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Abstract—Prediction plays a key role in recent computational models of the brain and it has been suggested that the brain constantly

makes multisensory spatiotemporal predictions. Inspired by these findings we tackle the problem of audiovisual fusion from a new

perspective based on prediction. We train predictive models which model the spatiotemporal relationship between audio and visual

features by learning the audio-to-visual and visual-to-audio feature mapping for each class. Similarly, we train predictive models which

model the time evolution of audio and visual features by learning the past-to-future feature mapping for each class. In classification, all

the class-specific regression models produce a prediction of the expected audio/visual features and their prediction errors are

combined for each class. The set of class-specific regressors which best describes the audiovisual feature relationship, i.e., results in

the lowest prediction error, is chosen to label the input frame. We perform cross-database experiments, using the AMI, SAL, and

MAHNOB databases, in order to classify laughter and speech and subject-independent experiments on the AVIC database in order to

classify laughter, hesitation and consent. In virtually all cases prediction-based audiovisual fusion consistently outperforms the two

most commonly used fusion approaches, decision-level and feature-level fusion.

Index Terms—Prediction-based fusion, audiovisual fusion, nonlinguistic vocalisation classification

Ç

1 INTRODUCTION

AUDIOVISUAL fusion approaches have been successfully
applied to various problems like speech recognition

[1], [2], affect recognition [3], [4], laughter recognition [5],
[6], biometric systems [7] and meeting analysis [8]. Their
success lie in the redundant visual information not cor-
rupted by auditory noise, and to a lesser degree to the com-
plementary visual information, which is not present in the
auditory channel. Although various works on audiovisual
fusion have been recently presented, feature-level fusion
(FF) and decision-level fusion (DF) remain the two most
common types [7], [9].

In this work, we present a new audiovisual fusion
approach, which is based on prediction, tackling the prob-
lem from a different perspective. The proposed approach
has been inspired by recent computational models of the
brain [10], [11]. The memory-prediction framework [11] was
of particular interest to us since it emphasises the notion of
multisensory spatiotemporal predictions. Based on the
input from one sense, e.g., vision, the brain can make pre-
dictions about future events in the same sense, as well as
current and future events in other senses, e.g., hearing. This
means that based on what we see (hear) now we can predict
what we expect to hear (see) now and see (hear) and hear
(see) in the future.

Similar findings have been reported in psychology and
cognitive science. It has been suggested in [12] that visual
information has a predictive role in processing audio infor-
mation. The audio signal and the mouth expression share
common temporal properties [13] and this helps to reduce
temporal uncertainty related to the onset of syllables. In
other words, the mouth opening can be used to predict the
acoustic envelope of the speech, which in turn reduces tem-
poral uncertainty. This assumption has been experimentally
tested [14], [15] and demonstrated to be valid. In [16], [17], it
was shown that vision is used as a predictive signal and cer-
tain facial movements are better predictors of subsequently
voiced speech than others.

Driven by those findings we propose a new audiovisual
fusion approach based on prediction, which has received lit-
tle attention so far. We explicitly model the spatiotemporal
relationship between audio and visual features using regres-
sors1 which learn the audio-to-visual and visual-to-audio fea-
ture mapping for each class. This set of regressors learn to
predict the audio features from the visual features and vice
versa and constitute the cross-modal prediction fusion mod-
ule as shown in Fig. 1. Similarly, we model the temporal evo-
lution of the audio and visual features using regressors
which learn the relationship between past and future values
for the audio and visual features, respectively, for each class
separately. These regressors learn to predict the current audio
and visual features from their past values and constitute the
intra-modal prediction fusionmodule as shown in Fig. 1.

In classification, each regressor produces a prediction
error which is combined with the prediction errors of the
other regressors from the same class in a hierarchical way as
shown in Fig. 1. By selecting the model that produces the
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1. The terms regressor, predictor and predictive model are used
interchangeably in this paper.
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lowest prediction error, i.e., that best describes the audiovi-
sual feature relationship, the presented input can be labelled
accordingly. It is expected that the models corresponding to
the actual class will produce a better prediction than all other
models, since they have learnt the audiovisual relationship
for that class. It does not matter if the absolute value of the
prediction error is high or low, what really matters is the
ranking of the errors. As long as the correct model produces
the lowest error, the input example is correctly classified.

This study is an extension of our previous works [18],
[19], [20], where we compared cross-modal prediction
fusion with feature-level fusion for laughter-versus-speech
discrimination. Here, we provide an extensive comparison
of cross-modal prediction fusion, intra-modal prediction
fusion, and their combination, with feature-level fusion,
decision-level fusion, and their combination on two differ-
ent problems laughter-versus-speech discrimination and
classification of various nonlinguistic vocalisations.2 We
also compare the performance of various fusion approaches
across different audio noise levels and provide some insight
into the advantages of prediction-based fusion.

We have chosen nonlinguistic vocalisations as the target
application since they are audiovisual in nature. Previous
works have successfully used both decision-level and fea-
ture-level fusion to discriminate between laughter and

speech [5], [6], [22], [23] and nonlinguistic vocalisations [24].
In all cases audiovisual fusion achieved higher classification
performance over audio-only classifiers indicating that
visual information is beneficial for such tasks.

We use the AMI, SAL, and MAHNOB databases to dis-
criminate laughter from speech. We conduct cross-database
experiments which pose a significant challenge due to the
different recording conditions. Prediction-based fusion out-
performs the standard fusion methods in virtually all cases.
It results in a 4 and 5.4 percent increase in the mean F1 over
all classes on the AMI and MAHNOB datasets, respectively.
We also use the AVIC database in order to classify laughter,
consent, hesitation and other human noises. In this case pre-
diction-based fusion leads to an 8.3 percent increase in the
mean F1 over all classes. We also repeat the same experi-
ments while adding audio noise to the test sets. Again, pre-
diction-based fusion outperforms decision-level and
feature-level fusion in almost all noise levels.

Section 2 provides an overview of related works and
Section 3 describes the proposed prediction-based fusion
approach. In Sections 5 and 4 we present the databases and
the audio and visual features, respectively. Section 6 describes
the experimental setup and results are presented in Sections 7
and 8. Finally, Section 9 provides insight why the proposed
fusion approach outperforms the standard fusion approaches
and this is followed by Section 10which concludes the paper.

2 RELATED WORK

2.1 Audiovisual Fusion

Multiple audiovisual fusion approaches have been pro-
posed in the literature and have been applied to a variety of
applications. In this section, we present the most popular
fusion approaches: feature-level, classifier-level and deci-
sion-level fusion. A full review of existing audiovisual
fusion approaches and applications can be found in [7], [9].

2.1.1 Feature-Level Fusion

The extracted audio and visual features are combined, usu-
ally by concatenation, and then fed to a classifier. Processing
all features increases the dimensionality of the problem and
makes the problem more complex since it requires a large
amount of training data. One constraint of this approach is
that once the classifier has been trained the relative weights
of each stream cannot change as they are determined inter-
nally by the classifier. The main advantage of this type of
fusion is that it takes into account the spatiotemporal rela-
tionship between the audio and visual features, i.e., the co-
evolution of the audiovisual features over time.

