which are then used as additional feature
information of targets and clutter to improve the performance
of discrimination of targets from clutter. We also present a
hybrid data association which can reason over correspondence
between targets, clutter, and measurements. Then, a unified MP
algorithm is used to infer the marginal posterior probability
distributions of targets, clutter, and data association by splitting
the joint probability distribution into a mean-field approximate
part and a belief propagation part. As a result, a closed-loop
iterative optimization of the posterior probability distribution
can be obtained, which can effectively deal with the coupling
between target tracking, clutter estimation and data association.
Simulation results demonstrate the performance superiority and
robustness of the proposed multitarget tracking algorithm com-
pared with the probability hypothesis density (PHD) filter and
the cardinalized PHD (CPHD) filter.

Index Terms—Robust multitarget tracking, message passing,
mean-field approximation, belief propagation, radar interference.

I. INTRODUCTION

In radar target tracking, interference is often present in the
received signals. Interference may arise in different forms,
such as objects that are not of interest (e.g., precipitation,
vegetation, soil), and electronic countermeasures (e.g., sup-
pression jamming, chaff jamming), etc [1]. In many scenarios,
interference suppression and clutter elimination techniques
may not be as effective as expected and result in some
nonuniform, unknown and time-varying clutter. The state-of-
the-art algorithms assume that the distributions of both the
spatial position and the number of clutter are known and fixed.
Specifically, clutter is uniformly distributed in the space of
radar measurements, the number of which follows a Possion
distribution with a fixed mean [2]. In specific applications,
if the tracking algorithm uses a clutter distribution that does
not match the real clutter distribution, it may lead to missed
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target tracking, increased false tracks and computational com-
plexity. To this end, robust multitarget tracking (RMTT) can
be achieved by joint clutter estimation and target tracking
(JCETT), which estimates the time-varying states of moving
targets and unknown clutter simultaneously from measure-
ments, leading to a significant performance improvement of
multitarget tracking (MTT). Furthermore, to obtain a better
performance in dense clutter and low SNR environments, it is
desired to incorporate signal strength information into MTT.

However, RMTT in interference environments is compli-
cated by the following factors. (a) Clutter modelling and
estimation: Modern radars suffer from strong unwanted inter-
ference from natural environments and countermeasures. For
example, atmosphere, e.g., water, fog, snow, smoke, is usually
volumetric scattering and can result in illuminating clutter.
The received signals of atmosphere may vary by several
reasons, such as frequency, suspended particle sizes, and
concentrations of atmospheric particles. In addition, the chaff
interference is ejected from an aircraft or ship and blooms
into a large reflector hovering in the cloud, which is affected
by a couple of factors, such as radar cross section (RCS),
shape of chaff clouds and atmospheric phenomena, etc [1].
Consequently, there are different types of clutter distribution
in the background of target tracking: one uniform distri-
bution generated by noise; several nonuniform distributions
generated by interference, each of which we refer to as a
clutter component. The non-homogeneous distributions make
clutter modelling and estimation very challenging. (b) Data
association: MTT in interference environments is difficult due
to the unknown association between measurements and targets
as well as the unknown association between measurements
and clutter components. It is often assumed that at each time,
a target can generate at most one measurement, a clutter
component can potentially generates multiple measurements,
and a measurement can be generated by either one target or
one clutter component. Unfortunately, the exponential com-
plexity of data association makes it incredibly challenging. In
addition, the data association and the state estimation of target
and clutter are highly coupled, i.e., erroneous data association
deteriorates the state estimation of target and clutter, and the
inaccurate state estimation of target and clutter leads to the
data association risk.

The majority of the RMTT literature considering clutter
estimation focused on finite set statistics. Mahler et al. [3]
learned the clutter intensity while target tracking by proposing
an adaptive PHD/CPHD filter. Assuming unknown and time-
varying clutter, Beard et al. [4] proposed a bootstrap CPHD
filter, which performed comparatively as well as the matched
CPHD filter. Kim and Song [5] proposed a PHD filter with
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clutter intensity estimation in dynamic cluttered environments.
In environments with unknown and non-homogeneous clutter,
Vo et al. [6] proposed a robust multi-Bernoulli (MB) filter to
adaptively learn clutter parameters by modelling clutter based
on multiple independent generators. In the vein of [6], Gostar
et al. [7] proposed an MB filter with clutter estimation for
sensor selection. In [8]–[10], the clutter intensity was modelled
by a finite mixture model, and estimated in the random finite
set scheme by the expectation maximization method and the
Markov chain Monte Carlo method.

There is a large volume of published studies devoted to
MTT using signal strength-related information to achieve
RMTT. To improve the discrimination ability for closely
spaced targets, assuming that the target SNR was known
and fixed during tracking, the problem of data association
between measurements and targets based on measured spatial
and amplitude information was addressed in [11], [12]. Then,
the amplitude likelihood was marginalized over a range of
possible target SNR values and the corresponding ampli-
tude information was integrated into the general PHD and
CPHD filters [13], and cardinality balanced multitarget multi-
Bernoulli (CBMeMBer) filter [14]. The amplitude informa-
tion was used in multi-object filtering to estimate the target
kinematic state and RCS in [15] for robust ground target
tracking. Later, the amplitude information was used in MTT
for a cluttered environment, and SNR estimation algorithms
were proposed based on the maximum a posteriori method [16]
and the sequential Monte Carlo method [17]. To improve the
discrimination between targets and clutter, the joint amplitude
likelihood of the sea clutter neighbouring cells is calculated,
which is then integrated into a labelled MB filter [18]. Yang
et al. [19] incorporated the amplitude information into the
simultaneously clutter estimation and target tracking. Ristic
et al. [20] proposed an MB filter for maritime target tracking
using amplitude information.

However, most of the existing RMTT methods for JCETT
only estimate the spatial distribution or the amplitude distribu-
tion of clutter, but not both. As far as we know, the previously
proposed JCETT method estimating both the spatial state and
return power of clutter is limited to the method proposed
in [19]. The method in [19] adopted the random finite set
filters for clutter estimation and target tracking, where the
spatial and SNR of target and clutter were modelled as an
inverse Gamma Gaussian (IGG) distribution. Unfortunately,
the method [19] did not provide details on the spatial state
estimation for nonuniform clutter and also resulted in an
unappealing separate and sequential estimation framework for
clutter and target. As we mentioned before, the target and
clutter state estimation and data association are highly coupled
and affect each other. It is highly demanded to develop a
closed-loop iterative optimization framework for JCETT.

The Bayesian inference algorithms for probabilistic graph-
ical models, such as (loopy) belief propagation (BP) [21] and
variational inference [22], have been used for MTT. Chen et
al. [23] considered the data association problem as a maximum
a posteriori configuration problem, and solved it by the max-
product BP. In contrast to [23], Williams et al. [24] considered
the data association problem as a posteriori probability esti-

mation problem, and solved it by the sum-product BP. Later,
the data association method proposed in [24] was extended to
the multi-scan version [25], the multi-path version [26], and
labeled MB filtering [27]. Meyer et al. [28], [29] proposed
a scalable multi-sensor MTT algorithm by using BP, which
was then extended to the scheme of self-tuning the unknown
model parameters [30]. In addition, the BP method was also
used to extended target tracking [31], [32], cooperative self-
localization and MTT [33], joint registration and fusion of
heterogeneous sensors [34], fusion of sensor measurements
and target-provided information in MTT [35].

In our previous work, the unified MP method [36], which
combines the virtues of (loopy) belief propagation (BP) [21]
and Mean-field (MF) approximation [22] while circumvent-
ing their drawbacks, has been used for multi-path environ-
ment [37], maneuvering target tracking [38] and over-the-
horizon radar network fusion [39]. These algorithms were
derived by representing the joint probability density functions
(PDFs) associated with the system models by a factor graph.
We decomposed the factor graph into an MF part and a BP
part, and the posterior PDFs of the corresponding hidden
variables were approximated by BP and MF. As a result, a
closed-loop iterative optimization of the posterior probability
distribution were obtained, which can effectively deal with the
coupling between latent variables.

In this paper, we propose an MP-based framework and algo-
rithm for RMTT in interference environments using strength
information of measurements. We formulate RMTT as an
JCETT problem including all target states, clutter states and
data association. In particular, we use the Swerling-I and
Swerling-III models to represent the RCS fluctuations of target
and clutter, and adopt the Rayleigh likelihood for the strength
information. Furthermore, the clutter intensity is modelled
as a finite mixture model. An enabling technique for our
methods is the combined formulation of data association
which can reason over correspondence between targets, clutter,
and measurements. By this new formulation of the RMTT
problem, the statistical structure of RMTT is represented by a
factor graph. Finally, we use the unified MP algorithm to solve
the problem, in which the MF approximation and BP are used
in the MF part and the BP part of the factor graph, respectively.
Different from our previous work in [38], [39], the factor
graph constructed in this paper has several new subgraphs,
including the target SNR subgraph, the clutter spatial state
and mean CNR subgraph, the clutter mixing weight subgraph,
and the combined data association subgraph. The modelling
and massage passing of these subgraphs makes the problem
more challenging. The summary contributions of this paper
are as follows:
• We formulate a Bayesian statistical framework for the

RMTT problem involving all the hidden variables of
targets, clutter and data association. In particular, the
target and clutter state are modelled in both the spatial and
the power domains, which can improve the performance
of RMTT. We also develop a combined data association
which can reason over correspondence between targets,
clutter, and measurements.

• We use the MP approach combined with the MF approx-
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imation and BP to solve the RMTT problem, referred
to MP-RMTT. In MP-RMTT, the estimations of all
hidden variables are optimized by a closed-loop iterative
architecture, i.e., the target and clutter state estimations
in the previous iteration are utilized to improve the data
association, and then the new data association is used to
optimize the target and clutter state estimations, which
is capable for handling the coupling issue between the
hidden variables.

The rest of the paper is organized as follows. The problem
formulation of RMTT is described in Section II. In Section
III, the proposed MP-RMTT algorithm is derived. Section IV
evaluates the performance of MP-RMTT via simulations. At
last, Section V concludes this paper.

II. PROBLEM FORMULATION

In this section, we present the system models firstly. After
that, we state the RMTT problem to be solved.

A. Target State Modelling

At time k, let Xt
k = {Xt

i,k}
NT
i=1 be the target joint

augmented state, where NT is the number of targets and is
determined in initialization stage, and Xt

i,k = [(xt
i,k)T σt

i,k]T

is the augmented state of target i, consisting of the target
kinematic state xt

i,k and mean SNR σt
i,k. The kinematic

state xt
i,k contains the position and velocity of target i. In

addition, let target mean SNR σt
i,k = St

i,k/N0, where St
i,k

is the expected target signal power and N0 is the expected
noise power. The SNR represented in log scale is SNR(dB)
= 10 log10(σt

i,k) [40]. For each target i, we define the target
kinematic state sequence and the target mean SNR sequence
over time 1 to K as xt

i,1:K = {xt
i,k}Kk=1 and σt

i,1:K =

{σt
i,k}Kk=1, respectively. We define the target joint augmented

state sequence over time 1 to time K as Xt
1:K = {Xt

k}Kk=1.
For a same target, assuming that the PDF for the kinematic

state, p(xt
i,k), and the PDF for the mean SNR, p(σt

i,k), are
independent, the PDF of target augmented state is factorized as
p(Xt

i,k) = p(xt
i,k)p(σt

i,k). p(xt
i,k) is chosen to be a Gaussian

distribution which is conjugate prior of the spatial measure-
ment likelihood (which will be detailed in Section II-C).
p(σt

i,k) is chosen to be the IG distribution, which is conjugate
prior of the strength measurement likelihood (which will be
detailed in Section II-C) [15]. We refer the reader to [15], [19]
for details of the IG distribution.

By assuming that each target augmented state evolves
independently with a first-order Markov dynamic model, the
PDF of Xt

1:K is

p(Xt
1:K) =

NT∏
i=1

p(Xt
i,1)

K∏
k=2

p(Xt
i,k|Xt

i,k−1), (1)

where p(Xt
i,1) is a prior PDF at time 1 and p(Xt

i,k|Xt
i,k−1)

is the transition PDF of target augmented state. As-
suming that the target kinematic state transition PDFs
p(xt

i,k|xt
i,k−1) and the target mean SNR transition PDFs

p(σt
i,k|σt

i,k−1) are independent, one has p(Xt
i,k|Xt

i,k−1) =
p(xt

i,k|xt
i,k−1)p(σt

i,k|σt
i,k−1). The state transition PDF of

target kinematic state p(xt
i,k|xt

i,k−1) can be deteiminted
by the dynamic model of each target [38]. Assume
that the target mean SNR varies slowly. Given the
PDF of target mean SNR at time k − 1, we define
p(σt

i,k|σt
i,k−1) = I(σt

i,k;αt
i,k|k−1, β

t
i,k|k−1), where αt

i,k|k−1 =

(αt
i,k−1 + ut − 1)/ut, βt

i,k|k−1 = βt
i,k−1/u

t with αt
i,k−1 and

βt
i,k−1 being parameters of the PDF p(σt

i,k−1), and ut being
a forgetting factor [19]. We assume that the target mean SNR
can be predicted in reverse by the same transition PDFs as the
forward prediction.

