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Towards Reading Hidden Emotions: A
Comparative Study of Spontaneous
Micro-expression Spotting and Recognition
Methods

Xiaobai Li, Xiaopeng Hong, Antti Moilanen, Xiaohua Huang, Tomas Pfister, Guoying Zhao,
and Matti Pietikainen

Abstract—Micro-expressions (MEs) are rapid, involuntary facial expres-
sions which reveal emotions that people do not intend to show. Studying
MEs is valuable as recognizing them has many important applications,
particularly in forensic science and psychotherapy. However, analyzing
spontaneous MEs is very challenging due to their short duration and
low intensity. Automatic ME analysis includes two tasks: ME spotting
and ME recognition. For ME spotting, previous studies have focused
on posed rather than spontaneous videos. For ME recognition, the
performance of previous studies is low. To address these challenges,
we make the following contributions: (i) We propose the first method
for spotting spontaneous MEs in long videos (by exploiting feature
difference contrast). This method is training free and works on arbitrary
unseen videos. (i) We present an advanced ME recognition framework,
which outperforms previous work by a large margin on two challenging
spontaneous ME databases (SMIC and CASMEII). (iii) We propose the
first automatic ME analysis system (MESR), which can spot and recog-
nize MEs from spontaneous video data. Finally, we show our method
outperforms humans in the ME recognition task by a large margin, and
achieves comparable performance to humans at the very challenging
task of spotting and then recognizing spontaneous MEs.

Index Terms—Micro-expression, facial expression recognition, affective
computing, LBP, HOG.

1 INTRODUCTION

ACIAL expressions (FE) are one of the major ways that hu-
mans convey emotions. Aside from ordinary FEs that we see
every day, under certain circumstances emotions can also manifest
themselves in the special form of micro-expressions (ME). An ME
is a very brief, involuntary FE shown on people’s face according
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to experienced emotions. ME may occur in high-stake situations
when people try to conceal or mask their true feelings for either
gaining advantage or avoiding loss [1]. In contrast to ordinary
FEs, MEs are very short (1/25 to 1/3 second, the precise length
definition varies [2]], [3[]), and the intensities of involved muscle
movements are subtle [4].

The phenomenon was first discovered by Haggard and Isaacs
[5] in 1966, who called them micromomentary facial expres-
sions. Three years later, Ekman and Friesen also reported finding
ME:s [6] when they were examining a video of a psychiatric pa-
tient, trying to find possible trait of her suicide tendency. Although
the patient seemed happy throughout the film, a fleeting look
of anguish lasting two frames (1/12s) was found when the tape
was examined in slow motion. This feeling of anguish was soon
confirmed through a confession from the patient in her another
counseling session: she lied to conceal her plan to commit suicide.
In the following decades, Ekman and his colleague continued
researching MEs [1f], [7]], [8]. Their work has drawn increasing
interests from both academic and commercial communities.

A major reason for the considerable interest in MEs is that it is
an important clue for lie detection [1]], [9]. Spontaneous MEs occur
fast and involuntarily, and they are difficult to control through
one’s willpower [10]. In high-stake situations [7]] for example
when suspects are being interrogated, an ME fleeting across the
face could give away a criminal pretending to be innocent, as the
face is telling a different story than his statements. Furthermore, as
has been demonstrated in [9]], [11]], people who perform better at
ME recognition tests are also better lie detectors. Due to this, MEs
are used as an important clue by police officers for lie detection
in interrogations. Ekman developed a Micro Expression Training
Tool (METT) [8]] to help improve the ME recognition abilities
of law enforcement officers. In addition to law enforcement,
ME analysis has potential applications in other fields as well.
In psychotherapy, MEs may be used for understanding genuine
emotions of the patients when additional reassurance is needed. In
the future when this technology becomes more mature, it might
also be used to help border control agents to detect abnormal
behavior, and thus to screen potentially dangerous individuals
during routine interviews.

However, detecting and recognizing MEs are very difficult



for human beings [11] (in contrast to normal FEs, which we can
recognize effortlessly). Study [8|] shows that for ME recognition
tasks, people without training only perform slightly better than
chance on average. This is because MEs are too short and subtle
for human eyes to process. The performance can be improved
with special training, but it is still far below the ‘efficient’ level.
Moreover, finding and training specialists to analyze these MEs is
very time-consuming and expensive.

Meanwhile, in computer vision, algorithms have been reported
to achieve performance of above 90% for ordinary FE recognition
tasks on several FE databases [12]. It is reasonable to explore the
use of computer algorithms for automatically analyzing MEs. FE
recognition has become popular since Picard proposed the concept
of Affective computing [13] in 1997. But studies of ME have been
very rare until now due to several challenges. One challenge is
the lack of available databases. It is difficult to gather spontaneous
ME samples as MEs only occur under certain conditions, and
the incidence rate is low. Other challenges include developing
methods able to deal with the short durations and the low intensity
levels of MEs.

For the analysis of spontaneous ME there are two major
tasks: first, spotting when the ME occurs from its video context
(ME Spotting); and second, recognizing what expression the ME
represents (ME Recognition). In natural circumstances an ME
may occur along with other more prominent motion such as head
movements and eye blinks. This makes spotting and recognizing
rapid and faint MEs very challenging.

To address these issues in spotting and recognizing sponta-
neous MEs, we make the following main contributions: (1) We
propose a new method for spotting spontaneous MEs. To our
best knowledge, this is the first ME spotting method which is
demonstrated to be effective on spontaneous ME databases. Our
method is based on feature difference (FD) contrast and peak
detection, and it is training free. An initial version of this work
was published in [[14f]. (2) We develop an advanced framework
for ME recognition. This new framework achieves much better
performance than previous works because: first, we employed
Eulerian video magnification method for motion magnification to
counter the the low intensity of MEs; and secondly we investigated
three different feature descriptors (Local Binary Pattern (LBP),
Histograms of Oriented Gradients (HOG) and Histograms of Im-
age Gradient Orientation (HIGO)) and their combinations on three
orthogonal planes for this task. (3) We provide comprehensive
explorations of several key issues related to ME recognition. In
particular, we draw the following conclusions basing on sub-
stantial experimental results: (i) temporal interpolation (TIM) is
valuable for ME recognition as it unifies the ME sequence lengths;
(i) combining feature histograms on all three orthogonal planes
(TOP) does not consistently yield the best performance, as the
XY plane may contain redundant information; (iii) gradient-based
features (HOG and HIGO) outperform LBP for ordinary color
videos, while LBP features are more suitable for near-infrared
(NIR) videos; and (iv) using a high speed camera facilitates
ME recognition and improves results. (4) Lastly, we propose an
automatic ME analysis system (MESR), which first spots and then
recognizes MEs from long videos. In experiments on the SMIC
database, we show that it achieves comparable performance to
human subjects.

The remaining parts of this paper are organized as follows:
Section II reviews related work; Section III introduces our ME
spotting method; Section IV describes our new ME recognition
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framework; and Section V presents experimental results and
discussions for both ME spotting and recognition. Conclusions
are drawn in Section VI.

2 RELATED WORK
2.1 ME databases

Adequate training data is a prerequisite for the development of
ME analysis. Several FE databases exist, such as JAFFE [15],
CK [16f], MMI [17]] and others. These databases have enhanced
the progress of algorithms for conventional FE analysis. However,
when it comes to the available ME databases, the options are much
more limited.

Eliciting spontaneous MEs is difficult. According to Ekman,
an ME may occur under ‘high-stake’ conditions [7|], which in-
dicate situations when an individual tries to hide true feelings
(because (s)he knows that the consequences for being caught
may be enormous). In [7] Ekman et al. proposed three ways to
construct a high-stake situation: (1) asking people to lie about
what they saw in videos; (2) constructing crime scenarios; and
(3) asking people to lie about their own opinions. Different ways
were used to motivate participants to lie successfully: for example,
participants were informed that assessments of their performance
(from professionals) will impact their future career development;
or good liars got extra money as rewards. Maintaining these sce-
narios are demanding for the conductors of the experiments, and
the occurrence of MEs is still low even under these conditions. Not
everyone could yield an ME [[18]], [19], [20]. The second challenge
comes after data collection: labeling MEs is very challenging and
time-consuming even for trained specialists.