2.1.2 Classifier-Level Fusion (CF)

This type of fusion lies between feature-level and decision-
level fusion. The audio and visual features are processed
independently and fusion takes place in the classifier. Hence,
this approach cannot be used with any classifier but only
with specific types like hiddenMarkov models (HMMs) and
Dynamic Bayesian Networks. Two of the most commonly
used architectures in audiovisual speech recognition are the
coupled HMMs [25] and multistream HMMs [1]. In the for-
mer case, two HMMs are used, one for the audio stream and

Fig. 1. Overview of the proposed prediction-based fusion. The first layer
consists of the cross-modal prediction module, which models the rela-
tionships between audio and visual features, and the intra-modal predic-
tion module, which models the temporal evolution of the audio and visual
features separately. In the second layer the prediction errors of the two
modules are combined. All four predictors are trained for each class sep-
arately. A sequence is classified based on the class-specific model which
produces the lowest prediction error, i.e., best explains the audiovisual
feature relationship. This example corresponds to a two-class problem
and that is why there are two error curves in each module.

2. According to Scherer [21] nonlinguistic vocalizations (or nonver-
bal vocalizations) are very brief, discrete, nonverbal expressions of
affect in both face and voice, like laughter, sigh, hesitation etc.
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one for the visual stream, which are coupled such that the
next state in both streams depends on the current state of the
audio and visual stream. In the latter case, two independent
HMMs are used in parallel and their likelihoods are com-
bined in pre-defined synchronisation points. Another vari-
ant is the multistream fused HMMs proposed in [26] for
affect recognition. One HMM is created for the audio and
visual streams and the hidden states are connected using the
maximummutual information criterion.

Since this fusionmethod is not generally applicable to any
classifier but requires specific classifier architectures, we do
not consider it further in this work. A review about other
classifier-level fusion approaches can be found in [3], [27].

2.1.3 Decision Level Fusion

In this type of fusion the audio and video modalities are
processed independently and they are combined at a higher
level using various integration rules like the weighted sum.
As a consequence the correlation between the audio and
visual features is not taken into account. This fusion type
does not increase the dimensionality, but comes at the
expense of requiring multiple classifiers to be trained. It
also allows for separate weighting of the different streams
based on their reliability and the relative importance of the
streams can be easily changed, by adjusting the weights,
once the classifiers are trained.

2.2 Prediction-Based Approaches

In this section we review the most relevant works based on
prediction. In order to be consistent with our approach we
divide the works into those which predict ahead in time
and those which make cross-modal predictions.

2.2.1 Prediction Ahead in Time

Predictive models which predict ahead in time have been
mainly used for time series classification [28], [29] and to a
lesser degree for time series segmentation [30]. The stan-
dard approach is that a predictive model per class is trained,
usually either a feedforward or a recurrent neural network,
which learns to predict the signal/feature values at the next
time step. Classification is performed based on the model
that produces the lowest prediction error similar to this
work’s approach.

The most common application for prediction-based
approaches is gesture recognition. The prediction-error-
classification approach [31], [32] has been proposed which
builds predictive models based either on neuro-fuzzy pre-
dictors or continuous-time recurrent neural networks
(NNs). These models learn to predict the acceleration values
in the X, Y and Z axes in the next time step for eight differ-
ent gestures. Classification is performed based on the model
which produces the lowest prediction error over an entire
gesture. A similar approach has been followed in [33]. A
recurrent fuzzy network models the time evolution of the
2D coordinates on the image plane for each of the ten ges-
tures considered and classification is performed based again
on the lowest prediction error principle.

A variant of the above approach for object classification
has been presented in [34] where only one recurrent neural
network is used to model all time series. This work assumes

that the time series are periodic and therefore they can be
extended so they all have the same length. The use of a sin-
gle model is possible because the context units, i.e., neurons
that receive input from the feedback connections, are set to
different initial values for each class. This means that
instead of feeding a time series to all models, as described
above, it is fed several times to the same model, where each
time class-specific values for the context units are used.

In all the above approaches, the predictive models learn
the evolution of raw signals, i.e., no features are extracted.
The same prediction-based approach has been used in [35]
where recurrent neural fuzzy networksmodel the time evolu-
tion of linear predictive coefficients extracted from the audio
signal of birdsongs. In this case the task is birdsong classifica-
tion, but classification is performed in exactly the sameway.

Another application of the prediction-based approach
has been feature extraction [36]. Feedforward neural net-
works are trained, using a window of past values, to per-
form one-step-ahead predictions for EEG time series. The
mean squared errors (MSEs), over a window of the pre-
dicted values, of all the models are used as features for lin-
ear discriminant analysis.

It is obvious that in all the previous approaches predic-
tion is performed in one stream only and audiovisual fusion
has not been attempted. The main difference with our
approach is that we create predictive models for the audio
and visual streams and fusion occurs through the combina-
tion of their prediction errors.

2.2.2 Cross-Modal Prediction

Predictive models which make cross-modal predictions
have beenmainly used to examine the relationship between
acoustic and visual speech features. Most of the studies are
focused only on the audio-to-visual feature mapping.
Linear predictors are commonly used to predict the visual
features, usually facial points [37], [38] or distances
between the facial points [39], [40], based on the audio fea-
tures, usually line spectrum pairs [37], [38], [39], [40] or lin-
ear predictive coefficients [39], [40]. A correlation
coefficient of about 0.70 between the predicted and actual
visual features is reported in almost all studies, which
increases to 0.85 when non-linear predictors are used like
neural networks [37]. Similar conclusions have been drawn
also for emotional speech where correlation values of over
0.80 have been reported when a linear predictor is used to
estimate facial points based on mel frequency cepstral coef-
ficients (MFCCs) [41]. It should be noted that all studies
report results in a subject-dependent way, i.e., each predic-
tor is tested on the same subject that has been trained on. As
expected the correlation is weaker for subject-independent
experiments [39].

There are also a few works which attempt to predict the
audio features based on the visual features. The results are
not as consistent in this case as in the audio-to-visual map-
ping. A correlation coefficient of 0.55 is reported in [40]
whereas a correlation coefficient of 0.73 is reported in [38]
using linear predictors.

Cross-modal prediction models have also been widely
used in speech driven facial animation. In this case, the audio
features, usuallyMFCCs [42], [43], are used as input to a non-

PETRIDIS AND PANTIC: PREDICTION-BASEDAUDIOVISUAL FUSION FOR CLASSIFICATION OF NON-LINGUISTIC VOCALISATIONS 47



linear predictor, usually a neural network [42], [43], [44]. The
goal is to predict the visual features which in turn control the
generated facial animations. The correlation coefficients
reported vary significantly, from 0.64 [42], [45] to 0.96 [43],
but this depends on the visual features used, which can sim-
ply be control parameters of the animated face [42].

Finally, to the best of our knowledge the only hybrid
approach that combines intra-modal prediction with cross-
modal prediction is presented in [46]. It is an interesting
approach but it is used for synchrony detection in speech
and not for audiovisual fusion and it makes no use of the
prediction error. The time evolution of the audio features is
modelled based on the assumption that the current audio
features can be linearly predicted using past audio and
visual features and the present visual features. It is expected
that the visual features can be used to predict the audio fea-
tures when they are synchronised, and therefore their corre-
lation is higher, but not when they are asynchronous.

