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SentiWords: Deriving a High Precision and
High Coverage Lexicon for Sentiment Analysis

Lorenzo Gatti, Marco Guerini, and Marco Turchi

Abstract—Deriving prior polarity lexica for sentiment analysis – where positive or negative scores are associated with words
out of context – is a challenging task. Usually, a trade-off between precision and coverage is hard to find, and it depends on
the methodology used to build the lexicon. Manually annotated lexica provide a high precision but lack in coverage, whereas
automatic derivation from pre-existing knowledge guarantees high coverage at the cost of a lower precision. Since the automatic
derivation of prior polarities is less time consuming than manual annotation, there has been a great bloom of these approaches,
in particular based on the SentiWordNet resource. In this paper, we compare the most frequently used techniques based on
SentiWordNet with newer ones and blend them in a learning framework (a so called ‘ensemble method’). By taking advantage of
manually built prior polarity lexica, our ensemble method is better able to predict the prior value of unseen words and to outperform
all the other SentiWordNet approaches. Using this technique we have built SentiWords, a prior polarity lexicon of approximately
155,000 words, that has both a high precision and a high coverage. We finally show that in sentiment analysis tasks, using our
lexicon allows us to outperform both the single metrics derived from SentiWordNet and popular manually annotated sentiment
lexica.

Index Terms—Natural Language Processing, Text analysis, Machine learning
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1 INTRODUCTION

IN sentiment analysis many approaches employ spe-
cialized lexica – i.e. lists of positive and negative
words – often in conjunction with other methods
(usually machine learning based) [1], to assign sen-
timent scores to texts. In most of these lexica, words
are associated with their prior polarity, i.e. if that
word out of context evokes something positive or
something negative. For example, wonderful has a
positive connotation – prior polarity – while horrible
has a negative one. These approaches, based on prior
polarity lexica, are so popular because they do not
need word sense disambiguation to assign an affective
score to a word, and they are often largely domain-
independent. Prior polarity lexica can be roughly
divided into two groups: those that are manually built
(either hiring expert annotators such as linguists or by
crowdsourcing the annotation on web platforms such
as Mechanical Turk), and those that are automatically
derived from pre-existing knowledge. While the first
kind of lexica has a high precision but a low coverage,
the opposite holds for the second kind.

In this paper, we aim to understand if blending
both approaches we can build a lexicon that has
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both a high coverage and a high precision. We focus
on SentiWordNet (henceforth SWN), a resource that
has been widely adopted since it provides a broad-
coverage lexicon – built in a semi-automatic manner
– for English [2]. Given that SWN provides polarity
scores for each word sense (also called ‘posterior
polarities’), it is necessary to derive prior polarities
from the posteriors.

Several formulae to compute prior polarities start-
ing from posterior polarity scores have been pro-
posed in the literature. By comparing the formulae
against manually built prior polarity lexica we show
that some of these formulae are better than others
at estimating prior polarities and can represent a
fairer state-of-the-art approach using SWN. On top
of this, we attempt to outperform the state-of-the-
art formula using an ‘ensemble’ learning framework
that combines the various formulae together and takes
advantage of manually built prior polarity lexica to
better predict the value of unseen words. In this way
we construct a sentiment lexicon that has both a high
coverage and a high precision.

In detail, the first part of the paper – that is based on
our previous work, presented in [3] – addresses three
main research questions about words prior polarity
computation: (i) is there any relevant difference in
the posterior-to-prior polarity formulae performance
(both in regression and classification tasks)? (ii) Is
there any relevant variation in prior polarity values
if we use different releases of SWN (i.e. SWN1 or
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SWN3)? (iii) Can a learning framework boost the
performance of such formulae?

In the second part of the paper – that represents
the novel contribution of the present work – we in-
troduce SentiWords1, a prior polarity lexicon produced
according to the lesson learned from the first part
of the paper, and we answer an additional set of
questions regarding sentiment analysis of sentences
using words prior polarities: (i) does SentiWords still
have better performance compared to the posterior-
to-prior polarity formulae? (ii) How important is the
coverage of the lexicon compared to other handmade
lexica (more precise but smaller)? (iii) How well does
SentiWords perform across datasets compared to a
specialized posterior-polarities lexicon?

In the following two sections, we present a series
of experiments, both in regression and classification
tasks, that give an answer to the aforementioned
research questions. The results support the hypothesis
that using a learning framework can improve on
the state-of-the-art performance in posterior-to-prior
computation and that using SentiWords in sentiment
analysis provides better results than other available
lexica.

2 RELATED WORK

The quest for a high precision and high coverage
lexicon, where words are associated with either sen-
timent or emotion scores, has several reasons. First,
it is fundamental for tasks such as affective modifica-
tion of existing texts, where words polarity together
with their scores are necessary for creating multiple
versions of a text, varying its affective dimension [4],
[5], [6].

Second, while in sentiment analysis compositional-
ity (i.e. methods to compute the score of a sentence by
combining the scores of the words in its syntactic tree)
plays a crucial role, list of words associated with their
sentiment score are still a fundamental prerequisite
for this task. Works using compositional approaches
worth mentioning are: [7], that uses recursive neural
networks to learn compositional rules for sentiment
analysis, while [8], [9], [10] exploit hand-coded rules.
In this respect, compositional approaches represent a
promising new trend, since all other approaches, ei-
ther using semantic similarity or Bag-of-Words (BOW)
based machine-learning, cannot handle, for example,
cases of texts with the same wording but different
word order: “The dangerous killer escaped one month ago,
but lately he was arrested” (positive) vs. “The dangerous
killer was arrested one month ago, but lately he escaped”
(negative). The work in [11] partially accounts for
this problem arguing that using word bigrams allows
improvement over BOW based methods, where words
are taken as features in isolation. This way it is

1. The resource can be downloaded at
https://hlt.fbk.eu/technologies/sentiwords.

possible to capture simple compositional phenomena
such as polarity reversing in “killing cancer”.

Finally, tasks such as copywriting, where evocative
names are a key element to a successful product
[12], [13] require exhaustive lists of emotion related
words. In such cases no context is given and the
brand name alone, with its perceived prior polarity,
is responsible for stating the area of competition and
evoking semantic associations. Evoking emotions is
also fundamental for a successful name: consider
names of a perfume such as Obsession, or technological
products such as MacBook Air.

We now provide a review focusing on research
efforts put towards building sentiment and emotion
lexica, regardless of the approach in which such lists
are then used (machine learning, rule based or deep
learning). A general overview can be found in [14],
[1], [15], [16].

Sentiment Lexica. In recent years there has been
an increasing focus on producing lists of words with
affective polarities, to be used in sentiment analysis.
When building such lists, a trade-off between cover-
age and precision of the resource has to be found.
The highest precision is obtained with manually an-
notated lexica, but these are usually smaller due to
the time and costs associated with the annotation task.
Automatically created resources are usually larger, but
their precision is highly dependent on the annotation
algorithm [17] and, in general, not as accurate as
manual resources.

One of the most well-known resources is Senti-
WordNet (SWN) [2], [18], in which each entry is a
set of lemma#PoS#sense-number sharing the same
meaning, called synset. Starting from SWN, several
prior polarities for words in the form lemma#PoS,
can be computed (e.g. considering only the first-sense
or averaging on all the senses). These approaches,
detailed in [3], produce a list of approximately 155,000
words, where the lower precision given by the auto-
matic scoring of SWN is compensated by the high
coverage. SWN and formulae for prior computation
will be thoroughly described in Section 3.