In some earlier studies on automatic ME analysis, posed ME
data were used to bypass the difficulty of getting spontaneous
data. Shreve et al. [21]], [22] reported collecting a database called
USF-HD which contains 100 clips of posed MEs. They first
showed some example videos that contain MEs to the subjects,
and then asked them to mimic those examples. There are limited
details about the collected ME samples in their paper, and it
is unclear what emotion categories were included or how the
ground truth were labeled. The USE-HD data were used by the
authors for automatic ME spotting using an optical flow method.
Polikovsky et al. [23] collected a posed ME database by asking
subjects to perform seven basic emotions with low intensity and
go back to neutral expression as quickly as possible. Ten subjects
were enrolled and the posed MEs were recorded by a high speed
camera (200 fps). Their data were labeled with AUs for each
frame following the facial action coding system (FACS [24]). The
authors used a 3D-gradient orientation histogram descriptor for
AU recognition.

The biggest problem of posed ME:s is that they are different
from real, naturally occurring spontaneous MEs. Studies show [6]
that spontaneous MEs occur involuntarily, and that the producers
of the MEs usually do not even realize that they have presented
such an emotion. By asking people to perform expressions as
quickly as possible one can obtain posed MEs, but they are
different from spontaneous ones in both spatial and temporal
properties [2], [4]. So methods trained on posed MEs can not
really solve the problem of automatic ME analysis in practice.

Therefore it is important to obtain a large, representative
spontaneous database of MEs. To this end, we collected the first
spontaneous ME database SMIC [18]], [25]. In order to simulate a
‘high-stake’ situation as Ekman suggested, we designed our ME
inducing protocol as follows: we used video clips which were



demonstrated to be strong emotion inducing materials in previous
psychological studies [26], [27] to make sure that subjects will
have strong emotional reactions; we asked the subjects to hide
their true feeling and keep a neutral face while watching the video
clips, and report their true feelings afterwards. The high-stake
situation was created by informing the subjects that they were
being monitored through a camera while watching movies, and
that they will be punished (filling a very long boring questionnaire)
once we spot any emotion leaks on their faces.

By using the above paradigm, we successfully induced sponta-
neous MEs from 16 out of 20 subjects. The first version of SMIC
includes 77 MEs from six subjects [25], and it was later extended
to the full version of SMIC which includes 164 MEs from 16
subjects [18]]. The full version of SMIC contains three datasets
(all with resolution of 640 x 480): (1) an HS dataset recorded by
a high speed camera at 100 fps, (2) a VIS dataset recorded by a
normal color camera at 25 fps; and (3) an NIR dataset recorded by
a near infrared camera both at 25 fps. The HS camera was used
to record all data, while VIS and NIR cameras were only used for
the recording of the last eight subjects’ data. The ME clips were
segmented from the original long videos from onset to offset,
and then labeled into three emotion classes: positive, surprise
and negative. The assumption for the ME-emotion mapping is
that: the occurred MEs reveal participants’ true hidden emotions
induced by the movies, so the labels should be consistent with
both the content of the movie and with participants’ own feedback.
Originally there were five emotion labels according to the contents
of the movies, including happy, sad, disgust, fear and surprise
(anger movies were excluded because no ME of anger was induced
during the prior test). The three labels of sad, disgust and fear
were later merged into one label of negative because of two
reasons, first is people may feel more than one of them at the
same time thus make them indistinguishable according to the
aforementioned labeling system; secondly the sample numbers
will be better balanced this way. The labeling was performed by
two annotators, first separately and then cross-checked. Only the
labels that both annotators agreed on were included.

Yan and colleagues [19] collected another spontaneous ME
database using a similar emotion-inducing paradigm. The Chinese
Academy of Sciences Micro-expression (CASME) database [[19]
contains 195 MEs elicited from 19 participants. CASME data were
recorded using two cameras: the BenQ M31 camera with frame
rate of 60 fps and resolution of 1280 x 720 (CASME-A), and
the Point Grey GRAS-03K2C camera with frame rate of 60 fps
and resolution of 640 x 480 (CASME-B). One major difference
between CASME and SMIC is that CASME has AU labels. Each
ME clip was first labeled with AUs, and then classified into one
of the eight emotion categories: amusement, sadness, disgust,
surprise, contempt, fear, repression and tension.

Later Yan et al. [20]] collected a newer version of ME database,
CASMEII, which provides more ME samples with higher spatial
and temporal resolutions. The new database includes 247 ME
samples from 26 subjects. The face videos were recorded at 200
fps, with an average face size of 280 x 340. The ME-inducing
paradigm for CASMEII is similar to the one used in SMIC, and
the data contains both AU labels and emotion labels of five classes
(happiness, disgust, surprise, repression and other). The emotion
labels were assigned based on AUs, participants’ self reports, and
the contents of the movies.

TABLE 1
Current micro-expression databases. Elicitation methods P/S:
posed/spontaneous.
Database USF-HD |Polikovsky| SMIC [18] CASME []9L CASMEII
122] 23] [AS]VISINIRf A [ B [20]
MEs 100 N/A 164| 71 [ 71 100 95 247
Subjects N/A 10 16 8 7 12 26
Fps 30 200 100| 25 [ 25 6 200
Resolution|720%1280| 480*640 640*480 1280*720[640*480 640*480
Elicitation P P S S S
Emotions N/A 7 3 8 5

Fig. 1. Sample frames from SMIC and CASMEII databases. From left to
right: SMIC-HS, SMIC-VIS, SMIC-NIR, CASMEII.

Table [T] lists the key features of existing ME databases. In
this paper we focus on spontaneous MEs. SMIC and CASMEIIL
databases are used in our experiments as they are the most compre-
hensive spontaneous ME databases currently publicly available.
Sample frames from SMIC and CASMEII databases are shown in

Figure [T]

2.2 State of the art of ME spotting research

ME spotting refers to the problem of automatically detecting
the temporal interval of an ME in a sequence of video frames.
Solutions to similar problems, such as spotting ordinary FEs, eye-
blinking, and facial AUs from live videos [28]], [29], [30] have
been performed, but only a few studies have investigated automatic
spotting of ME:s.

Most existing works have tackled the problem in posed ME
databases. In papers [23]] and [31]], the authors used 3D gradient
histograms as the descriptor to distinguish the onset, apex and
offset stages of MEs from neutral faces. Although their method
could potentially contribute to the problem of ME spotting,
two drawbacks have to be considered. First, their method was
only tested on posed MEs, which are much easier compared to
spontaneous ME data. Second, their experiment was run as a
classification test, in which all frames were classified into one of
the four stages of MEs. Classification requires sufficient amount
of data and time for training before it can be used for spotting.

Wu et al. [32] proposed to use Gabor filters to build an
automatic ME recognition system which includes the spotting
step. They achieved very high spotting performance on the METT
training database [8]. However, the METT training samples are
fully synthetic: they have been synthesized by inserting one FE
image in the middle of a sequence of identical neutral face
images. This makes the spotting task significantly easier, as in
real conditions the onset and offset of an ME would not be as
abrupt, and the context frames would be more dynamic.

Shreve et al. [21]], [22] used an optical strain-based method
to spot both macro (ordinary FEs — the antonym for ‘micro’)
and micro expressions from videos. But as in the aforementioned
studies, the data used in their experiments are posed. The authors
reported being able to spot 77 from the 96 MEs, with 36 false
positives on their posed database. The paper also evaluated their
method on a small database of 28 spontaneous MEs found in TV



or on-line videos, with results of 15 true positives and 18 false
positives. But the database was small and not published.

