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Novel Audio Feature Projection
Using KDLPCCA-based Correlation

with EEG Features for Favorite Music Classification
Ryosuke Sawata, Member, IEEE, Takahiro Ogawa, Member, IEEE,

and Miki Haseyama, Senior Member, IEEE

Abstract—A novel audio feature projection using Kernel Discriminative Locality Preserving Canonical Correlation Analysis (KDLPCCA)-based
correlation with electroencephalogram (EEG) features for favorite music classification is presented in this paper. The projected audio features reflect
individual music preference adaptively since they are calculated by considering correlations with the user’s EEG signals during listening to musical
pieces that the user likes/dislikes via a novel CCA proposed in this paper. The novel CCA, called KDLPCCA, can consider not only a non-linear
correlation but also local properties and discriminative information of each class sample, namely, music likes/dislikes. Specifically, local properties
reflect intrinsic data structures of the original audio features, and discriminative information enhances the power of the final classification. Hence, the
projected audio features have an optimal correlation with individual music preference reflected in the user’s EEG signals, adaptively. If the
KDLPCCA-based projection that can transform original audio features into novel audio features is calculated once, our method can extract projected
audio features from a new musical piece without newly observing individual EEG signals. Our method therefore has a high level of practicability.
Consequently, effective classification of user’s favorite musical pieces via a Support Vector Machine (SVM) classifier using the new projected audio
features becomes feasible. Experimental results show that our method for favorite music classification using projected audio features via the novel
CCA outperforms methods using original audio features, EEG features and even audio features projected by other state-of-the-art CCAs.

Index Terms—Electroencephalogram (EEG), music liking/disliking, canonical correlation analysis (CCA), kernel method, locality preservation, support
vector machine (SVM)

F

1 Introduction

R ecently, a large amount of music has become available to
users, and efficient music information retrieval technology is

therefore necessary to retrieve musical pieces desired by the users.
Many methods related to genre classification [1], [2], [3], [4], [5],
[6], [7], artist identification [8], [9], music mood classification
[10], [11], [12], [13], instrument recognition [14], [15], [16], [17]
and music annotation [18], [19] have been proposed to help users
retrieve desired musical pieces. Although these methods can help
users to retrieve desired musical pieces from music databases,
retrieving desired musical pieces from enormous music databases
is still a laborious task.

More recently, many music recommendation methods that
aim to provide desired musical pieces automatically have been
proposed [20], [21] in order to solve the aforementioned problem.
Generally, there are two typical algorithms for music recommen-
dation: (1) collaborative filtering (CF) [22] and (2) content-based
filtering (CBF) [23]. These recommendation methods are simple
and have a relatively high level of practicability, and thus some
music discovery websites such as Amazon1 and Last.fm2 have
employed these methods. In addition, novel approaches using
audio features have been proposed in order to recommend musical
pieces effectively [24], [25]. Chiliguano et al. proposed a music
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recommender system that applies deep neural networks (DNN) to
audio features in order to obtain new audio features considering
the relationship between a user’s preference and music genre [24].
Specifically, a genre vector that is not limited to a specific genre
can be obtained from a musical piece by the DNN output layer,
each component of which represents the probability corresponding
to a certain music genre. In this way, musical pieces can be flexibly
dealt with without limiting them to specific genres, and effective
music recommendation can be realize by using the DNN-based
genre vectors. Benzi et al. proposed a music recommender system
that uses the graph theory and Non-negative Matrix Factorization
(NMF) [25]. Their goal is to find an approximate low-rank and
non-negative representation of a user-item matrix by considering
the users’ playlists and the contents of musical pieces listened to.
In order to achieve their goal, they introduced audio feature vectors
obtained from music listened to and playlist graphs between users
to NMF optimization. As a result of this, a new effective playlist
is recommended to a user by using the obtained low-rank and
non-negative matrices.

Since the services and the experimental results of studies
showed high performances, effective music recommendations
were actually realized. However, there is a critical problem of
recommendation performance depending on each user, i.e., there
is low adaptivity for individuals. For instance, Chiliguano et
al. and Benzi et al. experimentally used the traditional audio
features, and their audio features are not always suitable for
individual music preference. These problems have been discussed
in many reports including [26], [27], [28], [29], [30]. Therefore,
it is necessary to exploit an effective method that can classify
favorite musical pieces for each user adaptively in order to solve
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the aforementioned conventional problem. In order to satisfy
this necessity, calculation of novel audio features suitable for
representing each user’s music preference is inevitable. We argue
that utilization of heterogeneous features, which are features other
than audio features and can represent each user’s music preference,
is important to provide a solution to the above problem.

From this background, context-aware recommendation ap-
proaches that aim at personalization and enhancement of the
recommendation performance by utilizing contextual information,
e.g., related tags, history of rating and so on, have been proposed
[31], [32], [33], [34], [35]. For instance, Zhang et al. proposed
a virtual rating method in order to enhance the performance of
CF-based recommendation. Guo et al. utilized social information
as contexts to improve data selection for recommendation. Novel
context-aware approaches that leverage biosignals as context
information have also recently been proposed [36], [37], [38].
This is because recording some biosignals within naturalistic
environments has become feasible [36]. In particular, observation
of electroencephalogram (EEG) signals has become easier, and
the quality of observed signals has become better in recent years.
This is because there have recently been some studies aimed at
the development of wearable devices, which enable a user’s EEG
signals to be easily observed and do not hinder everyday life
[39], [40], [41]. For instance, Lin et al. proposed a wearable and
wireless EEG device named Mindo [39]. Small wearable EEG
acquisition devices, which are capable of recording EEG signals
without hindering the user who listens to music, have gradually
become available. In addition, it is considered that observing EEG
signals is particularly an effective one of the current techniques
aiming to observe biosignals since they can provide high temporal
resolution to directly reflect the dynamics of brain activity as
described in [42], [43]. Therefore, there are currently many novel
approaches to estimate internal information of humans, such as
information on emotion, comfort and preference, based on features
extracted from affective phenomena of humans via EEG signals
[44], [45], [46], [47], [48], [49]. For instance, Hadjidimitriou et

al. [46], [47] studied discrimination between a user’s EEG signals
depending on music preference, i.e., whether the user listened to
musical pieces the user liked or disliked. The results of those
studies showed that EEG features can reflect individual music
preference, which is important for our purpose. Thus, we are con-
vinced that EEG signals will become effective context information
for recommendation systems, and we consider that calculating a
set of novel audio features will be feasible by monitoring the rela-
tionship between the EEG and audio features. Actually, Koelstra et
al. classified emotions of subjects when they were watching videos
by mutually using multimodal features containing EEG and audio
features [50]. However, those approaches including the context-
aware recommendations using biosignals are different from our
idea since Koelstra et al., for example, firstly used feature fusion,
which is realized by concatenating heterogeneous feature vectors
simply, and finally applied decision fusion. Namely, such methods
effectively utilizing the correlations between affective phenomena
of a human listening to musical pieces and those audio signals
have not been researched adequately as far as we know. Hence,
we argue that utilization of the correlations with EEG features
extracted from the user’s EEG signals during listening to music
will be necessary and become a powerful solution for calculation
of novel audio features suitable for representing the user’s music
preference. Based on the above discussion, we regard “affective
phenomena” described in the above as the responses of the user’s

EEG signals during listening to musical pieces that the user likes
or dislikes, and we utilize the responses for calculation of novel
audio features based on the correlation.