Another widely used resource is the Affective Norms
for English Words (ANEW) [19], providing valence
scores for roughly 1,000 words, which were manually
assigned by several annotators. This resource has a
low coverage, but the precision is very high. Similarly,
the SO-CAL entries [20] consist of roughly 4,000 words
manually tagged by a small number of linguists
with a multi-class label (from very_negative to
very_positive). These ratings were further vali-
dated through crowdsourcing. The Dictionary of Af-
fect in Language (DAL) contains roughly 9,000 words
manually rated along the dimensions ‘pleasantness’,
‘activation’ and ‘imagery’ [21]. More recently, a re-
source replicating the ANEW annotation approach us-
ing crowdsourcing was released by Warriner and col-
leagues [22], providing sentiment scores for approxi-

Copyright (c) 2015 IEEE. Personal use is permitted.
For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TAFFC.2015.2476456
https://hlt.fbk.eu/technologies/sentiwords


This is the author’s version of an article that has been published in IEEE Transactions on Affective Computing. Changes were made to
this version by the publisher prior to publication. The final version is available at http://dx.doi.org/10.1109/TAFFC.2015.2476456

mately 14,000 words (this lexicon will be referred to as
Warr henceforth). Interestingly, this resource includes
the most frequently used English words, so – even if
its coverage is still far lower than SWN – it grants
a high coverage, with human precision, of language
use. Finally, the General Inquirer lexicon [23] provides
a binary classification (positive/negative) of ap-
proximately 4,000 sentiment-bearing words manually
annotated, while the resource presented in [24] ex-
pands the General Inquirer to 6,000 words.

Emotion Lexica. One of the most used re-
sources is WordNetAffect [25] which contains man-
ually assigned affective labels to WordNet synsets
(ANGER, JOY, FEAR, etc.). It currently provides 900
annotated synsets and 1,600 words in the form
lemma#PoS#sense, corresponding to roughly 1,000
lemma-PoS. AffectNet, part of the SenticNet project
[26], contains approximately 10,000 words (out of
23,000 entries) taken from ConceptNet and aligned
with WordNetAffect. This resource extends Word-
NetAffect labels to concepts such as ‘have break-
fast’. Fuzzy Affect Lexicon [27] contains roughly 4,000
lemma-PoS manually annotated by one linguist us-
ing 80 emotion labels. EmoLex [28] contains almost
10,000 lemmas annotated with an intensity label for
each emotion using Mechanical Turk. Finally Affect
database is an extension of SentiFul [29] and con-
tains 2,500 words in the form lemma#PoS, while De-
pecheMood [30] contains about 37,000 words also in the
lemma#PoS format, and was automatically built by
harvesting crowd-sourced affective annotation from a
social news network. These latter two lexica are the
only ones providing words annotated with emotion
scores, rather than just with labels.

3 PROPOSED APPROACH

In the broad field of Sentiment Analysis we will first
focus on the specific problem of words posterior-to-
prior polarity assessment, using SWN both in regres-
sion and classification experiments.

For the regression task, we tackle the problem of
assigning affective scores (along a continuum between
-1 and 1) to words, using posterior-to-prior polar-
ity formulae. For the classification task (assessing
whether a word is either positive or negative) we use
the same formulae, but considering just the sign of the
result. In these experiments we also use an ensemble
method which combines the various formulae to-
gether. The underlying hypothesis is that by blending
these formulae, and looking at the same information
from different perspectives (i.e. the posterior polarities
provided by SWN combined in various ways), we can
obtain a better prediction.

In the second part of the paper we will validate
the improvement we can obtain in a simple senti-
ment analysis task with the lexicon produced by our
ensemble method over the single SWN metrics and

over other widely used handmade lexica. To this end,
we run an extensive series of experiments on two
different datasets of sentences that represents differ-
ent forms of language use, i.e. news headlines, with
simplified syntax and lexicon, and sentences extracted
from movie reviews, with normal language use. Also
in this case, we face both regression and classification
tasks.

3.1 SentiWordNet

SentiWordNet [2] is a lexical resource composed of
“synsets”, i.e. sets of lemma#PoS#sense-number
tuples (where the smallest sense-number corresponds
to the most frequent sense of the lemma) sharing the
same meaning. Each synset s is associated with the
numerical scores Pos(s) and Neg(s), which range
from 0 to 1. These scores represent the positive and
negative valence (or posterior polarity) of the synset,
and are shared by each entry in the synset. The scores
were automatically assigned by a classifier committee
trained on the glosses of three subsets of WordNet:
one composed of positive synsets, one of negative
synsets and one containing “neutral” synsets, i.e.
synsets that are neither positive nor negative. The
positive and negative subsets were constructed by
(i) finding the synsets containing 14 “paradigmatic”
positive and negative words (e.g. good#a#1), and (ii)
automatically expanded by traversing the WordNet
hierarchy to find “related” synsets, using the method
described in [25]. Neutral synsets are those that do
not belong to the other two subsets and that do not
contain terms marked as Positive or Negative in the
General Inquirer lexicon.

Obviously, different senses of a lemma#PoS can
have different polarities. In Table 1, the first 5 senses of
cold#a present all possible combinations, including
mixed scores (cold#a#4), where positive and neg-
ative valences are assigned to the same sense. Intu-
itively, mixed scores for the same sense are acceptable,
as in “cold beer” (positive) vs. “cold pizza” (negative).

TABLE 1
First five SentiWordNet entries for cold#a

Synset ID Pos(s) Neg(s) SynsetTerms

1207406 0.0 0.75 cold#a#1
1212558 0.0 0.75 cold#a#2
1024433 0.0 0.0 cold#a#3
2443231 0.125 0.375 cold#a#4
1695706 0.625 0.0 cold#a#5

In our experiments we use two different versions
of SWN: SentiWordNet 1.0 (SWN1), the first release of
SWN, and its updated version SentiWordNet 3.0 [18]
(SWN3). The latter differs from the former because
(i) it annotates WordNet 3.0 instead of WordNet 2.0;
(ii) it “corrects” the classifiers scores with a random-
walk process, where the glosses are used to adjust the
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negativity and positivity scores of the synsets (iii) it
uses different, manually annotated glosses, both for
training the classifiers and for the previous step. This
new annotation algorithm led to an increase in the
accuracy of posterior polarities over the first version,
as reported by the authors.