At time k, let Sk = {si,k}NTi=1 be the target joint visibility
state, where si,k ∈ {0, 1} is a binary random variable and indi-
cates the presence of target i if si,k = 1 or the absence of target
i if si,k = 0. We define the target visibility state sequence over
time 1 to time K of target i as si,1:K = {si,k}Kk=1. We also
define the sequence of target joint visibility state over time 1 to
time K as S1:K = {Sk}Kk=1 . By assuming that the appearance
or the disappearance of each targets are independent and the
visibility state of each target transits based on the Markov
process, the PDF of S1:K can be written as

p(S1:K) =

NT∏
i=1

p(si,1)

K∏
k=2

p(si,k|si,k−1), (2)

where p(si,1) is the prior PDF as a Bernoulli distribution, and
the transition PDF p(si,k|si,k−1) is represented by a matrix

Tk =

[
p(si,k = 1|si,k = 1) p(si,k = 1|si,k = 0)
p(si,k = 0|si,k = 1) p(si,k = 0|si,k = 0)

]
=

[
ps pb

1− ps 1− pb

]
,

(3)

where ps is the target survival probability and pb is the target
birth probability.

B. Clutter Modelling

The clutter is modelled in the space of measurements. We
assume that there are one uniform clutter component and
multiple nonuniform clutter components distributed over the
entire surveillance region. Let τ = 0 and τ = 1, . . . , NC
be the indices of the uniform and the nonuniform clutter
component respectively, and NC is the maximum possible
number of nonuniform clutter components and is determined
in the initialization stage.

We define the clutter joint augmented state as Xc
k =

{Xc
τ,k}

NC
τ=0, where Xc

0,k = σc
0,k is the state of the uni-

form clutter component and Xc
τ,k = {x̃c

τ,k σc
τ,k} is the

augmented state of nonuniform clutter component τ . Here,
σc
τ,k = Sc

τ,k/N0 denotes the mean clutter-to-noise ration
(CNR) of the clutter component τ , τ = 0, . . . , NC , where
Sc
τ,k is the expected clutter power. The CNR represented in

log scale is CNR(dB) = 10 log10(σc
τ,k) [40]. Note that we

assume the expected power of the uniform clutter is equal to
the power of background noise, so the CNR of the uniform
clutter is 1. In fact, since the background noise is unknown,
we estimate the CNR of the uniform clutter as well. Then,
x̃c
τ,k = {xc

τ,k D
c
τ,k} is the spatial state of the nonuniform

clutter component τ , τ = 1, . . . , NC , where xc
τ,k and Dc

τ,k are
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the corresponding position and shape parameters, respectively.
At time k, we define Πk = {πτ,k}NCτ=0 as the clutter joint
mixing weights, where πτ,k is the mixing weight of clutter
component τ and satisfies 0 ≤ πτ,k ≤ 1 and

∑NC
τ=0 πτ,k = 1.

We define the clutter joint spatial state as X̃c
k = {x̃c

τ,k}
NC
τ=1

and the clutter joint CNR as σc
k = {σc

τ,k}
NC
τ=1. We define

the spatial state sequence, the mean CNR sequence, the
mixing weight sequence of clutter component τ over time 1
to time K as X̃t

τ,1:K = {x̃c
τ,k}Kk=1, σc

τ,1:K = {σc
τ,k}Kk=1,

πt
τ,1:K = {πt

τ,k}Kk=1, respectively. We define the clutter joint
augmented state sequence and the clutter joint mixing weights
sequence over time 1 to time K as Xc

1:K = {Xc
k}Kk=1 and

Πc
1:K = {Πc

k}Kk=1, respectively.
We assume the PDF of clutter spatial state p(x̃c

i,k) and
the PDF of clutter mean CNR p(σc

i,k) are independent, and
the PDF of the clutter augmented state can be factorized as
p(Xc

i,k) = p(x̃c
i,k)p(σc

i,k). Since the position measurement
likelihood given the clutter spatial state (will be detailed in
Section II-C) is a Gaussian distribution, we define the PDF
p(x̃c

i,k) as a Gaussian-Wishart (GW) distribution which is the
conjugate prior of the mean and covariance for a Gaussian
distribution. We refer the reader to [41] for details of the
Wishart distribution. Therefore, we introduce the GW prior
governing the spatial parameters of each nonuniform clutter
component, given by

p(x̃c
τ,k) = p(xc

τ,k,D
c
τ,k) = p(xc

τ,k|Dc
τ,k)p(Dc

τ,k) =

N (xc
τ,k; x̂c

τ,k, (β
c
τ,kD

c
τ,k)−1)W(Dc

τ,k;W c
τ,k, υ

c
τ,k).

(4)

Assuming that the clutter and targets have the same likeli-
hood function on signal strength, the PDF of clutter mean
CNR p(σc

i,k) is also chosen to be the IG distribution. In
addition, since the likelihood of the data association event
given the clutter mixing weights (will be detailed in Sec-
tion II-C) is a multinomial distribution, we choose a Dirichlet
distribution on the clutter mixing weights Dir(Πk|αk) =
C(αk)

∏NC
τ=0 πτ,k

ατ,k , where C(αk) is the normalization con-
stant, and αk = {ατ,k}NCτ=0 with ατ,k as the prior number of
points associated with clutter component τ .

By assuming that each clutter augmented state transits
independently based on the Markov process, the PDF of Xc

1:K

can be written as

p(Xc
1:K) =

NT∏
τ=1

p(Xc
τ,1)

K∏
k=2

p(Xc
τ,k|Xc

τ,k−1), (5)

where p(Xc
τ,1) is the prior PDF at time 1 and

p(Xc
τ,k|Xc

τ,k−1) is the transition PDF of clutter
augmented state. Assume that the clutter spatial transition
PDFs p(x̃c

τ,k|x̃c
τ,k−1) and the clutter mean CNR

transition PDFs p(σc
τ,k|σc

τ,k−1) are independent, one has
p(Xc

τ,k|Xc
τ,k−1) = p(x̃c

τ,k|x̃c
τ,k−1)p(σc

τ,k|σc
τ,k−1). In some

real applications, compared with the high speed of targets,
the dynamics of the interference mainly changes on shape
rather than on spatial movement. For example, the atmosphere
moves slowly while its shape varies as the meteorological
conditions; the chaff cloud hovers in the air while its
scattering volume spreads [1]. Thus, we assume that the
position of the nonuniform clutter changes within a relatively

small region and the shape of the nonuniform clutter varies
over time. Accordingly, we define the transition PDF of the
clutter spatial state as the GW distribution as well, that is,

p(x̃c
τ,k|x̃c

τ,k−1)=N (xc
τ,k; x̂c

τ,k|k−1, (β
c
τ,k|k−1D

c
τ,k)−1)

×W(Dc
τ,k;W c

τ,k|k−1, υ
c
τ,k|k−1),

(6)

where x̂c
τ,k|k−1 = x̂c

τ,k−1, βc
τ,k|k−1 = βc

τ,k−1, W c
τ,k|k−1 =

ξW c
τ,k−1, υcτ,k|k−1 = ξ(υcτ,k−1−m−1)+m+1, with x̂c

τ,k−1,
βc
τ,k−1, W c

τ,k−1, υcτ,k−1 being the parameters of p(x̃c
τ,k−1),

m = 2 being the dimension of the position measurement, and
ξ being a forgetting factor [42]. Again, we assume that the
clutter spatial state can be predicted in reverse by the same
transition PDFs as the forward prediction. The transition PDF
p(σc

τ,k|σc
τ,k−1) and the inverse transition PDF p(σc

τ,k−1|σc
τ,k)

of clutter mean CNR are the same as those of target mean SNR
with corresponding forgetting factor uc. By assuming that each
clutter component appears and disappears independently and
transits based on the Markov process, the PDF of Πt

1:K can
be represented as

p(Πt
1:K) =

NT∏
τ=1

p(πτ,1)

K∏
k=2

p(πτ,k|πτ,k−1), (7)

where p(πτ,1) is the prior PDF at time 1 and p(πτ,k|πτ,k−1)
is transition PDF of clutter mixing weight, which is also
defined as the Dirichlet distribution, that is p(πτ,k|πτ,k−1) =
Dir(πτ,k|ατ,k|k−1). Assuming that the mixing weights change
slowly and ατ,k−1/

∑NC
τ ′=0 ατ ′,k−1 = ατ,k/

∑NC
τ ′=0 ατ ′,k. We

define ατ,k|k−1 = κMk−1ατ,k−1/
∑NC
τ ′=0 ατ ′,k−1 by a heuris-

tic approach, where κ is a balance parameter tuning the effects
of the prior knowledge and Mk−1 is the total number of clutter
at time k− 1. We assume that the clutter mixing weights can
be predicted in reverse by the same transition PDFs as the
forward prediction.

C. Measurement Modelling

At time k, let Yk = {Yj,k}
NM,k
j=1 be the measurements,

which are generated from radar range-azimuth-strength map
using the constant false alarm detector, followed by a peak
extraction scheme and detection with a threshold d > 0,
and NM,k is the number of measurements. Each measurement
Yj,k = [yT

j,k mj,k]T consists of two elements: (i) the spatial
information in the polar coordinates yj,k = [rj,k ξj,k]T; (ii)
the measured signal strength mj,k = Sj,k/N0 > d, where Sj,k
is received signal power. We define the measurement sequence
over time 1 to time K as Y1:K = {Yk}Kk=1.

For the target-originated measurement, the spatial measure-
ment likelihood of yj,k given xi,k is denoted as p(yj,k|xi,k),
which can be determined by the spatial measurement equa-
tion [2]. The RCS fluctuations of target can be captured by the
Swerling-I and Swerling-III models [1], and the corresponding
PDF of strength mj,k in noise background given the target
mean SNR σt

i,k can be represented by the general Rayleigh
distribution [40]

R(mj,k;σt
i,k, n) =

2m2n−1
j,k

(σt
i,k + 1)n

exp

(
−n

m2
j,k

σt
i,k

)
, (8)
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where n = 1 and n = 2 denotes the Swerling-I and Swerling-
III models, respectively. Using the approximate expression, the
corresponding detection probability is [19]

pdD = exp

(
−n d2

σt
i,k + 1

)
. (9)

The general Rayleigh PDF after thresholding becomes

Rd(mj,k;σt
i,k, n)=

2m2n−1
j,k

(σt
i,k + 1)n

exp

(
−n

m2
j,k − d2

σt
i,k + 1

)
. (10)

Likewise in [15], [19], we assume that the measured position
and the measured strength information are independent of
each other; the corresponding likelihood function can be
decomposed as

p(Yj,k|Xt
i,k) = p(yj,k|xt

i,k)Rd(mj,k;σt
i,k, n). (11)

We use the finite mixture model to model the spatial
distribution of clutter, given by

p(yj,k|X̃c
k,Πk) = π0,kU(VG) +

NC∑
τ=1

πτ,kp(yj,k|x̃c
τ,k), (12)

where U(VG) = 1/VG is the uniform distribution representing
the spatial distribution of uniform clutter component τ = 0;
p(yj,k|x̃c

τ,k) = N (yj,k;xc
τ,k, (D

c
τ,k)−1) is the Gaussian dis-

tribution with mean xc
τ,k and precision matrix Dc

τ,k represent-
ing the spatial distribution of nonuniform clutter component
τ . Note that we use precision matrix rather than covariance
matrix as this somewhat simplifies the mathematics. By as-
suming that the nonuniform clutter component is caused by
the volumetric scattering interference and the clutter point is
dominated by the underlying scattering body, we interpret xc

τ,k

and (Dc
τ,k)−1 as the centroid and shape of each corresponding

nonuniform clutter region, respectively.
We assume that the clutter and targets have the same power

fluctuates and the PDF of strength likelihood function is also
a Rayleigh distribution after thresholding,

Rd(mj,k;σc
i,k, n)=

2m2n−1
j,k

(σc
i,k + 1)n

exp

(
−n

m2
j,k − d2

σc
i,k + 1

)
. (13)

As noted in Eq. (12), the measurement likelihood is de-
pendent on both clutter augmented states and clutter mixing
weights; this coupling issue will make MTT difficult to solve.
In the following, the measurement likelihood is decoupled by
introducing a data association event.