In order to extract the correlation quantitatively, we pay
attention to Canonical Correlation Analysis (CCA) [51]. CCA can
extract a correlation via canonical variates obtained from a pair of
multivariate datasets by maximizing a linear correlation. In [52],
we previously proposed CCA-based audio feature selection, by
which audio features suitable for individual music preference are
selected. However, Yeh et al. [53] reported that canonical variates
projected by applying CCA to heterogeneous sets of features show
better discriminative performance than that of original features if
the heterogeneous sets have semantic relevancy. Inspired by CCA
and that report, we consider that novel audio features that are
more suitable for the user’s music preference should be realized
by not feature selection but projection by applying CCA to audio
and EEG features. However, if there is a non-linear relationship
between the EEG and audio features, standard CCA will not
always extract useful features. Moreover, standard CCA may miss
intrinsic data structures since EEG signals are generally noisy, and
CCA cannot consider class information of music preference, i.e.,
whether the user likes or dislikes a musical piece, although training
EEG and audio features have class information. Thus, exploiting a
novel CCA that can avoid the above concern is inevitable for our
purpose.

Motivated by the aforementioned background, in this paper,
we firstly propose a novel CCA that can satisfy our purpose and
next propose novel audio features based on our CCA for favorite
music classification. The novel CCA, called Kernel Discriminative
Locality Preserving CCA (KDLPCCA), can consider not only a
non-linear correlation but also local properties and discriminative
information of each class sample, namely music likes/dislikes. Our
purpose is effective music recommendation realized by classifying
user’s music preference, i.e., favorite music, and thus consid-
eration of the relationship between EEG signals obtained from
a user during listening to music and audio signals listened to
is important. However, the relationship based on standard linear
correlation may be insufficient since (a) the relationship generally
contains a non-linear correlation and (b) the standard formulation
of correlation does not consider class labels, i.e., “favorite” or
“unfavorite” for the user. Furthermore, even if a supervised scheme
that can consider class information is introduced, (c) classes such
as “favorite” and “unfavorite” have multimodality, e.g., different
and similar genres are in a class. Therefore, we solve these
problems by applying our novel KDLPCCA. Specifically, non-
linear correlation based on a kernel method solves problem (a),
and consideration of class labels and local structure of input
data simultaneously solves problems (b) and (c) since Sugiyama
reported that locality preserving approaches can work well with
data having a multimodal class [54]. Therefore, the projected
audio features by KDLPCCA are expected to reflect individual
music preference effectively.

In the proposed method, we obtain a projection that can
transform original audio features into novel audio features by
applying KDLPCCA to EEG and original audio features. Hence,
if the KDLPCCA-based projection is calculated once, our method
can extract novel audio features from a new musical piece by
using the already calculated projection without newly observing
individual EEG signals. Our method therefore has a high level of
practicability. Consequently, we train a Support Vector Machine
(SVM) [55] classifier using these projected audio features, and
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then effective classification of the user’s favorite musical pieces
becomes feasible.

The rest of this paper is organized as follows. In Section 2,
a brief review of some CCAs and their expansions is given. In
Section 3, KDLPCCA is explained. In Section 4, classification
of favorite musical pieces using projected audio features by
KDLPCCA is explained. In Section 5, we show the effectiveness
of novel projected audio features for favorite music classification.
Finally, we summarize this paper in Section 6.

2 Review of CCA, KCCA and Their Expansions
In this section, we give a brief review of standard CCA [51],
Kernel CCA (KCCA) [56] and their expansions [57], [58], [59],
[60] in order to explain our newly derived KDLPCCA. In this
section, we assume that there are two heterogeneous sets of N
feature vectors having class information: X = [x1,x2, · · · ,xN ] ∈
Rdx×N and Y = [y1,y2, · · · ,yN ] ∈ Rdy×N , where dx and dy are
respectively the dimensions of corresponding feature vectors.

2.1 CCA and Its Expansions
CCA and its expansions aim at finding pair-wise projection vectors
wx ∈ Rdx and wy ∈ Rdy for X and Y to maximize the following
objective function:

(ŵx , ŵy ) = arg max
wx,wy

C(wx ,wy )
C(wx ) C(wy )

. (1)

The terms of this objective function, i.e., C(wx ,wy ), C(wx ) and
C(wy ), are defined in each method as follows.

( i ) CCA [51]:

C(wx ,wy ) = wx
TXHHYTwy , (2)

C(wx ) =
√
wx

TXHHXTwx , (3)

C(wy ) =
√
wy

TYHHYTwy , (4)

where H = I − 1
N 11T is a centering matrix, I is the N ×N identity

matrix, and 1 = [1, · · · ,1]T ∈ RN is an N-dimensional vector.

(ii) Locality Preserving CCA (LPCCA) [57]:

C(wx ,wy ) = wx
TXHLxyHYTwy , (5)

C(wx ) =
√
wx

TXHLxxHXTwx , (6)

C(wy ) =
√
wy

TYHLyyHYTwy , (7)

where L• is the Laplacian matrix that considers local structures of
the input data, and its details are described in [57].

(iii) Discriminative LPCCA (DLPCCA) [60]:

C(wx ,wy ) = wx
T(Cd

w − ηCd
b )wy , (8)

C(wx ) =
√
wx

TXH (Lxx + L̄xx )HXTwx , (9)

C(wy ) =
√
wy

TYH (Lyy + L̄yy )HYTwy , (10)

where η is a tunable parameter, and

Cd
w = X (Sx ◦ Sy )YT, (11)

Cd
b = X (S̄x ◦ S̄y )YT, (12)

then S• and S̄• are similarity matrices representing the rela-
tionships between within-class and between-class samples, re-
spectively, and the symbol ◦ denotes the Hadamard product.
Furthermore, L• and L̄• are Laplacian matrices based on S• and
S̄•, respectively. The details of these computations are explained
in [60].

Since the objective function of standard CCA denotes the
correlation between X and Y , CCA can find pair-wise projection
vectors wx and wy that maximize their correlations. Thus, CCA
realizes effective feature extraction considering the semantic rele-
vancy between heterogeneous sets of features and has been used
in several research fields such as information retrieval, transfer
learning and pattern recognition [61], [62], [63], [64]. However,
standard CCA cannot find a non-linear correlation and deal with
class information if original sets have such characteristics.

As a solution for the above non-linear problem, Sun et al.
proposed (ii) LPCCA [57] based on Locality Preserving Projection
(LPP) [65]. Generally, global non-linear structures are locally
linear, and local structures can be aligned. Therefore, LPCCA
can find a non-linear correlation by introducing L•, which can
preserve the local structures of original data, to the standard
CCA’s objective function like Eqs. (5)-(7). As a solution for
the above class information problem, Sun et al. and Peng et al.
proposed DCCA [58] and LDCCA [59], respectively. Sun et al.
firstly defined the within-class covariance matrix and between-
class covariance matrix. Then DCCA can find pairs of projection
vectors considering the correlation and class information mutually
by using the defined within-class and between-class covariance
matrices. However, DCCA does not deal with these matrices
fairly since the between-class covariance matrix becomes the same
matrix as the within-class matrix by expanding these original
formulas, i.e., DCCA deals with only the within/between-class
matrix. On the other hand, Peng et al. defined the local within-
class covariance matrix and local between-class covariance matrix,
aiming at considering the local structures and class information of
the original data simultaneously. These matrices not only avoid the
problem of DCCA but also can consider local structures of original
data. Therefore, LDCCA has better performance than that of
DCCA in general but does not consider the local structures as suffi-
ciently as LPCCA does due to just using k nearest neighborhoods
in the defined local within-class and between-class matrices. In
other words, using k nearest neighborhoods as the local structures
may be insufficient. In order to consider the correlation, class
information and local structures as considered in LPCCA, Zhang
et al. proposed (iii) DLPCCA [60]. Since DLPCCA calculates the
within-class covariance matrix Cd

w and between-class covariance
matrix Cd

b
using S• and S̄• as LPCCA does, DLPCCA can find a

correlation by considering class information and local structures
more effectively than can LDCCA.