3.2 Prior Polarities Formulae
In this section, we review the strategies for com-
puting prior polarities from SWN used in previous
studies. All the proposed approaches try to estimate
the prior polarity from the posterior polarities of all
the senses for a single lemma-PoS. Given a lemma-
PoS with n senses (lemma#PoS#n), every formula f
is independently applied to posScore and negScore
(which are the ordered sets of all the Pos(s) and all
the Neg(s) for that lemma-PoS, respectively). This
produces two scores in the range [0, 1], f(posScore)
and f(negScore), for each lemma-PoS. To obtain a
unique prior polarity, f(posScore) and f(negScore)
can be mapped according to different strategies:

fm =

{

f(posScore) if f(posScore) ≥ f(negScore)

−f(negScore) otherwise

fd = f(posScore)− f(negScore)

where fm computes the absolute maximum of the
two scores, while fd computes the difference between
them. Both numbers are in the range [−1, 1]. So,
considering the first 5 senses of cold#a in Table 1,
f(posScore) will be derived from the Pos(s) val-
ues <0.0, 0.0, 0.0, 0.125, 0.625>, while f(negScore) from
<0.750, 0.750, 0.0, 0.375, 0.0>. Then, the final polarity
strength will be either fm or fd. The formulae (f ) we
tested are the following:

fs. In this formula only the first (and thus most fre-
quent) sense is considered for the given lemma#PoS.
This is equivalent to considering just the SWN score
for lemma#PoS#1. Based on [31], [32], [5], [33], this
is the most basic form of prior polarities.

mean. It calculates the mean of the positive and
negative scores for all the senses of the given
lemma#PoS. It was used in [34], [35], [36], [37].

uni. Based on [31], it considers only senses having
a Pos(s) greater than or equal to the corresponding
Neg(s), and greater than 0 (the stronglyPos set). In
the case where posScore is equal to negScore (thus
also f(posScore) = f(negScore)), the one with the
highest weight is returned, where weights are defined
as the cardinality of stronglyPos divided by the total
number of senses. The same applies for the negative
senses. This is the only method, together with rnd, for
which we cannot apply fd, as it returns a positive or
negative score according to the weight.

uniw. Like uni but without the weighting system.
w1. This formula weights each sense with a geo-

metric series of ratio 1/2. The rationale behind this
choice is based on the assumption that more frequent
senses should bear more “affective weight” than rare
senses when computing the prior polarity of a word.

The system presented in [38] uses a similar approach
of weighted mean.

w2. Similar to the w1, this formula weigths each
lemma with a harmonic series, see for example [39]
(where w2 appears with the fd variant).

On top of these formulae, we implemented some
new formulae that were relevant to our task and,
to our knowledge, have not been proposed in
the literature. These formulae mimic those dis-
cussed previously, but they are built under a dif-
ferent assumption: that the saliency of a word
prior polarity might be more related to its poste-
rior scores, rather than to sense frequencies. Thus
we ordered posScore and negScore by strength, giv-
ing more relevance to “strongly valenced” senses.
For instance, in Table 1, posScore and negScore
for cold#a become <0.625, 0.125, 0.0, 0.0, 0.0> and
<0.750, 0.750, 0.375, 0.0, 0.0> respectively.

w1s and w2s. These are similar to w1 and w2, but
senses are ordered by strength (sorting Pos(s) and
Neg(s) independently).

w1n and w2n. The same as w1 and w2 respectively,
but without considering senses that have a 0 score
for both Pos(s) and Neg(s). Our motivation is that
null senses constitute noise for the purposes of lexicon
bootstrapping.

w1sn and w2sn. The same as w1s and w2s, but
without considering senses that have a 0 score for
both Pos(s) and Neg(s) respectively.

median. Returns the median of the senses ordered
by polarity score.

max. Returns max(posScore) and max(negScore),
i.e. it returns the highest positive and negative values
among all senses.

All these prior polarities formulae are compared
to two gold standards sentiment lexica (one for re-
gression, one for classification) both separately, as in
the works mentioned above, and combined together
in a learning framework (to see whether combining
these features – that capture different aspect of prior
polarities – can further improve the results).

Finally, we implemented two variants of a prior po-
larity random baseline to assess possible advantages
of approaches using SWN:

rnd. This formula represents the basic baseline ran-
dom approach. It simply returns a random number
between -1 and 1 for any given lemma#PoS.

swnrnd. This is an advanced random approach
that incorporates some “knowledge” from SWN. It
takes the scores of a random sense for the given
lemma#PoS. We believe this is a fairer baseline than
rnd since SWN information can possibly constrain the
values. A similar approach has been used in [40].

majority class. For the classification experiments
we considered an additional baseline that always
outputs the class with the higher number of instances,
to account for imbalanced datasets.
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3.3 Learning Algorithms

All the proposed formulae try to estimate the prior
polarity score from the posterior polarities of all the
senses for a single lemma-PoS. Each formula has
its own partial view of all the information available
in the senses, and different formulae can identify
complementary information, e.g. some consider only
the first sense (fs), others only the highest positive and
negative values among all senses (max). An extension
to the use of each formula in isolation consists in
taking all the predicted scores produced by each
formula and defining ensemble methods that, given
the formulae prior polarity predictions, fuse them and
emit a unique prior polarity.

The most used ensemble method is the majority
voting schema, that assigns to an unseen lemma-PoS
the label with the highest number of votes received
from the formulae. While it is quite straightforward
for classification problems (see [41], chapter 3), com-
bining regression scores can require ad-hoc decisions.
To propose a solution that can be easily applied to
both regression and classification, we take advantage
of the classic fusion learning framework, where a
regressor/classifier is fed with the output of several
regressors/classifiers (in our context these are the
formulae outputs) and learns from the training data
the optimal way to combine them into a single score
(prior polarity).

For this purpose, we used two non-parametric
learning approaches, Support Vector Machines
(SVMs) [42] and Gaussian Processes (GPs) [43], to
test the performance of all the metrics in conjunction.
SVMs are non-parametric deterministic algorithms
that have been widely used in several fields. GPs,
on the other hand, are an extremely flexible non-
parametric probabilistic framework able to explicitly
model uncertainty, that only recently have been
receiving increased attention in the NLP community.
An exhaustive explanation of the two methodologies
can be found in [42], [44] and [43].

In the SVM experiments, we use C-SVM and ǫ-
SVM implemented in the LIBSVM toolbox [45]. The
selection of the kernel (linear, polynomial, radial basis
function and sigmoid) and the optimization of the
parameters are carried out through grid search in 10-
fold cross-validation. As demonstrated in [46], SVMs
can benefit from the application of feature selection
techniques. For this purpose, Randomized Lasso, or
stability selection [47] is applied before training the
SVM learner. In our experiments we set the fraction
of the data to be sampled at each iteration to 75%,
the selection threshold to 25% and the number of re-
samples to 1,000. We refer to these as SVMfs.

GP2 regression models with Gaussian noise are a
rare exception where the exact inference with like-

2. More details on the differences between GPs for regression and
classification and the GP kernels are available in §2, §3, §4 in [43]

lihood functions is tractable. Unfortunately, this is
not valid for the classification task where an approx-
imation method (Laplace [48] in our experiments)
is required. Different kernels are tested (covariance
for constant functions, linear with and without auto-
matic relevance determination (ARD)3, Matern, neural
network, etc.) and the linear logistic (lll) and probit
regression (prl) likelihood functions are evaluated in
classification. All the GP models were implemented
using the GPML Matlab toolbox, and the optimiza-
tion of kernel parameters is performed iteratively
maximizing the marginal likelihood (or in classifi-
cation, the Laplace approximation of the marginal
likelihood). The maximum number of iterations was
set to 100. A property of GPs is their capability of
weighting the features differently according to their
importance in the data. This is referred to as the
automatic relevance determination kernel (ARD).

4 HUMAN-ANNOTATED SENTIMENT LEXICA

To assess how well prior polarity formulae perform,
a gold standard with word polarities provided by
human annotators is needed. In the following we
describe in detail the two resources we used for our
experiments, namely ANEW for the regression exper-
iments and the General Inquirer for the classification.