D. Data Association

Let Ak = At
k ∪ Ac

k be the joint data association events
at time k, where At

k = {ati,j,k}
NT
i=1

NM,k
j=0 is the joint data

association events between measurements and targets, Ac
k =

{acτ,j,k}
NC
τ=0

NM,k
j=0 is the joint data association events between

measurements and clutter. The binary association variable
ati,j,k denotes that the measurement Yj,k is generated by
target i if ati,j,k = 1; likewise, the binary association variable

acτ,j,k denotes that the measurement Yj,k belongs to clutter
component τ if acτ,j,k = 1, given as

ati,j,k =

{
1, if Yj,k is generated by target i,
0, otherwise,

(14)

acτ,j,k =

{
1, if Yj,k belongs to clutter component τ ,
0, otherwise.

(15)

In particular, ati,0,k denotes that the target i is missed and
acτ,0,k represents that the clutter component τ disappears. For
the convenience of description, the following data association
event sets are defined, Aj,k = {ati,j,k}

NT
i=1 ∪ {acτ,j,k}

NC
τ=0,

At
i,k = {ati,j,k}

NM,k
j=0 , and Ac

τ,k = {acτ,j,k}
NM,k
j=0 . We define

the joint data association sequence over time 1 to time K as
A1:K = {Ak}Kk=1.

A valid joint data association event Ak satisfies the follow-
ing three constraints: (a) Each measurement is originated from
at most one target or belongs to at most one clutter component,
denoted as Ij,k(Aj,k); (b) Each target can generate at most
one measurement, denoted as Et

i,k(At
i,k); (c) Each clutter

component either generates measurements or not, denoted
as Ec

τ,k(Ac
τ,k). According to the above three constrains, the

following constraint equations are obtained.

Ij,k(Aj,k) =

{
1, if

∑
ai,j,k∈Aj,k ai,j,k = 1,

0, otherwise.
(16)

Et
i,k(At

i,k) =

{
1, if

∑
ati,j,k∈A

t
i,k
ati,j,k = 1,

0, otherwise.
(17)

Ec
τ,k(Ac

τ,k) =

0,
if ∃j > 0 such that
acτ,0,k = 1 and acτ,j,k > 0,

1, otherwise.
(18)

Define the following set of constraints.

I(A1:K) =

K∏
k=1

Ik(Ak) =

K∏
k=1

NM,k∏
j=1

Ij,k(Aj,k), (19)

E(A1:K) =

K∏
k=1

Ek(Ak) =

K∏
k=1

Et
k(At

k)Ec
k(Ac

k)

=

K∏
k=1

NT∏
i=1

Et
i,k(At

i,k)

NC∏
τ=0

Ec
τ,k(Ac

τ,k).

(20)

The joint prior probability of data association sequenceA1:k

given the joint target visibility state sequence S1:k is

p(A1:K |S1:K) =

K∏
k=1

p(At
k|Sk)

=

K∏
k=1

NT∏
i=1

Pd(si,k)1−a
t
i,0,k(1− Pd(si,k))a

t
i,0,k ,

(21)

where Pd(si,k) represents the detection probability of target i
given si,k, i.e., Pd(si,k = 1) = p̂dD,i,k and Pd(si,k = 0) = ε

(0 < ε � 1) [39], where p̂dD,i,k is estimated detection



6

probability of target i calculated by Eq. (9) with the estimated
target mean SNR E(σt

i,k) and detection threshold d.
The probability that the measurement Yj,k belongs to the

clutter component τ can be represented by the clutter mixing
weights πτ,k, i.e., p(acτ,j,k = 1) = πτ,k. The conditional
distribution of the data association event given the clutter
mixing weights can be written as a multinomial distribution,

p(A1:K |Π1:K) =

K∏
k=1

p(Ac
k|Πk) =

K∏
k=1

NC∏
τ=0

NM∏
j=1

π
acτ,j,k
τ,k . (22)

Similarly, the conditional PDF of the spatial measurement
yj,k given the clutter joint spatial state X̃c

k and the joint data
association event Ac

τ,k can be represented by

p(yj,k|X̃c
k,A

c
τ,k) =

NC∏
τ=0

p(yj,k|x̃c
τ,k)a

c
τ,j,k . (23)

We have therefore found an equivalent formulation of the
finite mixture model (as Eq. (12)) involving a data association
event, leading to significant simplifications of our MP method
that will be presented in Section III. We can represent the
conditional distribution of the measurement sequence Y1:k

given the target joint augmented state sequence Xt
1:K , clutter

joint augmented state sequence Xc
1:K , and data association

sequence A1:K as

p(Y1:K |Xt
1:K ,X

c
1:K ,A1:K) =

K∏
k=1

p(Yk|Xt
k,X

c
k,Ak)

=

K∏
k=1

NM,k∏
j=0

NC∏
τ=0

p(yj,k|x̃c
τ,k)a

c
τ,j,k

NT∏
i=1

p(yj,k|xt
i,k)a

t
i,j,k .

(24)

Note that, by introducing the data association Ak, Xt
k is

conditionally independent of Ek andXc
k is conditionally inde-

pendent of Πk, and we obtain a new measurement likelihood
function as in Eq. (24). Furthermore, the new measurement
likelihood function can simplify the derivation of message
passing rules (The details will be given in Section III).

E. The Joint PDF and Problem Statement

Let Θ1:K = {Xt
1:K ,X

c
1:K ,S1:K ,Π1:K ,A1:K} denote the

collection of all the latent variables. The joint posterior PDF
L(Θ1:K) can be factorized as

L(Θ1:K) =
p(Xt

1:K ,X
c
1:K ,S1:K ,Π1:K ,A1:K ,Y1:K)

p(Y1:K)

∝ p(Y1:K |Xt
1:K ,X

c
1:K ,A1:K)

× p(Xt
1:K)p(S1:K)p(Xc

1:K)p(Π1:K)

× p(A1:K |S1:K)p(A1:K |Π1:K)E(A1:K)I(A1:K).

(25)

Insert Eq. (1) for p(Xt
1:K), Eq. (2) for p(S1:K), Eq. (5)

for p(Xc
1:K), Eq. (7) for p(Π1:K), Eq. (19) for I(A1:K),

Eq. (20) forE(A1:K), Eq. (21) for p(A1:K |S1:K), Eq. (22) for
p(A1:K |Π1:K), and Eq. (24) for p(Y1:K |Xt

1:K ,X
c
1:K ,A1:K),

yielding the factorization of Eq. (25) as Eq. (26).
The aim of RMTT is to simultaneously estimate Xt

1:K

(target augmented state estimation), S1:K (target detection),
Xc

1:K (clutter augmented state estimation) and Π1:K (clutter

L(Θ1:K)

∝
K∏
k=1

NM,k∏
j=0

NC∏
τ=0

p(yj,k|x̃c
τ,k)a

c
τ,j,k

NT∏
i=1

p(yj,k|xt
i,k)a

t
i,j,k

×
NT∏
i=1

p(xt
i,1)p(si,1)

K∏
k=2

p(xt
i,k|xt

i,k−1)p(si,k|si,k−1)

×
NC∏
τ=0

p(xc
τ,1)p(πτ,1)

K∏
k=2

p(xc
τ,k|xc

τ,k−1)p(πτ,k|πτ,k−1)

×
K∏
k=1

Ek(Ak)Ik(Ak)

K∏
k=1

p(Ak|Sk)p(Ak|Πk).

(26)

mixing weights estimation), given measurements Y1:K with
unknown A1:K . The posterior PDFs of Xt

1:K , S1:K , Xc
1:K

and Π1:K can be obtained by marginalizing L(Θ1:K) in the
Bayesian framework. Unfortunately, the marginalizing of data
association is exponentially complex, making exact solution
computationally prohibitive. Therefore, the combined BP-MF
approximation is adopted in the next section.

III. MP-BASED APPROACH FOR RMTT

In this section, we first present the framework for solving
the RMTT problem using the combined BP-MF MP algorithm.
Then, the message update rules and the approximate beliefs of
all hidden variables, including target joint augmented states,
clutter joint augmented states, target visibility states, clutter
mixing weights and data association, are derived. Finally, we
present the initialization, implementation and computational
complexity for the proposed RMTT algorithm.

A. Combined BP-MF MP Approach for RMTT

The combined BP-MF MP approach performs inference on
a probabilistic graphical model (typically, a factor graph) by
exchanging messages. The first step to apply the combined BP-
MF approach is to design the factor graph corresponding to the
joint PDF of the problem to be solved, for instance, Eq. (26).
This is accomplished by associating each random variable
or vector in the joint PDF to a variable node in the factor
graph and associating each functions defined on random vari-
ables (including PDFs, conditional PDFs, constrains etc.) to a
factor node in the factor graph, and connect a variable node
with a factor node if the latter is a function of the former. The
factor graph is then split into an MF region and a BP region to
maximize their advantages and circumvent their disadvantages.
Specifically, BP can deal effectively with hard constraints and
has good approximations to marginal PDFs, but is not suitable
for situations containing both continuous and discrete hidden
variables. MF approximation can guarantee convergence and
is straightforward to derive for conjugate-exponential models,
but is incompatible with hard constraint. The message update
rules and the beliefs of each hidden variables are eventually
derived by solving the constrained minimum region-based
free energy problem on the factor graph via the Lagrangian
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relaxation method. For the detailed derivation of the combined
BP-MF MP approach, the reader is referred to [36]. Following
the ideas of the combined MP approach, next we present our
proposed MP-based method for solving the RMTT problem.

By observing Eq. (26), we define the factor nodes fYk ,
p(Yk|Xt

k,X
c
k,Ak), fX t

k
,
∏NT
i=1 p(X

t
i,k|Xt

i,k−1), fXc
k
,∏NC

τ=1 p(X
c
τ,k|Xc

τ,k−1), fSk ,
∏NT
i=1 p(si,k|si,k−1), fΠk

,∏NC
τ=1 p(πτ,k|πτ,k−1), fAt

k
, p(At

k|Sk), fAc
k
, p(Ac

k|Πk),
fEk , Ek(Ak), fIk , Ik(Ak), the set of variable nodes
I , {X t

k,X
c
k,Sk,Πk,Ak}Kk=1, and the set of factor nodes

F , {fYk , fX t
k
, fXc

k
, fSk , fΠk

, fAt
k
, fAc

k
, fEk , fIk}Kk=1. The

corresponding factor graph is illustrated in Fig. 1.

MF part BP part

Fig. 1: Factor graph represented by Eq. (26).

We next describe how the factor graph in Fig. 1 is divided
into a BP part and an MF part. BP is used to estimate the
target visibility state in order to obtain a good approximation
for the corresponding posterior PDFs. BP is also used for data
association, which contains hard constraints as in Eq. (16)-
Eq. (18). The MF approximation is used for the estimation of
target joint augmented state, clutter joint augmented state and
clutter mixture weight, as these hidden variables are conjugate-
exponential models and therefore simple MP rules can be
obtained. Accordingly, we split F into FBP and FMF with

FBP =
{
fSk , fAt

k
, fEk , fIk

}K
k=1

,

FMF =
{
fYk , fX t

k
, fXc

k
, fΠk

, fAc
k

}K
k=1

.
(27)

We have

IBP =
{
Sk,Ak

}K
k=1

, IMF =
{
X t
k,X

c
k,Πk,Ak

}K
k=1

. (28)

Then, the joint posterior PDF L(Θ1:K) can be written as

L(Θ1:K) =

MF region︷ ︸︸ ︷
K∏
k=1

fYkfX t
k
fXc

k
fΠk

fAc
k
×

BP region︷ ︸︸ ︷
K∏
k=1

fSkfAt
k
fEkfIk .

(29)
The beliefs of hidden variables are approximated by [36]

bX(X t
1:K) ∝

∏
α∈SMF(X t

1:K)

mMF
α→X t

1:K
(X t

1:K), (30)

bX(Xc
1:K) ∝

∏
α∈SMF(Xc

1:K)

mMF
α→Xc

1:K
(Xc

1:K), (31)

bS(S1:K) ∝
∏

α∈SBP(S1:K)

mBP
α→S1:K

(S1:K), (32)

bΠ(Π1:K) ∝
∏

α∈SMF(Π1:K)

mMF
α→Π1:K

(Π1:K), (33)

bA(A1:K) ∝
∏

α∈SBP(A1:K)

mBP
α→A1:K

(A1:K)
∏

α∈SMF(A1:K)

mMF
α→A1:K

(A1:K). (34)

Next, we present the detailed derivations of the beliefs for
each hidden variables and the messages in Eqs. (30)-Eqs. (34).
Before we present the details, we introduce the following
proposition [36], [39], which is required in the derivations of
the beliefs.