2.2 KCCA and Its Expansions

In terms of a non-linear problem, there is a kernel trick that is
a more major solution than LPP. CCA using a kernel trick, i.e.,
Kernel CCA (KCCA) [56], firstly maps data points into high
dimensional Hilbert space by ϕx : x 7→ ϕx (x) ∈ Rdϕx and
ϕy : y 7→ ϕy (y) ∈ Rdϕy in order to find a non-linear correlation.
Thus, we obtain Φx = [ϕx (x1), ϕx (x2), · · · , ϕx (xN )] ∈ Rdϕx ×N

and Φy = [ϕy (y1), ϕy (y2), · · · , ϕy (yN )] ∈ Rdϕy ×N . Then we can
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extract the non-linear correlation by maximizing the correlation

ρ =
wϕx

TΦxHHΦT
ywϕy√

wϕx
TΦxHHΦT

xwϕx

√
wϕy

TΦyHHΦT
ywϕy

(13)

over the projection directions wϕx ∈ Rdϕx and wϕy ∈ Rdϕy .
However, obtaining wϕx and wϕy is generally difficult since the
dimensions of each Hilbert space’s vector, i.e., dϕx and dϕy , are
very high. By using the kernel trick that is represented as the kernel
function kx (•,•) = ϕx (•)Tϕx (•) and ky (•,•) = ϕy (•)Tϕy (•),
KCCA and its expansions can extract the non-linear correlation
hidden between the original X and Y . For instance, KCCA ex-
tracts the non-linear correlation by solving the following objective
function:

(α̂x ,α̂y ) = arg max
αx,αy

αx
TC

ϕ
xyαy√

αx
TC

ϕ
xxαx

√
αy

TC
ϕ
yyαy

, (14)

where Eq. (14) is obtained by rewriting wϕx and wϕy as
wϕx = ΦxHαx and wϕy = ΦyHαy respectively, based on dual
representation [66], [67]. Note that αx ∈ RN and αy ∈ RN are
coefficient vectors. Moreover, Cϕ

xy ∈ RN×N , Cϕ
xx ∈ RN×N and

C
ϕ
yy ∈ RN×N are defined as follows:

C
ϕ
xy = HKxHHKyH , (15)

C
ϕ
xx = HKxHHKxH + ξxHKxH , (16)

C
ϕ
yy = HKyHHKyH + ξyHKyH , (17)

where Kx ∈ RN×N and Ky ∈ RN×N are gram matrices whose
(i, j)th elements are kx (xi ,x j ) and ky (yi ,y j ), respectively. Fur-
thermore, ξx and ξy are regularization parameters.

KCCA can solve a non-linear problem in the original space
by applying the “kernel trick” that can compute the corresponding
CCA on the mapped data without actually knowing the mapping
of ϕx and ϕy themselves. A sufficient condition for a kernel
function k•(•,•) corresponding to an inner product in the Hilbert
space is given by Mercer’s theorem [68]. Therefore, KCCA can
derive not only a linear correlation but also a non-linear correlation
between X andY by using αx and αy . Furthermore, Kernel DCCA
(KDCCA) [58] and Kernel LDCCA (KLDCCA) [59], which are
kernelized versions of DCCA and LDCCA, respectively, have
been proposed as expansions of KCCA. KDCCA and KLDCCA
can consider not only a non-linear correlation but also class
information since these methods inherit the merits from DCCA
and LDCCA. These kernelized versions of CCA generally show
more efficient performance than that of original CCAs, i.e., CCA,
DCCA and LDCCA. Therefore, introducing the kernel trick into
the non-kernel CCAs is expected to enhance the performance of
final classification, estimation, recognition, etc. However, so far, a
kernelized CCA using LPP such as LPCCA and DLPCCA has not
been researched adequately. DLPCCA, which generally has the
best performance in recent non-kernel CCAs as far as we know,
is expected to become a powerful method for feature extraction if
a kernel trick is introduced into it. Motivated by these factors, we
propose Kernel DLPCCA (KDLPCCA) in the following section.

3 KDLPCCA
In this section, we show the derivation of KDLPCCA and briefly
explain its merits by comparing it with other CCAs explained
in Section 2. In this section, we also assume that there are two

heterogeneous sets of N feature vectors that are the same as those
shown in Section 2, i.e., X ∈ Rdx×N and Y ∈ Rdy×N .

KDLPCCA firstly maps these data points into the Hilbert space
in the same manner as that shown in Section 2, namely, we obtain
Φx ∈ Rdϕx ×N and Φy ∈ Rdϕy ×N . Then we apply DLPCCA to
Φx and Φy using a kernel trick as the inner product in the Hilbert
space. First, we compute similarities between the ith and jth class
samples in the mapped Hilbert space as follows:

Sϕx

i j =

{
exp(−δxi j/t

ϕ
x ), label(ϕx (xi )) = label(ϕx (x j ))

0, otherwise
(18)

S̄ϕx

i j =

{
exp(−δxi j/t

ϕ
x ), label(ϕx (xi )) , label(ϕx (x j ))

0, otherwise
(19)

where δxi j = ∥ϕx (xi ) − ϕx (x j )∥2 = (Kx )ii − 2(Kx )i j + (Kx ) j j ,
and (Kx )i j denotes the (i, j)th element of Kx . Moreover,
“label(ϕx (x•))” is the x•’s class label, and tϕx = 1

N (N−1)
∑N

i=1∑N
j=1 δ

x
i j . As a result of this, we can obtain similarity matrices

S
ϕ
x = {Sϕx

i j }Ni, j=1 and S̄
ϕ
x = {S̄ϕx

i j }Ni, j=1 representing the simi-
larities between samples having the same and different labels,
respectively. Note that similarity matrices with respect to Φy ,
i.e., Sϕ

y = {S
ϕy

i j }Ni, j=1 and S̄
ϕ
y = {S̄

ϕy

i j }Ni, j=1, are calculated in the
same manner. Hereafter, we explain the calculation related to
Φx only since the calculation related to Φy can be performed
in the same manner. Based on these similarity matrices, we next
calculate Laplacian matrices in order to consider the LPP-based
local structures and the class information of input data shown as
follows:

L
ϕ
xx = D

ϕ
xx − Sϕ

x ◦ Sϕ
x , (20)

L̄
ϕ
xx = D̄

ϕ
xx − S̄ϕ

x ◦ S̄ϕ
x , (21)

where D
ϕ
xx = diag[

∑
i (Sϕx

1i )2,
∑

i (Sϕx

2i )2, · · · ,∑i (Sϕx

Ni )
2] and

D̄
ϕ
xx = diag[

∑
i (S̄ϕx

1i )2,
∑

i (S̄ϕx

2i )2, · · · ,∑i (S̄ϕx

Ni )
2]. The definition

of Lϕ
xx (L̄ϕ

xx ,L
ϕ
yy , L̄

ϕ
yy ) is similar to that of the Laplacian matrix in

LPP [65] except that the Laplacian matrix in KDLPCCA can con-
sider not only local structures but also class information. Hence,
KDLPCCA can extract a non-linear correlation considering local
structures and class information simultaneously by solving the
following function:

(α̂x ,α̂y ) = arg max
αx,αy

αx
T(Cϕd

w − ηCϕd

b
)αy√

αx
TC

ϕd
xxαx

√
αy

TC
ϕd
yy αy

, (22)

where

C
ϕd
w = HKxH (Sϕ

x ◦ Sϕ
y )HKyH , (23)

C
ϕd

b
= HKxH (S̄ϕ

x ◦ S̄ϕ
y )HKyH , (24)

C
ϕd
xx = HKxH (Lϕ

xx + L̄
ϕ
xx )HKxH + ξxHKxH , (25)

C
ϕd
yy = HKyH (Lϕ

yy + L̄
ϕ
yy )HKyH + ξyHKyH . (26)

In this way, we can calculate αx and αy as the optimal solutions
by solving the following Lagrange function:

L(αx ,αy ) = αT
x (Cϕd

w − ηCϕd

b
)αy

− λx
2

(αT
xC

ϕd
xxαx − 1) −

λy

2
(αT

yC
ϕd
yy αy − 1), (27)

where λ = λx = λy , and they become equivalent to the optimal
solution of Eq. (22). Therefore, we can finally obtain the following
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TABLE 1: Characteristics of the proposed KDLPCCA and other CCAs.
CCA LPCCA DCCA LDCCA DLPCCA KCCA KDCCA KLDCCA KDLPCCA

Kernel-based

non-linear correlation

Local stuctures

of original data

Class information

eigenvalue problems based on Eq. (27):[
(Cϕd

w − ηCϕd

b
)

(Cϕd
w − ηCϕd

b
)T

] [
αx

αy

]
= λ

[
C

ϕd
xx

C
ϕd
yy

] [
αx

αy

]
.