4.1 ANEW

ANEW [19] is a resource developed to provide a set
of normative emotional ratings for a large number of
words (roughly 1,000, half of them taken from similar
previous experiments [49], [50]) in the English lan-
guage. It contains a set of words that have been rated
in terms of pleasure (affective valence), arousal, and
dominance. The ratings were collected from students,
divided in groups balanced for gender, using the
“Self-Assessment Manikin”, an affective rating system
that uses graphic representations to depict values (e.g.
happy/unhappy, excited/calm, controlled/in-control)
along different emotional dimensions. Students were
asked to select which image represents how they
felt when reading each word. Words were shown in
different order between the groups, and they were
presented in isolation (i.e. no context was provided).
This means that this resource represents a human
validation of prior polarity scores for the given words,
and can be used as a gold standard. For each word
ANEW provides two main metrics: anewµ, which
correspond to the average score of the annotators, and
anewσ , which gives the variance in annotators scores
for the given word. For our task we only considered
the valence rating, i.e. the degree of positivity or
negativity of a word.

3. linone and linard in the result tables, respectively.
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4.2 General Inquirer

The Harvard General Inquirer dictionary (henceforth
GI) is a widely used resource, built for automatic text
analysis [23]. Its latest revision4 contains 11,789 words,
tagged with 182 semantic and pragmatic labels, as
well as with their part of speech. Words and their
categories were initially taken from the Harvard IV-
4 Psychosociological Dictionary [51] and the Lasswell
Value Dictionary [52]. The GI categories were defined
to be used in social-science content-analysis research
applications, but this resource has extensively been
used for sentiment analysis too. For this paper we
consider the Positive and Negative categories
(1,915 words and 2,291 words respectively, for a total
of 4,206 affective words), which indicate words with
a positive or negative valence. As with ANEW, since
these words do not have a context, we consider the
labels as binary human-assigned prior polarities, thus
suitable to be used as a gold standard.

5 PRIOR POLARITIES EXPERIMENTS

In order to use the ANEW dataset to measure the
performance of prior polarities formulae, we had to
assign a PoS to all the words to obtain the SWN
lemma#PoS format. To do so, we proceeded as fol-
lows: for each word, check if it is present among
both SWN1 and SWN3 lemmas; if not, lemmatize the
word with the TextPro tool suite [53] and check if the
lemma is present instead5. If it is not found (i.e., the
word cannot be aligned automatically), remove the
word from the list (this was the case for 30 words
of the 1,034 present in ANEW). The remaining 1,004
lemmas were then associated with all the PoS present
in SWN to get the final lemma#PoS. Note that a
lemma can have more than one PoS, for example,
writer is present only as a noun (writer#n), while
yellow is present as a verb, a noun and an adjective
(yellow#v, yellow#n, yellow#a). This gave us a
list of 1,484 words in the lemma#PoS format.

In a similar way we pre-processed the GI words that
uses the generic modif label to indicate either adjec-
tive or adverb (noun and verb PoS were consistently
used instead). Finally, all the sense-disambiguated
words in the lemma#PoS#n format were discarded
(1,114 words out of the 4,206 words with positive or
negative valence).

After the two datasets were pre-processed this
way, we removed the words for which the posScore
and negScore contained all 0 in both SWN1 and
SWN3 (523 lemma-PoS for ANEW and 484 for the GI
dataset), since these words are not informative for our
experiments. The final dataset included 961 entries
for ANEW and 2,557 for GI. For each lemma-PoS in

4. www.wjh.harvard.edu/∼inquirer/
5. We did not lemmatize everything to avoid duplications (for

example, if we lemmatize the ANEW entry addicted, we obtain
addict, which is already present in ANEW).

GI and ANEW, we then applied the prior polarity
formulae described in Section 3.2, using both SWN1

and SWN3 and annotated the results.
According to the nature of the human labels (real

numbers or -1/1), we ran several regression and clas-
sification experiments. In both cases, each dataset was
randomly split into 70% for training and the remain-
ing for test. This process was repeated 5 times to gen-
erate different splits. For each partition, optimization
of the learning algorithm parameters was performed
on the training data (in 10-fold cross-validation for
SVMs). Training and test sets were normalized using
z-scores.

To evaluate the performance of our regression ex-
periments on ANEW we used the Mean Absolute
Error (MAE) and Pearson correlation coefficient. Ac-
curacy and Cohen’s kappa were used for the clas-
sification experiments on GI instead. We opted for
accuracy – rather than F1 – since for us True Negatives
have the same importance as True Positives. For each
experiment we reported the average performance and
the standard deviation over the 5 random splits. In the
following sections, we used Student’s t-test to check
if there were statistically significant differences in the
results of regression experiments. An approximate
randomization test [54] was used for the classification
experiments instead.

In Tables 2 and 3, the results of the regression
experiments over the ANEW dataset, using SWN1 and
SWN3, are presented. The results of the classification
experiments over the GI dataset, using SWN1 and
SWN3 are shown in Tables 4 and 5. For the sake of
interpretability, results are divided according to the
main approaches: randoms, posterior-to-prior formu-
lae, learning algorithms. Note that for classification
we report the generics f and not the fm and fd
variants. In fact, both versions always return the same
classification answer (we are classifying according to
the sign of f result and not its strength). For the GPs,
we report the two best configurations only.

5.1 Discussion

In this section, we sum up the main results of our
analysis, providing an answer to the various questions
we introduced at the beginning of the paper (since
results are largely consistent across the measurements
both in regression and classification, in the following
we will discuss MAE and accuracy only):

SentiWordNet improves over random. One of the
first things worth noting – in Tables 2, 3, 4 and 5 –
is that the random approach (rnd), as expected, is the
worst performing metric, while all other approaches,
based on SWN, have statistically significant improve-
ments both for MAE and for accuracy (p < 0.001).

SWN3 is better than SWN1. With respect to SWN1,
using SWN3 improves the results, both in regression
(MAEµ 0.398 vs. 0.366, p < 0.001) and classification
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(accuracyµ 0.710 vs. 0.771, p < 0.001) tasks. Since
many of the approaches described in the literature
use SWN1 their results should be revised and SWN3

should be used as standard. This difference in per-
formance can be partially explained by the fact that,
even after pre-processing, for the ANEW dataset 137
lemma-PoS have all senses equal to 0 in SWN1, while
in SWN3 they are just 48. In the GI lexicon the same
occurs for 223 lemma-PoS of SWN1 and 69 of SWN3.

Not all formulae are created equal. The formulae
described in Section 3.2 have very different results,
along a continuum. While inspecting every difference
in performance is out of the scope of the present
paper, we found that there is a strong difference
between best and worst performing formulae both
in regression and classification and these differences
are all statistically significant (p < 0.001). Further-
more, the new formulae we introduced, based on the
“posterior polarities saliency” hypothesis, proved to
be among the best performing in all experiments.
This suggests that there is room for inspecting new
formulae variants other than those already proposed
in the literature.