Proposition 1. For all messages passed from variable nodes
i to factor nodes α in the MF region, ni→α = bi(xi).

B. Derivations of Belief bX(Xt
1:K)

Fig. 2 shows the target tracking and mean SNR esti-
mation subgraph corresponding to the belief bx(xt

1:K) and
bσ(σt

i,1:K), i = 1, . . . , NT , which contains the variable nodes
xt
i,k and σt

i,k, k = 1, . . . ,K.

Fig. 2: The subgraph for target state estimation.

1) The belief of target kinematic state: The belief bx(xt
i,k)

can be derived as

bx(xt
i,k) ∝ mMF

fxt
i,k
→xt

i,k
mMF
fYk→x

t
i,k︸ ︷︷ ︸

−→
b x(xt

i,k)

×mMF
fxt
i,k+1

→xt
i,k︸ ︷︷ ︸

←−
b x(xt

i,k)

. (35)

Initialize
−→
b x(xt

i,1) = N (xt
i,1; x̂t

i,1|1,P
t
i,1|1) as a Gaussian

distribution at time 1, the forward messages
−→
b x(xt

i,k) then can
be calculated from time 2 to time K. The factor-to-variable
messages corresponding to

−→
b x(xt

i,k) include

mMF
fxt
i,k
→xt

i,k

= exp
( ∫

nxt
i,k−1→fxt

i,k

ln p
(
xt
i,k|xt

i,k−1
)
dxt

i,k−1
)
,

(36)

mMF
fYk→x

t
i,k

= exp
(NM,k∑
j=1

nAk→fYk ln p(yj,k|xt
i,k,Ak)

)
. (37)
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According to Eq. (35), we have nxt
i,k−1→fxt

i,k

=
−→
b x(xt

i,k−1) since the backward message
←−
b x(xt

i,k−1) is not
available yet, and nAk→fYk = bA(ati,j,k). Note that the belief
−→
b x(xt

i,k−1) = N (xt
i,k−1; x̂t

i,k−1|k−1,P
t
i,k−1|k−1) is also a

Gaussian distribution. Then, Eq. (36) and Eq. (37) can be
derived as

mMF
fxt
i,k
→xt

i,k
∝ N (xt

i,k; x̂t
i,k|k−1,P

t
i,k|k−1), (38)

mMF
fYk→x

t
i,k

=

NM,k∏
j=1

N (yj,k;h(xt
i,k),Rk)â

t
i,j,k , (39)

where x̂t
i,k|k−1 and P t

i,k|k−1 are calculated accorded to the
transition PDF p(xt

i,k+1|xt
i,k); âti,j,k is the expectation of ati,j,k

taken over ba(ati,j,k). Eq. (39) can be derived as mMF
fYk→x

t
i,k

=

N (ȳi,k;h(xt
i,k), R̄i,k) with [39]

ȳi,k =

∑NM,k
j=1 âti,j,kyj,k

1− âti,0,k
, R̄i,k =

Rk

1− âti,0,k
. (40)

Substitute Eq. (38) and Eq. (39) into Eq. (35), yielding
−→
b x(xt

i,k) = N (xt
i,k; x̂t

i,k|k,P
t
i,k|k), (41)

where x̂t
i,k|k and P t

i,k|k are calculated by the Unscented
Kalman Filter (UKF) [43].

Next, the backward message
←−
b x(xt

i,k) is calculated from
time K to time 1. Again, we need initial message

←−
b x(xt

i,K).
We take

←−
b x(xt

i,K) = 1 for all xt
i,K . Then,

←−
b x(xt

i,k) from
time K − 1 to time 1 can be derived as
←−
b x(xt

i,k) = mMF
fxt
i,k+1

→xt
i,k

= exp
( ∫

nxt
i,k+1→fxt

i,k

ln p
(
xt
i,k+1|xt

i,k

)
dxt

i,k+1

)
.

(42)

We multiply
←−
b x(xt

i,k) by
−→
b x(xt

i,k) and use a non-
linear fixed-interval smoother, deriving that bx(xt

i,k) ∝
−→
b x(xt

i,k)
←−
b x(xt

i,k) ∝ N (xt
i,k; x̂t

i,k|K ,P
t
i,k|K) with x̂t

i,k|K
and P t

i,k|K being calculated by the Unscented Rauch-Tung-
Striebel Smoother (URTSS) [43].

2) The belief of target mean SNR: The belief bσ(σt
i,k) can

be calculated as

bσ(σt
i,k) ∝ mMF

fσt
i,k
→σt

i,k
mMF
fYk→σ

t
i,k︸ ︷︷ ︸

−→
b σ(σt

i,k)

×mMF
fσt
i,k+1

→σt
i,k︸ ︷︷ ︸

←−
b σ(σt

i,k)

. (43)

Initializing
−→
b σ(σt

i,1) = I(σt
i,1;αt

i,1|1, β
t
i,1|1) as an IG

distribution at time 1, the forward messages
−→
b σ(σt

i,k) then can
be calculated from time 2 to time K. The factor-to-variable
messages corresponding to

−→
b σ(σt

i,k) include

mMF
fσt
i,k
→σt

i,k

= exp
( ∫

nσt
i,k−1→fσt

i,k

ln p(σt
i,k|σt

i,k−1)dσt
i,k−1

)
,

(44)

mMF
fYk→σ

t
i,k

=exp
(NM,k∑
j=1

nAk→fYk ln p(mj,k|σt
i,k,Ak)

)
. (45)

We have nσt
i,k−1→fσt

i,k

=
−→
b σ(σt

i,k−1) according to Propo-

sition 1,
−→
b σ(σt

i,k−1) = I(σt
i,k−1;αt

i,k−1|k−1, β
t
i,k−1|k−1)

is an IG distribution, and nAk→fYk = bA(ati,j,k).
According to p(σt

i,k|σt
i,k−1), we get mMF

fσt
i,k
→σt

i,k
∝

I(σt
i,k;αt

i,k|k−1, β
t
i,k|k−1), where βt

i,k|k−1 = βt
i,k−1|k−1/u

t

and αt
i,k = (αt

i,k−1|k−1 + ut − 1)/ut. Eq. (45) is derived as

mMF
fYk→σ

t
i,k

=

NM,k∏
j=1

Rd(mj,k;σt
i,k, n)â

t
i,j,k , (46)

with âti,j,k being the expectation of ati,j,k taken over belief
bA(ati,j,k). Then the belief

−→
b σ(σt

i,k) can be derived as

−→
b σ(σt

i,k) ∝ I(σt
i,k;αt

i,k|k−1, β
t
i,k|k−1)

×
NM,k∏
j=1

Rd(mj,k;σt
i,k, n)â

t
i,j,k

=

NM,k∏
j=1

I(σt
i,k;αt

i,j,k|k, β
t
i,j,k|k)â

t
i,j,k ,

(47)

where βt
i,j,k|k = βt

i,k|k−1 + nm2
j,k − nd2 and αt

i,j,k|k =

αt
i,k|k−1 +n. By applying the product of the IG distributions,

Eq. (47) is derived as
−→
b σ(σt

i,k) = I(σt
i,k;αt

i,k|k, β
t
i,k|k) with

βt
i,k|k =

∑NM,k
j=1 âti,j,kβ

t
i,j,k|k

1− âti,0,k
, αt

i,k|k =

∑NM,k
j=1 âti,j,kα

t
i,j,k|k

1− âti,0,k
.

(48)

Next, the backward message
←−
b σ(σt

i,k) is calculated from
time K to time 1, starting with

←−
b σ(σt

i,K) = 1 for σt
i,K , which

can be calculated as
←−
b σ(σt

i,k) = mMF
fσt
i,k+1

→σt
i,k

= exp
( ∫

mMF
fσt
i,k+1

→σt
i,k

ln p(σt
i,k+1|σt

i,k)dσt
i,k+1

)
.

(49)

Note that mMF
fσt
i,k+1

→σt
i,k

= bσ(σt
i,k+1), which is cal-

culated by Eq. (43) and must be an IG distribu-
tion, i.e., bσ(σt

i,k+1) = I(σt
i,k+1;αt

i,k+1|K , β
t
i,k+1|K). By

the definition of p(σt
i,k+1|σt

i,k), we have
←−
b σ(σt

i,k) ∝
I(σt

i,k;αt
i,k|k+1, β

t
i,k|k+1), which is also an IG distribu-

tion, where βt
i,k|k+1 = βt

i,k+1|K/u
t and αt

i,k|k+1 =

(αt
i,k+1|K + ut − 1)/ut.
Finally, the belief bσ(σt

i,k) is calculated by an IG smoother
as bσ(σt

i,k) =
−→
b σ(σt

i,k)
←−
b σ(σt

i,k). By applying the product of
IG, we have bσ(σt

i,k) = I(σt
i,k;αt

i,k|K , β
t
i,k|K), with αt

i,k|K =

αt
i,k|k + αt

i,k|k+1 + 1 and βt
i,k|K = βt

i,k|k + βt
i,k|k+1.

C. Derivations of Belief bX(Xc
1:K)

Fig. 3 shows the clutter spatial state and mean CNR
estimation subgraph corresponding to the belief bX(X̃c

τ,1:K)
and bσ(σc

τ,1:K), τ = 0, . . . , NC , which contains the variable
nodes x̃c

τ,k and σc
τ,k, k = 1, . . . ,K.
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Fig. 3: The clutter estimation subgraph of bxc
τ,k

(xc
τ,k).

1) The belief of clutter spatial state: The belief bx(x̃c
τ,k)

can be calculated as

bx(x̃c
τ,k) ∝ mMF

fx̃c
τ,k
→x̃c

τ,k

mMF
fYk→x̃

c
τ,k︸ ︷︷ ︸

−→
b x(x̃c

τ,k)

×mMF
fx̃c
τ,k+1

→x̃c
τ,k︸ ︷︷ ︸

←−
b x(x̃c

τ,k)

. (50)

We initialize
−→
b x(x̃c

τ,1) as a GW distribution at
time 1, i.e.,

−→
b x(x̃c

τ,1) ∝ W(Dc
τ,1;W c

τ,1|1, υ
c
τ,1|1) ×

N (xc
τ,1; x̂c

τ,1|1, (β
c
τ,1|1D

c
τ,1)−1). Then the forward messages

−→
b x(x̃c

τ,k) can be calculated from time 2 to time K, which
consist of factor-to-variable messages as follows.

mMF
fx̃c
τ,k
→x̃c

τ,k

= exp
( ∫

nx̃c
τ,k−1→fx̃c

τ,k
ln p(x̃c

τ,k|x̃c
τ,k−1)dx̃c

τ,k−1
)
,

(51)

mMF
fYk→x̃

c
τ,k

= exp
(NM,k∑
j=1

nAk→fYk ln p(yj,k|x̃c
τ,k,Ak)

)
. (52)

According to Proposition 1, we have nx̃c
τ,k−1→fx̃c

τ,k
=

−→
b x(x̃c

τ,k−1) and nAk→fYk = bA(acτ,j,k). Similarly, the belief
−→
b x(x̃c

τ,k−1) is also a GW distribution, given by,

−→
b x(x̃c

τ,k−1) ∝ W(Dc
τ,k−1;W c

τ,k−1|k−1, υ
c
τ,k−1|k−1)

×N (xc
τ,k−1; x̂c

τ,k−1|k−1, (β
c
τ,k−1|k−1D

c
τ,k−1)−1).

(53)

By the definition of p(x̃c
τ,k|x̃c

τ,k−1), we get

mMF
fx̃c
τ,k
→x̃c

τ,k

∝ W(Dc
τ,k;W c

τ,k|k−1, υ
c
τ,k|k−1)

×N (xc
τ,k; x̂c

τ,k|k−1, (β
c
τ,k|k−1D

c
τ,k)−1),

(54)

where x̂c
τ,k|k−1 = x̂c

τ,k−1|k−1, βc
τ,k|k−1 = βc

τ,k−1|k−1,
W c

τ,k|k−1 = ξW c
τ,k−1|k−1, υcτ,k|k−1 = ξ(υcτ,k−1|k−1 − m −

1) +m+ 1. Eq. (52) is calculated as

mMF
fYk→x̃

c
τ,k

=

NM,k∏
j=1

N (yj,k;xc
τ,k, (D

c
τ,k)−1)â

c
τ,j,k , (55)

where âcτ,j,k is the expectation of acτ,j,k taken over belief
bA(acτ,j,k). Substituting Eq. (54) and Eq. (55) into Eq. (50)
and according to [41],

−→
b x(x̃c

τ,k) is calculated as

−→
b x(xc

τ,k) ∝ N (xc
τ,k; x̂c

τ,k|k, (β
c
τ,k|kD

c
τ,k)−1)

×W(Dc
τ,k;W c

τ,k|k, υ
c
τ,k|k),

(56)

where we define

βc
τ,k|k = βc

τ,k|k−1 +N c
τ,k, υcτ,k|k = υcτ,k|k−1 +N c

τ,k,

x̂c
τ,k|k =

1

βc
τ,k

(βc
τ,k|k−1x̂

c
τ,k|k−1 +N c

τ,kx̄
c
τ,k),

(W c
τ,k|k)−1 = (W c

τ,k|k−1)−1 +N c
τ,kΞ

c
τ,k+

βc
τ,k|k−1N

c
τ,k

βc
τ,k|k−1 +N c

τ,k

(x̄c
τ,k − x̂c

τ,k|k−1)(x̄c
τ,k − x̂c

τ,k|k−1)T.