(28)

As solutions of Eq. (28), we can obtain some eigenvectors as
αx and αy , respectively. By using these vectors, we can obtain
projection vectors w

ϕd
x ∈ Rdϕx and w

ϕd
y ∈ Rdϕy that can project

the original vectors xi and yi into the subspace considering the
non-linear correlation, class information and local structures as
follows:

w
ϕd
x = ΦxHαx , (29)

w
ϕd
y = ΦyHαy . (30)

In summary, the characteristics of KDLPCCA and other CCAs
explained in Section 2 are shown in TABLE 1. As shown in
this table, KDLPCCA is expected to have more efficient feature
extraction ability for classification than that of the other CCAs
since only KDLPCCA can deal with all of the characteristics,
i.e., kernel-based non-linear correlation, local structures of original
data and class information.

4 Favorite Music Classification Using Novel Pro-
jected Audio Features
In our method, the user’s EEG features are extracted from EEG
signals recorded while the user listens to favorite musical pieces,
and audio features are extracted from the corresponding musical
pieces. Next, a projection that can transform audio features into
features reflecting the user’s music preference is obtained by
applying KDLPCCA to the EEG and audio features. Then an SVM
classifier is trained by using the projected audio features to realize
effective classification of the user’s favorite musical pieces.

This section is organized as follows. In 4.1, we explain the
EEG and audio features used in our method. In 4.2, calculation
of the novel audio features projected by KDLPCCA is explained.
In 4.3, we describe a method to classify favorite musical pieces
using the SVM trained by the KDLPCCA-based projected audio
features.

4.1 Feature Extraction
EEG Feature Extraction
EEG signals are electrical signals recorded as multiple channel
signals from multiple electrodes placed on the scalp. We calculate
EEG features based on [44], [45], [48]. Furthermore, we utilize
the baseline based on [46] for EEG features and apply a feature
selection method to enhance the final performance of the classifi-
cation.

First, segmentation of each channel’s EEG signal is performed
at a fixed interval as preprocessing. Next, short-time Fourier trans-
form (STFT) is applied to each channel’s EEG signal, and some
kinds of EEG features are computed as shown in TABLE 2. “Zero

TABLE 2: EEG features used in the proposed method. U denotes
the number of channels of EEG signals and UP represents the
number of symmetric electrode pairs placed on the scalp.

DESCRIPTION DIMENSION
Zero Crossing Rate U

θ wave (4-7 Hz) U
slow-α wave (7-10 Hz) U
fast-α wave (10-13 Hz) U

Content Percentage of α wave (7-13 Hz) U
The Power Spectrum slow-β wave (13-19 Hz) U

fast-β wave (19-30 Hz) U
β wave (13-30 Hz) U
γ wave (30-49 Hz) U
θ wave (4-7 Hz) 2UP

slow-α wave (7-10 Hz) 2UP

fast-α wave (10-13 Hz) 2UP

Power Spectrum of α wave (7-13 Hz) 2UP

The Hemispheric Asymmetry [30] slow-β wave (13-19 Hz) 2UP

fast-β wave (19-30 Hz) 2UP

β wave (13-30 Hz) 2UP

γ wave (30-49 Hz) 2UP

Mean Frequency U
Mean Frequency of γ wave U

Spectral Entropy U
Spectral Entropy of γ wave U

TOTAL 13U + 16UP

Crossing Rate” denotes the rate of sign changes in the duration
of each task. Next, some frequency domain-based EEG features,
which are shown in TABLE 2, are calculated. Specifically, “Con-
tent Percentage of The Power Spectrum” and “Power Spectrum
of The Hemispheric Asymmetry” according to each frequency
band are respectively calculated since Lin et al. reported that
these kinds of EEG features have close relations with the affective
phenomena of humans [44]. The characteristics of each band have
been reported [69], [70], [71]. Most researchers studied frequency
bands including θ wave (4-7 Hz), α wave (7-13 Hz) and β wave
(13-30 Hz). Sammler et al. reported that the power of θ wave is
related to listening to pleasant or unpleasant music [69]. It has also
been reported that the power of α wave is closely related to valence
and intensity of music emotion [70]. Furthermore, Nakamura et al.
reported that the power of β wave is related to beginning to listen
to music from a rest condition [71]. Although these EEG bands
have been studied as described above, there have been few studies
on γ wave (30-49 Hz). This is because it was reported that γ
wave tends to contain artifacts evoked by muscle potential and
eye movement [72], [73], [74]. However, Hadjidimitriou et al. and
Pan et al. reported that γ wave is essential for representing music
preference [46], [75]. Furthermore, observation of EEG signals
has become easier, and the quality of observed signals has become
better in recent years due to the development of new equipment
(See 1). We therefore carefully observed EEG signals containing
the band of γ wave from a subject listening to music and used γ
wave for EEG feature extraction. In particular, “Mean Frequency
of γWave” and “Spectral Entropy of γWave” are newly calculated
in our method since γ wave is essential for representing music
preference.
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TABLE 3: Audio features used in the proposed method.
CATEGORY DESCRIPTION STATISTICS DIMENSION

dynamics Root Means Square Mean, Std 2
spectral Centroid Mean, Std 2

Brightness Mean, Std 2
Spread Mean, Std 2

Skewness Mean, Std 2
Kurtosis Mean, Std 2
Rolloff Mean, Std 4
Entropy Mean, Std 2
Flatness Mean, Std 2

Roughness Mean, Std 2
Irregularity Mean, Std 2

timbre Zero Crossing Rate Mean, Std 2
MFCC Mean, Std 26

Low Energy Mean, Std 2
tonal Key Strength Mean, Std 48

Chromagram Mean, Std 24
Key Mean, Std 2

Tonal Centroid Mean, Std 12
Mode Mean, Std 2

rhythm Tempo Mean 1
Pulse Clarity Mean, Std 2
Event Density Mean, Std 2
Attack Time Mean, Std 2
Attack Slope Mean, Std 2

TOTAL 151

Next, we introduce the idea of baseline. As Hadjidimitriou et
al. pointed out in [46], [47], brain activity just before listening
to music is regarded as noise in order to obtain music preference.
Therefore, we regard a resting period of 3 sec just before beginning
to listen to music as the baseline, and we calculate the baseline’s
EEG feature vector for reduction of the effect of brain activity just
before starting to listen to music. Specifically, we normalize EEG
features obtained in the user’s listening duration by using those
extracted from the user’s baseline (3 sec) based on the results
of a study on event-related synchronization/desynchronization
(ERS/ERD) [76]. Note that this length (3 sec) of the resting period
is sufficient since the selection of this resting interval complies
with the precedents adopted in studies in which ERS/ERD patterns
were investigated [77], [78]. First, we obtain the average EEG
feature vector v̄R ∈ Rd (d = 13U +16Up ; U and Up being defined
in the caption of TABLE 2) from a user’s baseline:

v̄R =
1

NR

N R∑
nR=1

vR
nR , (31)

where vR
nR ∈ Rd (nR = 1,2, · · · ,NR ; NR being the number of EEG

segments in the baseline) denotes the nR th EEG feature vector.
Then, the normalized EEG feature vector v ∈ Rd is calculated as
follows:

v(i) =
vL (i) − v̄R (i)

v̄R (i)
, (32)

where vL ∈ Rd denotes an EEG feature vector extracted from the
user’s EEG signals during listening to musical pieces. Moreover,
v(i), vL (i) and v̄R (i) (i = 1,2, · · · ,d) represent each vector’s
ith element, respectively. Consequently, we can reflect a user’s
brain activity (ERS/ERD) in v effectively since this normalization
handles the user’s baseline based on the results of the study on
ERS/ERD [76].