Selecting one sense is not a good choice. On a
side note, the approaches that rely on the polarity

TABLE 2
MAE results for regression using SWN1

Approach MAEµ MAEσ ρµ ρσ

rnd 0.652 0.026 -0.002 0.123
swnrndm 0.427 0.011 0.350 0.041
swnrndd 0.426 0.009 0.354 0.015

uniwm 0.420 0.009 0.362 0.035
maxm 0.419 0.009 0.407 0.027
fsd 0.413 0.011 0.404 0.031
fsm 0.412 0.009 0.393 0.028
uni 0.410 0.010 0.372 0.044
uniwd 0.406 0.007 0.392 0.037
w1snm 0.405 0.011 0.415 0.033
maxd 0.404 0.005 0.422 0.036
w2snm 0.402 0.011 0.415 0.033
mediand 0.401 0.014 0.430 0.029
w1d 0.401 0.010 0.443 0.034
w1nd 0.399 0.008 0.428 0.034
meand 0.398 0.010 0.445 0.034
w2d 0.398 0.010 0.449 0.034
medianm 0.397 0.015 0.423 0.031
w1snd 0.397 0.008 0.428 0.034
w2snd 0.397 0.008 0.428 0.034
w2nd 0.397 0.008 0.431 0.034
w1sm 0.396 0.010 0.431 0.034
w1m 0.396 0.010 0.438 0.034
w1nm 0.394 0.009 0.432 0.036
meanm 0.393 0.011 0.443 0.038
w2sd 0.393 0.008 0.449 0.035
w1sd 0.393 0.009 0.447 0.035
w2sm 0.392 0.010 0.435 0.034
w2m 0.391 0.011 0.452 0.030
w2nm 0.391 0.012 0.439 0.034

GPlinard 0.398 0.014 0.424 0.075
GPlinone 0.398 0.014 0.426 0.071
SVM 0.367 0.010 0.496 0.030
SVMfs 0.366 0.011 0.503 0.032

of a single sense (namely fs, median and max) have
similar results which do not differ significantly from
swnrnd. These same approaches are also far from the
best performing formulae: the difference between the
corresponding best performing formula and the single
senses formulae is always significant in the various
tables (at least p < 0.01). Among other things, this
finding shows that taking the first sense of a lemma-
PoS in some cases has no improvement over taking
a random sense, and that in all cases it is one of
the worst approaches with SWN. This is surprising
since in many NLP tasks, such as word sense dis-
ambiguation, algorithms based on the most frequent
sense represent a very strong baseline6.

Learning improvements. Combining the formulae
in a learning framework with our ensemble methods
further improves the results over the best performing
formulae, both in regression (MAEµ with SWN1 0.366
vs. 0.391, p < 0.001; MAEµ with SWN3 0.333 vs. 0.359,
p < 0.001) and in classification (accuracyµ for SWN1

is 0.743 vs. 0.719, p < 0.001; accuracyµ for SWN3

is 0.792 vs. 0.781, not significant p = 0.07). Another

6. In SemEval2010, only 5 participants out of 29 performed better
than the most frequent threshold [55].

TABLE 3
MAE results for regression using SWN3

Approach MAEµ MAEσ ρµ ρσ

rnd 0.652 0.026 -0.002 0.123
swnrndd 0.404 0.013 0.395 0.018
swnrndm 0.402 0.010 0.399 0.036

maxm 0.393 0.009 0.517 0.039
fsd 0.382 0.008 0.544 0.029
uniwm 0.382 0.015 0.490 0.049
fsm 0.381 0.010 0.540 0.031
medianm 0.377 0.008 0.502 0.024
uniwd 0.377 0.012 0.522 0.036
mediand 0.377 0.011 0.530 0.013
uni 0.376 0.010 0.493 0.030
maxd 0.372 0.011 0.549 0.028
meand 0.371 0.010 0.548 0.017
w1snm 0.371 0.011 0.527 0.040
w2snm 0.369 0.010 0.531 0.038
w1d 0.368 0.010 0.567 0.020
w2d 0.367 0.010 0.567 0.018
meanm 0.367 0.010 0.527 0.029
w1m 0.365 0.010 0.552 0.034
w2snd 0.364 0.011 0.554 0.026
w1snd 0.364 0.010 0.554 0.027
w1sm 0.363 0.009 0.533 0.038
w1nd 0.362 0.009 0.563 0.030
w2sd 0.362 0.010 0.562 0.020
w2m 0.362 0.010 0.554 0.032
w1sd 0.362 0.009 0.561 0.022
w1nm 0.362 0.007 0.549 0.045
w2nd 0.361 0.010 0.563 0.030
w2sm 0.360 0.009 0.540 0.035
w2nm 0.359 0.009 0.551 0.043

GPlinone 0.356 0.008 0.533 0.034
GPlinard 0.355 0.008 0.533 0.032
SVM 0.333 0.004 0.569 0.027
SVMfs 0.333 0.003 0.568 0.027
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TABLE 4
Accuracy results for classification using SWN1

Approach Accµ Accσ Kappaµ Kappaσ

rnd 0.447 0.019 0.011 0.024
majority class 0.558 0.017 0.000 0.000
swn rndm 0.639 0.026 0.336 0.015
swn rndd 0.646 0.021 0.355 0.015

fs 0.659 0.020 0.342 0.044
uni 0.684 0.017 0.364 0.035
median 0.686 0.022 0.374 0.047
uniw 0.702 0.019 0.395 0.033
max 0.710 0.022 0.410 0.038
w1 0.712 0.021 0.416 0.044
w1n 0.713 0.022 0.416 0.045
w2n 0.714 0.023 0.419 0.045
w2 0.715 0.021 0.420 0.047
mean 0.718 0.023 0.429 0.052
w2s 0.719 0.023 0.431 0.048
w2sn 0.719 0.023 0.431 0.048
w1s 0.719 0.023 0.432 0.048
w1sn 0.719 0.023 0.432 0.048

GP lll
linard

0.721 0.026 0.445 0.050

GP
prl
linard

0.722 0.025 0.447 0.048
SVM 0.733 0.021 0.458 0.042
SVMfs 0.743 0.021 0.474 0.047

TABLE 5
Accuracy results for classification using SWN3

Approach Accµ Accσ Kappaµ Kappaσ

rnd 0.447 0.019 0.011 0.024
majority class 0.558 0.017 0.000 0.000
swn rndd 0.700 0.030 0.431 0.018
swn rndm 0.706 0.034 0.441 0.028

fs 0.723 0.014 0.452 0.037
median 0.742 0.016 0.486 0.026
uni 0.750 0.015 0.492 0.029
uniw 0.762 0.023 0.504 0.027
max 0.769 0.019 0.518 0.027
w2s 0.777 0.017 0.531 0.017
w2sn 0.777 0.017 0.531 0.017
w1s 0.777 0.017 0.532 0.016
w1sn 0.777 0.017 0.532 0.016
w1n 0.780 0.021 0.544 0.027
w2n 0.780 0.022 0.545 0.026
mean 0.781 0.018 0.543 0.023
w1 0.781 0.021 0.547 0.027
w2 0.781 0.021 0.549 0.026

SVM 0.779 0.016 0.553 0.033
GPl 0.779 0.018 0.558 0.035
GPg 0.781 0.018 0.562 0.036
SVMfs 0.792 0.014 0.577 0.029

thing worth noting is that, in regression, GPs are
outperformed by both versions of SVM (p < 0.001),
see Tables 2 and 3. This is in contrast to the results
presented in [56], where GPs on the single task are on
average better than SVMs. In classification, GPs have
similar performance to SVM without feature selection,
and in some cases (see Table 5) even slightly better.
In all our experiments, SVM with feature selection
leads to the best performance. This is not surprising
due to the high level of redundancy in the formulae
scores. Interestingly, inspecting the most frequently

selected features by SVMfs, we see that features
from different groups are selected, and even the worst
performing formulae can add information. This con-
firms the idea that viewing the same information
from different perspectives (i.e. the posterior polarities
provided by SWN combined in various ways using
ensemble methods) can obtain better predictions.