Based on the findings presented above it is obvious that
there is a significant correlation between audio and visual
features in speech. To the best of our knowledge there is no
work which performs a similar correlation analysis for
laughter and other nonlinguistic vocalisations. The closest
work is [47] which attempts to produce facial animations
based on the sound of laughing, crying, sneezing and yawn-
ing but without providing any correlation analysis. It is rea-
sonable to assume that a correlation exists between audio
and visual features in nonlinguistic vocalisations, although
this may be weaker than in speech. Consequently, it makes
sense to model audiovisual behaviour by models which pre-
dict the audio features from the visual features and vice
versa. Yet, none of the prediction-based approaches have
been used either for classification or fusion of audiovisual
time series, as we propose in this work.

3 PREDICTION-BASED FUSION

The prediction-based fusion framework consists of two
components as shown in Fig. 1. The first is the cross-modal
prediction component, which combines the audio and
visual features by modelling the spatiotemporal relation-
ship between them. This component corresponds to feature-
level fusion where the concatenation of audio and visual
features is replaced by two predictors which learn the map-
ping between audio and visual features and vice versa for
each class separately.

The second one is the intra-modal prediction component
which models the temporal evolution of the audio and
visual features separately. This component corresponds to
decision-level fusion where each audio/visual stream is
modelled by two predictors which learn the mapping
between past and current audio or visual features for each
class separately.

Finally, these two components are combined in a hierar-
chical fashion. In the first level, the two predictors of the
cross-modal prediction component are combined in order to
take into account the bidirectional relationship between
audio and visual features. Similarly, the two predictors of
the intra-modal prediction component are combined in order
to merge the information about the temporal evolution of the
audio and visual streams. In the second layer, the intra- and

cross-modal prediction components are combined in order
to benefit from both the audiovisual feature relationship and
their temporal evolution. This corresponds to the combina-
tion of feature-level and decision-level fusion.

It is important to point out that all predictors are class-
specific, since they learn the audiovisual features relation-
ships for each class separately. This means that if there are
C classes the number of predictors that should be trained is
4� C. The key idea is that the class-specific predictors
which correspond to the true class of a new input sequence
will produce a better estimation of the audio/visual features
than models corresponding to other classes, since they have
been trained on the audiovisual features of the target class.

In the first set of predictors, which make predictions
across modalities, the relationship between the audio (Ac)
and visual (V c) features of class c is modelled by two regres-
sors, fc

A!V and fc
V!A, respectively. The first (second) predic-

tor takes as input the audio (visual) features and predicts
the corresponding visual (audio) features at the same frame
t as shown in the following equations:

fc
A!V

�
Ac½t� kcAV; t�

� ¼ V̂ c
A!V ½t� � V c½t� (1)

fc
V!A

�
V c½t� kcVA; t�

� ¼ Âc
V!A½t� � Ac½t�: (2)

In Eqs. (1) and (2), the size of the windows kcAV and
kcVA depends on the mapping type and the modelled

class. Note that the feature values at frame t are used as
well in order to predict the feature values in the other
modality at the same frame t.

In the second set of predictors, which make predictions
within each modality, the relationship between past and
future audio and visual features in each class c is modelled by
two regressors fc

A!A and fcV!V . The first (second) predictor
takes as input the past audio (visual) features and predicts the
corresponding audio (visual) features at frame t as follows:

fc
A!A

�
Ac½t� kcAA; t� 1�� ¼ Âc

A!A½t� � Ac½t� (3)

fcV!V

�
V c½t� kcVV; t� 1�� ¼ V̂ c

V!V ½t� � V c½t�: (4)

In Eqs. (3) and (4), the size of the windows kcAA and kcVV
depends on the mapping type and the modelled class. In
this case the feature values at frame t are excluded since
that is what we want to predict.

Once training is complete and the predictors fc are learnt,
they can be used for classification. When a new sequence is
available, the audio and visual features are computed, which
are fed to all predictors defined by Eqs. (1) - (4) resulting in
four prediction errors per frame for each class c. The predic-
tion error measures we considered are the mean squared

error, the mean absolute error (MAE) and the L2 norm of the

error (L2-E). The total error for each predictor is computed
by summing the errors across all frames, N , resulting in 4
prediction errors per sequence for each class. The errors for
the 4 predictors of class c are computed using Eqs. (5) to (8)

ecA!V ¼
XN

i¼1

Err
�
V̂ c
A!V ½i�; V ½i�� (5)

ecV!A ¼
XN

i¼1

ErrðÂc
V!A½i�; A½i�Þ (6)
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ecA!A ¼
XN

i¼1

Err
�
Âc

A!A½i�; A½i�
�

(7)

ecV!V ¼
XN

i¼1

Err
�
V̂ c
V!V ½i�; V ½i��; (8)

where Err is either the MSE or MAE or L2-E. Then the two
cross-modal prediction models (Eqs. (5), (6)) are combined
in order to take into account the bidirectional relationship
of audio and visual features as shown in Eq. (9) subject to
constraint in Eq. (10).

ecCP ¼ wc
AV � ecA!V þ wc

VA � ecV!A (9)

wc
AV þ wc

VA ¼ 1; (10)

where ecCP is the total cross-modal prediction error and wc
AV

and wc
VA are the weights of the cross-modal prediction

components.
Similarly, the two temporal evolution models (Eq. (7),

Eq. (8)) are combined in order to take into account past-to-
future relationship between audio and visual features as
shown in Eq. (11) subject to constraint in Eq. (12).

ecIP ¼ wc
AA � ecA!A þ wc

VV � ecV!V (11)

wc
AA þ wc

VV ¼ 1; (12)

where ecIP is the total intra-modal prediction error and wc
AA

and wc
VV are the weights of the intra-model prediction

components.
Finally, the prediction errors of the two components are

combined as shown in Eq. (13), subject to constraint in
Eq. (14), in order to merge information from the two predic-
tion-based models.

ec ¼ wc
CP � ecCP þ wc

IP � ecIP (13)

wc
CP þ wc

IP ¼ 1; (14)

where ec is the total prediction error and wc
CP and wc

IP are
the weights for the cross-modal prediction and intra-model
prediction fusion components, respectively. We have opted
for combining the sub-systems in a hierarchical way since it
allows for easier optimisation of the weights.

In Eqs. (9), (11), (13), the prediction errors are combined
without being normalised first. It is expected that the errors
will be in different scales since the predictors model differ-
ent relationships. As a consequence, the weights indicate
the relative importance of each predictor and act as scaling
factors as well.

An alternative approach is to convert the prediction
errors in the same scale by means of softmax normalisation.
All errors in Eqs. (9), (11), (13) are normalised using the soft-
max function so their sum is equal to one. In this case, the
weights simply indicate the relative importance of each pre-
dictor. In all the experiments conducted in this study, both
softmax normalisation and no normalisation are considered.

In the final step, a label is assigned to the input sequence
based on the C errors (Eq. (13)). This is done by selecting
the label which corresponds to the lowest error. In other
words, the class-specific model that best explains the audio-
visual feature relationship, i.e., leads to the lowest

prediction error, labels the new sequence accordingly, as
shown in Eq. (15).

PredictedClass ¼ argmin
c¼1:::C

ec: (15)

In case we wish to perform classification using either
cross-modal prediction fusion or intra-modal prediction
fusion only, this can be achieved by replacing the total pre-
diction error ec in Eq. (15) with either the cross-modal pre-
diction error ecCP or the intra-modal prediction error ecIP
from Eqs. (9) and (11), respectively.