Finally, we apply the feature selection method based on the
Max-Relevance and Min-Redundancy (mRMR) algorithm [79] in
order to reduce noise, i.e., obtain an efficient EEG feature set for

reflecting a user’s preference. Specifically, a user gives a label +1
or −1 indicating that he/she either likes or dislikes each musical
piece. Then we obtain a set of final EEG features by inputting the
normalized EEG feature vectors and their corresponding labels
to the mRMR algorithm. In this way, effective classification of a
user’s favorite musical pieces is expected since only effective EEG
features for our purpose are selected via the mRMR algorithm.

Audio Feature Extraction
First, audio signal segmentation is performed at a fixed interval
as preprocessing. Next, audio features used in [80], [81] are
extracted from each audio segment by applying STFT to each
audio segment. In the proposed method, the “Music Information
Retrieval (MIR) toolbox” for MATLAB is used to extract audio
features3. The MIR toolbox has a function named mirframe(•) that
divides the input audio signal into audio segments, each of which
is 0.05 sec in length. Generally, that length of an audio segment
(0.05 sec), which is set by the function mirframe(•) of the MIR
toolbox, is widely used in the field of MIR. Thus, we adopted the
default length of the audio segment set by the MIR toolbox, i.e.,
0.05 sec, in order to extract audio features. On the other hand, a set
of EEG features is derived per an EEG segment (T sec, e.g., 1-2
sec). The audio segment is much shorter than the EEG segment.
Therefore, we compute the mean and standard deviation from the
audio features per T sec (the same length as the EEG segment)
since the durations of EEG and audio, which are used to extract
their features by applying the following KDLPCCA, must have
equal lengths. In this way, we can obtain audio features shown in
TABLE 3.

Note that we do not apply feature selection to audio features
unlike EEG features. In the proposed method, we used the feature
selection based on the mRMR algorithm with the expectation of
two roles: a) denoising and b) extraction of effective features for
classification.

In terms of a), application of feature selection is not necessary
for audio features since the audio signals obtained from music
are not measurement signals, i.e., having no noise originally. On
the other hand, EEG signals are measurement signals. Namely,
denoising needs to be applied to them as preprocessing since they
have some noise and measurement errors due to imperfections of
the equipment for observation, the subject’s eye or body move-
ments and so on. The importance of denoising as preprocessing
for EEG signals was pointed out in [82]

In terms of b), we conducted a preliminary experiment to
confirm the effect of applying feature selection, i.e., the mRMR
algorithm, to EEG and audio features. In our preliminary exper-
iment, we changed the dimensions of EEG and audio features
in the order of the output of mRMR and classified each user’s
favorite musical pieces by separately using selected EEG and
audio features. To confirm the effect of applying feature selection
to EEG and audio features only, we set the same experimental
conditions except for using EEG and audio features separately.
The data of EEG and audio signals are exactly the same as those
obtained in our experiments (See 5). The classifier used in this
preliminary experiment was also the same as that used in our
experiments, i.e., the linear SVM classifier. First, we applied the
mRMR algorithm to EEG and audio features and then obtained

3. Available at https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/
materials/mirtoolbox
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Fig. 1: Average of “accuracy increase” with changes in the
dimensions of EEG and audio features. The horizontal dotted
orange line denotes zero.

sets of selected EEG and audio features that have max-relevance
and min-redundancy with respect to the input labels indicating
the user’s music preference. Next, we trained the linear SVM
classifiers, which aim to classify the vectors obtained from the
musical piece for testing into LIKE or DISLIKE, by separately
using the sets of selected EEG and audio features. Finally, we
classified the user’s favorite and unfavorite musical pieces by using
these trained SVM classifiers and then calculated the accuracy.
To confirm the effect of selecting features, we repeated this
experiment with changes in the selected dimensions of EEG and
audio features. Specifically, we changed the dimensions of EEG
and audio features from 1 to 20 respectively. Then we calculated
“accuracy increase” as ACC(i + 1) − ACC(i), where “ACC(i)”
denotes the classification accuracy when i (i = 1,2, · · · ,19)
dimensions were selected from the original set of features.

The results are shown in Fig. 1. As shown in the figure,
most of the accuracy increases for audio features are lower than
the horizontal dotted orange line, i.e., zero. On the other hand,
all of the accuracy increases for EEG features are higher than
the horizontal dotted orange line. Furthermore, to disclose the
statistical verification in the effect of feature selection for the
set of EEG features, we applied Jonkheere-Terpstra test to the
results of feature selection. Jonkheere-Terpstra test is a rank-based
nonparametric test and can be used to determine whether there
is a statistically significant trend between an ordinal independent
variable and a continuous or ordinal dependent variable. Hence,
we considered that Jonkheere-Terpstra test is appropriate for our
purpose, i.e., testing null hypothesis that there is no performance
trend corresponding to changing feature dimensions used for
classification. Specifically, we applied Jonkheere-Terpstra test to
the classification results respectively using EEG and audio features
in ascending order of selecting feature dimensions. Namely, we
tested whether there is a statistically significant increasing trend
in the classification accuracy using EEG and audio features corre-
sponding to adding a feature one by one based on the results of
feature selection. As a result of Jonkheere-Terpstra test, the value
p with respect to EEG features was under 0.01. On the other hand,
the value p with respect to audio features was 0.124, i.e., over
0.1. Therefore, we can consider that the effect of applying feature
selection, i.e., the mRMR algorithm, to EEG features is greater
than the effect of applying feature selection to audio features.

From the above preliminary experimental results and discus-
sion, if the effect of selection of audio features is small, it is
considered that remaining as many original dimensions of audio
features as possible is eligible for the following calculation of
projection via KDLPCCA. Therefore, we applied feature selection
to EEG features but not to audio features.

4.2 KDLPCCA-based Projection of Audio Features
In this subsection, we describe a method for novel audio fea-
ture projection using KDLPCCA-based correlation with EEG
features for representing a user’s music preference. As de-
scribed in the previous subsection, two sets of N feature vectors
XE = [xE

1 ,x
E
2 , · · · ,xE

N ] ∈ RdE×N and X A = [xA
1 ,x

A
2 , · · · ,xA

N ] ∈
RdA×N are obtained from EEG and audio signals, where dE and
dA are the dimensions of the EEG feature vector and the audio
feature vector, respectively. Note that each feature vector has a
label representing whether the user likes the musical pieces, i.e.,
“like” or “dislike”. First, feature vectors of each set, i.e., xE

j and
xA
j ( j = 1,2, · · · ,N ), are transformed into Hilbert space via non-

linear maps ϕE : xE 7→ ϕE (xE ) ∈ RdϕE and ϕA : xA 7→
ϕA(xA) ∈ RdϕA , respectively. From the aforementioned mapped
results, we obtain ΦE = [ϕE (xE

1 ), ϕE (xE
2 ), · · · , ϕE (xE

N )] ∈
RdϕE

×N and ΦA = [ϕA(xA
1 ), ϕA (xA

2 ), · · · , ϕA(xA
N )] ∈ RdϕA

×N

. Next, we apply KDLPCCA explained in Section 3 to these EEG
and audio features. Based on Eqs. (22)-(28), we can finally obtain
the following generalized eigenvalue problem.

