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Abstract

Studying the solar system and especially the Sun relies on the data gathered daily from
space missions. These missions are data-intensive and compressing this data to make them
efficiently transferable to the ground station is a twofold decision to make. Stronger compres-
sion methods, by distorting the data, can increase data throughput at the cost of accuracy
which could affect scientific analysis of the data. On the other hand, preserving subtle
details in the compressed data requires a high amount of data to be transferred, reduc-
ing the desired gains from compression. In this work, we propose a neural network-based
lossy compression method to be used in NASA’s data-intensive imagery missions. We chose
NASA’s Solar Dynamics Observatory (SDO) mission which transmits 1.4 terabytes of data
each day as a proof of concept for the proposed algorithm. In this work, we propose an
adversarially trained neural network, equipped with local and non-local attention modules
to capture both the local and global structure of the image resulting in a better trade-off in
rate-distortion (RD) compared to conventional hand-engineered codecs. The RD variational
autoencoder used in this work is jointly trained with a channel-dependent entropy model as
a shared prior between the analysis and synthesis transforms to make the entropy coding of
the latent code more effective. We also studied how optimizing perceptual losses could help
our neural compressor to preserve high-frequency details of the data in the reconstructed
compressed image. Our neural image compression algorithm outperforms currently-in-use
and state-of-the-art codecs such as JPEG and JPEG-2000 in terms of the RD performance
when compressing extreme-ultraviolet (EUV) data. As a proof of concept for use of this
algorithm in SDO data analysis, we have performed coronal hole (CH) detection using our
compressed images, and generated consistent segmentations, even at a compression rate of
∼ 0.1 bits per pixel (compared to 8 bits per pixel on the original data) using EUV data
from SDO.
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Figure 1: Visual comparison of proposed compression schemes (Attention only and GAN+Attention) to other
standard codecs. Reported performance is in terms of bit-rate/distortion [bpp↓/PSNR↑]. GAN outputs are
visually closer to the original input despite their inferior performance in terms of PSNR. Best viewed on
screen.

1 Introduction

Learning based image compression outperform (Yang et al., 2022) almost all traditional codecs including
JPEG (Wallace, 1991) and JPEG-2000 (Taubman & Marcellin, 2002). With a basis in convolutional neural
networks (CNNs), the performance of said learned compression methods has been improved through various
investigations: enhanced entropy model (Minnen et al., 2018; Minnen & Singh, 2020; Qian et al., 2022),
learned representation augmentation via attention (Cheng et al., 2020; Zhu et al., 2022) and incorporat-
ing adversarial training for improved perceptual quality of reconstruction (Agustsson et al., 2019; Blau &
Michaeli, 2019; Mentzer et al., 2020a). In this work, we demonstrate the potential of neural network com-
pression codecs to serve as the go-to approach for future space missions for on-board data compression. We
baseline our novel algorithm on the solar image data collected by the Atmospheric Imaging Assembly (AIA)
instrument on-board the Solar Dynamics Observatory (SDO) spacecraft and compare the performance with
traditional methods. Finally, we show that a CH segmentation (Boucheron et al., 2016) is minimally affected
even at extremely low bit-rate compression provided by our proposed neural compression method. Extremely
compressed images using our network preserves the required details for the task of CH segmentation on im-
ages downloaded from the SDO mission.

Contributions of This Work. Preliminary results of our proposed algorithm is published in (Zafari
et al., 2022), introducing the application of neural image compression on downloaded solar imagery data.
The primary contribution of the current work is to critically evaluate the performance of our algorithm on
downstream science and/or operational tasks (e.g. CH segmentation). Additionally, we provide a detailed
description of the joint forward and backward adapted entropy model used to improve the rate-distortion
performance of the proposed algorithm which was not available in (Zafari et al., 2022).

The paper is structured as follows: Section 2 provides a review of neural compression autoencoders and their
potential application for a solar mission with a discussion of the downstream scientific task of segmentation
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on the SDO data. Section 3 is devoted to our proposed method. Experimental results and ablation studies
are described in Section 4. Section 5 concludes our discussions.

2 Related Work

2.1 Neural Image Compression

Transform coding-based image compression algorithms share four main steps to compress an image (Goyal,
2001). First, a transform is applied to the image to transfer the pixels from their spatial domain to a
transform domain that reduces correlation between pixels and thereby results in many small coefficients
(i.e., information packing). Second, the transformed image is quantized to discard less significant information
from the data in the transform domain. Third, entropy coding is utilized to losslessly encode the quantized
samples into a stream of ones and zeros. This bitstream is the compressed image. The fourth and final step
occurs at the receiving end (or at the reconstructing step), which is responsible for decoding the quantized
values to the original space of the input image. The first and most widely used architecture to mimic this
scenario in deep neural networks is the convolutional autoencoder which has shown its superiority in terms
of rate-distortion performance in the literature (Ballé et al., 2017). Both the encoding and decoding parts
of the traditional transform codec can be imitated by an autoencoder (Ballé et al., 2021).

In an end-to-end optimization of an autoencoder, problems arise when we want to quantize the bottleneck
to remove redundancies in order to reach high compression ratios. ANNs are optimized using gradient
descent algorithms which update the parameters of the network by back-propagating the gradients of the
loss function. Gradients of the quantization process are not useful for optimizing the loss function as its value
is either zero or infinity. As a result, we need to approximate hard discrete quantization with an operation
yielding informative gradients for updating the parameters of the network. The most widely used approach
is proposed by (Ballé et al., 2016a), inherited from (Gray & Neuhoff, 1998), in which they showed that
adding independent and identically distributed unit uniform noise can be interpreted equivalently as doing
scalar quantization on the bottleneck. This method is thoroughly discussed in Section 3.1.3. By applying
this noise to the bottleneck, we can optimize the differential entropy of the continuous approximation as a
variational upper bound (Theis et al., 2016) to reduce the entropy of the bottleneck. Low entropy messages
are compressed more efficiently into bitstreams (Cover, 1999).