4 FEATURES

4.1 Audio Features

Cepstral features, such as mel frequency cepstral coeffi-
cients, have been widely used in speech recognition [1], [2]
and have also been successfully used for laughter detection
[48] and laughter-vs-speech discrimination [5]. In addition,
it has been shown that cepstral coefficients are more corre-
lated to visual features than prosodic features [41]. There-
fore we only use MFCCs for our experiments which were
computed using the functions provided in [49].

The use of 13 MFCC coefficients is common in speech
recognition, however, using 6 coefficients has been reported
to lead to either the same or an improved performance in
laughter detection [48] and language identification [50]. The
same conclusion has been confirmed in one of our previous
study where the performance of different number of coeffi-
cients was investigated through cross-validation in the AMI
dataset [51]. Hence, we use 6 MFCCs which are computed
every 10 ms over a 40 ms long frame, i.e., the frame rate is
100 fps. In addition, the DMFCCs are calculated as well
since they capture local temporal characteristics. So in total,
12 audio features are computed.

4.2 Visual Features

To capture face movements in an input video, we track
20 facial points, as shown in Fig. 2. These points are the cor-
ners/ extremities of the eyebrows (2 points on each eye-
brow), the eyes (4 points on each eye), the nose (3 points),
the mouth (4 points), and the chin (1 point). To track these
facial points we used the particle filtering tracking scheme
proposed in [52], applied to tracking color-based templates
centered around the facial points to be tracked. Hence, for
each episode containing K video frames, we obtain a
K � 40 matrix which contains the x and y coordinates of the
20 points in each frame.

We wish to decouple rigid head movements from non-
rigid movements, i.e., facial expressions, since we are
mostly interested in the latter. To do so, we use a similar

Fig. 2. Example of tracking a laughter episode from the MAHNOB data-
base, Session S007-002, frames 324 to 346.
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approach to the one proposed by Gonzalez-Jimenez and
Alba-Castro [53]. Using a point distribution model (PDM),
by applying principal component (PCs) analysis to the
matrix containing the point coordinates from the training
frames, head movement can be decoupled from facial
expression. The facial expression movements are encoded
by the projection of the tracking points coordinates to the N
principal components of the PDM which correspond to
facial expressions. In this study we build a PDM based on
the SAL training set, so our shape features are the projection
of the 20 points to the three PCs which were found to corre-
spond to facial expressions (PCs 5 to 7) [5]. Similarly,
another PDM is built using the training set of AVIC using
PCs 5 to 10, which correspond to facial expressions. These
three and six visual features, are extracted at the video
frame rate, i.e., 25 fps.

5 DATABASES

For the purpose of this study we use four databases corre-
sponding to four different scenarios as described below.
Details of the examples used in this study are given in Table 1.

Augmented multi-party interaction (AMI) corpus [54]. The
AMI meeting corpus is a multi-modal database consisting
of 100 hours of meeting recordings. In each meeting there
are four participants which interact with each other. All
meetings are held in English, although most of the subjects
are non-native English speakers.

We use the same set of speech and laughter episodes
used in [5] which can be found in [55]. Each participant is
recorded by one camera positioned at a fixed location on
the meeting table. Since subjects participate in a meeting
they are rarely in a frontal pose. Audio for each participant
is captured by a headset microphone and background noise
is present from the other subjects.

Sensitive artificial listener (SAL) [56]. In this corpus
subjects interact with four agents, which have different
personalities and they are controlled by a human

operator. The aim is to evoke emotionally coloured reac-
tions from the users whose reactions are recorded by a
camera and a microphone.

We use the same set of speech and laughter episodes
used in [5] (see [55]) and most subjects are native English
speakers. We use the close-up video recordings of the sub-
jects and the related audio recording. Most of the time the
subjects have frontal pose, head movements are small and
audio noise is low. An example of a laughter episode is
shown in Fig. 3.

MAHNOB laughter database [57], [58]. In the MAHNOB
laughter database funny video clips were shown to subjects
and their reactionswere recorded by twomicrophones, and a
video camera. The subjects were also asked to speak about a
topic of their choice in English and in theirmother language.

We use the same set of speech and laughter examples as
in [58] which can be found in [59], and most subjects are
non-native English speakers. Each subject is recorded by a
fixed camera and since subjects watch video clips they are
mostly in frontal position and head movements are small
except during intense laughter. The camera microphone
audio is only considered since it is poses a more challenging
problem as explained in [58]. An example laughter episode
is shown in Fig. 4.

AudioVisual interest corpus (AVIC) [60]: The AVIC cor-
pus is an audiovisual dataset containing scenario-based
dyadic interactions. A subject is interacting with an
experimenter who plays the role of a product presenter
and leads the subject through a commercial presentation.
The subjects role is to listen to the presentation and inter-
act with the experimenter depending on his/her interest
on the product.

Annotations for laughter, hesitation, consent and other
human noises, which are grouped into one class called gar-
bage, are provided with the database and those are used in
this study. Similarly to previous works [24], [60], [61] vocal-
isations that were very short (� 120 ms) were excluded.

A video camera was used to record the subject’s reaction,
positioned in front of him/her and the audio signal was
recorded by a lapel microphone. The audio noise is low,
head movement is moderate and most of the time subjects
have frontal pose. Examples of laughter and hesitation are
shown in Figs. 5 and 6, respectively.

TABLE 1
Description of the Four Datasets Used in This Study

AMI (25 fps, 720 � 576, 16 kHz)

Type No. Episodes / Total Duration Mean / Std
No. Subjects (sec) (sec)

Laughter 124 / 10 145.36 1.17 / 0.73
Speech 154 / 10 285.92 1.86 / 1.12

SAL (25 fps, 720 � 576, 48 kHz)

Laughter 94 / 15 136.96 1.46 / 0.78
Speech 177 / 15 377.32 2.13 / 0.80

MAHNOB (25 fps, 720 � 576, 48 kHz)

Laughter 554 / 22 863.68 1.56 / 2.21
Speech 845 / 22 2430.92 2.88 / 2.28

AVIC (25 fps, 720 � 576, 44.1 kHz)

Laughter 267 / 21 110.44 0.41 / 0.30
Hesitation 1136 / 21 356.96 0.31 / 0.16
Consent 308 / 18 80.88 0.26 / 0.11
Garbage 582 / 21 134.72 0.23 / 0.15

The frame rate in frames per second (fps), resolution and sample rate in kHz
are shown next to each database.

Fig. 3. Example of laughter from the SAL database (GHillSect3), frames
1449 to 1475.

Fig. 4. Example of laughter from the MAHNOB database, Session S023-
002, frames 2104 to 2202.
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6 EXPERIMENTAL SETUP

6.1 Decision-Level and Feature-Level Fusion

In this section we briefly present the two most common
fusion types, decision-level and feature-level fusion, which
are compared with the prediction-based fusion approach.

Decision-level fusion. In this type of fusion, one classifier is
trained with the audio features and one with the visual fea-
tures. In both cases, a window of past audio, kA, or visual
features, kV , is fed to the classifiers which produce for each
class, c ¼ 1:::C, a score per frame, scA or scV . The class scores
of the audio and visual systems are combined as shown in
Eq. (16) subject to constraint Eq. (17).

scDF ¼ wA � scA þ wV � scV (16)

wA þ wV ¼ 1; (17)

where wA and wV are the weights of the audio and visual
classifiers, respectively.