(CEA
w − ηCEA

b
)

(CEA
w − ηCEA

b
)T



αE

αA

 = λ

CϕE

CϕA



αE

αA

,
(33)

where

CEA
w = HKEH (Sϕ

E ◦ S
ϕ
A

)HKAH , (34)

CEA
b = HKEH (S̄ϕ

E ◦ S̄
ϕ
A

)HKAH , (35)

CϕE = HKEH (Lϕ
E + L̄

ϕ
E )HKEH + ξEHKEH , (36)

CϕA = HKAH (Lϕ
A
+ L̄

ϕ
A

)HKAH + ξAHKAH . (37)

Note that KE and KA denote the gram matrices of EEG and
audio features, respectively. Furthermore, Sϕ

E , S̄ϕ
E ,Lϕ

E , L̄ϕ
E (Sϕ

A
,

S̄
ϕ
A

, Lϕ
A

, L̄ϕ
A

) correspond to S
ϕ
x , S̄ϕ

x , Lϕ
x , L̄ϕ

x (Sϕ
y , S̄ϕ

y , Lϕ
y , L̄ϕ

y ),
respectively, and are computed on the basis of equations explained
in Section 3. As solutions of Eq. (33), we can derive some
eigenvectors as αEi and αA j , respectively. Then we obtain AE =

[αE1 ,αE2 , · · · ,αED ] ∈ RN×D and AA = [αA1 ,αA2 , · · · ,αAD ] ∈
RN×D by extracting the D coefficient vectors for which the
corresponding values of λi (i = 1,2, · · · ,D) are larger than the
others. In this way, we can derive projections PE and PA that
can transform EEG and audio features into subspaces having the
maximum correlation and consider the local structures and class
information by using AE and AA, respectively, as:

PE = ΦEHAE , (38)

PA = ΦAHAA . (39)

We use this projection PA to calculate novel audio features
reflecting a user’s music preference in our method. Specifically,
given a new audio feature vector xAtest , its projected audio feature
vector is obtained as:

zAtest = PT
A{ϕA(xAtest ) − ϕ̄A}

= AA
THΦT

A{ϕA(xAtest ) − 1
N
ΦA1}

= AA
TH {ΦT

AϕA(xAtest ) − 1
N
KA1}, (40)

where ϕ̄A =
1
NΦA1 is the mean vector of ϕA(xAtrain

i ) (i =
1,2, · · · ,Ntrain ).

Since KDLPCCA can deal with not only a non-linear corre-
lation but also local structures and class information of original
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feature sets, i.e., audio and EEG features extracted from audio
signals and the user’s EEG signals during listening to correspond-
ing musical pieces, calculation of an effective projection for each
user’s music preference is expected. Furthermore, our method has
a high level of practicability since the projected audio features
zAtest can be obtained from new musical pieces without the
user’s EEG signals as shown in Eq. (40) if PA has already been
calculated.

4.3 Favorite Music Classification
In this subsection, we explain favorite music classification using
the KDLPCCA-based projected audio features. In our method,
an unknown label of a projected audio feature vector zAtest is
estimated by using the following hyperplane:

f (zAtest ) = wTzAtest + b. (41)

Given a training music database D = {(zAtrain

l
, yl )}Ntrain

l=1 , w and
b can be obtained by solving the SVM formulation [55]. Note that
zAtrain

l
is calculated from the original training audio feature vector

xAtrain

l
in the same way as Eq. (40), and yl ∈ {+1,−1} denotes a

user’s music preference, i.e., “Like” or “Dislike”. Furthermore, a
linear kernel is used for SVM since a non-linear kernel has already
been used in KDLPCCA as shown in the previous section.

In this way, effective classification of favorite musical pieces
is realized for each user adaptively since the projection PA can
derive the projected audio features having the best KDLPCCA-
based correlation with the user’s EEG signals.

5 Experiments
Experimental results of our favorite music classification using
KDLPCCA are shown in this section. The performance of
KDLPCCA using a well-known benchmark dataset, Multiple
Features Datase (MFD), was also investigated, and the results are
shown in Supplemental Material.

Important factors in kernel-based algorithms are determina-
tion of the type of kernel and its related parameters. In our
experiments, we adopted the Gaussian kernel, i.e., kx (xi ,x j ) =
exp−∥xi−x j ∥2/2σ2

x and ky (yi ,y j ) = exp−∥yi−y j ∥2/2σ2
y . Here, the

kernel widths σ2
x and σ2

y were chosen by searching the fol-
lowing parameter space: σ2

x ∈ [2−19.5,2−15,2−10.5,2−6,2−1.5,23]
and σ2

y ∈ [2−19.5,2−15,2−10.5,2−6,2−1.5,23]. We also searched
the following space to obtain the optimal regularization param-
eters of KDLPCCA, i.e., ξx and ξy in Eqs. (25) and (26):
ξx ∈ [10−3,10−2,10−1,100] and ξy ∈ [10−3,10−2,10−1,100].
In order to control the relative contributions of C

ϕd
w and C

ϕd

b
in KDLPCCA, a balancing parameter η is introduced in Eq.
(22). In our experiments, we experimentally used η ∈ [0.5,1.0].
Furthermore, we searched the parameter space of SVM’s penalty
C ∈ [2−5,2−2.5,20,22.5,25,27.5,210,212.5,215].

We used 10 healthy subjects (See 5.1), a number that we
considered to be sufficient since less than 10 subjects were used in
recent studies using EEG: 4 subjects in [83] and [84], 5 subjects
in [85] and [86], and 6 subjects in [87]. Furthermore, we used
60 musical pieces as a music dataset, each of which was 15
sec in length4. In some related works using biosignals obtained
from a user during listening to music, the same setting, i.e.,
listening to music for 15 sec [46], [47], [88], [89], [90], and

4. The details of the music dataset used in our experiments are presented in
Supplemental Material.

TABLE 4: Details of the dataset used in the experiment per
subject.

Subject
Number of Number of

TOTAL (=Nmusic )
LIKE music DISLIKE music

A 23 23 46
B 23 23 46
C 17 17 34
D 20 20 40
E 16 16 32
F 23 23 46
G 21 21 42
H 18 18 36
I 25 25 50
J 25 25 50

Silence 

[10 sec] 

Silence 

[3 sec] 
Excerpt of Musical Piece 

[15 sec] 

End Tone 

[0.5 sec] 

 Trial 1   Rating Trial 2   Rating Trial #   Rating Trial 60   Rating  

Resting Period 
(See 4.1) 

3 sec 

Fig. 2: The task that each subject was required to perform in the
experiment.

adobe acro 

The frontal region 

The occipital region 

Fp1 Fp2 

F7 F3 Fz F4 F8 

A1 
T3 C3 Cz C4 T4 

A2 

T5 P3 Pz P4 T6 

O1 O2 

Fig. 3: Electrode layout of the international 10-20 system. Chan-
nels shown by thick lines were used in our experiments. They were
decided on the basis of [45], [46].