Optimal compression in theory can be achieved by vector quantization (Gersho & Gray, 2012). In vector
quantization each data point is represented by a prototype and a collection of prototypes, called a codebook,
is shared between sender and receiver. The application of vector quantization in ANN-based compression
has been investigated by (Agustsson et al., 2017), with the cost of a complicated training procedure. To
make the training more accessible, neural compression algorithms follow the classical approach to avoid the
complexity of vector quantization. In classical image compression schemes, e.g., JPEG (Wallace, 1991), to
get the best out of the quantization process, the first step is to apply an invertible linear transform and
translate the image into decorrelated coefficients using a linear transform, e.g., Discrete Cosine Transform
(DCT) in JPEG (Wallace, 1991). By doing so, scalar quantization can reach a reasonable performance close
to vector quantization (Goyal, 2001). On the other hand, it has been shown (Ballé et al., 2017; 2021) that a
joint-optimized learned nonlinear transform, i.e., neural network, followed by scalar quantization is sufficient
to approximate a parametric form of vector quantization.

As will be shown in Section 3, replacing the actual quantization of the latent code/bottleneck of the autoen-
coder with a uniform noise approximation in the bottleneck of a vanilla autoencoder during training of the
network (Ballé et al., 2018) will transform it to a Variational Autoencoder (VAE) (Kingma & Ba, 2015b).

The difference between the rate-distortion VAE and its vanilla version is the chosen prior for the latent
variables. In autoencoder-based image compression, the Gaussian prior of the VAE is replaced with a unit
uniform distribution centered on integer numbers to imitate the scalar quantization process.
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Figure 2: Network architecture. The input image traverses through a series of convolutional layers yielding
16 times smaller (spatially) feature maps than the original input dimensions. To reconstruct the image, the
decoder follows the same dimensions of the encoder network in a reverse order using transpose convolution
layers. A conditional discriminator encourages the generator (decoder) toward better perceptual quality. The
number of channels in the encoder and decoder are set as N = 192 and M = 320, respectively. Q performs
scalar quantization. EE and ED indicate the entropy encoder and decoder, respectively. The checkerboard
box represents the bitstream of the compressed image including only zeros and ones. µ and σ are predicted
parameters of the latent code probability distribution, defined by the entropy estimation model as shown
in Fig. 3. LReLU denotes Leaky Rectified Linear Unit activation function. GDN and IGDN correspond to
Generalized Divisive Normalization nonlinearity and its inverse, discussed in Section 4.2.
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2.2 Generative Adversarial Training

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have emerged as a transformative tech-
nology in the fields of computer vision and aerospace systems, offering a wide array of innovative applications.
In the realm of computer vision, GANs have played a pivotal role in image generation (Brock et al., 2019;
Esser et al., 2021), enhancement (Poirier-Ginter & Lalonde, 2023), and manipulation (Ling et al., 2021). Re-
searchers have leveraged GANs to generate high-resolution images from low-resolution inputs (Ledig et al.,
2017), thereby enhancing the quality of visual data, a crucial advancement for various computer vision appli-
cations. GANs have also demonstrated their ability to generate realistic synthetic images (Brock et al., 2019;
Esser et al., 2021), which find application in data augmentation for training deep neural network models,
particularly in scenarios where labeled datasets are limited. Additionally, GANs have been instrumental in
style transfer (Karras et al., 2019), enabling the creation of unique visual content by merging the style of
one image with the content of another (Karras et al., 2020). GANs are also used in domain translation tasks
to make realistic photos out of sketches or colorizing grayscale images (Isola et al., 2017; Zhu et al., 2017).

The utilization of GANs has been particularly noteworthy in the aerospace field of study. GANs have
been employed to enhance satellite imagery for Earth observation and environmental monitoring (Jozdani
et al., 2022). They facilitate the removal of sensor noise (Toner & Fletcher, 2022), the enhancement of
image resolution, and the synthesis of missing data (Hu et al., 2022), or improving the overall quality of
satellite-based remote sensing (Liu et al., 2022). GANs has shown great potential in synthesizing RF micro-
Doppler signatures to tackle the challenge of limited sample availability and facilitate the training of more
complex deep neural networks (DNNs) to improve RF signal classification performance (Rahman et al.,
2022). Training neural networks in a GAN framework also improved unsupervised domain adaptation in
satellite pose estimation (Wang et al., 2023). These advancements have the potential to significantly impact
industries, from enhancing image analysis to improving the safety and efficiency of aerospace operations.

2.3 Attention Mechanism in Neural Networks

When it comes to computer vision, deep convolutional neural networks (CNNs) are the de facto standard
despite their poor performance in capturing long-range dependencies (Li et al., 2021; Zhou et al., 2021). The
performance degradation of CNNs is attributed to their local receptive field, which is mainly because of the
limited kernel size (Ramachandran et al., 2019) of the filters.

Efforts have been made to help CNNs capture a more robust representation of the input image. One naïve
solution is to make the network deeper, but other problems will arise in training such networks which have led
to the introduction of deep residual networks (ResNet) (He et al., 2016). Although increasing the parameters
of a network will generally lead to a richer representation and better performance, it will make training such
networks harder since overfitting can easily happen in these over-parametrized neural networks. Attention
mechanisms have been proposed to address the problem of the local receptive field by keeping the depth of
the network unchanged. In (Wang et al., 2017) a single module was proposed to be included in between
sequential convolutional layers, consisting of two branches, the trunk to process local features and the mask
to decide which of the local features in the trunk are more important to be passed to the next convolutional
layer, as in Fig. 4(a).