Feature-level fusion. In this type of fusion, the audio and
visual features are first concatenated and then a single clas-
sifier is trained. A window of past audiovisual features, kFF ,
is fed to the classifier which produces a score for each class
c and each frame, scFF .

Feature-level + decision-level fusion. As shown in Fig. 1 the
cross-modal prediction and intra-modal prediction compo-
nents are combined hierarchically in order to merge the dif-
ferent types of information they encode. In the same way,
decision-level and feature-level fusion can also be combined
hierarchically. This is achieved by combining their outputs
as shown in Eq. (18) subject to constraint Eq. (19).

scFFþDF ¼ wFF � scFF þ wDF � scDF (18)

wFF þ wDF ¼ 1; (19)

where wFF and wDF are the weights for the feature-level and
decision-level fusion systems.

In all the above cases, the total score per class over a
sequence can be computed by summing the scores across
all frames. Finally, a sequence is labelled based on the class
with the highest score.

6.2 Preprocessing

As mentioned in Section 4 the audio and visual features are
extracted at different frame rates. Therefore they need to be
synchronised. This is achieved by upsampling the visual
features, to match the frame rate of the audio features
(100 fps), by linear interpolation similarly to [2]. In addition,
since the recording conditions are different in each data-
base, the features need to be normalised in order to remove
(to some extent) the recording and subject variability. In
order to do this, we follow the common approach in cross-

database experiments [62], [63] where all audio and visual
features are z-normalised per subject, to a zero mean and
unity standard deviation.

Finally, the datasets are imbalanced as shown in Table 1
and this can significantly degrade the performance of dis-
criminative classifiers [64]. Therefore, the training set is bal-
anced by random downsampling when feature-level or
decision-level fusion is used. In prediction-based fusion this
is not required since each predictor is trained with examples
from one class only.

6.3 Training

Feedforward neural networks with one hidden layer, using
sigmoid activation functions, are used as classifiers in fea-
ture-level or decision-level fusion and as predictors in pre-
diction-based fusion. In the former case the output layer
consists of sigmoid activation functions and in the latter
case of linear activation functions. Each network is trained
using the resilient backpropagation algorithm [65] with an
epoch limit of 1,000 and early stopping to avoid overfitting.

The NNs weights are initialised randomly and this can
lead to slightly different performance each time a network
is trained. This in combination with the random downsam-
pling approach for balancing used in feature-level and deci-
sion-level fusion may lead to variable performance. In order
to account for that randomness 30 networks are trained for
each experiment and the mean performance and standard
deviation are reported.

6.4 Parameter Optimisation

Prediction-based fusion. The first step is the optimisation of
the number of hidden neurons in NNs and the window
lengths from Eqs. (1) to (4). The number of hidden neurons
varies between 5 and 60 neurons. The window lengths
range is from 0 ms to 120 ms, which is the length of the
shortest vocalisation, in steps of 10 ms. The combination of
window length and number of hidden neurons that leads to

the lowest prediction error (either MSE or MAE or L2 � E)
over all sequences in the validation set is selected as the
optimal one. It should be noted that the parameters of each
network/predictor are optimised independently of the
other networks.

The next step is the optimisation of the weights which is
done hierarchically. In the first layer the weights of the
cross-modal prediction module, wc

AV and wc
VA, and intra-

modal prediction module, wc
VV and wc

AA, are optimised inde-
pendently of each other. For each module a line search is
performed between 0 to 1 in steps of 0.05 and classification
is based either on Eq. (9) or Eq. (11). The weight combination
in each module resulting in the best mean F1 measure over
all classes on the validation set is selected as the optimal.

Fig. 5. Example of laughter from the AVIC corpus, Subject VP4, frames
6532 to 6569.

Fig. 6. Example of hesitation from the AVIC corpus, Subject VP8, frames
15476 to 15497.
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In the second layer, the weights that combine the cross-
modal prediction, wc

CP , and intra-modal prediction, wc
IP ,

modules from Eq. (13) are optimised. This is done in exactly
the same way as in the first layer. The only difference is that
the performance of the overall system is considered, i.e.,
classification is performed using Eqs. (13) and (15).

Decision-level fusion. The only parameters that need to be
optimised are the number of hidden neurons and the win-
dow lengths, kA and kV , of the audio and visual classifiers,
respectively. This is done in the same way as for the predic-
tion-based fusion. The only difference is that the optimal
combination is the one which maximises the mean F1 mea-
sure over all classes on the validation set. Weights, wA and
wV from Eq. (16), are also optimised in the same way as the
first layer weights in prediction-based fusion.

Feature-Level fusion. In this case, the only parameters to be
optimised are the number of hidden neurons and the win-
dow length, kFF . This is done in the same way as described
above for the audio and video classifiers.

Feature-level + Decision-level Fusion: The only parameters
that need optimisation are the weights wFF and wDF from
Eq. (18). This is performed in the same way as for the second
layer weights in prediction-based fusion.

6.5 Performance Measures

The performance measures used are the F1 measure, the
classification rate (CR) and the unweighted average recall
(UAR), which is simply the average of all recall rates per
class. The use of F1 measure and UAR provide a more objec-
tive view of the performance over the CR which can be
affected by imbalanced datasets.

In order to test the statistical significance of the results we
use the randomization test [66] which has been shown to per-
form similarly to the commonly used T-test, when the nor-
mality assumption is met, but outperforms it when it is not
met. In the following sections, whenever two methods are
compared in terms of performance, a randomisation test is
run. So unless mentioned otherwise, whenever one method
performs better, this difference is statistically significant.

7 EXPERIMENTAL STUDIES

In order to compare the performance of prediction-based
fusion with feature-level and decision-level fusion two sets
of experiments are conducted. In all approaches, exactly the
same audio/visual features are used, and the same classifi-
cation protocol is followed. The only difference is how clas-
sification is performed, either via prediction or by using the
standard feature-level and/or decision-level fusion.

7.1 Laughter-versus-Speech Discrimination

In this experiment, we use the SAL, AMI and MAHNOB
databases in order to discriminate laughter from speech.
The first 10 subjects of the SAL dataset are used for train-
ing, the last five subjects of SAL are used as a validation
set and the AMI and MAHNOB datasets are used for test-
ing. This cross-database setup presents a more challeng-
ing task since each database has different characteristics
and the trained models and the optimal parameters found
on one database will most likely be sub-optimal when
tested on different databases.

The optimalweights are shown inTable 2. It is obvious that
the video-to-audio and audio-to-audio prediction systems are
heavily favoured for both classes and for both normalisation
schemes with weights varying from 0.80 to 1. In case of deci-
sion-level fusion the audio classifier is heavily favoured.

Regarding the second layer weights, the cross-modal
prediction module is favoured for both classes when soft-
max normalisation of the errors is used. In other words,
the cross-modal prediction module is more important
when the errors are in the same scale. On the other hand,
the intra-modal prediction weights are higher when no
error normalisation is applied. As explained in section 3
the weights in this case encode both relative importance
and scaling information. Hence, this means that the cross-
modal prediction errors are higher than the intra-modal
prediction errors and a smaller weight is needed in order
to convert them to the same scale as the intra-modal pre-
diction errors.