(57)

In Eq. (57), we use three statistics of the measurement data
set, given by

N c
τ,k =

NM,k∑
j=1

âcτ,j,k, x̄c
τ,k =

1

N c
τ,k

NM,k∑
j=1

âcτ,j,kyj,k,

Ξc
τ,k =

1

N c
τ,k

NM,k∑
j=1

âcτ,j,k(yj,k − x̄c
τ,k)(yj,k − x̄c

τ,k)T.

(58)

Then, the backward message
←−
b x(x̃c

τ,k) is calculated from
time K to time 1, starting with

←−
b x(x̃c

τ,K) = 1 for all x̃c
τ,K

at time K, which can be calculated as

←−
b x(x̃c

τ,k) = mMF
fx̃c
τ,k+1

→x̃c
τ,k

= exp
( ∫

nx̃c
τ,k+1→fx̃c

τ,k
ln p(x̃c

τ,k+1|x̃c
τ,k)dx̃c

τ,k+1

)
,

(59)

where nx̃c
τ,k+1→fx̃c

τ,k
= bx(x̃c

τ,k+1) is a GW distribution, i.e.,
←−
b x(x̃c

τ,k+1) = N (xc
τ,k+1; x̂c

τ,k+1|K , (β
c
τ,k+1|KD

c
τ,k+1)−1)×

W(Dc
τ,k+1;W c

τ,k+1|K , υ
c
τ,k+1|K). Via the definition of

p(x̃c
τ,k+1|x̃c

τ,k),
←−
b x(x̃c

τ,k) is also a GW distribution

←−
b x(x̃c

τ,k) =N (xc
τ,k; x̂c

τ,k|k+1, (β
c
τ,k|k+1D

c
τ,k)−1)

×W(Dc
τ,k;W c

τ,k|k+1, υ
c
τ,k|k+1),

(60)

where x̂c
τ,k|k+1 = x̂c

τ,k+1|K , βc
τ,k|k+1 = βc

τ,k+1|K ,
W c

τ,k|k+1 = ξW c
τ,k+1|K , υcτ,k|k+1 = ξ(υcτ,k+1|K −m − 1) +

m+ 1.
Finally, the belief bx(x̃c

τ,k) is calculated by a GW smoother
as bx(x̃c

τ,k) ∝
−→
b x(x̃c

τ,k)
←−
b x(x̃c

τ,k). By applying the product
of GW distribution, we have

bx(x̃c
τ,k) =N (xc

τ,k; x̂c
τ,k|K , (β

c
τ,k|KD

c
τ,k)−1)

×W(Dc
τ,k;W c

τ,k|K , υ
c
τ,k|K),

(61)

where βc
τ,k|K = βc

τ,k|k + βc
τ,k|k+1, x̂c

τ,k|K = (βc
τ,k|kx̂

c
τ,k|k +

βc
τ,k|k+1x̂

c
τ,k|k+1)/βc

τ,k|K , (W c
τ,k|K)−1 = (W c

τ,k|k)−1 +

(W c
τ,k|k+1)−1 and υcτ,k|K = υcτ,k|k + υcτ,k|k+1 −m− 1.
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2) The belief of clutter mean CNR: The belief bσ(σc
τ,k) is

derived by

bσ(σc
τ,k) ∝ mMF

fσc
τ,k
→σc

τ,k

mMF
fYk→σ

c
τ,k︸ ︷︷ ︸

−→
b σ(σc

τ,k)

×mMF
fσc
τ,k+1

→σc
τ,k︸ ︷︷ ︸

←−
b σ(σc

τ,k)

. (62)

Using the same initialisation and MP relus as target mean
SNR estimation, the forward message

−→
b σ(σc

τ,k) can be cal-
culated as

−→
b σ(σc

τ,k) ∝ I(σc
τ,k;αc

τ,k|k, β
c
τ,k|k), where

βc
τ,k|k =

∑NM,k
j=1 âcτ,j,kβ

c
τ,j,k|k

1− âcτ,0,k
, αc

i,k|k =

∑NM,k
j=1 âcτ,j,kα

c
τ,j,k|k

1− âcτ,0,k
,

(63)

where βc
τ,j,k|k=βc

τ,k|k−1+nm2
j,k−nd2, αc

τ,j,k|k=αc
τ,k|k−1+n.

Again, referring to target mean SNR estimation, the back-
ward message

←−
b σ(σc

τ,k) can be calculated as
←−
b σ(σc

τ,k) ∝
I(σc

τ,k;αc
τ,k|k+1, β

c
τ,k|k+1), where βc

τ,k|k+1 = βc
τ,k+1|K/u

c

and αc
τ,k|k+1 = (αc

τ,k+1|K + uc − 1)/uc.
Finally, we have bσ(σc

τ,k) = I(σc
τ,k;αc

τ,k|K , β
c
τ,k|K) by an

IG smoother, where αc
τ,k|K = αc

τ,k|k + αc
τ,k|k+1 + 1 and

βc
τ,k|K = βc

τ,k|k + βc
τ,k|k+1.

D. Derivations of Belief bS(S1:K)

Fig. 4 shows the subgraph for the estimation of target
visibility state si,k, k = 1, . . . ,K. The belief bs(si,k) can

Fig. 4: The subgraph for target visibility state estimation.

be calculated as

bs(si,k) ∝ mBP
fsi,k→si,k

mBP
fAk→si,k︸ ︷︷ ︸

−→
b s(si,k)

×mBP
fsi,k+1

→si,k︸ ︷︷ ︸
←−
b s(si,k)

. (64)

Initializing
−→
b s(si,1) as a Bernoulli distribution at time 1,

the forward messages
−→
b s(si,k) then can be calculated from

time 2 to time K, which consist of factor-to-variable messages

mBP
fsi,k→si,k

=

1∑
si,k−1=0

p(si,k|si,k−1)nsti,k−1→fsi,k

=Tk
−→
b s(si,k−1),

(65)

mBP
fAk→si,k

=

1∑
ati,0,k=0

p(ati,0,k|si,k)nati,0,k→fAk= ξk(si,k), (66)

where nati,0,k→fAk = ba(ai,0,k). Substituting Eq. (65) and

Eq. (66) into Eq. (64), the belief
−→
b s(si,k) is written as

−→
b s(si,k) = Tkbs(si,k−1)ξk(si,k). The belief

−→
b s(si,1:K) from

time 1 to time K can be derived as

−→
b s(si,1:K) =

K∏
k=1

−→
b s(si,k) =

−→
b s(si,1)ξ1(si,1)

K∏
k=2

Tkξk(si,k).

(67)
Next, the backward message

←−
b s(si,k) is calculated from

time K to time 1, starting with
←−
b s(si,K) = 1 for all si,K ,

which is given by
←−
b s(si,k) = mBP

fsi,k+1
→si,k

=

1∑
si,k+1=0

mBP
fsi,k+2

→si,k+1
mBP
fAk+1

→si,k+1
p(si,k+1|si,k).

(68)

Thus, the belief bs(si,1:K) can be recognized as a
hidden Markov model (HMM) with observation sequence
{ξ1(si,1), . . . , ξ1(si,K)}, transition matrix Tk and initial
probability

−→
b s(si,1). We adopt the forward-backward algo-

rithm [44] to estimate the belief bs(si,1:K), resulting an
HMM smoother. The track management can be achieved by
comparing the belief bs(si,k) with the track confirmation and
deletion thresholds.

E. Derivations of Belief bΠ(Π1:K)

Fig. 5 shows the clutter mixing weights estimation subgraph
corresponding to the belief bπ(πτ,1:K), τ = 0, . . . , NT , which
contains the variable nodes πτ,k, k = 1, . . . ,K. The belief

Fig. 5: The mixing weights estimation subgraph of bΠ(Π1:K).

bπ(πτ,k) is given by

bπ(πτ,k) ∝ mMF
fπτ,k→πτ,k

mMF
fAk→πτ,k︸ ︷︷ ︸

−→
b π(πτ,k)

×mMF
fπτ,k+1

→πτ,k︸ ︷︷ ︸
←−
b π(πτ,k)

. (69)

Initializing
−→
b π(πτ,1) ∝ Dir(πτ,1;ατ,1|1) as a Dirichlet

distribution at time 1, the forward messages
−→
b π(πτ,k) then

can be calculated from time 2 to time K, which consist of
factor-to-variable messages

mMF
fπτ,k→πτ,k

=

∫
nπτ,k−1→fπτ,k ln p(πτ,k|πτ,k−1)dπτ,k, (70)

mMF
fAc

k
→πτ,k = exp

(NM,k∑
j=1

nAk→fAc
k

ln p(acτ,j,k|πτ,k)
)
. (71)

Note that nπτ,k−1→fπτ,k =
−→
b π(πτ,k−1) is a Dirichlet distri-

bution, i.e.,
−→
b π(πτ,k−1) = Dir(πτ,k−1;ατ,k−1|k−1). By the

definition of p(πτ,k|πτ,k−1), the predicted belief also follows a
Dirichlet distribution, i.e., mMF

fπτ,k→πτ,k
∝ Dir(πτ,k;ατ,k|k−1),

where ατ,k|k−1 = κMk−1ατ,k−1|k−1/
∑NC
τ ′=0 ατ ′,k−1|k−1
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and Mk−1 is the estimated total number of clutter at time
k − 1. Then, the message mMF

fAc
k
→πτ,k is calculated as

mMF
fAc

k
→πτ,k = exp

(NM,k∑
j=1

âcτ,j,k lnπτ,k

)
=(πτ,k)

∑NM,k
j=1 âτ,j,k .

(72)

Thus, the forward message
−→
b π(πτ,k) is calculated as

−→
b π(πτ,k) ∝Dir(πτ,k−1;ατ,k|k−1)(πτ,k)

∑NM,k
j=1 âτ,j,k

∝(πτ,k)
∑NM,k
j=1 âτ,j,k+ατ,k|k−1 .

(73)

We recognize
−→
b π(πτ,k) = Dir(πτ,k|ατ,k|k) as a Dirichlet

distribution with ατ,k|k =
∑NM,k
j=1 âτ,j,k + ατ,k|k−1.

Next, the backward message
←−
b π(πτ,k) is calculated from

time K to time 1, starting with
←−
b π(πτ,K) = 1 for all πτ,K ,

which is given by

←−
b π(πτ,k) = mMF

fπτ,k+1
→πτ,k

= exp
( ∫

mMF
fπτ,k+1

→πτ,k ln p(πτ,k+1|πτ,k)dπτ,k+1

)
.

(74)

Note that mMF
fπτ,k+1

→πτ,k = bπ(πτ,k+1) is a Dirichlet dis-
tribution, given by bπ(πτ,k+1) = Dir(πτ,k+1;ατ,k+1|K).
By the definition of p(πτ,k+1|πτ,k), we have

←−
b π(πτ,k) ∝

Dir(πτ,k|ατ,k|k+1), which is also a Dirichlet distribution,
where ατ,k|k+1 = κMk+1ατ,k+1|K/

∑NC
τ ′=0 ατ ′,k+1|K , where

Mk+1 is the estimated total number of clutter at time k + 1.
Finally, the belief bπ(πτ,k) is calculated by a Dirichlet

smoother as bπ(πτ,k) =
−→
b π(πτ,k)

←−
b π(πτ,k). By applying

the product of Dirichlet distribution, we have bπ(πτ,k) =
Dir(πτ,k|ατ,k|K), where ατ,k|K = ατ,k|k + ατ,k|k+1. The
estimated number of clutter component τ is Mτ,k = Mkατ,k|K
with Mk =

∑NC
τ=0

∑NM,k
j=1 âτ,j,k being the estimated total

number of clutter.