As seen above, most previous ME spotting methods were
tested only using posed data, which are different (and easier)
compared to spontaneous MEs. In particular, during the recording
of posed ME clips, subjects can voluntarily control their behavior
according to the given instructions. Therefore one should expect
the posed data to be more ‘clean’, e.g. contain restricted head
movements, more clear-cut onsets and offsets, less movement in
the context frames between two MEs, and so on. In contrast,
the situation is more complicated in real videos which contain
spontaneous MEs. This is because spontaneous MEs can appear
during the presence of an ordinary FE (with either the same or
the opposite valence of emotion [4]], [33]]), and sometimes they
overlap with the occurrences of eye blinks, head movements and
other motions. Therefore the spotting task is more challenging on
spontaneous ME data. As an intermediate step to spot MEs in
spontaneous data, several studies [25]], [34], [35], [36] tackled an
easier step which was referred to as ME ‘detection’. ME detection
is a two-class classification problem, in which a group of labeled
ME clips are classified against the rest non-ME clips. However, to
our knowledge, none of these works present any experiments for
spotting spontaneous MEs from long realistic videos.

2.3 State of the art of ME recognition research

ME recognition is the task where, given a ‘spotted” ME (i.e. a
temporal interval containing an ME), the ME is classified into two
or more classes (e.g. happy, sad efc.). Experiments on this problem
are more prominent in the literature, and have been carried out
using both posed and spontaneous data.

Some researchers investigated ME recognition on posed ME
databases. Polikovsky et al. [23]], [31] used a 3D gradient descrip-
tor for the recognition of AU-labeled MEs. Wu et al. [32] com-
bined Gentleboost and an SVM classifier to recognize synthetic
ME samples from the METT training tool. It is worthy of noticing
that AU detection is considered as an effective approach for ME
recognition in previous works such as [23]]. AU detection task was
not explored in this paper because the SMIC database, which is
the major testing database employed in our experiments, doesn’t
have AU labeling.

Several recent studies also reported tests on spontaneous ME
databases. In [25[] Pfister et al. were the first to propose a
spontaneous ME recognition method. The method combined three
steps: first, a temporal interpolation model (TIM) to temporally
‘expand’ the micro-expression into more frames; second, LBP-
TOP feature extraction; and third, using Multiple kernel learning
for classification. The method achieved an accuracy of 71.4%
(two-class classification) for ME recognition on the first version
of the SMIC database. In our later work [18]], a similar method
was tested on the full version of SMIC and the best recognition
result was 52.11% (three-class classification) on the VIS part
(25fps RGB frames) of the database. Since then, LBP and its
variants have often been employed as the feature descriptors
for ME recognition in many other studies. Ruiz-Hernandez and
Pietikdinen [34] used the re-parameterization of a second order
Gaussian jet to generate more robust histograms, and achieved
better ME recognition result than [25]] on the first version of SMIC
database (six subjects).

Song et al. |37] recognized emotions by learning a sparse
codebook from facial and body micro-temporal motions. Al-
though the concept of ME was employed in their study, their
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definition of MEs was wider than that of the current paper, as
gestures from body parts (other than face) were also included.
They ran experiments on a spontaneous audio-visual emotion
database (AVEC2012), but not on any ME database. Wang et
al. |38] extracted LBP-TOP from a Tensor Independent Colour
Space (instead of ordinary RGB) for ME recognition, and tested
their method on CASMEII database. In Wang et al.’s another
paper [39]], Local Spatiotemporal Directional Features were used
together with the sparse part of Robust PCA for ME recognition,
achieving an accuracy of 65.4% on CASMEII.

So far most ME recognition studies have considered using
LBP-TOP as the feature descriptor. As there is still much room
for improvement in the recognition performance, more robust
descriptors and machine learning methods need to be explored.

3 METHOD FOR ME SPOTTING

In this section we present an ME spotting method that com-
bines appearance-based feature descriptors with Feature Differ-
ence (FD) analysis. Our ME spotting method consists of four
steps, as shown in Figure |2} and more details of each step are
given below.

Feature
extraction

Tracking &

block division Thresholding

| FD analysis [

Fig. 2. Work flow diagram for the proposed ME spotting method.
3.1 Facial points tracking and block division

We detect two inner eye corners and a nasal spine point on
the first frame and then track them through the sequence using the
Kanade-Lucas-Tomasi algorithm [40]. 3D head rotation problem
is not considered here since all faces in the employed testing
databases are in near-frontal view. The in-plane rotation and face
size variations within the sequence are corrected based on the
coordinates of the three tracked points. Then, the facial area is
divided into equal-sized blocks. In order to keep the contents
of each block still, the block structure is fixed according to the
coordinates of the three points as shown in Figure 3]

= =

.

Fig. 3. The face area is divided into 6 x 6 blocks according to the
coordinates of three tracked facial feature points.

3.2 Feature extraction

Two feature descriptors are selected for evaluation: LBP [41]
and the Histogram of Optical Flow (HOOF) [42]]. Over the past
decade, LBP and its variants have been successfully applied to
face recognition and ME recognition in several works [25]], [43].
We first calculate normalized LBP histogram for each block, and
then concatenate all the histograms to get the LBP feature vector
for one frame.

Optical flow-based methods have lately gained popularity in
FE research. For example, Shreve et al. [21], [22] used optical
strain for micro- and macro-expression spotting on posed data. In
our experiments, we also exploit this method and compare it to
the LBP feature. In particular, we calculate Histogram of Optical



Flow (HOOF) by obtaining the flow field for each frame (with
one frame being the reference flow frame) and then compiling
the orientations into a histogram. HOOF is implemented based on
the code by Liu et al. [42] with default parameters. Two kinds of
reference frame are tested: one uses the first frame of the input
video as the reference frame throughout the whole video; and the
other uses the first frame within the current time window as the
reference frame (and therefore changes as the time window slides
through the video). We discuss the two options in the experiments.

3.3 Feature difference (FD) analysis

The FD analysis compares the differences of the appearance-based
features of sequential video frames within a specified interval.
First, we define several concepts for explaining the method. CF
stands for current frame (the frame that is currently analyzed);
when a micro-interval of N frames is used, TF stands for the tail
frame (the k™ frame before the CF). HF stands for the head frame
(the k™ frame after the CF). We define k = 1/2 x (N — 1).
The average feature frame (AFF) is defined as a feature vector
representing the average of the features of TF and HF.

The basic idea of FD analysis is as follows: for each CF, its
features are compared to the respective AFF by calculating the
dissimilarity of the feature vectors. By sliding a time window of
N frames, this comparison is repeated for each frame excluding
the first k& frames from the beginning and the last k& frames at
the end of the video, where TF and HF would exceed the video
boundaries. Relevant terms are illustrated in Figure [

Feature values

Large FD

TF CF HF
k k

Time (frames)

Fig. 4. lllustration of terms used in feature difference (FD) analysis. The
red curve shows a rapid facial movement (e.g. an ME) which produces
a large FD; the blue curve shows a slower facial movement (e.g. an
ordinary FE) which produces smaller FD.

FD of a pair of feature histograms is calculated using the Chi-
Squared (x2) distance. Large FD indicates a rapid facial move-
ment (e.g. an ME) with both an onset and offset phase occurring
in the time window, as shown as the red curve in Figure In
contrast, for slower movements with smoother onset and offset, the
FD calculated within such a short time are significantly smaller,
as the blue curve in Figure [d]

3.4 Thresholding and peak detection

For the ith frame of the input video, we calculate FD values for
each of its 36 blocks as: d; 1, . .., d; 36. The FD values are sorted
in a descending order as d; j, ..., d; j,, Where ji,...,j36 €
{1,2,...,36}. The occurrence of an ME will result in larger FD
values in some (but not all) blocks. We use the average of the
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M greatest block FD values for each frame, and obtain an initial
difference vector F' for the whole video as

1 M
F; = Mzdi,jﬁ, (1
=1
where ¢ = 1,2,...,n, and n is the frame number of the video.

Here we use one third of all 36 blocks with the biggest FD values
and set M = 12.

To distinguish the relevant peaks from local magnitude varia-
tions and background noise, contrasting of the vector F' is done
by subtracting the average of the surrounding TF and HF initial
difference values from each CF value. Thus, the th value in the
contrasted difference vector becomes

1
C;=F; - §(Fz+k + Fi_g), 2

and the contrasted difference vector for the whole video is ob-
tained by calculating C' for all frames except for the first and the
last k frames of the video.