To sum up, according to our results SVMfs us-
ing SWN3 outperforms all other methods for prior-
polarity computation starting from SentiWordNet.

6 ERROR ANALYSIS

As a next step we wanted to understand why the
learning algorithms perform better than the formu-
lae. We inspected the errors of the best performing
classifier (SVMfs) and of the best performing for-
mula (w2) in the classification task, for a total of
652 misclassified lemma-PoS. In particular, 67% of
the words are mislabeled by both methods, while w2
and SVMfs mislabel 19% and 14% respectively. A
manual inspection shows that errors are mostly due
to discrepancies between posterior polarity values in
SWN and the gold label provided by GI. For example,
pretty#a has two senses, the first one being positive
and the second negative.
To explore the nature of such discrepancies, we asked
two annotators to inspect a subsample (50 elements)
of the errors’ dataset and classify whether the SWN
values are correct or not, by looking at each lemma-
PoS-sense value and comparing it with the synset
gloss. This analysis revealed that 76% of the errors
are determined by incorrect values in SWN (with a
good annotators agreement, Cohen’s kappa = .75).
For example, the synset overjoyed#a has only one
sense, with Pos(s) = 0, Neg(s) = 0.75, and this
means that both SVMfs and w2 rate the word as
negative even though it is positive. On the other hand,
the second sense of pretty#a refers to the ironical
use of the word, so its negative value is fine. Given
such discrepancies, we identified how they affect w2
and SVMfs:
(i) when there is an error in a lemma-PoS with only
one sense (e.g. the aforementioned overjoyed#a), or
errors are distributed over all senses, both methods
will fail to find the correct label. This is the case for
about 28% of the misclassified words in our dataset.
(ii) When the first sense has a posterior polarity differ-
ent from the gold label, w2 usually gives an incorrect
label, as the first sense is weighted much more than all
the others. Instead, SVMfs can still find the correct
prior since it is less sensitive to noisy data, and it
considers all the other senses in a more grounded way.
For example, wickedness#a has a positive value in
the first sense (0.75) and mostly negative values for
the remaining 4 senses, but it is nevertheless classified
as positive by w2, while it is correctly labelled as
negative by SVMfs.

Copyright (c) 2015 IEEE. Personal use is permitted.
For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TAFFC.2015.2476456


This is the author’s version of an article that has been published in IEEE Transactions on Affective Computing. Changes were made to
this version by the publisher prior to publication. The final version is available at http://dx.doi.org/10.1109/TAFFC.2015.2476456

(iii) When the first sense has the same polarity as the
gold label, and most other senses have the opposite
sign, SVMfs usually assigns the wrong label, while
w2 does not. Albeit less common this happens for
words such as confident#a, whose Pos(s) are
+0.375, +0.125 and +0.125, while the Neg(s) are 0,
-0.375 and -0.625. The classifier is affected by the
strong negativity of the last two senses and incorrectly
classifies it as negative.

We also did a similar error analysis for the re-
gression task, by defining as an error a MAE that
is greater than 2 standard deviations of the overall
MAE distribution. The results are in line with the
previous analysis, in particular the fact that SVMfs
can recover from errors or incoherent values in SWN
scores better than simple formulae. Finally, in Figure
1 we report the MAE of SVMfs according to ANEW
bins (the horizontal line being the average MAE on
the whole dataset), in order to understand how the
errors are distributed. On average, our method is
less precise on extreme values, where the number of
training samples from ANEW is lower.

Real sentiment
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Fig. 1. MAE values per bins over ANEW dataset.

7 SentiWords
In the previous sections we have shown how an
ensemble method (SVMfs) can be used to calcu-
late more accurate prior polarities, starting from the
posterior polarities scores of SWN3. We used these
results to create SentiWords, a lexicon that maximizes
both precision and coverage. To obtain this result, we
trained our classifier on a larger dataset, the 13,915
entries of Warr [22], and used it to annotate all the
lemma-PoS of SWN3.

In particular, we processed Warr as we did with
ANEW (see Section 5). This way, we obtained a list
of 18,154 lemma-PoS, each one associated with the
valence score given by human annotators, paired
with the scores given by the formulae selected with
randomized lasso as features. We used this as training,
to create a more precise SVMfs regression model. All
the lemma-PoS of SWN3 for which we had at least one
non-0 value (roughly 40,000) were thus scored using

the SVMfs model. Finally we merged this list with
Warr to obtain SentiWords. In a similar way we also
created, for our experiments, SentiWordsbin, using the
complete list of GI as a training set.

8 PRIOR POLARITIES AND SENTIMENT
ANALYSIS

To validate the improvement we can obtain in senti-
ment analysis with SentiWords over the single metrics
and over other widely used handmade lexica like
ANEW – that are more precise but have a much
smaller coverage – we ran an extensive series of
experiments. In these experiments we considered 2
datasets of sentences annotated both with sentiment
values (ranging from -1 to 1) and sentiment labels
(NEGATIVE or POSITIVE).

As a comparison with SentiWords, we considered
also 4 human-annotated lexica (ANEW, Warr and
Stanf as gold standards for regression, the same for
classification but with GI instead of ANEW) to test the
importance of coverage and precision of our newly
built lists. In particular:

• ANEW represents a gold standard with low cov-
erage on a continuous scale.

• GI represents a gold standard with low coverage
in a binary format.

• Warr represents a gold standard with high cover-
age (at present the highest coverage available for
prior polarities).

• Stanf represents a gold standard with high cov-
erage but with ”posterior-polarities”.7

To be able to compare the results of the experiments,
all these lexica were transformed to a lemma#PoS
format as described in Section 5. The final size of each
lexicon is reported in Table 6.

TABLE 6
Lexica sizes

Lexicon lemma#PoS entries

ANEW 1,483
GI 3,041
Stanf 15,223
Warr 18,005
SentiWords 155,286

8.1 Datasets

To assess how well the use of prior polarities performs
on the specific task of text based sentiment analysis,
we tested our resource and the gold standards lexica
on two different datasets, that represents different

7. The Stanf lexicon is not available per se, we created it by
extracting all the single words present in the Stanford Sentiment
Treebank (see section 8.1.2 for a description of the dataset), with
their manually annotated affective score.
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form of language use, i.e. news headlines, with simpli-
fied syntax and lexicon, and sentences extracted from
movie reviews, with normal language use. These two
datasets are used in regression and classification tasks.

8.1.1 SemEval
The public dataset provided for the SemEval2007 task
on ‘Affective Text’ [57] is focused on emotion recog-
nition in 1,000 news headlines, both in regression and
classification settings. Headlines typically consist of a
few words and are often written with the intention of
‘provoking’ emotions to attract the readers’ attention.
An example of a headline from the dataset is the
following: “Iraq car bombings kill 22 People, wound more
than 60”. For the regression task the value provided
is -0.98, while for the classification task the label
provided is NEGATIVE.

This dataset (which will be referred to as SemEval
henceforth) is of interest to us since the ‘composi-
tional’ problem is less prominent given the simplified
syntax of news headlines, containing, for example,
fewer adverbs (like negations or intensifiers) than
normal sentences [58]. Each headline of the dataset
was lemmatized and PoS tagged, keeping only those
lemma-PoS that have a PoS mappable to WordNet.
The average length of headlines is 7.21 words, (5.4
lemma-PoS). Only one headline contained just words
not present in SentiWords, further indicating the high-
coverage nature of our resource.