F. Derivations of Beliefs bA(A1:K)

Fig. 6 and Fig. 7 show the data association global subgraph
and the corresponding local MP subgraph for the belief of
Ak, respectively, which contains the variables nodes ati,j,k and
acτ,j,k, i = 1, . . . , NT , τ = 0, . . . , NC , j = 0, . . . , NM,k, k =
1, . . . ,K. The belief bA(Ak) can be computed as

bA(Ak) ∝mMF
fYk→Ak

×mBP
fAt

k
→Ak ×m

BP
fAc

k
→Ak

×mBP
fIk→Ak

×mBP
fEk→Ak

.
(75)

The belief mMF
fYk→Ak

is computed as

mBP
fYk→Ak

=

NM,k∏
j=0

NT∏
i=1

mMF
fYk→a

t
i,j,k

NC∏
τ=0

mMF
fYk→a

c
τ,j,k

. (76)

Fig. 6: The global data association subgraph of bA(Ak). The
time index k is omitted for the simplicity. In addition, each
variable node at

i,j,k (ac
τ,j,k) also connects with the factor nodes

fyj,k and fAt
k

(fAc
k
) as in Fig. 7, which are not shown here

for the simplicity.

Fig. 7: The local subgraph of data association. The xi,k, Ei,k
and ai,j,k represent xt

i,k (xc
i,k), Et

i,k (Ec
i,k) and at

i,j,k (ac
τ,j,k)

when calculate the association between measurements and
targets (clutter).

The message mMF
fYk→a

t
i,j,k

is calculated as

mMF
fYk→a

t
i,j,k

= exp

∫
nXt

i,k→fYk
ln p(Yj,k|Xt

i,k)a
t
i,j,kdXt

i,k

= exp
( ∫

nxt
i,k→fYk

ln p(yj,k|xt
i,k)a

t
i,j,kdxt

i,k+∫
nσt

i,k→fYk
ln p(mj,k;σt

i,k)a
t
i,j,kdσt

i,k

)
.

(77)

Since nxt
i,k→fYk

= b(xt
i,k) and nσt

i,k→fYk
= b(σt

i,k), Eq. (77)
can be calculated as

mMF
fYk→a

t
i,j,k

= exp
[
ati,j,k

(
E[ln p(yj,k|xt

i,k)]+E[ln p(mj,k;σt
i,k)]

)]
,

(78)

where,

E[ln p(yj,k|xt
i,k)]

c
= E

[
(yj,k −Hxt

i,k)TR−1k (yj,k −Hxt
i,k)
]

c
= Tr

(
R−1k

(
HP t

i,kH
T + (Hx̂t

i,k − yj,k)(Hx̂t
i,k − yj,k)T

))
,

(79)

and E[ln p(mj,k;σt
i,k)] can be calculated as (The details are
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shown in Appendix V-A),

E[ln p(mj,k;σt
i,k)]

=(2n− 1) lnmj,k − nm2
j,k

αt
i,k

βt
i,k

+
n

2αt
i,k − 4

.
(80)

The message mMF
fYk→a

c
τ,j,k

is calculated as,

mMF
fYk→a

c
τ,j,k

= exp

∫
nXc

τ,k→fYk ln p(Yj,k|Xc
τ,k)a

c
τ,j,kdXc

τ,k

= exp
( ∫

nx̃c
τ,k→fYk ln p(yj,k|x̃c

τ,k)a
c
τ,j,kdx̃c

τ,k+∫
nσc

τ,k→fYk ln p(mj,k;σc
τ,k)a

c
τ,j,kdσc

τ,k

)
.

(81)

With nx̃c
τ,k→fYk = b(x̃c

τ,k) and nσc
τ,k→fYk = b(σc

τ,k), Eq. (81)
can be derived as

mMF
fYk→a

c
τ,j,k

= exp
[
acτ,j,k

(
E[ln p(yj,k|x̃c

τ,k)]+E[ln p(mj,k;σc
τ,k)]

)]
,

(82)

where E[ln p(yj,k|x̃c
τ,k)] = ln(1/VG) if τ = 0; otherwise,

E[ln p(yj,k|x̃c
τ,k)] = −D

2
ln 2π +

1

2
E[ln |Dc

τ,k|]

− 1

2
E[(yj,k − x̂c

τ,k)TDc
τ,k(yj,k − x̂c

τ,k)],
(83)

where,

E[ln |Dc
τ,k|]=

m∑
j=1

ψ(
υcτ,k+ 1− j

2
)+m ln 2+ln |W c

τ,k|, (84)

E[(yj,k − x̂c
τ,k)TDc

τ,k(yj,k − x̂c
τ,k)]

=mβc
τ,k
−1 + υcτ,k(yj,k − x̂c

τ,k)TW c
τ,k(yj,k − x̂c

τ,k),
(85)

where ψ(a) = d ln Γ(a)/da is the digamma function [41].
Then, E[ln p(mj,k;σc

τ,k)] is derived as (The details are given
in Appendix V-A),

E[ln p(mj,k;σc
τ,k)]

=(2n− 1) lnmj,k − nm2
j,k

αc
τ,k

βc
τ,k

+
n

2αc
τ,k − 4

.
(86)

The belief mBP
fAt

k
→Ak is calculated as

mBP
fAt

k
→Ak =

NT∏
i=1

mBP
fAt

k
→ati,0,k

, (87)

where,

mBP
fAt

k
→ati,0,k

=

1∑
si,k=0

p(ati,0,k|si,k)nsi,k→fAt
k

=

{∑1
si,k=0

(
1− Pd(si,k)

)
mBP
fsi,k→si,k

, if ati,0,k = 1,∑1
si,k=0 Pd(si,k)mBP

fsi,k→si,k
, otherwise.

(88)

The belief mMF
fAc

k
→Ak is calculated as

mMF
fAc

k
→Ak =

NC∏
τ=1

mMF
fAc

k
→acτ,0,k

, (89)

where,

mMF
fAc

k
→acτ,j,k

= exp

∫
nπτ,k→fAc

k
ln p(acτ,j,k|πτ,k)dπτ,k. (90)

Note that nπτ,k→fAc
k

= bπ(πτ,k). We have

mMF
fAc

k
→acτ,j,k

= exp
(
acτ,j,kE[lnπτ,k]

)
= exp

(
acτ,j,kΓ(αc

τ,k)− Γ(

NC∑
τ ′=1

αc
τ ′,k)

)
.

(91)

The belief mBP
fIk→Ak

is calculated as

mBP
fIk→Ak

=

NM,k∏
j=1

NT∏
i=1

mBP
fIj,k→a

t
i,j,k

NC∏
τ=0

mBP
fIj,k→a

c
τ,j,k

. (92)

The belief mBP
fIj,k→a

t
i,j,k

and mBP
fIj,k→a

c
τ,j,k

are derived as

mBP
fIj,k→a

t
i,j,k

=
∑

Aj,k\{ati,j,k}

fIj,k(Aj,k)

×
NT∏

i′=1\i

nat
i′,j,k→fIj,k

NC∏
τ=0

nacτ,j,k→fIj,k ,

(93)

mBP
fIj,k→a

c
τ,j,k

=
∑

Aj,k\{acτ,j,k}

fIj,k(Aj,k)

×
NT∏
i=1

nati,j,k→fIj,k

NC∏
τ ′=0\τ

nac
τ′,j,k→fIj,k ,

(94)

where nati,j,k→fIj,k and nacτ,j,k→fIj,k are

nati,j,k→fIj,k =mMF
fYk→a

t
i,j,k

mBP
fAt

k
→ati,j,k

mBP
fEt
k
→ati,j,k

,

nacτ,j,k→fIj,k =mMF
fYk→a

c
τ,j,k

mMF
fAc

k
→acτ,j,k

mBP
fEc
k
→acτ,j,k

.
(95)

The belief mBP
fEk→Ak

is calculated as

mBP
fEk→Ak

=

NM,k∏
j=0

NT∏
i=1

mBP
fEt
i,k
→ati,j,k

NC∏
τ=0

mBP
fEc
τ,k
→acτ,j,k

. (96)

The belief mBP
fEt
i,k
→ati,j,k

and mBP
fEc
τ,k
→acτ,j,k

are calculated as

mBP
fEt
i,k
→ati,j,k

=
∑

At
i,k\{a

t
i,j,k}

fEt
i,k

(At
i,k)

NM,k∏
j′=1\j

nat
i,j′,k→fEt

i,k

,

mBP
fEc
τ,k
→acτ,j,k

=
∑

Ac
τ,k\{a

c
τ,j,k}

fEc
τ,k

(Ac
τ,k)

NM,k∏
j′=1\j

nac
τ,j′,k→fEc

τ,k
,

(97)

where nati,j,k→fEt
i,k

and nacτ,j,k→fEc
τ,k

are

nati,j,k→fEt
i,k

= mMF
fYk→a

t
i,j,k

mBP
fAt

k
→ati,j,k

mBP
fIk→a

t
i,j,k

,

nacτ,j,k→fEc
τ,k

= mMF
fYk→a

c
τ,j,k

mMF
fAc

k
→acτ,j,k

mBP
fIk→a

c
τ,j,k

.
(98)

By applying some mathematical tricks in Appendix V-B,
we obtain the simplified messages as follows,

βt
i,j,k =

θti,j,k

θc0,j,k +
NT∑

i′=1\i
θti′,j,kη

t
i′,j,k +

NC∑
τ=1

θcτ,j,kη
c
τ,j,k

,
(99)
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βc
τ,j,k=

θcτ,j,k

θc0,j,k+
NT∑
i=1

θti,j,kη
t
i,j,k+

NC∑
τ ′=1\τ

θcτ ′,j,kη
c
τ ′,j,k

,
(100)

ηti,j,k=
1∑NM,k

j′=0\j β
t
i,j′,k

, ηcτ,0,k=
1∏NM,k

j′=1 (1 + βc
τ,j′,k)

, (101)

ηcτ,j,k =

∏NM,k
j′=1\j (1 + βc

τ,j′,k)

βc
τ,0,k +

∏NM,k
j′=1\j (1 + βc

τ,j′,k)
, (102)

where βt
i,j,k, βc

τ,j,k, θti,j,k, θcτ,j,k, ηti,j,k, ηcτ,j,k are defined in
Eq. (110) and Eq. (112). The values of all messages βt

i,j,k,
βc
τ,j,k, ηti,j,k, and ηcτ,j,k are initialized as one and updated

via Eq. (99)-Eq. (102). The message-updating procedure is
terminated after the difference between two successive mes-
sages is less than δBP

T or a maximum number of iterations
rBP
max is reached. The data association may have multiple local

optimal solutions corresponding to the multiple fixed points
of the message update rules, which may prevent convergence.
To this end, we introduce a damping to the message update,
i.e., µ = γµold + (1− γ)µnew, where µ denote a message and
γ is a damping factor. A higher value of γ leads to a slower
convergence rate but often with more stable convergence.

The proposed hybrid data association algorithm can be
viewed as a generalization of existing data association algo-
rithms solved with BP, which contain the one-to-one con-
straints that model one target generates at most one mea-
surement and one-to-multi constraints that model one clutter
component potentially generates a large number of measure-
ments at one scan. Specifically, the hybrid data associations
degenerates into one-to-one data associations [24], [28]–[30]
when only targets exist and degenerates into one-to-multi data
associations [31], [32] when only clutter exist. Different from
the algorithms in [24], [28]–[32] that use the two multimodal
random variables to represent a redundant formulation of data
association, instead as in [37]–[39], the data association event
is modelled as a binary random variable and the corresponding
constraints are established, then the marginal association PDFs
are inferred by BP.

G. Initialization, Implementation, Computational Complexity

We introduce a scheme for initializing the beliefs of target
joint augmented stateXt

1:K , target visibility state S1:K , clutter
joint augmented state Xc

1:K , and clutter mixing weights Π1:K .
The target track is initialized by a two-point method. We
assume that the maximum speed of any target in Carte-
sian coordinates is less than vmax, and the number of con-
secutive missing measurements of any tracks is less than
Lmax. Suppose that there is a measurement generated from
a target at scan k, then the measurement can be used to
initialize a potential track with another measurement at scan
k + δ, 0 < δ ≤ Lmax within distance δvmax. We initialize
the IG distributions of target mean SNR and clutter mean
CNR using the maximum likelihood estimation, and let α = 3
and β = 2

∑N
n=1m

2
n/N , where N is the total number of

initial measurements generated from the corresponding target
or clutter and mn is the strength of measurement n. The belief
of target visibility state is initialized as bs(si,1 = 1) = fs with

fs as the initial target visibility probability. The parameters of
the spatial distribution of the nonuniform clutter component,
i.e., GW, are initialized by clustering technologies, such as
variational mixture of Gaussians clustering [41]. Given that the
number of measurements generated by each clutter component
varies slowly, we initialize the clutter mixing weight parameter
ατ,1 with the initial mixing weights of clutter component τ .