After contrasting, all negative difference vector values are
assigned to be zero as they indicate that there are no rapid changes
of features in the CF comparing to that of TF and HF. Finally,
threshold and peak detection are applied to locate the peaks
indicating the highest intensity frames of rapid facial movements.
The threshold 7' is calculated as

T = C’mean + 7 X (Cmax - Cmean)7 (3)

where Ciean and Chy.x are the average and the maximum of
difference values for the whole video, and 7 is a percentage
parameter in the range of [0, 1]. Minimum peak distance in the
peak detection is set to k/2. The spotted peaks will be compared
with ground truth labels to tell whether they are true or false
spots. Spotting results using different thresholds are presented and
discussed in experiments. More details about the method can be
found in [14].

4 METHOD FOR ME RECOGNITION

In this section we present the framework of our proposed method
for ME recognition. An overview of our method is shown in
Figure [5] The following subsections discuss the details of the

method.
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Fig. 5. Framework diagram for the proposed ME recognition method.

4.1 Face alignment

For ME spotting we do not align faces across different videos,
because the method only compares frames within the current input
video. However, for ME recognition, training is inevitable to deal
with the large inter-class variation. Thus face alignment is needed
to minimize the differences of face sizes and face shapes across
different video samples.

Let V = {v1,vq,...,v;} denote the whole set of ME clips
from a testing database and [ is the total number of ME samples.
The ith sample clip is given by v; = (I; 1,1 2, .., I; n;), where
I; ; is the jth frame and n; is the frame number of the clip v;.



First, we select a frontal face image I,,oq With neutral expres-
sion as the model face. 68 facial landmarks of the model face
Y (Imoa) are detected using the Active Shape Model [44].

Then the 68 landmarks are detected on the first frame of
each ME clip I; ;. To further normalize the variations caused
by different subjects and the movements, we rely on image
transformation functions to build the correspondence between
landmarks of [; ; and those of the model face Inoq so that I; 1
and remaining frames in a sequence can be registered to the
model face. We choose the Local Weighted Mean (LWM) [45]] to
compute a transform matrix for face registration, for its superiority
in providing smooth transition across adjacent areas in a re-
sampled image. The transform matrix TRAN is:

TRAN; = LWM (4(Inoa), ¥ (Lin)), i =1,...,1, (4

where 1)(1; 1) is the coordinates of 68 landmarks of the first frame
of the ME clip v;. Then all frames of v; were normalized using
matrix TRAN;. The normalized image I’ was computed as a 2D
transformation of the original image:

IZ/J = TRANl X Iiaj’ .] = 1’ sy Ny, (5)

where I} ; is the jth frame of the normalized ME clip v;.

In the last step, we crop face areas out from normalized images
of each ME clip using the rectangular defined according to the eye
locations in the first frame I} ;.

4.2 Motion magnification

One major challenge for ME recognition is that the intensity
levels of facial movements are too low to be distinguishable. To
enhance the differences of MEs we propose to use the Eulerian
video magnification method [46| to magnify the subtle motions in
videos. The original method was proposed for magnifying either
motion or color content of a video. Here we apply it for motion
magnification. The magnification process is implemented using
codes shared by authors of [46]. « is a parameter that controls
the level of motion amplification. Bigger values of « lead to
larger scale of motion amplification, but also can cause bigger
displacement and artifacts. An example of ME clip magnified at
different o levels is shown in Figure [] Effects of using different
magnification factor @ for ME recognition are explored in our
experiment by varying « in ten levels. For more details about the
Eulerian video magnification method we refer readers to [46].
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Fig. 6. An ME clip magnified at different « levels.

The Eulerian video magnification method facilitates ME
recognition as the differences between different categories of MEs
are enlarged. However, we do not use it for ME spotting because
it magnifies unwanted motions (e.g. head movements) at the same
time. The issue is discussed in Section V.A.

Original

4.3 Temporal interpolation model (TIM)

Another difficulty for ME recognition is the short and varied
duration. The problem is more evident when the videos are filmed
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with low frame rate. For example when recording at a standard
speed of 25 fps, some MEs only last for four to five frames, which
limit the application of some spatial-temporal descriptors, e.g., if
we use LBP-TOP we can only use the radius » = 1. To counter for
this difficulty we propose to use the Temporal interpolation model
(TIM) introduced by Zhou et al. [47].

The TIM method relies on a path graph to characterize the
structure of a sequence of frames. A sequence-specific mapping is
learned to connect frames in the sequence and a curve embedded
in the path graph so that the sequence can be projected onto
the latter. The curve, which is a continuous and deterministic
function of a single variable ¢ in the range of [0,1], governs the
temporal relations between the frames. Unseen frames occurring
in the continuous process of an ME are also characterized by the
curve. Therefore a sequence of frames after interpolation can be
generated by controlling the variable ¢ at different time points
accordingly.

The TIM method allows us to interpolate images at arbitrary
time positions using very small number of input frames. We use
TIM to interpolate all ME sequences into the same length (e.g. of
10, 20, ... or 80 frames) for two purposes: first is for up-sampling
the clips with too few frames; secondly, with a unified clip length,
more stable performance of feature descriptors can be expected.
More details about the TIM method we refer readers to [47]]. The
effect of interpolation length is discussed in Section V.B.1.

4.4 Feature extraction

Several spatial-temporal local texture descriptors have been
demonstrated to be effective in tackling the FE recognition prob-
lem, especially LBP and its variants [48], [49], [50]. Here we
employ three kinds of features in our ME recognition framework
to compare their performance. Details of each descriptor are
described below, and the comparison of their performance will
be discussed in Section V.B.2.

4.4.1 LBP on three orthogonal planes
Local binary pattern on three orthogonal planes (LBP-TOP),
proposed by Zhao and Pietikdinen [48], is an extension of the
original LBP for dynamic texture analysis in spatial-temporal
domain. It is one of the most frequently used features for FE
recognition, and also for recent ME recognition studies.

A video sequence can be thought as a stack of XY planes on
T dimension, as well as a stack of XT planes on Y dimension,
or a stack of YT planes on X dimension. The XT and YT plane
textures can provide information about the dynamic process of the
motion transitions. Figure [7(a) presents the textures of XY, XT
and YT plane around the mouth corner of one ME clip.

‘ - 1 ‘
4 L.
XY plane XT plane YT plane
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(a). (b).

Fig. 7. (a) The textures of XY, XT and YT planes, (b) Their corresponding
histograms and the concatenated LBP-TOP feature.

The traditional way of extracting LBP-TOP feature is illus-
trated in Figure [7(b). To include information from 3D spatial-
temporal domain, LBP codes are extracted from every pixel of
XY, XT or YT plane to produce their corresponding histograms.
The three histograms are then concatenated into a single histogram
as the final LBP-TOP feature vector.



It can be seen that the histograms for XY, XT and YT plane
represent different information, and previous results indicate that
the traditional LBP-TOP feature which uses all three histograms
does not always yield the best performance [35]. In our method
we will consider five different (combinations of) LBP histograms
on the three planes as listed in Table [2]

TABLE 2

Five combinations of LBP features on three orthogonal planes and their
corresponding abbreviations.

Abbreviation | Histogram of which plane
LBP-TOP XY+ XT+YT
LBP-XYOT XT+ YT

LBP-XOT XT

LBP-YOT YT

LBP XY

4.4.2 HOG and HIGO on three orthogonal planes

Histograms of Oriented Gradients (HOG) [51]] is another popular
feature descriptor which has been applied in FE recognition [52],
[I53]. As reviewed in Section II.C, most previous ME recognition
studies considered LBP feature. Here we use HOG as the second
feature descriptor for ME recognition.