In Table 7 we report the coverage of the Sentiment
Lexica on the SemEval dataset (i.e. percentage of
words in the sentences recognized by the lexica). Of
particular interest here is the fact that, since Warr
was built starting from the most commonly used
English words, it grants a high coverage – higher
than the Stanf Lexicon that has more entries but was
built starting from a specific dataset. On the contrary,
ANEW and GI show a very poor coverage and for
almost half of the sentences there was no sentiment
word recognized.

TABLE 7
Lexica coverage for the SemEval dataset

Lexicon Coverage

GI 0.08
ANEW 0.13
Warr 0.69
Stanf 0.66
SentiWords 0.89

8.1.2 Sentiment Treebank
The Stanford Sentiment Treebank (STB) is a corpus
with fully labelled parse trees, that allows for a com-
plete analysis of the compositional effects of sentiment
in language [7]. The corpus is based on the dataset
introduced in [59] and consists of 11,855 single sen-
tences extracted from movie reviews. It was parsed

with the Stanford parser [60] and includes a total
of 215,154 unique phrases from those parse trees,
each annotated by 3 human judges (using Mechanical
Turk).

An example of a movie review sentence is: “One of
the finest, most humane and important Holocaust movies
ever made.”. For the regression task the value provided
is +0.97, while for the classification task the label
provided is POSITIVE.

For our experiments we took the 11,855 sentences of
the STB dataset and lemmatized and PoS tagged all
the words, keeping only those lemma-PoS that had
a PoS mappable on WordNet, as was done with the
SemEval dataset. The average length of a sentence in
STB is 20.4 words (11 lemma-PoS).

This dataset is somehow complementary to the
previous one, since here the syntax is not simplified
and represents “natural” language use.

In Table 8 we report the coverage of our Sentiment
Lexica on the STB dataset. Results are similar to the
previous case, with ANEW and GI showing a very
poor coverage: for about 40% of the sentences there
was no sentiment word recognized. Note that Stanf
has the same coverage as SentiWords – even if it is
much smaller – since it was built starting from the
words present in the STB itself and discarding those
that could not be aligned with SWN entries.

TABLE 8
Lexica coverage for the STB dataset

Lexicon Coverage

GI 0.10
ANEW 0.11
Warr 0.65
Stanf 0.86
SentiWords 0.86

9 SENTIMENT ANALYSIS EXPERIMENTS

The experiments presented in this section are per-
formed both by using sentences as present in the
datasets and by filtering stop words from them. The
rationale for this choice is given by the fact that
prior-polarity scores can also be given to words that,
for the task of text-based sentiment analysis, are not
“relevant”, like auxiliary verbs, biasing the results.
Still, it is not an error per se, to give a score to such stop
words: if people perceive that they convey an affective
meaning when taken in isolation, this information can
be very useful for other sentiment-related tasks. Going
back to the example of naming described in the intro-
duction, let us consider the paradigmatic example of
perfumes, that tend to use evocative names – since
their smell cannot be ”shown” in advertisement: we
have ”Must” from Cartier, or ”Be” from CalvinKlein,
which are both auxiliary verbs. Both examples have a
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positive score (usually in advertising we want a posi-
tive feeling associated with the brand) and according
to Warr: be#v +0.300, must#v +0.1138.

To have a fair comparison among the lexica, we rely
on a standard list of stop words (the MySQL stopword
list for MyISAM search indexes, consisting of 543
tokens) rather than creating one specifically tailored
to our datasets or task. Stop words in this list are
thus removed from the datasets in the corresponding
experimental setting.

Furthermore, to have a fair comparison of resources
performance (i.e. without any syntactic or composi-
tional reasoning that can boost the performance) we
used a naı̈ve approach that averages over all the
word scores in a sentence, similar, for example, to
the approaches used in [61] and [30]. In particular
for the regression experiments we use the ”average”
of the corresponding affective scores – obtained from
the lexicon under inspection – of all lemma-PoS recog-
nized in the text, so the sentence “Families celebrate
return of sons” (i) gets PoS-tagged to “family#n
celebrate#v return#n son#n, (ii) for each re-
source to test, the word scores are found and av-
eraged. For example, for SentiWords the result will
be (0.562 + 0.710 + 0.237 + 0.477)/4 = 0.497, while
for Stanf it will be [0.333 + 0.667 + (−0.055) +
0]/4 = 0.236. In classification experiments a ma-
jority vote over the single words is used to pre-
dict sentiment (e.g. “Massive mud traps dozens of
families” will become massive#a mud#n trap#v
family#n, which through SentiWordsbin gets assigned
the value 0+(−1)+(−1)+1 = −1, i.e. a negative label).

For the sake of conciseness in the following we
report only the result of the best and the worst
performing prior formulae – using SWN3 – for each
experiment (fbest and fworst respectively). In general,
the results for these formulae are consistent with
the experiments carried out on prior-polarity compu-
tations, discussed in Section 5.1 (e.g. fs being one
of the worst approaches also in sentiment analysis).
Moreover, to test the importance of sample size for
learning prior polarities, together with SentiWords re-
sults, we also report the regression results of the best
learning model that was built using ANEW (SVMfs).
To give a comparison we also report, separately, the
results obtained by CLaC [62], the best performing
system at SemEval 2007 (indicated in the tables with
SemEvalbest). CLaC is an unsupervised system, i.e.
without prior knowledge of this dataset. To detect
headline sentiment, it uses a list of “sentiment-bearing

8. A similar example can be drawn for downtoners or intensifiers
(i.e. words – such as slightly, somewhat or very, completely – that
decreases or increase the effect of a modified item). These words
are usually adverbs or adjectives (like small or big) and while
for the task of sentiment analysis they need to be considered as
special linguistic objects for compositional purposes, when taken
in isolation they can have their own affective score. Consider the
vodka brand “Absolut” (pronounced as the intensifier adjective
absolute#a with a positive score of +0.108.)

unigrams”, constructed by expanding a small set of
human-annotated positive and negative words using
WordNet synonymy and antonymy relations, and
adding G.I. Positive and Negative words too. In total,
10,809 sentiment-bearing words with different PoS are
used. CLaC also uses a list of 490 valence shifters (e.g.
negations, intensifiers, etc.) and rules for defining the
scope and the results of the combination of sentiment-
bearing words and value shifters.

In Tables 9 and 10, the results of the regression ex-
periments – over the SemEval and the STB datasets re-
spectively – are presented. In this case we chose to use
Pearson’s correlation coefficient instead of MAE since
(i) it is the official measurement of SemEval2007 and
(ii) it is not sensitive to data scaling/normalization,
unlike MAE, so we can directly compare the aver-
ages returned by our naı̈ve approach with the gold
standard scores.

TABLE 9
Correlation results for regression on SemEval.9

Lexicon ρ

fworst 0.253
ANEW 0.270
fbest 0.382
SVMfs 0.410
Stanf 0.427
Warr 0.567
SentiWords 0.570

Lexicon (removing stop words) ρ

fworst 0.257
ANEW 0.268
fbest 0.373
SVMfs 0.387
Stanf 0.428
Warr 0.555
SentiWords 0.557

SemEvalbest 0.477

TABLE 10
Correlation results for regression on STB

Lexicon ρ

ANEW 0.175
fworst 0.268
SVMfs 0.321
fbest 0.328
Warr 0.359
SentiWords 0.377
Stanf 0.495

Lexicon (removing stop words) ρ

ANEW 0.177
fworst 0.284
fbest 0.335
SVMfs 0.350
Warr 0.384
SentiWords 0.402
Stanf 0.496
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The results of the classification experiments over the
SemEval and STB datasets are shown in Tables 11 and
12 respectively.