Table 3 shows the performance of the different
approaches on the AMI and MAHNOB datasets. On the
AMI dataset, the full prediction-based and cross-modal pre-
diction fusion with no normalisation perform similarly and
they are the best approaches for all performance measures.
They achieve an absolute increase over the combination of
decision- and feature-level fusion of up to 4.2% on the mean
F1. It is worth pointing out that although intra-modal pre-
diction fusion does not perform well, the full prediction-
based system capitalises on the good performance of the
cross-modal prediction system and the overall performance
is not degraded. This happens because the correct class pre-
dictor produces a much lower prediction error than the
wrong class predictor in the cross-modal prediction system
and this difference is larger than the difference between the
wrong class and the correct class prediction errors in the
intra-modal prediction system.

On the MAHNOB dataset, the full prediction-based
fusion approach independent of the normalisation scheme
results in the best performance for all performance meas-
ures. It achieves an absolute increase over the combination
of decision-level and feature-level fusion of up to 5.4% on
the mean F1. In this case, both cross- and intra-modal pre-
diction fusion approaches perform well so their combina-
tion results in improved performance.

TABLE 2
Optimal Weights for Prediction-Based Fusion, Feature-Level

Fusion and Decision-Level Fusion

Prediction-Based Fusion Prediction-Based Fusion

Softmax Normalisation No Normalisation

[wL
VA,w

L
AV ] [0.80 0.20] [wL

VA,w
L
AV ] [0.90 0.10]

[wL
VV ,w

L
AA] [0 1] [wL

VV ,w
L
AA] [0.10 0.90]

[wS
VA,w

S
AV ] [1 0 ] [wS

VA,w
S
AV ] [0.85 0.15]

[wS
VV ,w

S
AA] [0 1] [wS

VV ,w
S
AA] [ 0 1]

[wL
CP ,w

L
IP ] [0.55 0.45] [wL

CP ,w
L
IP ] [0.30 0.70]

[wS
CP ,w

S
IP ] [0.65 0.35] [wS

CP ,w
S
IP ] [0.30 0.70]

Decision-Level Fusion Decision-Level Fusion +
Feature-Level Fusion

[wA, wV ] [0.90 0.10] [wFF , wDF ] [0.05 0.95]

All parameters were optimised on five subjects from the SAL dataset.
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It is also obvious that none of the standard fusion meth-
ods outperforms the audio-only classification. This is due to
the bad performance of the visual features which particu-
laty affects feature-level fusion.

We should also emphasise the different type of infor-
mation encoded by the different fusion approaches. As
shown in Table 2, prediction-based fusion is based on
the one-way relationship between visual and audio fea-
tures (video-to-audio predictor) and to a lesser degree
on the temporal evolution of the audio features (audio-
to-audio predictor). The combination of decision-level
and feature-level fusion relies mostly on decision-level
fusion which in turn is mainly based on the audio-only
classifier, i.e., on the temporal evolution of the audio fea-
tures. It is therefore obvious that prediction-based fusion
offers a different representation of the audio and visual
information and is also capable of extracting information
which may not be easily accessible to standard fusion
approaches.

It is also apparent that having no normalisation
results in slightly better performance than softmax nor-
malisation in most cases. Although softmax normalisa-
tion converts the errors in the same scale it distorts the
difference between them achieving poorer performance
results. On the other hand, having no normalisation does
not introduce any distortion, and leads to slightly better
performance, but it should be emphasised that the
weights act as scaling factors as well and do not measure
just the relative importance. For both types of normalisa-
tion the MAE led to the best performance on the valida-
tion set and that is the prediction error measure used in
all experiments.

7.2 Non-linguistic Vocalization Classification

In this experiment, we use the AVIC database in order to
classify 3 different non-linguistic vocalisations: laughter,
hesitation, and consent, from a garbage class that contains
other noises. Subjects 8 to 14 are used for training, subjects

15 to 21 are used for validation, and the first 7 subjects are
used for testing.

The optimal weights for the non-linguistic vocalisation
classification task are shown in Table 5. Similarly to laugh-
ter-vs-speech discrimination, the video-to-audio and the
audio-to-audio predictors are clearly favoured for all classes
and both types of normalisation. In case of decision-level
fusion, the audio-only classifier is heavily favoured. How-
ever, the second layer weights follow a different pattern.
The intra-modal prediction system is clearly favoured over
the cross-modal prediction system independently of the
normalisation used. This means that for this task the intra-
modal prediction is more important. The intra-modal pre-
diction weights are higher when no normalisation is
applied, revealing also in this experiment that the cross-
modal prediction errors tend to be higher than the intra-
modal prediction errors.

Table 4 shows the performance of the different
approaches on the AVIC dataset. On average, the intra-
modal prediction module with softmax normalisation is the
best performing approach achieving an absolute improve-
ment of 8.3 percent on the mean F1 over the combination of
decision-level and feature-level fusion. Similarly, all other
prediction-based fusion approaches with the exception of
cross-modal prediction fusion outperform all the standard
fusion approaches.

In this experiment, cross-modal prediction fusion per-
forms poorly because the audio and visual features are
not highly correlated. For example, hesitation can be
accompanied by either subtle facial expressions, like
Fig. 6, or no facial expressions like Fig. 9. In other words,
the facial expressions accompanying hesitation and con-
sent are not as consistent as in the case of laughter or
speech and as a consequence the audio and visual fea-
tures are less correlated.

It is also clear from Table 4 that intra-modal prediction
fusion and full prediction-based fusion perform similarly
for most performance measures in case of no normalisation.

TABLE 3
F1, UAR and CR for the Audio-Only Classifier (A), Video-Only Classifier (V), Feature-Level Fusion, D F, the Combination of DF and

FF, Cross-Modal Prediction Fusion (C P), Intra-Modal Prediction Fusion (I P) and the Full Prediction-Based System with No
Normalisation (P F - N) and Softmax Normalisation (P F - S)

Classification F1 F1 F1 CR UAR F1 F1 F1 CR UAR

System Laughter Speech Mean Laughter Speech Mean

Test! AMI MAHNOB

A 73.7 (3.4) 85.3 (1.4) 79.5 (2.4) 81.1 (2.0) 79.0 (2.2) 76.2 (3.3) 88.2 (1.1) 82.2 (2.2) 84.2 (1.7) 80.8 (2.2)
V 58.5 (5.2) 76.1 (1.0) 67.3 (2.8) 69.8 (1.7) 67.7 (2.2) 55.0 (5.6) 78.0 (1.0) 66.5 (3.0) 70.5 (1.8) 66.3 (2.9)

A + V (D F) 73.3 (3.2) 85.2 (1.3) 79.2 (2.3) 81.0 (1.9) 78.8 (2.1) 76.5 (3.4) 88.4 (1.2) 82.4 (2.3) 84.5 (1.8) 81.0 (2.3)
A + V (F F) 67.8 (2.8) 82.1 (1.1) 75.0 (1.9) 77.0 (1.6) 74.8 (1.7) 61.8 (2.5) 82.0 (0.7) 72.0 (1.5) 75.6 (1.1) 71.2 (1.4)
A + V (D F + F F) 73.5 (2.9) 85.4 (1.1) 79.5 (2.0) 81.2 (1.7) 79.0 (1.8) 76.5 (3.2) 88.4 (1.1) 82.5 (2.1) 84.5 (1.7) 81.0 (2.1)