First, we formulate the 2D HOG on the XY plane. Provided an
image I, we obtain the horizontal and vertical derivatives I, and
I, using the convolution operation. More specifically I, = I+ K z
and I, = I x K, where K = [—101]”. For each point of the
image, its local gradient direction 6 and gradient magnitude m are
computed as follows:

0 = arg(VI) = atan2(l,, I,), (6)

m=|VI|=/I2+ 12 (7

Let the quantization level for § be B and B = {1,..., B}.
Note that € [—m,7]. Thus a quantization function of 6 is a
mapping @ : [—m, 7] — B. As a result, for a local 2D region
(i.e. a block) or a sequence of 2D regions (i.e. a cuboid) N, the
histogram of oriented gradients (HOG) is a function g : B — R.
More specifically, it is defined by

g(b) = > 8(Q(6(x)),b) - m(x), (®)

xeN
where b € B and 6(¢, j) is the Kronecker’s delta function as
1 ifi=

For HOG, each pixel within the block or cuboid has a weighted
vote for a quantized orientation channel b according to the re-
sponse found in the gradient computation.

Second, we introduce the third feature descriptor employed:
the histogram of image gradient orientation (HIGO). HIGO is a
degenerated variant of HOG: it uses ‘simple’ vote rather than
‘weighted vote’ when counting the responses of the histogram
bins. In detail, the function h for HIGO is defined as:

h(b) = Y 6(Q(0(x)),b),
xeN
where b and 0 have the same meaning as in Equation (8).

HIGO depresses the influence of illumination and contrast
by ignoring the magnitude of the first order derivatives. It is
shown that the image gradient orientation 6(x) does not depend
on the illuminance at pixel x [54]. Thus the histogram of image
gradient orientation statistically obtained in an image block is illu-
mination insensitive. For those challenging tasks (e.g. recognizing

(10)
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spontaneous MEs recorded in authentic situations) in which the
illumination conditions substantially vary, HIGO is expected to
have enhanced performance.

The corresponding 3D spatial-temporal version of HOG and
HIGO features can be easily obtained by extending the descriptor
on the XY plane to the three orthogonal planes, as is done
when one extends LBP to LBP-TOP. We explore five different
(combinations of) HOG and HIGO from the three orthogonal
planes as we explained for the LBP feature. Their abbreviations are
defined the same way as in Table[2] (with ‘LBP’ changed to‘HOG’
or ‘HIGO”).

In order to account for the variations in illumination or con-
trast, the gradient intensity is usually normalized. In this paper,
we use the local L1 normalization for the histogram calculated
from each block/cuboid. The concatenations of the normalized
block/cuboid histograms are globally normalized (either L1 or L.2)
to form the final descriptor.

4.5 Classification

We use a linear Support Vector Machine (LSVM) [55]] as the clas-
sifier for ME recognition. For the parameter selection of LSVM,
we carried out a five-fold cross-validation on the training data for
parameters search in the range of [107%, 1,2, 10,---,10%], and
the parameter setting leading to the best performance was selected
for that trail. For SMIC, ME samples are classified into three
categories of positive, negative and surprise. For CASMEII, ME
samples are classified into five categories of happiness, disgust,
surprise, repression and others.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

We next present experiments and discuss our results. Section
V.A presents results for ME spotting; Section V.B explains ME
recognition results in four sub-experiments; Section V.C tests a
fully automatic ME analysis system which combines both spotting
and recognition process; and Section V.D compares our automatic
method to human subjects’ performance on both ME spotting and
ME recognition tasks.

5.1 ME spotting
5.1.1 Datasets

SMIC and CASMEII databases are used in the spotting exper-
iment. The original SMIC database only includes labeled ME
clips that include frames from onset to offset. It is suitable for
the ME recognition problem, but the spotting test involves longer
video sequences which also include frames before and after the
ME span. We re-built an extended version of SMIC (SMIC-E)
by extracting longer clips around time points when MEs occur
from the original videos. The three datasets in the new SMIC-
E database with longer video sequences are denoted as SMIC-
E-VIS, SMIC-E-NIR and SMIC-E-HS accordingly. The SMIC-
E-VIS and SMIC-E-NIR dataset both include 71 long clips of
average duration of 5.9 seconds. The SMIC-E-HS dataset contains
157 long clips of an average length of 5.9 seconds. Four clips
contain two MEs as they are located close to each other. Three
samples from the original SMIC-HS dataset are not included in
the SMIC-E-HS due to data loss of the original videos. Unlike
SMIC, the original CASMEII database provides long video clips
that include extra frames before and after the ME span, so we
are able to use the clips for ME spotting as they are. The average
duration of CASMEII clips is 1.3 seconds. One clip in CASMEII
was excluded because its duration is too short.
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Fig. 8. ROC curves for ME spotting on CASMEII and three SMIC-E datasets. The = axis shows the false positive rate (FPR), and the y axis shows

the true positive rate (TPR).

5.1.2 Parameters

The ME interval NN is set to correspond to a time window of about
0.32 seconds (N = 9 for SMIC-E-VIS and SMIC-E-NIR, N =
33 for SMIC-E-HS, N = 65 for CASMEII). For LBP, uniform
mapping is used, the radius r is set to 7 = 3, and the number of
neighboring points p is set to p = 8 for all datasets. For HOOF, the
parameters were left to the default values as in [42]. We tested two
different approaches for selecting the reference frame. In the first
approach, the reference frame was fixed to be the first frame of the
video. In the second approach, the reference frame was set to be
the TF, i.e. the reference frame follows the CF in a temporal sliding
window manner. Results showed that the first approach always
yields better performance than the second one — therefore in the
following we report results using the first approach. We also tried
using motion magnification in ME spotting in another prior test.
We magnified videos before extracting features. However, it turned
out that both true and false peaks were enlarged and the spotting
accuracy was not improved. Therefore motion magnification is not
used in the following ME spotting experiments.

After the peak detection all the spotted peak frames are com-
pared with ground truth labels to tell whether they are true or false
positive spots. With a certain threshold level, if one spotted peak
is located within the frame range of [onset — (N — 1) /4, offset +
(N — 1)/4] of a labeled ME clip, the spotted sequence will be
considered as one true positive ME; otherwise the N frames of
spotted sequence will be counted as false positive frames. We
define the true positive rate (TPR) as the percentage of frames
of correctly spotted MEs, divided by the total number of ground
truth ME frames in the dataset. The false positive rate (FPR) is
calculated as a percentage of incorrectly spotted frames, divided
by the total number of non-ME frames from all the long clips.
Performance of ME spotting is evaluated using receiver operating
characteristic (ROC) curves with TPR as the y axis and the FPR
as the x axis.

5.1.3 Results

The proposed method was tested on CASMEII and the three
datasets of SMIC-E. The spotting results on each dataset are
presented in Figure [8] A ROC curve is drawn for each of the
two feature descriptors on one dataset. Points of the ROC curves
in Figure |§| are drawn by varying the percentage parameter 7 (in
equation 3) from O to 1 with step size of 0.05.

From the figure, we observe that more MEs are correctly
spotted when we drop the threshold value, but with the expense of
higher FPR. The area under the ROC curve (AUC) for each curve

is calculated and listed in Table [3] Higher AUC value indicates
better spotting performance.

TABLE 3

AUC values of the ME spotting experiments using LBP and HOOF as
feature descriptors on CASMEII and three datasets of SMIC-E.

SMIC-E-HS | SMIC-E-VIS | SMIC-E-NIR | CASMEII
LBP 83.32% 84.53% 80.60% 92.98%
HOOF 69.41% 74.90% 73.23% 64.99%

Figure[8]and Table[3|show that LBP outperforms HOOF for the
proposed ME spotting method, as its AUC values are higher and
the FPRs are lower. For spotting on the three datasets of SMIC-E,
best performance is achieved on SMIC-E-VIS dataset. By using
LBP, our proposed method can spot about 70% of MEs with only
13.5% FPR, and the AUC is 84.53%. We observe that the majority
of the false positives are eye blinks (discussed in detail below). On
CASMEII, the advantage of LBP feature is more obvious (AUC
of 92.98%). We hypothesize that the reason why a higher AUC
is achieved on CASMEII is that CASMEII contains shorter video
clips than SMIC-E (so the spotting task is easier).