In contrast to local attention, the authors in (Wang et al., 2018) first discussed how non-local attention can
be viewed as a special case of a non-local algorithm which was traditionally used as a method to denoise
images (Buades et al., 2005). The idea was to find similar pixels/patches in the image/feature map and
replace them with a weighted sum over all the others, with higher weights for more similar ones. It can be
inferred from (Wang et al., 2018) that Vision Transformers (ViT) (Dosovitskiy et al., 2021) are all special
cases of the non-local attention mechanism.

The non-local attention block (see Fig. 4(b)) helps the mask branch to efficiently learn the most informative
parts of features (in the trunk) for the task at hand (Zhang et al., 2019). The authors in (Zhang et al., 2019)
also added a skip connection to help the output feature maps be richer, by letting the module have access
to both attended and raw features. This skip connection prevents vanishing gradients as well.
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Figure 3: Joint forward and backward adaptation entropy model with the channel conditioning assumption
in the probability distribution of the latents. Conv represents a convolutional layer with a kernel size of
3 × 3 with stride and padding of size 1. Due to limited space, this figure shows channel-wise conditioning on
only three slices (red, green, and blue), while in the implementation the latent code is divided into 10 slices.
After decoding, the first slice (ŷ1) is used to decode the second one (ŷ2), and both of them are used for
decoding the third slice (ŷ3). ReLu stands for a rectified linear unit. Q, EE, and ED denote quantization,
and entropy encoder/decoder, respectively. Checkerboard boxes represent bitstream codes. The estimated
probability distribution that is parametrized by µ an σ is shared as the prior over the latent code both on
the encoder and decoder side at the time of entropy coding.

Another recently proposed mechanism to incorporate attention in CNNs has been introduced in (Woo et al.,
2018). It is an enhanced version of the Squeeze-and-Excitation network (Hu et al., 2018), to apply atten-
tion on both spatial and channel feature maps separately. This way of applying attention is simpler and
computationally more efficient than previous computation-heavy attention mechanisms based on pre-trained
networks or complex calculations (Xiao et al., 2015).

3 Methods

3.1 Generative Image Compression

Autoencoder-based learned image compression networks, like the one we have proposed in Fig. 2, generally
consist of two major parts. The first part includes the encoder/decoder network and the second part is the
bottleneck entropy estimation network. The former is discussed in this section and Section 3.1.2 is devoted
to describing the functionality of the latter. As illustrated in Figs. 2 and 3, the network input (x) and
output (x′) relations can be summarized as follows:

x′ = gs(ED(EE(ŷ));θg),
ŷ = ⌊ga(x;ϕg)⌉,

ẑ = ⌊ha(y;ϕh)⌉,

(1)

in which ⌊·⌉ denotes the quantization of a real value to the nearest integer number, ŷ is the quantized
latent variable, and ẑ is its quantized hyper-prior which is discussed in Section 3.1.2. ED and EE denote
the entropy decoder and entropy encoder, respectively. The encoder and decoder nonlinear transforms are
represented by ga and gs with their learned parameters, ϕg and θg, respectively. The subscripts a and s refer
to analysis and synthesis as they are common designations for the compression and decompression processes
in the area of transform coding-based compression. ha is the analysis transform to get the hyper-priors of
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the entropy estimation model, defined by its parameters ϕh. Throughout the following section, we use the
terms quantized bottleneck and quantized latent code interchangeably.

3.1.1 Learning Objective

Any learned image compression network tries to find an optimal tradeoff in the rate-distortion plane by
trading off distortion for the expected bitrate (or vice versa), governed by a Lagrangian coefficient λ. The
rate-distortion trade-off can be described as:

R + λDr, (2)

where R and Dr correspond to the estimated entropy of the latent code and reconstruction distortion,
respectively. The estimated entropy of the quantized bottleneck, R, represents the rate term. Optimizing the
parameters of the neural network will enforce this objective to be minimized. The probability distribution
of the latent code is variationally approximated by hyper-prior z. Then the quantized ẑ is transmitted
alongside the compressed image as side-information to build the shared prior on the decoder side. Therefore,
the entropy of both the quantized bottleneck and its hyper-prior should be optimized:

R = Ex∼pX
[− log2 Pŷ|ẑ(ŷ|ẑ;θh) − log2 Pẑ(ẑ;ψ)], (3)

where θh and ψ are parameters of the learned entropy model on the latent code (ŷ) and hyper-prior (ẑ),
respectively. Pŷ|ẑ is the probability mass function of the discrete bottleneck and Pẑ denotes the probability
mass function for the discretized hyper-prior.

In Eq. (2), Dr accounts for the distortion between the input and output image of the network which
can be measured by any desired metric. The prevalently used criterion to measure distortion between
input and output is the Mean Squared Error (MSE), which is heavily criticized in the context of computer
vision (Zhao et al., 2017) because it often results in the reconstruction of blurry images. Efforts have been
made to propose metrics that can adhere perceptually to the human visual system, e.g., the Multi-Scale
Structural SIMilarity index (MS-SSIM) (Wang & Bovik, 2009). Even these metrics have shown weaknesses
when intensely scrutinized (Nilsson & Akenine-Möller, 2020). Recently, perceptual-aware metrics based on
features generated by pre-trained neural networks have been proposed. Learned Perceptual Image Patch
Similarity (LPIPS) introduced by (Zhang et al., 2018) uses trained AlexNet/VGGNet features to compare
patches of an image with a corresponding reference. In training our neural compressor, we will enhance its
reconstruction loss by exploiting this perceptual metric.