it has been reported that the average time for a listener to start
making emotional judgements for musical pieces is 8.31 seconds
[91]. Therefore, we also set a period of 15 seconds for observing
EEG signals from a subject listening to a musical piece. All of
the subjects evaluated each musical piece by 5 levels, i.e., 5 (like
very much), 4 (like), 3 (undecided), 2 (do not like) and 1 (do
not like at all). Therefore, audio feature vectors could be grouped
with respect to two classes, i.e., “Like” and “Dislike”. The class
“Like” consisted of audio feature vectors corresponding to the
musical pieces rated 5 or 4 by a subject, and the class “Dislike”
consisted of audio feature vectors corresponding to the musical
pieces rated 2 or 1 by a subject. Therefore, we regarded the
class “Like” as favorite musical pieces in our experiment. Note
that we did not use musical pieces rated 3 by subjects. These
experiment conditions were used in related studies [46], [47], and
we thus regarded the number of musical pieces as being sufficient
for our purpose. We equalized the number of musical pieces of
each class per subject by randomly excluding some musical pieces
from a class with more musical pieces in order to prevent an
imbalance problem [92], [93], [94]. Thus, Nmusic , which is the
total number of musical pieces used in our experiment, is slightly
different according to each user, and the details about this are
shown in TABLE 4. The task implemented by each subject in our
experiment is shown in Fig. 2. As shown in Fig. 2, a subject rated
each musical piece after listening to each one.
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Results
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(a) Details of the leave-trial out validation conducted for each subject in
our experiments. The 29 feature vectors of EEG and audio are respectively
extracted from a musical piece since it is divided into 29 segments by the
preprocessing (See 4.1).

(b) Details of the training and testing in our experiments. We repeated the
training and testing using each combination of parameters to find the best set of
parameters.

Fig. 4: An overview of our validation and parameter determination.

5.1 EEG Signal Collection and Experimental Procedures
EEG signals in our experiment were collected from 10 healthy
subjects while they were listening to musical pieces. The average
age of the subjects was about 23 years. All of the subjects in
our experiments were males and had no experience of musical
training. Therefore, it is considered that our method is effective for
favorite music classification even if a target user has no specialized
music training. We recorded EEG signals from 12 channels (Fp1,
Fp2, F7, F8, C3, C4, P3, P4, O1, O2, T3 and T4) according to
the international 10-20 system shown in Fig. 3. We chose these 12
channels based on the study by Lin et al. [44]. Lin et al. classified
emotional states of humans into four states (Joy, Anger, Sadness
and Pleasure) by using many types of EEG features, i.e., changing
the channel and the frequency band to perform the classification.
Then they investigated the degree of use of each channel in the
top 30 results across the 26 subjects. The important regions for
observing affective phenomena corresponded to the channels of
Fp1, Fp2, F7, F8, C3, C4, P3, P4, O1, O2, T3 and T4, which
are used in our method (See Fig. 3). Thus, we adopted these 12
EEG channels to observe affective phenomena of humans, i.e.,
individual music preference in the case of our research. Since EEG
signals are weak, we amplified the signals by using an amplifier
(MEG-6116M, NIHON KOHDEN). All leads were referenced
to linked earlobes, and a ground electrode was located on the
forehead. We also applied a band-pass filter to recorded EEG
signals to avoid artifacts, and we set the filter bandwidth to 0.04-
100 Hz. The subjects were instructed to keep their eyes closed and
to relax and remain seated while they were listening to the musical
pieces.

5.2 Results of Classification of Favorite Musical Pieces
In our experiment, the lengths of an EEG segment and an over-
lapping segment were 1.0 and 0.5 sec, respectively. Since CCA
needs the same number of samples from two heterogeneous sets,
the lengths of an audio segment and an overlapping segment to
calculate the mean and standard deviation of audio features were
also in the same as those of EEG. Furthermore, we divided all
of the audio feature vectors per musical piece in order to prevent

TABLE 5: Details of each method in our experiment: abbreviated
title of each method, kinds of features used and dimensions of the
features.

METHOD FEATURE DIMENSION

P (proposed)
audio features

2
projected by KDLPCCA

C1
audio features

2
projected by KLDCCA

C2
audio features

2
projected by KDCCA

C3
audio features

2
projected by KCCA

C4
audio features

2
projected by DLPCCA

C5
audio features

2
projected by LDCCA

C6
audio features

2
projected by DCCA

C7
audio features

2
projected by LPCCA

C8
audio features

2
projected by CCA

C9
Original

151
audio features

C10
Selected original depending on

EEG features each subject

C11
Selected audio features depending on

by our previous method [52] each subject

overfitting caused by learning similar vectors extracted from the
same musical piece, i.e., we employed a leave-trial-out validation.
A trial is corresponding to listening to one musical piece. In our
experiments, the testing data consisted of 29 vectors obtained
from the same musical piece. Therefore, the training data did not
contain samples that were similar to those of the testing data.
The details of the validation explained above are shown in Fig.
4(a). We employed linear kernels for all SVMs since we have
already applied non-linear kernels to the EEG and audio features
in the step of KDLPCCA. The parameters used in SVM were
determined via Grid Search [95] based on final accuracy of the
classification. Namely, we determined the kernel parameters of
SVM and KDLPCCA upon the best classification accuracy for
training data only. Specifically, we firstly divided the dataset as



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. *, NO. *, JUNE 2016 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A B C D E F G H I J

A
cc

u
ra

cy
 

Subject 

P C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

(a) Accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A B C D E F G H I J

R
e

ca
ll

 

Subject 

(b) Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A B C D E F G H I J

P
re

ci
si

o
n

 

Subject 

(c) Precision

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A B C D E F G H I J

F
-v

a
lu

e
 

Subject 

(d) F-value
Fig. 5: Results of favorite music classification．We selected the EEG features’ dimensions recording the best accuracy as Comparative
method 10 (C10; using only EEG features) and also used the same dimensions of EEG features before applying the CCAs for each
subject. On the other hand, after the projecting, DCCA and KDCCA are limited to extract the number of dimensions equaling the
number of classes (= 2) due to their formulas [58], and we thus used two dimensions of projected audio features in all CCAs (C1-C8).

TABLE 6: Averaged results for all subjects regarding favorite music classification.
P (proposed) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Accuracy 0.814±0.06 0.678±0.06 0.684±0.06 0.724±0.07 0.651±0.10 0.649±0.05 0.568±0.04 0.549±0.08 0.610±0.06 0.563±0.06 0.661±0.02 0.650±0.04
Recall 0.822±0.05 0.671±0.06 0.656±0.08 0.736±0.12 0.726±0.11 0.666±0.05 0.587±0.05 0.598±0.10 0.655±0.08 0.581±0.06 0.708±0.10 0.665±0.05

Precision 0.816±0.08 0.685±0.06 0.699±0.07 0.742±0.11 0.635±0.09 0.645±0.06 0.565±0.04 0.544±0.08 0.602±0.06 0.563±0.06 0.652±0.03 0.646±0.04
F-value 0.817±0.05 0.677±0.05 0.675±0.07 0.727±0.08 0.675±0.09 0.655±0.05 0.576±0.04 0.569±0.08 0.626±0.06 0.572±0.06 0.673±0.04 0.655±0.04

shown in Fig. 4(a) and next searched the parameter spaces that
have been shown in the second paragraph of this section. Note
that we also applied the mRMR feature selection to the set of
EEG features obtained from only training music trials per each
leave-trial-out validation as shown in Fig. 4(b). Therefore, the test
data did not contain any EEG feature vectors and were entirely
disjointed from the parameter optimization. Then we calculated
classification accuracy regarding favorite music classification for
each combination of parameters. Eventually, we determined the
best combination of parameters based on all of the calculated
results. To evaluate the performance of our method, we used Ac-
curacy, Recall, Precision and F-value. We used the following ten
comparative methods (C1-C11): methods using KLDCCA (C1),
KDCCA (C2), KCCA (C3), DLPCCA (C4), LDCCA (C5), DCCA
(C6), LPCCA (C7) and standard CCA (C8) instead of KDLPCCA,
a method that uses original audio features, i.e., without the any
CCA-based projection, (C9) and a method that uses only subjects’
EEG features selected by the mRMR algorithm (C10). We also
used our previous method [52] that is realized by KDLPCCA-
based audio feature selection as C11. Since DCCA and KDCCA
are limited to extract the number of dimensions equaling the
number of classes (= 2) due to their formulas [58], we used 2
dimensions of projected audio features in all CCAs (C1-C8). The
details of the proposed method and all comparative methods are
summarized in TABLE 5.