This is the first report of ME spotting result on spontaneous
ME databases SMIC and CASMEII, so there are no results to
compare with. The current results show that spontaneous MEs can
be spotted by comparing the feature differences of the CF and
the AFF, and LBP is more efficient than HOOF. Spotting MEs in
spontaneous videos is significantly more difficult than on posed
videos, as random motions could interfere as noise.
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Fig. 9. An example of ME spotting result showing a true spot of ME (the
green peak), with three false spots of eye blinks.

Discussion of failure cases: Upon detailed examinations
of the spotting result, we found that a large portion of false spots
were caused by eye movements, such like eye blinks or eye-gaze
changes. One such example is shown in Figure [9] (the spotting
result on a video from SMIC-E-VIS). Four peaks were spotted
when the threshold level was set to the dashed line. We compared
the peaks to the ground truth labels and found that only the third
peak (around frame 153) is a true positive spot of ME, while



the other three peaks were caused by eye blinks. As we report
results on spontaneous facial videos, it is expected that there
will be many eye blinks in the videos. The proposed method
detects transient movements on the scale of the whole face, so
eye movements could also be detected as big peaks. In contrast, in
posed databases eye blinks are significantly less common as they
can be voluntarily concealed. Therefore this issue has never been
addressed in previous ME spotting works.

We tried two ways to rule out eye movements: (i) by excluding
the eye regions during feature extraction; and (ii) by using an eye-
blink-detector to exclude eye blink peaks from the results. Both
approaches helped to reduce the FPRs. However, both approaches
also caused a decrease in TPR at the same time. This is due to
many spontaneous MEs involving muscles around eye regions.
Furthermore, the onsets of many MEs (about 50%, as we have
empirically measured) also temporally overlap with eye blinks.
Thus neither approach turned out to be good enough. We plan
to perform more comprehensive investigations about this issue in
future work.

5.2 ME recognition

In this section we report results of ME recognition experiments
on the full version of SMIC and CASMEII. ME clips (including
frames from onset to offset) with raw images are used. We use
leave-one-subject-out protocol in all of our ME recognition exper-
iments. We therefore carry out four sub-experiments to evaluate
the effect of each of these factors: (1) the effect of temporal inter-
polation; (2) different feature descriptors; (3) different modalities
in the datasets; and (4) the effect of the motion magnification
method. Finally, we provide a comparison to the state of the art.

5.2.1 Effect of the interpolation length

The aim of this first sub-experiment is to explore how the sequence
length of interpolation affects the accuracy of ME recognition.

Parameters: In order to control the effect from other
factors and focus on TIM, we skip the motion magnification step,
and use only LBP-TOP as the feature descriptor (with a group
of fixed parameters). After face alignment, TIM is applied to
interpolate ME sequences into eight different lengths (10, 20, 30,
..., 80), and then LBP-TOP features (8 x 1 blocks, r = 2, p = 8)
are extracted. We test on SMIC-HS, SMIC-VIS and SMIC-NIR
datasets. The average sequence length of the original ME samples
is 33.7 frames for SMIC-HS and 9.66 frames for SMIC-VIS and
SMIC-NIR.
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30.0% -
W SMIC-VIS
20.0% - SMIC-NIR
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Fig. 10. ME recognition accuracy with different TIM lengths, using LBP-
TOP as feature descriptor. The z-axis shows the frame numbers of ME
sequences after TIM interpolation, and the y-axis shows accuracies.
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Results: Figure @ shows results on the three datasets
at different sequence lengths. The best performance for all three
datasets is achieved with interpolation to 10 frames (TIM10). We
analyzed this finding from two aspects:

First, the left side of the figure shows that TIM10 leads to
higher performance than no TIM (without interpolation). For the
VIS and NIR datasets, TIM10 hardly alters the sequence lengths,
as the average length of the no TIM sequences (original ME
samples) is 9.66 frames. For the HS dataset, TIM10 is a down-
sampling process, as the average length of original sequences
is 33.7 frames. We therefore hypothesize that TIM10 performs
better than no TIM because the input frames with unified sequence
length improve the performance of the feature descriptor.

Secondly, the right side of the figure shows that longer inter-
polated sequences (TIM20 to TIM80) do not lead to improved
performance compared to TIM10. With the current datasets using
TIM method, it appears that interpolation to 10 frames is enough.
A possible explanation for the performance here is that in longer
sequences, changes along the time-dimension are diluted, which
makes feature extraction more challenging. This finding is sup-
ported by our previous reported in [25] and [[18].

TABLE 4
Computation time comparison for different TIM lengths.

TIM length |[noTIM | 10 | 20 | 30 | 40 50 60 70 80
Time (s) | 87.8 [22.1/49.6(77.2|104.9|132.9|160.0|188.3|216.6

We also evaluate the running time for different TIM lengths.
These results are shown in Table[d] The higher interpolation frame
rate requires higher computation time (and also occupies more
storage space, if the frames are stored) but does not consistently
lead to improved accuracy.

To conclude, we see evidence that TIM process is necessary
and valuable for ME recognition, and that 10 frames is enough. We
therefore set TIM length as 10 for all the following experiments.

5.2.2 Comparison of three features

In this sub-experiment, we evaluate the performance of three
features (LBP, HOG and HIGO) for the ME recognition task.
Multiple combinations of histograms on three orthogonal planes
are considered for the three features respectively (see Table |Z[)

Parameters: After face alignment, the sequences are in-
terpolated into 10 frames using TIM method (the step of motion
magnification is skipped in this experiment for later discussion in
sub-experiment 4). For feature extraction, three kinds of features
are extracted from evenly divided blocks of each interpolated
sequence. Multiple groups of features are extracted by varying
several parameters. For the LBP feature, we vary the radius 7,
neighbor points p and the number of divided blocks; for the HOG
and HIGO features, we vary the number of divided blocks, and the
number of bins is fixed as b = 8. Training and testing is done using
linear SVM with leave-one-subject-out protocol. Experiments are
conducted on CASMEII and the three datasets of SMIC.

Results: The ME recognition results using three feature
descriptors are shown in Table E] for each dataset. For each
feature, we list results of using five combinations from three
orthogonal planes. For each combination, the best result with
its corresponding parameters are listed. We discuss the first four
columns of results in this section. The last column of results for
SMIC-subHS dataset will be discussed in sub-experiment 3.

Two conclusions can be drawn from the results of the first four
columns of Table E[ First, TOP (three orthogonal planes) does



TABLE 5
ME recognition results using LBP, HOG and HIGO as feature descriptors on each dataset. LSVM is employed as the classifier using
leave-one-subject-out protocol. The highest accuracies for each feature on each dataset are marked in bold font. (p, r) indicates the neighbor
points p and radius r of LBP feature; b is the number of bins of HIGO and HOG features.