To make the reconstruction closer to the input image, we also consider adversarial training for our decoder
network. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Agustsson et al., 2019; Mentzer
et al., 2020b; Blau & Michaeli, 2019) consisting of a generator and a discriminator sub-network, are able to
better match the distribution of data at reconstruction. In our network, the decoder plays the role of the
generator. In the GAN framework, the discriminator forces the decoder output to preserve the distribution
of the input image at the time of reconstruction. The proposed objective to be optimized for adversarial
training of the generator is a combination of distortion and perception as follows:

Dr = Ex∼pX
[λreconMSE(x,x′)

+λpercLPIPS(x,x′)
−λadv log D(x′,y)],

(4)

where D(x′,y) denotes the classification decision of the discriminator which is based on two inputs fed
into its network, reconstructed image x′ and bottleneck y which serves as a condition. In this setting λadv

regularizes how much the discriminator should be optimized to classify the generator reconstructed image
(fake image in GAN terminology) as an original image. As a result, the generator parameters are optimized
with a combination of Eq. (4) as a distortion and Eq. (3) as a rate penalty.

To make the adversarial training feasible we need the discriminator to judge whether its input sample came
from the true distribution of data or is a fake generated image, which is the reconstructed image in our

7



Accepted for publication in IEEE Transactions on Aerospace and Electronic Systems

network, i.e., x′. The discriminator will need to be optimized by a separate auxiliary loss, given as:

Ldisc. =Ex∼pX
[− log(D(x,y)]

+Ex∼pX
[− log(1 − D(x′,y))],

(5)

which is the cross entropy loss between the label provided by the discriminator network (D) and the true
labels, assuming label 1 for the original image and 0 for the reconstructed image by the generator.

It has been shown analytically that increasing the perceptual quality of a generator can result in degradation
in terms of distortion measures (Blau & Michaeli, 2018). GANs are a solution to encourage better percep-
tual quality in the reconstructed image by tolerating an acceptable amount of distortion. More detailed
experiments have been adopted in (Mentzer et al., 2020a) to prove in practice the idea that GANs improve
perceptual quality at the cost of a small increase in distortion Therefore, it would be an expected behavior
to have a lower Peak Signal to Noise Ratio (PSNR) value on a decoder trained adversarially in contrast to a
decoder trained merely on distortion metrics. These adversarially trained networks are expected, however,
to perform better when measured with perceptually-motivated metrics.

3.1.2 Entropy Modeling

The performance of any learned image compression scheme depends heavily on how well it can estimate
the true entropy of the bottleneck. Thus the objective will be to minimize the cross entropy between
the probability model and the latent code’s true probability distribution. To make entropy estimation
possible, several probability estimation methods have been proposed in the literature, including empirical
histogram density estimation (Agustsson et al., 2017; Theis et al., 2017), piecewise linear models (Ballé et al.,
2017), conditioning on a latent variable (hyper-prior) (Ballé et al., 2018), and context modeling based on
autoregressive models (Minnen et al., 2018).

From a high-level overview, entropy estimation models can be divided into two main categories: Forward
Adaptation (FA) and Backward Adaptation (BA) models. The former suffers from a low capacity to capture
all dependencies in the probability distribution of the latent code and the latter’s disadvantage is that
the decoding process cannot be parallelized. Learned FA models (Ballé et al., 2018; 2021) will only use the
information provided during the encoding of the image, while BA methods which are based on autoregressive
models (Minnen et al., 2018) need information from the decoded message as well. In the following section,
we discuss the functionality of each of them. We emphasize that using a combined entropy model of both
FA and BA is the approach we take in this work.

Forward Adaptation To model the probability distribution of latent code ŷ, some assumptions must
be made to make the learning feasible and efficient. The simplest way to model any multivariate random
variable is to assume independence between all its dimensions, which is called the fully factorized model
(Bishop, 2006), i.e.,

Pŷ(ŷ) = Pŷ1(ŷ1)Pŷ2(ŷ2) . . . Pŷm(ŷm)

=
∏

i

Pŷi
(ŷi), (6)

where m is the dimension of latent code ŷ.

On the other hand, the most flexible and expressive model is to use an autoregressive probability model to
capture all dependencies between dimensions of the latent code:

Pŷ(ŷ) = Pŷ1(ŷ1)Pŷ2(ŷ2|ŷ1)Pŷ3(ŷ3|ŷ1, ŷ2) . . .

. . . Pŷm−1(ŷm−1|ŷ<m−1)Pŷm(ŷm|ŷ<m)

=
∏

i

Pŷi
(ŷi|pa(ŷi)),

(7)

where pa(ŷi) = ŷ<i denotes the parents of ŷi, i.e., ŷ1, ŷ2, . . . , ŷi−1, whose probability density is conditioned
on them. However, letting all the dependencies be visible in the model make it infeasible for practical
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applications. The curse of dimensionality arises when you model all the conditional dependencies (Bishop,
2006), preventing the entropy model from being realized. Even if there was enough computational power
to learn this fully visible model, the required time to train the model can easily approach infinity as the
dimension of the latent code increases. Therefore, an essential decision is how to modify the modeling to
capture only essential dependencies while ignoring irrelevant ones. By doing so the modeling accuracy can
be compromised at a reasonable rate but much more efficiently (Minnen et al., 2018).

There is another approach to avoid density modeling based on the probability chain rule Eq. 7. We can
use a latent variable model (LVM) to model the dependencies between visible variables, in our case ŷ,
based on hierarchical invisible latent variables (Bishop, 1999), in our case ẑ. By introducing a set of hidden
variables, i.e., ẑ, the target random variable, i.e., ŷ, probabilities will be conditionally independent by
definition (Bishop, 1999). This is a crucial improvement toward simplifying the modeling complexity and
not sacrificing modeling accuracy at the same time. Since, in learned image compression, we are interested in
modeling a shared prior to be used both on the encoder and decoder side, this model is called a hyper-prior
in the literature (Ballé et al., 2018; 2021; Qian et al., 2021; 2022; Kim et al., 2022). Thus, if we denote the
hyper-prior by ẑ, the shared prior distribution between the encoder and decoder can be written as:

Pŷ(ŷ) =
∏

i

Pŷi
(ŷi|ẑ). (8)

Equation (8) explicitly models the multivariate random variable by the conditional independence on the
hyper-prior ẑ.