A + V (C P - S) 76.6 (2.3)y 85.7 (1.0)y 81.2 (1.6)y 82.3 (1.4) 80.6 (1.5)y 81.7 (1.3)y 89.0 (0.6) 85.4 (1.0)y 86.3 (0.8)y 84.7 (1.1)y

A + V (C P - N) 80.3 (2.5)y 87.0 (1.3)y 83.7 (1.9)y 84.3 (1.7)y 83.1 (1.9)y 80.9 (2.4)y 88.3 (1.0) 84.6 (1.7)y 85.5 (1.5) 84.2 (1.9)y

A + V (I P - S ) 62.3 (11.4)y 82.1 (3.2)y 72.2 (7.3)y 75.8 (5.3)y 73.0 (6.0) 73.7 (8.1) 87.6 (2.5) 80.7 (5.3) 83.2 (4.0) 79.5 (5.3)
A + V (I P - N ) 68.2 (10.5)y 83.7 (3.1)y 76.0 (6.8)y 78.6 (5.1)y 76.1 (5.8)y 80.4 (7.3)y 89.8 (2.3)y 85.1 (4.8)y 86.6 (3.6) 84.1 (4.9)y

A + V (P F - S) 76.6 (1.9)y 86.2 (0.7)y 81.4 (1.3)y 82.6 (1.1)y 80.8 (1.2)y 83.5 (1.2)y 90.4 (0.5)y 86.9 (0.8)y 87.8 (0.7)y 86.0 (1.0)y

A + V (P F - N) 79.4 (2.2)y 87.6 (1.0)y 83.5 (1.6)y 84.5 (1.4)y 82.9 (1.5)y 84.7 (2.2)y 91.1 (0.9)y 87.9 (1.6)y 88.7 (1.3)y 87.0 (1.7)y

The AMI and MAHNOB datasets are used as test sets. The mean and (St. Dev.) over 30 experiments are presented. The two highest mean values in each column
are given in bold. y denotes that the difference between the prediction-based approaches and D F + F F is statistically significant.
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The same is not true when softmax normalisation is used
and the bad performance of the cross-modal prediction has
a negative effect on the the full prediction-based system.
The prediction error difference between the wrong classes
predictors and the correct class predictor in the cross-modal
prediction module is high enough so it cannot be offsetted
by the difference between the correct and wrong classes pre-
dictors in the intra-modal prediction module. This happens
possibly due to distortion of the prediction error differences
when softmax normalisation is applied.

As shown in Table 5, prediction-based fusion is based on
the temporal evolution of the audio features (audio-to-audio
predictor) and to a much lesser degree on the one-way rela-
tionship between visual and audio features (video-to-audio
predictor). The combination of decision-level and feature-

level fusion relies mostly on decision-level fusion which in
turn is mainly based on the audio-only classifier, i.e., on the
temporal evolution of the audio features. Hence, in this
experiment the better performance of prediction-based
fusion is mostly due to the different representation of the
audiovisual information.

Finally, both types of normalisation perform similarly
with the exception of intra-modal prediction fusion where
softmax normalisation is superior. Overall, we see that
softmax normalisation tends to distort the prediction
error differences and this can have both positive and neg-
ative effects depending on the dataset, whereas no nor-
malisation tends to be more stable. In case of softmax
versus having no normalisation the L2 � E and MSE were
found to be the best performing error measures, respec-
tively, on the validation set and these are the prediction
error measures used in all experiments.

8 EFFECT OF AUDIO NOISE

In order to investigate the robustness to audio noise of the
audiovisual fusion approaches we run experiments under
varying noise levels. The audio signal for each example is
corrupted by additive babble noise from the NOISEX data-
base [67] so as the SNR varies from �5 to 30 dB.

Results for the AMI, MAHNOB and AVIC datasets are
shown in Figs. 7a, 7b and 7c, respectively. Overall, we see
that prediction-based fusion is more robust to audio noise
than the combination of decision- and feature-level fusion.
The video-only classifier (blue solid line with triangle
markers) is not affected by the addition of the audio noise
and therefore its performance remains constant over all
noise levels. On the other hand, as expected, the perfor-
mance of the audio classifier (green dashed line) degrades
as the audio noise increases.

The best performing approach over all noise levels on the
AMI and MAHNOB datasets is the full prediction-based
fusion (grey solid line). More specifically, its performance on
the AMI dataset ranges from 82.5 percent (1.4) to 68.9 percent
(2.0) and is the only approachwhich remains above the video-

TABLE 5
Optimal Weights, for Prediction-Based Fusion, Feature-Level

Fusion and Decision-Level Fusion

Prediction-Based Fusion Prediction-Based Fusion

Softmax Normalisation No Normalisation

[wG
VA,w

G
AV ] [1 0] [wG

VA,w
G
AV ] [0.80 0.20]

[wG
VV ,w

G
AA] [0.05 0.95] [wG

VV ,w
G
AA] [0 1]

[wL
VA,w

L
AV ] [0.75 0.25] [wL

VA,w
L
AV ] [0.90 0.10]

[wL
VV ,w

L
AA] [0 1] [wL

VV ,w
L
AA] [0 1]

[wC
VA,w

C
AV [0.85 0.15] [wC

VA,w
C
AV ] [0.90 0.10]

[wC
VV ,w

C
AA] [0 1] [wC

VV ,w
C
AA] [0 1]

[wH
VA,w

H
AV ] [0.65 0.35] [wH

VA,w
H
AV ] [1 0]

[wH
VV ,w

H
AA] [0 1] [wH

VV ,w
H
AA] [0.15 0.85]

[wG
CP ,w

G
IP ] [0.20 0.80] [wG

CP ,w
G
IP ] [0.05 0.95]

[wL
CP ,w

L
IP ] [0.15 0.85] [wL

CP ,w
L
IP ] [0.05 0.95]

[wC
CP ,w

C
IP ] [0.25 0.75] [wC

CP ,w
C
IP ] [0.05 0.95]

[wH
CP ,w

H
IP ] [0.35 0.65] [wH

CP ,w
H
IP ] [0.05 0.95]

Decision-Level Fusion Decision-Level Fusion
Feature-Level Fusion

[wA, wV ] [0.80 0.20] [wFF , wDF ] [0.05, 0.95]

All parameters were optimised on subjects 15 to 21 from the AVIC dataset.