In the SemEval2007 task, sentences in the range
[−1,−0.5] were considered negative, while those in
the range [0.5, 1] were labelled as positive. We took
this division for our classification experiments, dis-
carding neutral sentences (i.e. those ranging from -0.5
to 0.5), thus obtaining 410 entries with a binary polar-
ity score, 62% of which were negative and the remain-
ing 38% positive. We applied to the STB dataset the
same “binarization” that we used for SemEval, thus
filtering out neutral sentences. The final dataset for the
classification experiments consisted of 5,365 sentences,
of which 54% were positive and 46% were negative.
We also ran the same experiments on a dataset cre-
ated with stricter positivity and negativity threshold
(i.e., considering the sentences that fall in the range
[−1,−0.2] negative and those which fall in the range
[0.2, 1.0] positive, as suggested by the STB instruction
file). Since the results are consistent for both datasets,
we present those relating to the dataset created using
the SemEval technique. In the following section, to
check if there is a statistically significant difference in
the results, we used Fisher’s z-transformation for the
correlations, and the approximate randomization test
for classification experiments.

TABLE 11
Accuracy results for classification on SemEval

Lexicon Accuracy

GI 0.317
Stanf 0.529
fworst 0.448
fbest 0.571
SentiWordsbin 0.581

Lexicon (removing stop words) Accuracy

GI 0.317
Stanf 0.556
fworst 0.424
fbest 0.586
SentiWordsbin 0.602

SemEvalbest 0.551

9.1 Discussion

In this section, we sum up the main results of our
experiments, providing an answer to the questions we
introduced at the beginning of the paper:

Size matters (learning). The use of Warr gives a
boost in performance to SentiWords compared to the
scores returned by SVMfs, which is based on ANEW
learning sample (ρ values are more than double in

9. In the following tables, we use these abbreviations: fworst is
the worst performing SWN3 formula, fbest is the best performing
SWN3 formula, SVMfs refers to the SVM trained on ANEW and
SemEvalbest is the best performing system at SemEval 2007.

TABLE 12
Accuracy results for classification on STB

Lexicon Accuracy

GI 0.416
fworst 0.536
fbest 0.567
SentiWordsbin 0.586
Stanf 0.604

Lexicon (removing stop words) Accuracy

GI 0.414
fworst 0.528
fbest 0.576
SentiWordsbin 0.595
Stanf 0.633

both SemEval and STB datasets, both with and with-
out stop words, p < 0.001). In fact both resources
cover the whole SWN list of 155,000 lemma-PoS but
since SentiWords was built starting from a resource
(Warr) that contains 12 times the examples of ANEW,
we can conclude that this doubling in performance is
given by the initial learning sample size.

Size matters (coverage). ANEW is a very precise
lexicon but, due to the small size, its coverage is very
low, with many cases of “undecidable” sentences (i.e.
sentences for which there are no words in the lexicon).
This leads to poor performance when compared to
SentiWords (ρ values are more than double in all
regression experiments, p < 0.001), being in some
cases even worse than the worst SWN formula, see
Table 10. In classification, the same holds for GI versus
SentiWordsbin on both datasets (p < 0.001).

Priors, less precise but portable. The comparison
with the Stanf lexicon (which is “over-fitted” on the
STB dataset) shows that using posterior polarities can
yield better results when used on specific datasets,
see Table 10 and 12. Still, when used on different
datasets and in different scenarios, the performance
drastically decreases, see Table 9 and 11. The average
correlation on the datasets is higher for SentiWords as
compared to Stanf (ρµ 0.480 vs. 0.462 in the stop words
setting). In classification the difference is less marked
(accuracyµ 0.599 vs 0.595), but while SentiWordsbin

performance is almost identical across datasets, Stanf
has a drop on the SemEval dataset. We can reason-
ably conclude that, if we were to consider additional
datasets and domains, the difference between Senti-
Words and posterior lexica (i.e. Stanf ) would increase.

Stop words. The removal of stop words signif-
icantly increases the performance of our Lexica in
the regression task, especially on the STB dataset
(p < 0.05 for SVMfs, Warr and SentiWords). While
the SemEval headlines use a simplified language (also
with less stop words), the movie reviews use a plain
language. In particular, 12% of lemma-PoS recognized
by SentiWords were discarded from SemEval because
they were in the stop words list, while in STB this
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number was more than double accounting for 26%
of the SentiWords lemma-PoS discarded. As we could
have expected, Stanf is less sensitive to stop words
removal since it is composed of posterior polarities.

Precision vs. Coverage: the Losers. SWN formulae
only beat ANEW in regression (and SVMfs trained
on ANEW beats the formulae on average, consistently
with results in section 5.1). The same holds for SWN
formulae and GI in classification. That is to say: SWN
metrics are better because of the high coverage com-
pared to the two gold-prior lexica, but their precision
is very low compared to Warr and SentiWords.

Precision vs. Coverage: the Winners. Warr and
SentiWords performance is comparable on SemEval
headlines, even if the Warr lexicon is much smaller.
On STB, SentiWords performs better in the stop words
removal setting (ρ 0.402 vs. 0.384, p = 0.05) and
slightly better without removing them. This makes
sense: on SemEval – that has a simplified language,
as news headlines use only very frequent terms – the
way Warr was built (i.e. considering the most frequent
words in English) grants that only few words are
not covered, so performance is comparable. On Stanf,
where there are more words not covered by Warr,
what we learnt using ML for other words helps to
improve performance. In general, SentiWords is of help
in any dataset for which Warr has lower coverage.

Finally, for the sake of comparison, we consider also
SemEvalbest (the best performing system at SemEval
2007). In our experiments, this system scored worse
than Warr and SentiWords in regression, and worse
than fbest and SentiWords in classification. These re-
sults give further evidence of the importance of a
precise and high-coverage lexicon, in fact SemEvalbest

uses elaborated compositional strategies but with a
poor lexicon as compared to SentiWords.

To sum up: according to our results, and to the best
of our knowledge, SentiWords represents a new state-
of-the-art prior-polarity lexicon for sentiment analysis.
It outperforms other SWN posterior-to-prior formulae
and handmade lexica thanks to its wide coverage and
to the Warr lexicon it was built on.

10 CONCLUSIONS

In this paper, we have presented a study on Prior
Polarity lexica for sentiment analysis. While manually
annotated lexica provide a high precision but lack
of coverage, automatic derivation from pre-existing
knowledge guarantees high coverage at the cost of
a lower precision. Starting from the experience of
automatic derivation of prior polarities from the Senti-
WordNet resource, we used an ensemble learning
framework that – taking advantage of manually built
lexica – is able to better predict the prior value of
unseen words. We concluded by demonstrating that
it is possible to use this technique to create a resource
(SentiWords) with a very high coverage and a good

precision. Using our lexicon in sentiment analysis
tasks, we were able to outperform both the single met-
rics derived from SentiWordNet and popular manu-
ally annotated sentiment lexica.
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