CASMEIL SMIC-HS SMIC-VIS SMIC-NIR SMIC-subHS
Acc. | (p, T Acc. | (p, 7 Acc. | (p, T Acc. | (p,T Acc. | (p, T
block (%) (or b) block (%) (or b) block (%) (Or b) block (%) (Or b) block (%) (Or b)
TOP |[8x8x2|55.87| (8,2) [8x8x2|51.83| (8,2) [5x5x1|70.42| (8,2) |5x5%x1|64.79| (8,3) ||8x8%x2|76.06| (8,2)
XYOT | 8x8x4|55.87| (8,2) |8x8x2(56.10| (8,1) [5x5x1|70.42| (8,2) |8x8x2[64.79| (8,2) ||8x8x2|77.46| (8,2)
LBP- | XOT |[8x8x4|55.06| (8,2) |8x8x2|57.93| (8,1) [5x5x1|70.42| (8,2) |8x8x1|54.93| (8,2) ||5%x5%x2|77.46| (8,2)
YOT |5x5x4|54.85| (8,1) [8x8x2|50.61| (8,1) |5x5%x2(70.42| (8,1) |8x8x4|64.79| (8,2) ||8x8x2|76.06| (8,2)
LBP |8x8x2(44.53| (8,2) |8x8x%x2(43.29| (8,2) |5x5%x1[67.61| (8,2) |8x8x4|50.70| (8,2) ||8x8x2|64.69| (8,2)
TOP |8x8x2[5587| 8 |6Xx6Xx2[59.15| 8 [4x4x2|69.01] 8 [6Xx6x2[53.52| 8 4x4x2180.28| 8
XYOT |8x8x%x2[5547| 8 |6x6%x2(59.76| 8 |6x6x2|71.83| 8 |6x6x1[52.11| 8 4x4x2|7887| 8
HIGO-| XOT |8x8x2[53.44| 8 |4x4x2[65.24] 8 |6x6x2|76.06| 8 |[6x6x1(47.89| 8 4x4x2|78.87| 8
YOT |8x8x2(57.09| 8 |6x6x2|58.54| 8 [4x4x2|71.83| 8 |6x6%x2[59.15| 8 4x4x2|7887| 8
HIGO |8x8x2|42.51| 8 |[2x2x8(50.61| 8 [4x4x1|60.56| 8 [6x6x2|3521| 8 4x4x1(64.79| 8
TOP |8x8x2(57.49| 8 |2x2x2[57.93| 8 [2x2x2|67.61| 8 [2x2x8[63.38| 8 4x4%x2180.28| 8
XYOT |8x8x2(5749| 8 |[2x2x2|51.83| 8 |6x6x2(71.83| 8 |2x2x2[60.56| 8 6x6x6|71.83| 8
HOG- | XOT |8x8x2|51.01| 8 |4x4x8|57.93| 8 |4x4x2|71.83| 8 |[6x6x2|56.34| 8 2x2x2169.01| 8
YOT |8x8x2[56.68| 8 [2x2x2|51.22| 8 |6x6x2(67.61| 8 |2x2x8|59.15| 8 6x6%x2[69.01| 8
HIGO | 8x8x2[40.49| 8 |2x2x2|5244| 8 |6x6x2|5493| 8 |2x2x2[53.52| 8 6x6x2[60.56| 8

not consistently yield the best performance for ME recognition.
Sometimes better results are achieved from using only XOT, YOT
or XYOT. This finding is consistent for all three features on all
four test datasets. This indicates that the dynamic texture along
the T dimension represents the most important information for
ME recognition. On the other hand, the XY histogram seems to
contain redundant information about the facial appearance rather
than motion, thus making classification more difficult. Similar
findings were also reported in [35]]. Secondly, the gradient-based
features HOG and HIGO outperform LBP for ME recognition on
ordinary RGB data (CASMEII, SMIC-HS and SMIC-VIS). The
best result obtained on SMIC is 76.06% using HIGO-XOT. Further
comparison between the two gradient based features shows that
HIGO performs better than HOG. One possible explanation for
this is that HIGO is invariant to the magnitude of the local gra-
dients, which varies significantly across subjects due to different
muscle moving speeds. However, for infrared data (SMIC-NIR)
this trend is different: LBP performs best. The textures recorded
by an NIR camera are very different from RGB videos, as NIR
textures are less affected by illumination. This is consistent with
another study [56] which also reported that LBP feature is suitable
for NIR data .

5.2.3 Comparison of datasets recorded with different cam-
eras

In this sub-experiment, we compare the ME recognition perfor-
mance using different recording instruments (the SMIC dataset
includes ME samples recorded with three cameras). In sub-
experiment 2, the SMIC-VIS dataset led to best performance on
SMIC. However, SMIC-HS contains more ME samples than the
SMIC-VIS and SMIC-NIR. To make the comparison fair, we form
a SMIC-subHS dataset containing the same 71 ME samples as
SMIC-VIS and SMIC-NIR, and run the same test as we did in
sub-experiment 2.
Results: The results are shown in the rightmost column in
Figure 5] By comparing the results of SMIC-VIS, SMIC-NIR and
SMIC-subHS which contain the same samples we found:
First, SMIC-subHS dataset yields the highest accuracy of
80.28%. This demonstrates that the worse performance on the
SMIC-HS dataset was due to it including more (possibly distract-

ing) samples. By comparing results of SMIC-subHS and SMIC-
VIS, we observe that camera recording at higher frame rate does
facilitate the ME recognition as claimed in [20]. So using a high
speed camera is beneficial for automatically analyzing ME.

Secondly, ME recognition performance on the SMIC-NIR
dataset is the lowest. Compared to faces in RGB videos, faces
recorded by an NIR camera lack skin textures. Our initial moti-
vation for adding an NIR camera in the recording of the SMIC
dataset was because NIR camera is less affected by illumination
and shadows. Comparing the three kinds of features, LBP works
better with NIR data than the other two features. But the overall
performance achieved on the NIR dataset is unsatisfactory. Other
methods need to be explored in the future for ME recognition on
NIR data.

5.2.4 Motion magnification

In the above sub-experiments we skipped the motion magnification
step of our method to untangle the effect of different components.
In this sub-experiment, we focus on motion magnification. We
show that Eulerian motion magnification can improve ME recog-
nition performance.

Parameters: For this sub-experiment we apply all steps
in the diagram of Figure [5] After face alignment, we magnify the
ME clips at ten different levels with o = 1, 2, 4, 8, 12, 16, 20, 24
and 30. Then the magnified clips are interpolated with TIM10, and
the feature extraction and classification procedure are the same as
we did in sub-experiments 2 and 3. The sub-experiment is carried
on SMIC and CASMEII databases using LBP, HOG and HIGO
features.

Results: The results are shown in Figure One curve
is drawn for each feature on each dataset. The best performance
achieved at each magnification level is presented in the curves. The
figure shows that, compared to the baseline with no magnification
(o = 1), ME recognition performance is generally improved
when motion magnification is applied. This finding is consistent
for all three kinds of features on all four testing datasets. The
level of improvement fluctuates with the change of « value. The
curves are rainbow-shaped, and the best performance is generally
achieved when the motion is magnified in the range of [8,16].
Magnification at lower levels might not be enough to reveal the
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Fig. 11. ME recognition results on SMIC and CASMEII databases at ten different motion magnification levels. The z-axis shows level of the
magnification factor a (« = 1 indicates no magnification), and the y-axis shows the recognition accuracy.

ME motion progress; on the other hand, magnification at higher
levels degrades the performance because too many artifacts are
induced as shown in Figure [6]

The final results of each feature on each dataset are summa-
rized in Table @ We observe that: First, motion magnification
substantially increases ME recognition performance; Secondly,
results with motion magnification support our former findings in
Experiment 2 that HIGO feature outperforms HOG and LBP for
color camera recorded datasets, while for the NIR dataset, HIGO
and LBP work equally well.

TABLE 6
ME recognition results (with and without magnification) of our method
compared to state-of-the-art.
[ [ SMIC-HS [ SMIC-VIS | SMIC-NIR | CASMEII |

LBP 57.93% 70.42% 64.79% 55.87%
LBP+Mag 60.37% 78.87% 67.61% 60.73%
HOG 57.93% 71.83% 63.38% 57.49%
HOG+Mag 61.59% 77.46% 64.79% 63.97%
HIGO 65.24% 76.06% 59.15% 57.09%
HIGO+Mag 68.29 % 81.69 % 67.61% 67.21%
HIGO+Mag* | 75.00%* 83.10% * 71.83%* 78.14%*
[Li[18] 48.8% 52.1% 38.0% N/A
| Yan [20] N/A N/A N/A 63.41%*
Wang [39] 71.34%%* N/A N/A 65.45%%*
Wang [57] 64.02%* N/A N/A 67.21%*
Wang (58] N/A N/A N/A 62.3%
Liong [59] 53.56% N/A N/A N/A
Liong [60] 50.00% N/A N/A 66.40%*

* results achieved using leave-one-sample-out cross validation.

5.2.5 Comparison to the state of the art

The best performance of our method is with motion magnification,
TIM10 and HIGO features. By combining these three components,
we achieved 81.7% accuracy for ME recognition on the SMIC-VIS
dataset, 68.29% on the SMIC-HS dataset, 67.61% on SMIC-NIR
dataset, and 67.21% on CASMEII. We list state-of-the-art results
for these datasets in the table for comparison. We performed all
experiments using the leave-one-subject-out validation protocol,
while some of the reference results (for CASMEII, all reference
results) were achieved using leave-one-sample-out validation pro-
tocol, which is much easier. For direct comparison with those
results, we also added one row of results using HIGO+Mag with
leave-one-sample-out protocol.