Backward Adaptation Although ideally latent variable models are able to capture all dependencies in the
dimensions of a random variable, the practical issues of training them and the variational and amortization
gaps hinder them from performing on par with their autoregressive counterparts. The variational gap is
the mismatch between the assumed variational density and the true distribution of the latent code. The
amortization gap refers to the assumption that the posterior is calculated with only a single input to the
encoder network. To address this issue, context should be introduced to the LVM. In addition, to prevent
the infeasibility of a global context model (autoregressive model) the amount of context will be enforced on
neighboring elements close to the dimension whose probability is being modeled. In the area of computer
vision, masked convolutions are the de-facto choice to model the local context in a causal manner (Van den
Oord et al., 2016; Minnen et al., 2018).

Joint Forward and Backward Adaptation To take advantage of both LVM, which is an implementation
of FA, and autoregressive entropy models which implements the BA modeling (Ballé et al., 2018; Lee et al.,
2019; Minnen et al., 2018; Minnen & Singh, 2020), we define the conditional probability of the latent code
as:

Pŷ|ẑ(ŷ|ẑ) =
∏

i

P (ŷi|ŷj<i, ẑ;θh). (9)

Conditioning on the quantized hyper-prior, i.e., ẑ, as side-information is an example of FA and conditioning
on all previously decoded elements of the latent code, i.e., ŷj<i, is an example of BA. Spatially autoregressive
models have slow decoding time (Minnen et al., 2018; Lee et al., 2019) since the decoding time complexity
increases quadratically with the spatial dimensions of the latent code. In contrast to spatial autoregressive
modeling, (Minnen & Singh, 2020) only considers the conditioning of the probabilities on the channels.
With this channel-wise autoregressive modeling, the decoding time is only a function of the number of slices
assumed in the entropy model thus the spatial dimension of the input image will not affect the decoding
latency of our neural image compression network. We have used the same approach as in (Minnen & Singh,
2020) , as shown in Fig. 3, to estimate the entropy and minimize it during training.

3.1.3 Relaxed Quantization

The gradients of uniform scalar quantization are either zero or infinity. Thus this operation is required to
be replaced with an approximation that provides informative gradients. These useful gradients will provide
the ability to update the parameters of analysis and synthesis transforms using back-propagation (Agustsson
et al., 2017; Ballé et al., 2016a; Yang et al., 2020; Guo et al., 2021).
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This approximation can be shown by assuming the simplest form of scalar quantization, i.e., rounding to the
nearest integer. If an element of a latent code and its quantized version are denoted by y and ŷ, respectively,
then we have the following:

y ∼ py(y) ŷ=⌊y⌉−−−−−−−−−→ ŷ ∼ Pŷ(ŷ). (10)

In this setting y is a continuous random variable. Although the quantized latent code ŷ is a discrete random
variable, its generalized probability density function can be written as a train of Dirac delta functions with
weights Pŷ(ŷ = n) at integer-values of n (n ∈ Z):

pŷ(ŷ) =
+∞∑
−∞

Pŷ(n)δ(ŷ − n), (11)

where the weights Pŷ(n) define the probability mass function for the discrete random variable ŷ.

For every integer-valued ŷ, its probability after being quantized with uniform scalar quantization will be:

Pŷ(ŷ = n) = Py(n − 1
2 < y < n + 1

2)

=
∫ n+ 1

2

n− 1
2

py(α)dα

=
∫ +∞

−∞
py(α)rect(n − α)dα

= (py ∗ rect)(n),

(12)

where ∗ denotes the convolution operation. Convolution of probability density functions for two independent
random variables implies the summation of those random variables.

From Eq. (12) we can see that if a unit uniform noise with mean zero, i.e., U(− 1
2 , + 1

2 ), is added to
the unquantized latent representation, it will have the same density value at integer points which are the
actual quantized values. Therefore, adding independent zero mean unit uniform noise will act as continuous
approximation to the hard uniform scalar quantization.

As a result, we have the relaxed quantized latent code ỹ as:

ỹ = y + w, (13)

where w ∼ U(− 1
2 , + 1

2 ).

We emphasize again that only at integer-valued points (quantized values) the value of the probability density
of relaxed latent ỹ will be equal to the probability mass of the actual quantized value ŷ:

Pŷ(ŷ = n) = pỹ(ỹ = n). (14)

3.2 Attention Assisted Image Compression

The attention mechanism in neural networks (discussed in Section 2.3) have been also employed in deep
neural compression networks. (Zhou et al., 2019) applied residual attention, then (Chen et al., 2021) improved
their work by adding a non-local attention mechanism to the mask of the residual attention. As a further
improvement, (Zou et al., 2022) applied non-local attention limited to small windows of the feature maps.
This window-based attention attained better results in compression. Here we propose to use two kinds of
attention mechanisms in a window-based manner.

Solar images have a great amount of spatial redundancy compared to natural scene images. In this view,
discarding the redundancy and only keeping the low frequency content, which is desired in natural image

10
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Figure 4: Attention module architecture.
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compression, could lead to high distortions unless paying the cost of transmitting high frequency contents as
well. Another important issue when it comes to the compression of solar images is that the minute details
and high frequency components are important for the analysis of data (for example solar flare detection
and coronal hole segmentation), while in general image compression these high frequency details could be
discarded without intolerable cost. To address these differences in the compression domain, we propose two
separate attention mechanisms: First, to to apply a window-based non-local attention and second to refine
features over a local window in the channel dimension enriching the latent code of the image.