The results are shown in Fig. 5 and TABLE 6. Since we
confirmed that all of the results for C10 were better than those
of C9, one of our most important ideas, i.e., utilizing individual
EEG features for favorite music classification, is valid. Actually,
all of the methods utilizing projected audio features (P and C1-
C8) outperformed the method using only original audio features
(C9) as shown in TABLE 6. Among the comparative methods,
the results obtained by using kernelized CCAs (C1-C3) were
much better than the results obtained by using corresponding
non-kernelized CCAs (C4-C8). Therefore, we can argue that
another idea, i.e., considering not only linear but also non-linear
correlations between EEG and audio features for favorite music
classification, is important. However, from Fig. 5 and TABLE 6,
we can confirm that C1-C8 do not significantly outperform the
method using only original EEG features (C10). In other words,
C1-C8 are equal to C10 at the most. Meanwhile, we confirmed that
our proposed method using KDLPCCA outperforms even C10 in
addition to C1-C9. This is because KDLPCCA can deal with not
only a non-linear correlation but also local structures and class
information of original data as shown in TABLE 1. In fact, in
non-kernelized methods (C4-C8), DLPCCA (C4) also outperforms
C5-C8 as shown in TABLE 6 since DLPCCA can deal with
local structures and class information. In addition, we confirmed
that the hypothesis stated in Section 1, i.e., that KDLPCCA-
based projected audio features are more suitable for the user’s
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Fig. 6: Visualization results using each CCA’s 1st projected audio features (horizontal axis) and 2nd projected audio features (vertical
axis). The results ware obtained from the same training and testing datasets, i.e., subject A’s EEG signals and the musical pieces
liked/disliked by subject A. RED ∗ denotes training samples obtained from the musical pieces that were liked, while BLUE ∗ denotes
training samples obtained from the musical pieces that were disliked. Circles with yellow edges denote testing samples classified as
a correct class, and circles with cyan edges denote testing samples classified as an incorrect class. Note that true classes of all test
samples are RED classes.

music preference than KDLPCCA-based selected audio features,
is correct since the result of P is superior to that for C11.

Next, we visualize subject A’s projected samples (See Fig. 6)
using some CCAs: our KDLPCCA, KLDCCA, KDCCA, KCCA
and standard CCA since KCCA and CCA are benchmarks, and
KLDCCA and KDCCA showed high performances in previous
experiments. We used the same training and testing samples for
the visualization of all CCAs. In Fig. 6, RED ∗ denotes training
samples obtained from the musical pieces liked by subject A,
and BLUE ∗ denotes training samples obtained from the musical
pieces disliked by subject A. Circles with yellow edges denote
testing samples classified as a correct class, and circles with cyan
edges denote testing samples classified as an incorrect class. Note
that all testing samples’ true class is “Like”, and they thus should
be projected into the RED region and become circles with yellow
edges, ideally. A comparison of Figs. 6(d) and 6(e) shows that
KCCA has better discriminative power than that of standard CCA
since KCCA has more testing samples classified as a correct class,
i.e., circles with yellow edges, than does CCA. Hence, using the
kernel trick for CCA is effective for enhancing discriminative
power by considering the correlation between EEG signals and
audio signals. However, the KCCA’s result cannot separate the
RED and BLUE training samples well since KCCA does not
consider class information. This deteriorates the discriminative
power of KCCA-based projected audio features. On the other
hand, the results obtained by using KLDCCA and KDCCA can

classify test samples better than the results obtained by using
KCCA as shown in Figs. 6(b) and 6(c). In fact, there are more
circles with yellow edges in Figs. 6(b) and 6(c) than in Fig.
6(d). However, from Figs. 6(b) and 6(c), we can confirm that
the regions of almost all RED and BLUE training samples still
overlap. Meanwhile, our novel CCA, i.e., KDLPCCA, can separate
the training samples much better than can KLDCCA or KDCCA
and can classify the test samples more correctly than can the other
CCAs as shown in Fig. 6(a) since KDLPCCA can consider not
only a non-linear correlation and class information but also local
structures of original data as shown in TABLE 1.

For CCA-based audio features (C1-C8), the results of our
KDLPCCA, KLDCCA and KDCCA are better than those of other
CCAs since these CCAs can deal with class information and a
non-linear correlation simultaneously. Among these three CCAs,
the results using our KDLPCCA are notably better. The major
difference between our KDLPCCA and KLDCCA and KDCCA is
the consideration of local structures of original data based on LPP.
Generally, it is considered that there are both similar and non-
similar musical pieces in the same class, i.e., a multimodal class.
As Sugiyama pointed out in [54], locality preserving approaches
can work well with data having a multimodal class. Therefore,
consideration of the similarity among samples is important for
favorite music classification even if the samples have the same
labels. KDLPCCA can consider the similarity among samples
by using Laplacian matrices based on LPP, while KLDCCA and
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KDCCA cannot consider the similarity. Therefore, we consider
that KDLPCCA is a powerful tool for extraction of features for
favorite music classification.

The results presented in this subsection show that our
KDLPCCA-based approach is powerful and effective for favorite
music classification since KDLPCCA can extract the non-linear
correlation between user’s EEG and audio features considering
class information and local structures of original data.

6 Future Work
In the field of neuroscience, considering the profiles of subjects,
especially gender, is very important and desirable. In fact, there
are some reports that there is a difference of EEG signals during
listening to music between a male and a female. However, it has
been reported that the difference is minor since it can be observed
during listening to limited musical pieces, i.e., only having song
lyrics [96]. In our music dataset, most of musical pieces had no
song lyrics. Furthermore, most of song lyrics were not subjects’
mother tongue even if there are few musical pieces having duration
with song lyrics in our music dataset. In addition, Miles et al. have
recently reported that a female has the advantage at recognizing
familiar melodies, i.e., storing and retrieving knowledge about
specific melodies, since the hippocampus seems to develop at a
faster rate in girls than in boys [97]. Therefore, we consider that
dealing with a comprehensiveness of a dataset is an enormous and
important future work which should devote the time sufficiently.
Namely, in the future work, it is necessary that re-collecting
the dataset by considering the gender balance, age, their mother
tongue, familiar or non-familiar melodies, experience of musical
training and so on.

7 Conclusions
In this paper, we have proposed a novel audio feature projec-
tion using KDLPCCA-based correlation with EEG features for
favorite music classification. The proposed method calculates
new projected audio features that are suitable for representing
a user’s music preference by applying our novel CCA, i.e.,
KDLPCCA, to audio features and EEG features that are extracted
from the user’s EEG signals during listening to musical pieces.
Since EEG features reflect individual music preference, favorite
music classification that adaptively considers a user’s preference
becomes feasible via an SVM classifier using the projected audio
features. Since our method does not need acquisition of EEG
signals for obtaining new audio features from new musical pieces
after calculating the projection, our method has a high level of
practicability. The experimental results show that (1) KDLPCCA
is a globally powerful tool for extracting effective features for
classification (See Supplemental Material) and (2) our projection
method via KDLPCCA can reflect individual music preference
and thus realize favorite music classification effectively. In ad-
dition, we consider that existing methods using audio features
such as the methods in [24], [25] may be enhanced by using new
projected audio features obtained by our method.
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