TABLE 4
F1 and UAR CR for the Audio-Only Classifier (A), Video-Only Classifier (V), Feature-Level Fusion, Decision-Level Fusion (D F),

the Combination of DF and FF, Cross-Modal Prediction Fusion (C P), Intra-Modal Prediction Fusion (I P) and the
Full Prediction-Based System with No Normalisation (P F - N) and Softmax Normalisation (P F - S)

Classification F1 F1 F1 F1 F1 CR UAR

System Garbage Laughter Consent Hesitation Mean

Test! AVIC

A 51.1 (3.8) 58.3 (2.6) 40.0 (5.2) 67.2 (2.8) 54.1 (2.2) 58.8 (2.4) 58.7 (2.4)
V 44.4 (4.1) 38.9 (2.6) 35.5 (3.4) 57.1 (3.7) 44.0 (2.0) 48.5 (2.6) 48.9 (2.5)

A + V (D F) 53.4 (3.9) 60.1 (2.4) 43.6 (5.5) 68.2 (2.8) 56.3 (2.2) 60.6 (2.4) 61.0 (2.3)
A + V (F F) 53.4 (2.5) 57.3 (2.4) 43.3 (2.8) 63.1 (3.1) 54.3 (1.8) 57.2 (2.3) 60.5 (1.6)
A + V (DF + FF) 54.3 (4.0) 60.5 (2.5) 44.8 (5.1) 68.4 (2.7) 57.0 (2.2) 61.1 (2.4) 61.8 (2.2)

A + V (C P - S) 38.9 (3.6)y 56.9 (2.2)y 37.3 (4.2)y 65.7 (1.8)y 49.7 (2.1)y 54.8 (1.9)y 53.6 (2.7)y
A + V (C P - N) 45.8 (3.1)y 54.3 (2.1)y 36.8 (5.4)y 67.0 (1.4) 51.0 (2.0)y 56.7 (1.6)y 54.3 (2.4)y

A + V (I P - S) 54.4 (3.4) 77.1 (4.6)y 47.3 (7.8) 82.3 (2.6)y 65.3 (2.9)y 72.6 (3.0)y 64.9 (3.0)y
A + V (I P - N) 50.2 (2.7)y 72.8 (3.7)y 46.1 (6.2) 79.2 (1.9)y 62.1 (2.2)y 69.2 (2.2)y 62.3 (2.4)

A + V (PF - S) 56.9 (2.9) 71.0 (2.6)y 44.0 (3.3) 75.9 (1.8)y 62.0 (1.6)y 67.7 (1.8)y 64.0 (1.9)y
A + V (PF - N) 57.7 (2.2)y 67.2 (2.5)y 46.2 (4.2) 74.9 (1.0)y 61.5 (1.6)y 67.0 (1.2)y 64.2 (2.0)y

Subjects 1 to 7 from the AVIC dataset are used as test set. The mean and (St. Dev.) over 30 experiments are presented. The two highest mean values in each col-
umn are given in bold. y denotes that the difference between the prediction-based approaches and D F + F F is statistically significant.
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only performance for all noise levels until �5 dB. On the
MAHNOB dataset, it achieves a mean F1 of 86.8 percent
(0.8) in 30 dB which decreases to 78.4 percent (2.0) in
�5 dB. On both datasets the combination of decision- and
feature-level fusion is almost identical to audio-only classi-
fication since it is mostly based on the audio-only classifier
as shown in Table 2.

Similar conclusions can be drawn for the AVIC data-
set, Fig. 7c. Between 10 and 30 dB prediction-based
fusion is the best performing approach and the combina-
tion of decision- and feature-level fusion is the second
best. The main difference with the other two datasets lies
in the two noisiest levels. In 0 dB, both methods result in
the same performance, whereas in �5 dB the combination
of decision- and feature-level fusion performs slightly
better, 44.6 percent (1.3), than prediction-based fusion,
42.4 percent (1.8).

9 DISCUSSION

The main advantage of the prediction-based fusion
approach is that it does not explicitly rely on the actual val-
ues of the features as is the case for feature-level or deci-
sion-level fusion. The problem is converted into a
competition between several models, e.g., a laughter and a
speech model or a laughter, a hesitation, a consent and a
garbage model. It does not matter if the prediction is good
or bad, what matters is if the correct prediction model is
closer to the actual values than the competitor models. This
means that what matters is the relative position of the pre-
diction errors and not their absolute values. Since the audio-
visual feature relationship and their temporal evolution are
different for each vocalisation, it is expected that the predic-
tor which corresponds to the input vocalisation, i.e., was
trained to model the audiovisual relationship for this vocal-
isation, will make a better prediction and hence the input
example will be correctly classified.

An illustration of this principle is shown in Figs. 8 and

9. Fig. 8f shows the output of decision-level and feature-

level fusion system for a laughter episode from the MAH-
NOB database. The output is negative most of the time

and the episode is incorrectly labelled as speech. Fig. 8g

shows the MAE per frame for the laughter and speech

predictors computed from Eq. (13). For almost all frames

the laughter predictors give a better prediction than the

speech predictors as expected, since they better model the

audiovisual relationship for laughter. The total error over

the entire episode is 33.7 and 37.7 for laughter and speech,
respectively, and therefore the episode is correctly classi-

fied as laughter.
An example from the AVIC database is shown in Fig. 9.

Fig. 9f shows the output of the combination of feature-
and decision-level fusion approach for a hesitation epi-
sode. The garbage output (blue line) consistently produces
the highest output so the episode in incorrectly classified
as garbage. Fig. 9g shows the MSE per frame for all four
prediction models. For almost all frames the hesitation
model results in the lowest MSE. The total MSE error over
the entire episode is 1.4, 2.5, 1.5, and 1.1, for the garbage,
laughter, consent and hesitation predictors, respectively,
which means that this episode is correctly classified as
hesitation.

Fig. 10a shows the total score of a laughter episode,
from the MAHNOB database, assigned by the combina-
tion of decision- and feature-level fusion for different
noise levels. It can be seen that as the SNR becomes lower,
the total score becomes lower as well. From 10 to 30 dB
the total score is above zero and the episode is correctly
classified as laughter. However, between �5 dB and 5 dB
the score is negative, and the example is misclassified as
speech. Fig. 10b shows the total laughter and speech pre-
diction error of the same episode for the same noise lev-
els. As the noise level increases, the prediction error of the
correct model (laughter) becomes worse but lower than
the error of the wrong model (speech) and hence the
sequence is labelled correctly. Therefore, in this case, the
episode is correctly classified for all noise levels. It does
not matter if the absolute prediction error increases with
the addition of noise, what matters is the relative position
of the two errors.

10 CONCLUSION

This paper has approached the problem of audiovisual
fusion from a new perspective. Inspired by recent computa-
tional models of the brain, we have presented a new

Fig. 7. Mean F1 as a function of the babble noise added to the audio signal for different test sets. Prediction-based fusion is the best performing
approach over all noise levels except for �5 dB and 0 dB on the AVIC dataset. V: Video-only classifier, A: Audio-only classifier, FF: Feature-level
Fusion, DF: Decision-level Fusion, PF: Prediction-based Fusion with softmax normalisation, SNR: Signal-to-Noise Ratio.
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approach called prediction-based audiovisual fusion and
compared its performance with two of the most commonly
used fusion approaches, decision-level and feature-level.
The main idea is that predictive models can be used to
model the spatiotemporal relationship and the time evolu-
tion of the audio and visual features. The concatenation in
feature-level fusion can be replaced by models which pre-
dict the visual features based on audio and vice versa for
each class separately. Similarly, the audio and visual
streams in decision-level fusion can be modelled by two
one-step-ahead predictors. Fusion takes place by combining
the prediction errors from all models in a hierarchical way.
Classification occurs by labelling an input sequence based
on the class-specific model that produces the lowest predic-
tion error. When tested on classification of nonlinguistic
vocalisations with and without added audio noise, predic-
tion-based fusion outperforms the standard fusion methods
in virtually all cases. A drawback of this approach is that if
the time series vary a lot within each class then the perfor-
mance may degrade since a single set of predictors will try
to model the high class variability. One line of research we
are currently investigating in order to solve this problem is
the creation of multiple sets of predictive models which are
trained on different clusters of time series within each class.
This has the potential to lead to more accurate predictions
which can further enhance performance.
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