3.2.1 Window-based Non-Local Attention Module (WNLAM)

To clarify the procedure of the window-based non-local attention mechanism, described in Section 2.3, a
concise review of how this method enriches the representations learned by the convolutional neural networks
is included in this section. A non-local attention block as shown in Fig. 4(b) is composed of a weighted
average, denoted by q, over a linear transformed version of the block input p, i.e., g(p):

qi = 1∑
∀j eθ(pi)T ϕ(pj)

∑
∀k

eθ(pi)T ϕ(pk)g(pk), (15)

where g(·) is a linear transformation, with learnable parameters Wg implemented by a 1×1 convolution layer
defined as g(pk) = Wgpk. The weights of the sum in Eq. (15) are calculated by the measure of similarity in
the embedding space of the input, i.e., θ(pi) = Wθpi and ϕ(pk) = Wϕpk, where Wθ and Wϕ are learnable
parameters.

As the final operation in non-local attention, ri is calculated by a linear transformation (Wr) added to the
original pi as follows:

ri = Wrqi + pi. (16)

Applying a non-local attention mechanism locally through non-overlapping windows has shown to be more
effective in the task of image compression (Zou et al., 2022) than its global counterpart (Cheng et al.,
2020). In high-bitrate image compression, restoring edges and high-frequency content is as important as
representing the global features in the latent representation (Wallace, 1991; Ballé et al., 2018; Cheng et al.,
2020). Consequently, a naïve non-local attention mechanism can perform worse than local attentions which
are able to capture local redundancies and preserve details on the reconstructed image (Zou et al., 2022).

3.2.2 Window-based Convolutional Block Attention Module (WCBAM)

A simple to implement attention mechanism in CNNs is the convolutional block attention module (CBAM)
which has shown great benefit in classification tasks (Woo et al., 2018). It includes two attention mechanisms.
First, the channel attention (CA) guides the network to only consider channels with higher importance for
the desired task. Second, the spatial attention (SA) dictates where the network should pay more attention.
Here we propose to utilize this attention module in a window-based manner. Instead of globally considering
the whole spatial extent of each channel, we focus only on a cropped window size of w, as shown in Fig.
4(c).

Applying the WCBAM mechanism on the input features X can be summarized as:

XCA = CAw ⊙ X,

XCA,SA = SA ⊙ XCA,
(17)

where ⊙ is the Hadamard product. CAw reweighs the channels over each window. After refining the channels,
the spatial attention enforces each of the refined channels (XCA) to highlight their important spatial content
for the task of image compression by the Hadamard product with SA.

The window-based channel attention is calculated by passing the average and max pool through a shared
fully connected network (F ), as in Eq. (18):

CAw = sigmoid(F (Avg(Xw)) + F (Max(Xw))), (18)
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Figure 5: Rate-distortion curves averaged over the test set described in Section 4.1. On the left, PSNR
is calculated from MSE using 10 log10

2552

MSE . On the right, MS-SSIM is reported in logarithmic scale by
−10 log(1 − m) to show the differences better, in which m is the MS-SSIM in the range of zero to one.

where Xw is a chosen window over the input feature map X. Next, the spatial attention weights (SA) will
be derived by concatenating the average and max pool passed through a convolutional layer as:

SA = sigmoid(Conv([Avg(XCA), Max(XCA)])). (19)

WCBAM helps the network to capture global dependencies by looking over all channels of each chosen
window simultaneously and highlighting the spatially important features with a global average/max pooled
feature. These global features are needed in transforming the image from pixel space to feature space.

3.2.3 Transformers as Attention Modules

The superiority of models based on transformers, which are a special kind of non-local attention mechanism,
compared to convolutional neural networks has been recently proven (Dosovitskiy et al., 2021; Liu et al.,
2021). Although transformers have shown great benefit in image classification and object detection tasks,
their naïve application in image compression networks has failed (Zou et al., 2022). The goal of transformers
is to capture long-range dependencies in an image as opposed to convolutional-based neural networks which
inherently have a local inductive bias due to the use of a local kernel. On the other hand, the ultimate
goal of image compression is to capture both local and global dependencies in order to summarize them
efficiently in the latent code. If the latent code includes global information, we can expect a more compact
representation. By naïvely applying the transformer blocks in the neural compression networks, it was shown
(Zou et al., 2022; Zhu et al., 2022) that optimizing the rate-distortion loss leads to a local receptive field,
hindering the self-attention from global dependency modeling. Therefore enriching the attention mechanism
in the convolutional neural networks, as we show in this work, could lead to better performance in terms of
rate-distortion.

4 Experiments

4.1 Dataset

The dataset of SDO images described in (Galvez et al., 2019) includes images of the sun at wavelengths of
94, 131, 171, 193, 211, 304, 335, 1600, and 1700 Å at a cadence of 6 minutes. We temporally downsampled
the images to a cadence of 1 hour to decrease dependencies between training samples. In addition, to prevent
biases of the images with respect to solar variations at different stages of the solar cycle, we followed the
same approach proposed by (Salvatelli et al., 2019) to divide the dataset based on the month they are taken.
Images from January to August of years 2015 to 2018 are chosen for training and September to December
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Table 1: Encoding/decoding latency of the proposed neural-based codec compared other codecs in three
different bitrate regimes (input image size of 4096 × 4096 pixels). ENC and DEC refer to encoding and
decoding times, respectively and are reported in milliseconds.

∼ 0.1 bpp ∼ 0.35 bpp ∼ 0.7 bpp
Codec ENC

(ms)
DEC
(ms)

ENC
(ms)

DEC
(ms)

ENC
(ms)

DEC
(ms)

JPEG (Wallace, 1991) 42 48 47 58 50 64
JPEG2000 (Taubman & Marcellin, 2002) 312 187 367 221 416 249

BPG (Bellard, 2018) 2340 2048 3032 2354 4080 2936
ELIC (He et al., 2022) 3671 3012 3754 3099 3818 3176

ours 3527 3321 3654 3423 3698 3455

of the same years are reserved for testing. The total number of training images is 21,416 and the test set
includes 8,257 samples. The results reported in this section are all based on the test portion of the dataset.