Given the initial beliefs on Xt
1:K , S1:K , Xc

1:K , and Π1:K ,
we can iteratively calculate bX(Xt

1:K), bS(S1:K), bX(Xc
1:K),

bΠ(Π1:K), and bA(A1:K) in principle by running MP de-
scribed in this section. The proposed MP algorithm is illus-
trated in Fig. 8 and summarised as Algorithm 1, which are
explained as follows. Firstly, initialize the belief b(0)X (Xt

1:K),
b
(0)
S (S1:K), b(0)X (Xc

1:K), and b(0)Π (Π1:K). At the lth iteration,
the belief b(l)A (Ac

1:K) is inferred using the incoming messages
b
(l−1)
X (Xt

1:K), b(l−1)S (S1:K), b(l−1)X (Xc
1:K), and b(l−1)Π (Π1:K)

calculated in the (l− 1)th iteration, as the red lines in Fig. 8.
Then b

(l)
A (Ac

1:K) is used to infer b
(l)
X (Xt

1:K), b(l)S (S1:K),
b
(l)
X (Xc

1:K), and b(l)Π (Π1:K), as the balck lines in Fig. 8. The
algorithm terminates when the MP converges or when the
maximum number of iterations is reached.

Target augmented state

(ERTSS/IG-Smoother)

Clutter augmented state

(IGGW-Smoother)

Target visibility state

(HMM-Smoother)

Clutter mixing weights

(Dirichlet-Smoother)

Data Association (LBP)

Measurements

Global initialization

Iteration stop?

Output

No No

Yes

Clutter estimation Target Tracking

Fig. 8: The flowchart of MP-RMTT.

The complexity associated to the proposed MP-RMTT
algorithm is discussed next. Note that the proposed MP-RMTT
is an iterative and batch process algorithm with the batch
window length K and the number of iterations Nr among
five subgraphs, and the corresponding computational cost is
provided in Table. I and described below. The estimation of
target joint augmented state is solved by an ERTSS and IG
smoother with a computational cost ctx = O(2KNT ). The
estimation of clutter joint augmented state is carried out by
an IG smoother and GW smoother (referred to as IGGW
smoother) with a computational cost ccx = O(2KNC). The
forward and backward algorithm is used to estimate the target
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Algorithm 1 MP-RMTT algorithm

Input Y1:K , the maximum number of iterations rMP
max;

Output bX(Xt
1:K), bX(Xc

1:K), bS(S1:K), bΠ(Π1:K), and
bA(A1:K);

1: Initialization: initialize b
(0)
X (Xt

1:K), b
(0)
X (Xc

1:K),
b
(0)
S (S1:K), b

(0)
Π (Π1:K), the tracks number NT and

clutter components number NC .
2: for l = 1 : rMP

max do
3: Data association: estimate b(l)a (ati,j,k) and b

(l)
a (aci,j,k),

i = 1, . . . , NT , j = 1, . . . , NM , τ = 0, . . . , NC , k =
1, . . . ,K via Eq. (99)-Eq. (102);

4: Clutter mixing weights estimation: calculate
bπ(πτ,k), k = 1, . . . ,K, τ = 0, . . . , NC via Eq. (69);

5: Target visibility estimation: calculate bs(si,k), k =
1, . . . ,K, i = 1, . . . , NT , via Eq. (64);

6: Clutter augmented state estimation: calculate
bx(x̃c

τ,k) and bσ(σc
τ,k), k = 1, . . . ,K, τ = 0, . . . , NC ,

via Eq. (50) and Eq. (62), respectively;
7: Target augmented state estimation: calculate

bx(xt
i,k) and bσ(σt

i,k), k = 1, . . . ,K, i = 1, . . . , NT ,
via Eq. (35) and Eq. (43), respectively.

8: end for

visibility state and the computational cost is cs = O(KNT ).
The estimation of clutter mixing weights is solved by a
Dirichlet Smoother with a computational cost cπ = O(KNC).
The data association is solved by the LBP with a computa-
tional cost ca = O(KNa(NT + NC)NM ), where Na is the
maximum number of BP iterations. Overall, the computational
complexity is ctotal = Nr(c

t
x + ccx + cs + cπ + ca).

TABLE I: Computational complexity.

Hidden variables Equation Computational complexity
bX(Xt

1:K) (35), (43) O(2KNrNT )
bX(Xc

1:K) (50), (62) O(2KNrNC)
bS(S1:K) (64) O(KNrNT )
bΠ(Π1:K) (69) O(KNrNC)
bA(A1:K) (99)-(102) O(KNrNa(NT +NC)NM )

IV. SIMULATION AND ANALYSIS

A. Scenario Configuration

1) Scenario parameters: We consider a simulation sce-
nario with five targets together with interference from the
environment and countermeasures within a two-dimensional
surveillance region. As shown in Fig. 9, all the five targets
appear and disappear at k = 1 and k = 340, respectively.
The trajectories of Target 1 and Target 2 can be split into
two intervals. The two targets are separated spatially during
the first interval. In the second interval, both targets move
in parallel at a distance of 20 m. The other three targets
(Target 3-Target 5) cross at k = 175. Furthermore, there
are three elliptical non-uniform clutter components generated
by the interference in the simulation scenario, as shown in
Fig. 9. Clutter Component 1 is generated by the chaff cloud
jamming affected by Target 1 and Target 2, and Clutter

Component 3 is generated by the chaff cloud jamming affected
by Target 3, Target 4 and Target 5. Clutter Component 1
appears and disappears at k = 130 and k = 170, respectively.
Clutter Component 3 appears and disappears at k = 172 and
k = 225, respectively. Clutter Component 2 is generated by
the atmospheric interference, e.g., thick fog, from k = 227
to k = 280. By the assumptions of high target speeds and
stable atmospheric environment, the position of nonuniform
clutter moves within a relatively small area and the shape of
the clutter may change in different interference stages.

1 1.5 2 2.5 3 3.5 4 4.5
X (m) 104

1

1.5

2

Y
 (

m
)

104

Fig. 9: True trajectories of targets represented by red lines
and shapes of nonuniform clutter components represented by
blue ellipses. Ti (Cτ ) : [k1, k2] illustrates that Target i (Clutter
Component τ ) appears and disappears at k1 and k2. Start/Stop
positions of each target are indicated by M/�.

In the first interval of Target 1 and Target 2, both of the
two targets follow the constant velocity motion moving close
to each other, then follow the constant acceleration motion
until the velocity in the Y-axis is zero. In the second interval
of Target 1 and Target 2, both of the two targets follow the
constant velocity motion. Since the performance evaluation
focus on the second interval of Target 1 and Target 2, it is
assumed that Target 1 and Target 2 follow the constant velocity
motion over all of their interval during the tracking processing
for the sake of convenience. Target 3, Target 4 and Target 5
follow constant velocity motion over all of their interval. The
parameters of the constant velocity motion are

F = I2 ⊗
[

1 T
0 1

]
,Q = σ2

v × I2 ⊗

[
T 4

4
T 3

2
T 3

2 T 2

]
, (103)

where T = 1.25 s is the sampling period, and σ2
v = 0.01 m/s

2

is the variance of the driving processes. The parameters of
targets are given in Table II unless noted otherwise.

TABLE II: Configurations of targets.

ID Initial state Lifetime SNR
1 [10000, 40, 13465,−40]T [1, 340] 10/3
2 [10000, 40, 6570, 40]T [1, 340] 50/3
3 [28000, 40, 20543,−12]T [1, 340] 10/3
4 [28000, 40, 18000, 0]T [1, 340] 50/3
5 [28000, 40, 15458, 12]T [1, 340] 10/3

SNR= St
i,k/N0 as defined instead of being expressed in log scale.

Each of the nonuniform clutter component is elliptical and
spatially follows a two-dimensional Gaussian distribution. The
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centroid and axes of the ellipse are used to determine the mean
and covariance of the corresponding Gaussian distribution. The
configurations of clutter are shown in Table III.

TABLE III: Parameters of clutter.

ID Number Mean Covariance Lifetime CNR
0 30 / / [1, 340] 1

1 20
[
20 km
30◦

] [
1 km 0
0 3◦

]2
[130, 170] 20/3

2 20
[
27 km
23◦

] [
1 km 0
0 3◦

]2
[227, 280] 10

3 30
[
41 km
27◦

] [
1 km 0
0 3◦

]2
[172, 225] 20/3

Covariance denotes the initial covariance Dc
τ,0 of clutter component τ .

Number denotes the initial numbers λτ,0 of clutter component τ .
CNR= Sc

τ,k/N0 as defined instead of being expressed in log scale.

The sensor measurements consist of position information
and strength information with detection threshold d = 0.715.
The spatial measurements have zero-mean white Gaussian
noise with covariance R = diag(20 m, 0.6°)2. The mea-
sured signal strength is sampled by the inversion method
and the acceptance-rejection method for Swerling-I model and
Swerling-III model [41], respectively.

2) Algorithm Parameters: The forgetting factors of target
mean SNR transition PDF and clutter mean CNR transition
PDF are µt = µc = 1.05. The forgetting factor of clutter
spatial transition PDF is ξ = 0.99. The balance parameter of
clutter mixing weight transition PDF is κ = 5. For parameters
of MP, window length K = 7 and sliding step s = 3,
δMP
T = 10−3, the maximum number of iterations rMP

max = 3.
For BP in the data association, the iterative convergence
threshold δBP

T = 10−6, the maximum number of iterations
rBP
max = 1000 and the damping factor γ = 0.9. The detection

probability Pd(si,k = 0) = 0.01 if the target is not visible.
The target birth probability is set to pb = 0.15 and the target
survival probability is set to ps = 0.8. For track initialization,
the maximum speed of any target in Cartesian coordinate is
vmax = [120 m/s 120 m/s]T, and the number of consecutive
missing measurements of any tracks is less than Lmax = 3.
The initial target visibility state is fs = 0.5. The thresholds of
track confirmation and deletion are set to 0.75 and 0.5.

3) Performance Evaluation: The performance metrics are
given by
• Correct associations rate of targets and measurements

(CAR);
• Number of false tracks (NFT) [45];
• Mean optimal subpattern assignment [46] for target po-

sition estimation (MOSPA) with order and cutoff param-
eters as p = 2 and c = 631 m respectively;

• Relative SNR error (RSE), given by ∆σi,k/σi,k;
• Total number of nonuniform clutter point (TNNC);
• Root Mean Squares Error for nonuniform clutter position

estimation (RMSE);
• Wasserstein distance for nonuniform clutter shape esti-

mation (WD), given by ‖xk − x̂k‖2 + tr
{
Dk + D̂k −

2

√√
DkD̂k

√
Dk

}
, where the square root of a matrix

D is defined as the matrix Y for D = Y TY .

The values of metrics are average of 100 Monte Carlo runs.
4) Simulation Scenarios: We consider three scenarios to

demonstrate the performance of MP-RMTT. We outline the
three scenarios in Table IV. We compare MP-RMTT against
the PHD, CPHD, and CBMeMBer filter with integrated clutter
estimation using measured strength information, which use
the methods as in [19] with the nonuniform clutter spatial
estimation method in [10], referred to MP-RMTT, PHD,
CPHD, and CBMeMBer, respectively. We also compare the
first iteration output of MP-RMTT, referred to MP-RMTTst.
In all of the algorithms, the same scenario input is used.

TABLE IV: Simulation scenarios.

Scenario Clutter Spatial distribution Nonuniform Clutter
1 Uniform \
2 Uniform and Nonuniform Unvarying
3 Uniform and Nonuniform Varying

B. Scenario 1: Data Association Aided by AI

The first scenario focus on the capability of target mean
SNR estimation and the discrimination ability for closely
spaced targets aided by the obtained target mean SNR esti-
mation. There are Target 1 and Target 2, and only uniform
clutter. The history of measurements generated by targets and
clutter, as well as the target trajectory estimation obtained by
MP-RMTT are shown in Fig. 10. During the first interval,
MP-RMTT can obtain nearly stable SNR estimation for each
target. Since the trajectories of the two targets are very close
in the second interval, it is obvious that the two targets cannot
be distinguished by spatial measurement alone. The tracking
result in Fig. 10 shows that the two targets can be distinguished
and tracked by MP-RMTT with strength information.
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Fig. 10: The history of measurements generated by targets
and clutter, and trajectories estimation of targets (bottom)
obtained by MP-RMTT. The black and colored lines represent
the target true trajectories and valid tracks, respectively. This
representation is also used in the figures below.