Previous work generally use SMIC-HS and CASMEII, while
the lower frame rate versions of SMIC (SMIC-VIS and SMIC-
NIR) are less explored. For SMIC-VIS and SMIC-NIR datasets,
compared to baseline results reported in [18], we achieve an
improvement of almost 30%. For SMIC-HS and CASMEII, more
reference results are listed, and our results are consistently better
regardless of the evaluation protocols. Based on these compar-

isons, our proposed framework outperforms all previous methods
on all the four ME datasets.

5.3 An automatic ME analysis system (MESR) combin-
ing Spotting and Recognition

Previous work has focused purely on either ME spotting or
ME recognition, always considering these two tasks separately.
However, in reality, these two tasks have to be combined to
detect MEs in arbitrary long videos. We propose a complete
ME analysis system (MESR) which first spots MEs in long
videos, and then classifies the spotted MEs into three categories of
positive, negative and surprise. The flow of the proposed MESR
method is shown in Figure[T2] This MESR system works subject-
independently (each input video is treated as an ‘unknown’ test
sample, and the classifier is trained on labeled MEs of the other
subjects).
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Fig. 12. Framework of our automatic ME analysis system (MESR).

Parameters: Given a long video clip as the input for ME
analysis, the MESR system first finds the locations at which an
ME might occur by following the four steps of our ME spotting
method described in Section III. LBP is selected for FD analysis.
The indexes of spotted frames are fed back to the original videos
to excerpt short sequences for ME recognition. In the recognition
process of MESR system, we use raw data and perform face
alignment (instead of directly using spotted sequences) to register
faces to the same model (which makes classification of the MEs
easier). According to previous findings, we set the magnification
level as o = 4, interpolation length as TIM10, use HIGO-XYOT
as the feature descriptor, and linear SVM as the classifier for 3-
classes classification.

Results: We test the MESR system on the SMIC-E-VIS
dataset. The output of the spotting process can be varied by adjust-
ing the threshold value, and a higher true spot rate is consistently
associated with a higher false spot rate. In our experiments, we se-
lect the result at TPR = 74.86% (corresponding FPR = 22.98%,



7 = 0.15) and all spotted sequences are all fed into the ME
recognition component. For the correctly spotted ME sequences,
the ME recognition component achieves 56.67% accuracy for
emotion recognition. The recognition accuracy drops comparing
to the results in Experiment 4, which is expected as in the previous
experiments all the MEs are hand-labeled, and thus the onset and
offset time points are accurate. In contrast, in the MESR system we
use automatically spotted sequences which do not always locate
the MEs precisely, and include some non-ME frames. The overall
performance of the MESR system is a multiplication of the two,
ie. ACC]VIES’R = 7486% X 5667% = 4242%

We next compare the performance of our automatic ME
analysis system to the performance of human subjects, and show
that our automatic method performs comparatively to humans at
this difficult task.

5.4 Human test results

ME spotting and recognition is very challenging for ordinary
people. In this section we experiment on human subjects on two
tasks, and compare the results to our automatic method.

5.4.1 Human test of ME recognition

The first experiment concerns ME recognition. 15 subjects (aver-
age age 28.5 years) were enrolled in the experiments (ten males,
five female). All subjects signed consents which allow their data
to be used for academic research and publications. 71 ME samples
from the SMIC-VIS dataset were used as the experiment videos.
Before test started, the definition of an ME was explained, and
three sample videos, each containing one class of ME, were shown
to the subject. During the experiment, ME clips were shown
on a computer screen one by one, and after each clip subjects
selected which emotion category (positive, negative or surprise)
the ME belongs to by clicking the corresponding button. The
mean accuracy of the 15 human subjects was 72.11% =+ 7.22%.
In contrast, the best accuracy of our ME recognition method is
81.69%. This shows that our proposed ME recognition method
outperforms human subjects in the ME recognition task.

5.4.2 Human test of ME spotting & recognition

In the second experiment, we asked subjects to first spot whether
there are any MEs in a video, and then indicate their emotion
category (if there are any). Another 15 subjects (average age is
25.8 years) were enrolled (12 male, three female). All subjects
signed consents which allow using their data for academic research
and publications. 71 long clips from the SMIC-E-VIS dataset, plus
five neutral clips which do not include any MEs, were used as the
experiment videos. Before test started, the definition of an ME was
explained, and three example videos, each containing one class of
ME, were shown to the subject. During the test, clips were shown
on a computer screen one by one. The subject first reported how
many MEs (s)he spotted from the clip by clicking a button (either
‘0’, ‘1’, 2’ or ‘more than 2’). If a button other than ‘0’ was
clicked, the subject was asked to further select which emotion
category (positive, negative and surprise) the spotted ME(s) show.
The subjects were informed that multiple MEs occurring near each
other present the same emotion, so only one emotion category
could be selected (even multiple MEs were spotted) for one clip.
We calculate an accuracy and a FPR for each subject, and then
compute means and standard deviations for the group. For each
subject, we count the number of MEs that were correctly spotted
and recognized. The accuracy is a percentage of that number
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divided by 71. FPR is calculated as a percentage of false spots
divided by the maximum possible false spots (152). The result
shows that ME recognition ability varies across individuals. The
mean accuracy of the human subjects is 49.74% =+ 8.04% and the
mean FPR is 7.31% + 5.45%.

In previous subsection our automatic MESR system achieved
an accuracy of 42.42%, which is a comparable performance
(within one standard deviation) to the mean accuracy of the
human subjects. Our method’s main shortage is the false spot
rate (22.98%), which could be significantly reduced e.g. if it
can exclude non-ME fast movements such as eye blinks. As the
first fully automatic system for ME analysis our method is a very
promising start; improvement can be made in the future.

6 CONCLUSIONS

In this work we focused on the study of spontaneous MEs, which
are much more difficult to analyze than posed expressions ex-
plored in previous work. We proposed novel methods for both ME
spotting and ME recognition. For ME spotting, we are the first to
propose a method able to spot MEs from spontaneous long videos.
The method is based on feature difference (FD) comparison. Two
features (LBP and HOOF) are employed, and LBP is shown
to outperform HOOF on two databases. For ME recognition,
we proposed a new framework where motion magnification is
employed to counter the low intensity of MEs. We validated the
new framework on SMIC and CASMEII databases, and showed
that our method outperforms the state of the art on both databases.
We also drew many interesting conclusions about the respective
benefits of our method’s components. Finally, we proposed the
first automatic ME analysis system which first spots and then
recognizes MEs. It outperforms humans at ME recognition by
a significant margin, and performs comparably to humans at the
combined ME spotting & recognition task. This method has many
potential applications such as in lie detection, law enforcement
and psychotherapy.

There are limitations for the current work that we plan to
improve in future. First, the proposed ME spotting method is
our first attempt for solving the very challenging spontaneous ME
spotting task. One limitation of the current method is that it uses
fixed interval to detect the peak time points, in future works we
plan to improve the method for detecting more specifically the
onset and offset frames of each ME. Secondly, another limitation
of the ME spotting method is that non-ME movements like eye
blinks have to be ruled out from real ME cases, and one possible
solution listed in our future work plan is combining AU detection
with FD process. Thirdly, the current available ME datasets are
still limited considering the data size and the video contents. The
SMIC and CASME data only include faces of near-frontal view,
so that 3D head rotation problem was not concerned in the current
proposed method. New spontaneous ME datasets are needed in
the future, with bigger sample size, and more complex and natural
emotion inducing environments, e.g. interaction or interrogation
scenarios where two or more persons are involved. In future work
when we consider the ME analysis in such more wild/natural
conditions the 3D head rotation problem should be countered in
the tracking process. At last, we also plan to explore using deep
learning methods for the ME recognition task.
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