4.2 Implementation Details

As the nonlinearity in our neural network, we have utilized a computationally efficient (Johnston et al.,
2019) version of Generalized Divisive Normalization (GDN) (Ballé et al., 2016b). As a result of GDN’s
local normalization, statistical dependencies are reduced in the feature maps. By exploiting GDN instead of
more conventional nonlinearities like ReLU, the statistical dependencies in the feature maps will be reduced
significantly (Ballé et al., 2016b).

During the evaluation phase, entropy coding of the latent integer values was realized by range asym-
metric numeral systems coding (Duda, 2013). It is worth mentioning that the entropy coding is loss-
less and doing it during the training phase has no impact on the measured performance or functionality
of the algorithm. It is only during the evaluation phase that entropy coding is needed since the per-
formance of algorithms is compared with standard codecs, such as JPEG (Wallace, 1991), JPEG-2000
(Taubman & Marcellin, 2002). Seven models have been trained with empirically chosen hyper-parameter
λ ∈ {0.0015, 0.0035, 0.0070, 0.0125, 0.0250, 0.0410, 0.0550} governing the rate-distortion trade-off as in Eq.
(2) for 100 epochs. We have used the Adam (Kingma & Ba, 2015a) optimizer on batches of size 16 consisting
of randomly cropped 256 × 256 patches from the original 512 × 512 images. The initial value of the learning
rate is set to 10−4 and annealed during the training to 1.2 × 10−6 which took about 48 hours on a machine
with a single NVIDIA RTX 6000A graphic card, for each model. In addition, to compare our proposed
neural codec with state of the art neural-based codecs we picked ELIC (He et al., 2022) neural compression
and trained with exactly the same hyper-parameters and training policies as described for our own networks.

Training our autoencoder based on MSE and LPIPS will result in outperforming even the state-of-the-
art hand-engineered codec, i.e., BPG (Bellard, 2018), as shown in Fig. 5. As can be seen in this figure,
augmenting the WNLAM attention with WCBAM is capable of improving the rate-distortion performance
in terms of both distortion measures PSNR and MS-SSIM. Although the adversarially trained network with
the GAN has a distortion performance almost the same as JPEG-2000 (Taubman & Marcellin, 2002), the
general lower performance of our GAN network is a common issue addressed in (Blau & Michaeli, 2018).
The PSNR or MS-SSIM are unable to capture the perceptual quality of the generated image in a GAN. The
perceptual quality of GAN network reconstructions is discussed in Section 4.3, where the quality is measured
by the perceptual metric LPIPS.

To evaluate our model’s computational complexity compared with other compression algorithms, we have
conducted experiments to measure the encoding and decoding latencies as reported in Table 1. All hand-
crafted codecs, including JPEG, JPEG2000, and BPG are evaluated on a system powered by Intel Core
i7-5930K Broadwell-E CPU. Our proposed method and other state-of-the-art neural compression alogrithm
(i.e., ELIC) are tested on a single NVIDIA RTX 6000A graphic card.
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Figure 6: Rate-distortion curve. Distortion is measured by the LPIPS metric (lower is better) as described
in Section 3.1.1. As shown, GAN performance in generating high-quality images can be quantified by this
metric.

4.3 Ablation Study

To investigate how much the attention modules contribute to the performance of our neural compressor, we
have trained three separate networks including a network with only the WNLAM module, then augmented
with the WCBAM module, and finally augmented with the WCBAM module and trained adversarially in a
GAN framework. Performance for each of the seven targeted bit-rates is discussed in Section 4.2. The first
architecture has only the WNLAM module (Fig. 5) whose performance in terms of PSNR and MS-SSIM
has been improved by adding the WCBAM attention module.

As emphasized in Fig. 1, the adversarially trained decoder results in better visual quality of the reconstructed
image than the autoencoder only trained with the window-based non-local and convolutional block attention
mechanisms. Conventional metrics like PSNR and MS-SSIM are unable to capture the higher perceptual
quality of the GAN-reconstructed images. It is empirically shown (Zhang et al., 2018) that LPIPS can
show the merit of an adversarially trained network. LPIPS is known as a measure of similarity between an
image and its reconstruction and it is shown that it is consistent with the human judgment of the quality of
reconstructed images (Zhang et al., 2018). As shown in Fig. 6, the adversarially trained network performs
better than the others which are not trained using GANs. This figure shows that if the human judgment
has priority over the PSNR/MS-SSIM, training adversarially is the best option.

4.4 Example of the Impact on Downstream Use Applications

In order to provide an example of the effects of the proposed compression scheme on data science applications,
the coronal hole (CH) detection and segmentation scheme outlined in Boucheron et al. (2016), which is an
extension of the active contours without edges (ACWE) algorithm of Chan & Vese (2001), was applied to
four 193 Å Solar EUV images. The effects of compression were determined by comparing the similarity of
the resulting CH regions at various bit rates to the CH regions identified on the original Level 1 193 Å EUV
images.

CHs are regions of low-density, low-temperature plasma within the Sun’s corona. These regions are associated
with open magnetic field lines, and are sources of high-speed solar wind Altschuler et al. (1972); Munro &
Withbroe (1972); Wang & Sheeley (1990); Wang et al. (1996). For this reason, accurate delineation of CH
boundaries and extents is important for accurate space weather modeling and prediction Wang & Sheeley
(1990); Arge et al. (2003; 2004). The segmentation scheme outlined in Boucheron et al. (2016) combines
threshold-based detection, which is a common method of detecting CHs Reiss et al. (2021), with a region
refinement algorithm that further refines the initial segmentation based on the homogeneity of the region. By
using the algorithm of Boucheron et al. (2016) we can verify that region intensity and underlying structure
necessary for accurate delineation of coronal holes are both preserved in the compressed images.
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Figure 7: Effects of proposed compression scheme on CH detection via ACWE. The top row images are the
original solar EUV images. At this wavelength CHs appear as dark regions. The CH segmentation on the
original images is shown in the same row. The remaining images are comparisons of the original ACWE seg-
mentation with the segmentation generated from the compressed images with different compression schemes.
Last row contains the results of segmentation on reconstructed images through our proposed neural codec at
sub ∼ 0.01 bitrates, a bitrate regime not achievable by other codecs preserving the same DICE coefficient.
In each image purple regions were only identified as CHs in the original segmentation, yellow regions were
identified as belonging to a CH only in the compressed image segmentation, green regions were identified as
CHs in both segmentations, and blue regions were not identified as CHs in either segmentation.
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Figure 8: Effects of different compression schemes on CH detection via ACWE, expressed as DICE coefficient
as a function of bit-rate.