To analyze the performance of target mean SNR estimation
and target tracking with strength information, the evolution
of the MOSPA distance and RSE are evaluated, as shown in
Fig. 11. It can be seen that stable SNR estimations are obtained
for all algorithms as the RSE converges to a small value. The
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presented results also demonstrate that MP-RMTT performs
better than the PHD, CPHD, and CBMeMBer filters.
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Fig. 11: Monte Carlo average of MOSPA distance (top) and
RSE (bottom) of targets.

The obtained MOSPA distance and CAR results w.r.t. dif-
ferent target SNRs are listed in Table. V. In the case of the
MP-RMTT that solely exploits kinematic information (referred
to MP-RMTT-KI) will inevitably lose the CAR during the
second interval. As expected, the obtained CAR take values
around 50%. The tracking algorithm utilizing the strength
information can obtain an CAR of 80% when the SNR of
Target 1 is three times larger than that of Target 2. As the
SNR of the second target increases, the ability to discriminate
also improves. The MP-RMTT with the Swerling-III model
achieves almost optimal CAR with 97% when the SNR of
Target 1 is nine times larger than that of Target 2. Note that,
MP-RMTT is superior to PHD, CPHD and CBMeMBer in
terms of the MOSPA metric.

C. Scenario 2: RMTT for Unvarying Clutter

The second scenario focus on the RMTT capability in
unvarying clutter background. There are all five targets, one
uniform clutter component, and three nonuniform clutter com-
ponents. The history of measurements generated by targets and
clutter are shown in Fig. 12a. The tracking and nonuniform
clutter estimation results of MP-RMTT are shown in Fig. 12b.
The black and colored ellipsoids represent the covariance
matrices of each nonuniform clutter component. This repre-
sentation is also used in the figures below. The presented
results demonstrate that MP-RMTT tracks all five targets
correctly, and no false track is generated. Meanwhile, MP-
RMTT successfully estimates the spatial and shape of the
nonuniform clutter.

To reveal the performance improvements brought by the
MP-RMTT, three simulation tests are performed. In the first
simulation, the spatial distribution of clutter is set to a uniform
distribution where the expected number of clutter per scan is
known, referred to MP-RMTT-NCE. In the second simulation,
MP-RMTT, PHD and CPHD are used for clutter estimation
and target tracking, and the first iteration output of MP-RMTT
is also considered. The algorithm knows the clutter intensity
exactly in the third simulation, referred to MP-RMTT-KCE.
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(a) Measurement
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(b) Trajectories and clutter estimation

Fig. 12: Measurements, tracks and clutter estimation obtained
by MP-RMTT.

The MOSPA of target position and NFT are given in Fig. 13.
It is clearly seen that MP-RMTT has comparable perfor-
mance to algorithms with known clutter intensity perfectly.
On the contrary, the performance without clutter estimation
is severely degraded. The TNNC, RMSE and WD metrics
for clutter estimation are given in Fig. 14, which shows that
MP-RMTT has the best clutter estimation performance. The
results indicate that the proposed MP-RMTT has comparable
performance to an algorithm with a perfectly known clutter
distribution, demonstrating the effectiveness and robustness of
the algorithm.
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Fig. 13: Monte Carlo MOSPA (top) and NFT (bottom) for
target tracking.
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TABLE V: Performance comparison in different SNRs

Algorithms
SNR = [10/3 10] dB SNR = [10/3 20] dB SNR = [10/3 30] dB

Swerling-I Swerling-II Swerling-I Swerling-II Swerling-I Swerling-II

OSAP CAR OSAP CAR OSAP CAR OSAP CAR OSAP CAR OSAP CAR
MP-RMTT-KI 49.2 0.51 49.7 0.52 49.5 0.48 48.7 0.51 51.8 0.46 48.2 0.48

MP-RMTT 42.0 0.80 39.0 0.90 36.8 0.92 35.0 0.97 37.2 0.94 34.7 0.98
PHD 71.3 \ 71.6 \ 70.9 \ 70.3 \ 69.7 \ 70.8 \

CPHD 158.5 \ 153.2 \ 159.1 \ 154.0 \ 157.2 \ 153.4 \
CBMeMBer 80.2 \ 79.5 \ 79.3 \ 78.2 \ 80.0 \ 78.7 \
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Fig. 14: Monte Carlo TNNC (top), RMSE (middle) and WD
(bottom) for clutter estimation.

Fig. 15 depicts the performance comparison of target track-
ing w.r.t. different number of clutter. As shown in the top
of Fig. 15, MP-RMTT performs better on MOSPA compared
to other algorithms. The MP-RMTTst and MP-RMTT have
comparable performance on the false track acceptance rate
(as shown in the middle of Fig. 15), which are better than
PHD and CPHD. In terms of RSE (as shown in the bottom
of Fig. 15), MP-RMTT is slightly better than MP-RMTTst,
besides, PHD and CPHD are worst. Meanwhile, by comparing
the MOSPA and RSE of MP-RMTTst and MP-RMTT, it
is clearly seen that the performance is improved by the
closed-loop process, illustrating the effectiveness of the closed-
loop iterative framework. Overall, MP-RMTT outperforms the
other algorithms. It is due to the fact that the closed-loop
iterative and batch processing of MP-RMTT can improve the
performance and robustness of target tracking.

Fig. 16 shows the performance comparison of clutter es-
timation w.r.t. different number of clutter. The performance
of MP-RMTTst is comparable to the performance of MP-
RMTT w.r.t. the number of clutter (as shown in the top of
Fig. 16), which is better than PHD and CPHD. In terms of
clutter RMSE (as shown in the middle of Fig. 16), which is
decreased slightly as the increase of the number of clutter, MP-
RMTT outperforms the MP-RMTTst slightly; PHD and CPHD
are the worst. The WD in the bottom of Fig. 16 shows that,
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Fig. 15: Performance comparison of target tracking w.r.t
different number of clutter.

MP-RMTT is superior to the other two algorithms. Because
PHD and CPHD use the same clutter estimation algorithm,
they have comparable performance. MP-RMTT outperforms
both PHD and CPHD.
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Fig. 16: Performance comparison of clutter estimation w.r.t
different number of clutter.

D. Scenario 3: RMTT for Varying Clutter

The third scenario focuses on the RMTT in varying clutter
background. The scenario contains all five targets, a uniform
clutter component and three nonuniform clutter components.
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Assume that the number and the shape of nonuniform clutter
components are time-varying and given by

λτ,k =

(
1 +

1

2
sin
( k − kτstart
kτend − kτstart

π
))

λτ,0,

Dc
τ,k =

(1

3
+

k − kτstart
kτend − kτstart

)
Dc
τ,0,

(104)

where the initial number λτ,0, initial covariance Dc
τ,0, start

time kτstart and end time kτend of the nonuniform clutter
component τ are represented in Table. III. The results reveal
that the number of each nonuniform clutter component starts
at λτ,0 and then varies as a sinusoidal function, and that
the shape starts at Dc

τ,0/3 and then increases linearly. The
history of detections and the clutter estimation as well as target
tracking results are shown in Fig. 17. This demonstrates that
MP-RMTT can obtain target trajectory and nonuniform clutter
estimates in cross and close target scenarios.

1 1.5 2 2.5 3 3.5 4 4.5
X (m) 104

0.5

1

1.5

2

Y
 (

m
)

104

True trajectories
Measurements
Uniform clutter

Nonuniform clutter 1
Nonuniform clutter 2
Nonuniform clutter 3

(a) Measurement

1 1.5 2 2.5 3 3.5 4 4.5
X (m) 104

1

1.5

2

Y
 (

m
)

104

(b) Trajectories and clutter estimation

Fig. 17: Measurements, the trajectories and nonuniform clutter
estimation obtained by MP-RMTT. The three ellipses of each
nonuniform clutter component from small to large represent
the covariance matrix of the clutter region at k = kτstart, k =
kτstart + 20 and k = kτstart + 40 respectively, where kτstart is
start time of the clutter component τ .

The MOSPA of target position and NFT are given in Fig. 18.
As the same as in the second scenario, excellent performance
is achieved when the clutter distribution is perfectly known,
and the performance without clutter estimation is severely
degraded. It is worth noting that as the clutter varies, the
NFT of PHD and CPHD increases, even up to two per scan,

resulting in a dramatic increase in MOSPA. The performance
of MP-RMTT does not degrade as the clutter varies and is
comparable to the optimum. The TNNC, RMSE and WD
metrics for clutter estimation are given in Fig. 19. The TNNC
metric of PHD and CPHD deteriorates as clutter varies. It
can be seen that MP-RMTT has the best clutter estimation
performance. These results demonstrate that the proposed MP-
RMTT algorithm does not degrade as the clutter varies.

100
200
300
400
500

O
SP

A
 (m

)

130 150 170 190 210 230 250 270
Time

0

10

20

30

N
FT

MP-RMTT-KCE

MP-RMTT-NCE
MP-RMTT
MP-RMTTst

CPHD
PHD

130 170 210 250
0

1

2

Fig. 18: Monte Carlo MOSPA (top) and NFT (bottom) for
target tracking.
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Fig. 19: Monte Carlo TNNC (top), RMSE (middle) and WD
(bottom) for clutter estimation.

Fig. 20 shows the target tracking performance w.r.t. different
target SNR. Fig. 21 illustrates the clutter estimation perfor-
mance w.r.t. different numbers of clutter. Likewise in Scenario
2, the results show that MP-RMTT outperforms PHD and
CPHD, and improves with the increasing number of iterations,
illustrating the robustness of MP-RMTT.

V. CONCLUSIONS

We proposed and demonstrated the application of the MP
method to the problem of RMTT by JCETT using mea-
surements with strength information. The proposed MP-based
method exhibits outstanding and robust tracking and clutter
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Fig. 21: Clutter estimation performance comparison w.r.t.
different number of clutter.

estimation performance. This was achieved through the es-
tablishment of a closed-loop iterative framework for target
tracking and clutter estimation. Simulation results in three
scenarios with different target and clutter distributions showed
that the proposed method is superior to methods without clutter
estimation and previously proposed methods. In particular,
the proposed MP algorithm has a significant improvement in
clutter estimation performance relative to PHD and CPHD
filters. Promising future research directions are the multi-
sensor extension of the proposed method in multi-sensor
tracking scenarios as well as using other feature information to
discriminate between targets and clutter, such as micro-motion
and polarization information.

APPENDIX

A. Derivation of E
[

ln p(mj,k;σt
i,k)
]

and E
[

ln p(mj,k;σc
i,k)
]

Because E
[

ln p(mj,k;σt
i,k)
]

and E
[

ln p(mj,k;σc
i,k)
]

are
both expectations of Rayleigh distributions, for the sake of
brevity, we denote σt

i,k and σc
i,k here by σi,k. The expectation

E
[

ln p(mj,k;σi,k)
]

is derived as follows.

E
[

ln p(mj,k;σi,k)
]

= E
[

lnRd(mj,k;σi,k)
]

c
=E
[
(2n− 1) lnmj,k − n lnσi,k − n
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σi,k

]
=(2n− 1) lnmj,k − nE

[
lnσi,k

]
− nm2

j,kE
[ 1

σi,k

]
.

(105)

The closed-form solution of the expectation E
[

lnσi,k
]

is hard
to obtain. To this end, we use a second-order Taylor expansion
of ln(σi,k), given by

ln(σi,k) ≈ ln(E[σi,k]) +
2σi,k
E[σi,k]

−
σ2
i,k

2E[σi,k]2
− 3

2
. (106)

Substituting Eq. (105) into Eq. (106), yields

E
[

ln p(mj,k;σi,k)
]

= (2n− 1) lnmj,k−

n ln(E[σi,k]) +
nE[σ2
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2
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(107)

where,

E[σ−1i,k ] =
αi,k
βi,k

, E[σi,k] =
βi,k

αi,k − 1
,

E[σ2
i,k] =

β2
i,k

(αi,k − 1)(αi,k − 2)
.

(108)

Substituting Eq. (108) into Eq. (107), yields

E
[
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=(2n− 1) lnmj,k − nm2
j,k

αi,k
βi,k

+
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B. Derivation of Data Association

We find that it is convenient to define the following mes-
sages
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Using the definition in Eq. (111), αt
i,j,k and αc

i,j,k can be
calculated as follows.
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By Eq. (95), Eq. (111) and Eq. (112), we have
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Substituting Eq. (115) into Eq. (113), we obtain
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Using the definition in Eq. (112), ηti,j,k and ηci,j,k can be
calculated as follows
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where
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