ACWE is an iterative process wherein an initial contour or ‘seed’ is manipulated on a pixel-by-pixel basis
across multiple iterations in order to minimize an energy functional. The ACWE energy functional is
minimized by balancing three forces which seek to 1: minimize the length of the contour, 2: maximize the
homogeneity of the foreground (or CH region), and 3: maximize the homogeneity of the background or
non-CH region Chan & Vese (2001). Each force is subject to a user-defined weight which defines the relative
importance of achieving each goal Chan & Vese (2001). Unlike the process outlined in Boucheron et al.
(2016), ACWE was performed on the images at the original resolution of 4096 × 4096 pixels. The rest of the
process follows the method outlined in Boucheron et al. (2016), wherein the images are corrected for limb
brightening following the method outlined in Verbeeck et al. (2014). An initial seed is then generated by
selecting all on-disk pixels with an intensity ≤ α × QS where QS is the mean intensity of the quiet Sun,
and the seeding parameter (α) is defined as α = 0.3. From there ACWE was performed on the on-disk
region using the length constraint µ = 0, and the ratio of foreground to background homogeneity parameters
λi/λo = 50. The compression process was evaluated using four 193 Å Solar EUV images with record times
(as expressed by the T_REC keyword) 2010-07-25 T12:00:02Z, 2010-08-21 T22:00:02Z, 2010-09-18 T00:00:02Z,
and 2013-02-21 T23:00:01Z. In order to prepare the images for the compression process, the original Level 1
EUV image (at their native spatial resolution of 4096 × 4096 pixels) were clipped to the intensity range of
[20, 2500]. Once clipped, a log10 transform was applied to the intensity levels within images. The resulting
intensities where then mapped to 255 discrete levels before performing the compression using the proposed
network (with both WNLAM and WCBAM attention). For this process eight models were developed using
the hyper-parameters λ = {0.0005, 0.0035, 0.007, 0.009, 0.011, 0.0125, 0.019, 0.025}. Once a compressed image
for each EUV input was generated from each model, the images were then restored by reversing the intensity
mapping and reversing the log10 transform prior to performing ACWE.
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An example of the effects of the proposed compression scheme on the final CH segmentation is presented in
Fig. 7. In this figure the output of compressed images by five different compression algorithms are compared,
by showing the original image and its correct segmentation on the first row for four different images of the
Sun. The subsequent rows are the highest compression rate achievable by the mentioned algorithm and as it
can be seen the proposed neural compression method can still deliver in the sub-0.01 bpp regime. Each image
in Fig. 7 is a comparison between the two segmentations (original and compressed) wherein purple regions
were only identified as CHs in the original segmentation, yellow regions were identified as belonging to a CH
only in the compressed image segmentation, green regions were identified as CHs in both segmentations, and
blue regions were not identified as CHs in either segmentation. Within this image set, and the remaining
cases tested, the discrepancies between segmentations are generally limited to small-scale structures, usually
along the boundary of CH regions. This suggests that the proposed compression scheme is able to preserve
the overall structure (and intensity) of coronal hole regions within the solar EUV image.

Across the four images, the effects of compression were evaluated by computing the DICE coefficient, defined
as

DSC = 2|S1 ∩ S2|
|S1| + |S2|

, (20)

between the CH segmentation generated by ACWE from the original EUV image (S1), and the segmentation
generated from the compressed image (S2), where | · | denotes cardinality and ∩ denotes intersection. These
results, which are shown as a function of bit rate of the compressed image in Fig. 8, corroborates the
observations seen in Fig. 7 by showing a high similarity between segmentations across all bit rates and more
desirably in the extremely compressed regimes.

It should be noted that applying a log transformation to the intensities within an image increases the number
of output intensity levels used to represent low intensities while decreasing the number of output levels used
to represent high intensities. For this reason, more of the 255 discrete intensity levels were allocated to
preserving fine detail at the low-intensity range of the image, which, in turn, improved the quality of the
ACWE segmentation Grajeda et al. (2023).

To help disentangle the effects of this advantage, this same prepossessing was applied to the same EUV images
before compressing the images using other compression, then reversing the process in the same manner. The
DICE coefficient (again, compared to the segmentation of the original EUV image) as a function of the bit-
rate of the compressed image for the other compression schemes is presented in Fig. 8. It should be noted
that the other compression schemes begin to show signs of degradation in image features that negatively
impact CH segmentation at compression rates of ∼ 0.12 bits per pixel, and cannot produce images with a
compression rate < 0.1 bits per pixel for these 4K by 4K images, unless sacrificing DICE measure. One the
other hand, the neural compression scheme proposed here continues to perform well beyond this threshold,
suggesting that the neural compression scheme is able to better preserve the features that are relevant to
this application.

5 Conclusion

In this work, we have shown how an effective image compression scheme based on trainable neural networks
could be utilized for ad-hoc applications like images from NASA’s SDO mission. We explored the effectiveness
of window-based spatial and cross-channel attention mechanisms in an adversarially trained neural network
to improve the performance of compression in terms of rate-distortion-perception trade-off. It was shown that
neural compression algorithms may be able to benefit data-intensive space missions with minimal degradation
in downstream scientific tasks such as coronal hole segmentation as described in this work.
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