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Abstract

It has been well documented that laughter is an important commu-
nicative and expressive signal in face-to-face conversations. Our work
aims at building a laughter behavior controller for a virtual character
which is able to generate upper body animations from laughter audio
given as input. This controller relies on the tight correlations between
laughter audio and body behaviors. A unified continuous-state statis-
tical framework, inspired by Kalman filter, is proposed to learn the
correlations between laughter audio and head/torso behavior from a
recorded laughter human dataset. Due to the lack of shoulder behavior
data in the recorded human dataset, a rule-based method is defined to
model the correlation between laughter audio and shoulder behavior.
In the synthesis step, these characterized correlations are rendered in
the animation of a virtual character. To validate our controller, a sub-
jective evaluation is conducted where participants viewed the videos
of a laughing virtual character. It compares the animations of a vir-
tual character using our controller and a state of the art method. The
evaluation results show that the laughter animations computed with
our controller are perceived as more natural, expressing amusement
more freely and appearing more authentic than with the state of the
art method.
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1 Introduction

Laughter is universal and prevalent throughout all known cultures [1].
It has been observed that newborns that are only a few months old have
the ability to laugh even though they are not able to speak [2]. Deaf-blind
children laugh in a manner that is fundamentally similar to the way in which
normal-hearing individuals laugh [3].

Laughter is an important communicative and expressive signal [3]. It
regulates speech during a conversation [4] and indicates social group be-
longing [5]. It is often used during the formation and maintenance of social
groups to smoothly and positively manage relationships [6]. For instance, it
can be viewed as a positive feedback when interlocutors laugh at the same
time. Also, it is also employed to elicit interlocutors’ laughter [4].

Laughter is a remarkable indicator of interlocutors’ emotions during con-
versations. Especially, laughter occurs frequently to convey positive emo-
tions or cheerful mood in human conversations [7]. For example, humans
laugh at humorous stimuli or to express their pleasure when receiving praise
statements [8]. Additionally, laughter may be related to other emotional
states in human communication. For instance, humans often laugh when
feeling embarrassed, disappointed, stressed or even cynical [1] [9]. Huber
and Ruch [9] distinguish up to 23 different types of laughter ranging from
hilarious, hysterical to embarrassed, desperate, contemptuous.

Laughter is a multimodal process involving facial expressions, body move-
ments and vocalizations [3]. For hilarious laughter, muscular activities in-
clude mainly the zygomatic major, mouth opening and jaw movement. Or-
bicularis oculi muscle is squinted as for Duchenne smile [10]. Eyebrows may
be raised or even frown in very intense laughter [3]. Saccadic movements
affect the whole body. Torso may bend back and forth and shoulder may
shake. Changes in respiration patterns are also prominent. Inhalation and
exhalation phases are very noticeable. All these movements are done very
rhythmically [3]. They are also highly correlated and they arise from the
same physiological processes [3]. Furthermore, several researchers proposed
to utilize laughter body movements to distinguish hilarious laughter from
social laughter [11] [12] and laughter from other communicative activities
(e.g. non-laughter) [13] [14].

Recently researchers have proposed models for laughter generation, de-
tection, and perception. For instance, a game scenario was set up to induce
natural hilarious laughter interaction between human participants and a
virtual character [15] [16]; McKeown et al. [17] looked into the effect of
environmental and social factors, such as a friendly, relaxing environment
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by playing popular music and a strong social relationship (i.e. friends), on
inducing hilarious laughter and conversational laughter.

In recent years, virtual characters have become increasingly popular in
several applications of human-computer interactions, such as social coach-
ing [18], companionship [19] [20] and museum guide [21]. They have been
endowed with human-like emotional, social and communicative qualities [22]
[23] [24] [25] [26] [27] [28]. Lately, particular efforts have been made to add
laughter as such a quality to the virtual character [29] [30] [31]. Our work
lies in this research direction. We aim to develop an expressive virtual char-
acter able to interact naturally with humans. One step toward this direction
is to allow the virtual character to display a large palette of socio-emotional
behaviors. In this paper, we focus on a particular behavior, namely hilarious
laughter.

Our aim is to build a laughter behavior controller able to generate laugh-
ter the animations of the upper body (head, torso, and shoulders) from
laughter audio given as input. The laughter behavior controller consists of
a unified statistical framework for head and torso animations and a rule-
based framework for shoulder animation. Our underlying idea is based on
the tight correlation between laughter audio and laughter motions. While a
statistical framework is developed to capture the correlation between laugh-
ter audio and head/torso motion from a recorded laughter human dataset, a
rule-based framework is proposed, due to the lack of shoulder behavior data
in the recorded human dataset, to define the correlation between laughter
audio and shoulder motion. Once these correlations are captured or defined,
laughter animations can be calculated from laughter audio in the synthesis
step. (Synthesizing laughter audio are beyond our research topic.)

In Section 2, we review previous works on laughter animation generation.
Then, Section 3 presents a motion capture dataset of human laughter used to
train the proposed statistical model. Next, Section 4 introduces our laughter
behavior controller, including the statistical framework and the rule-based
framework. Later on, Section 5 describes a subjective evaluation we designed
to validate our laughter behavior controller. Section 6 reports the evaluation
results and Section 7 discusses the results. Finally, Section 8 concludes this
work and summarizes its contributions.

2 Related Work

Recently, several works have been dedicated to simulating laughter. Models
have been proposed to compute laughter lip animation [32] [33] [34], laughter
facial expression [35] [36] [29], laughter head motion [29], laughter torso
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shaking [37] [29] [38], and laughter shoulder trembles [39]. In these works,
laughter audio is used as input signals to compute the output appropriate
laughter animations. This section reviews briefly these works.

DiLorenzo et al. [37] proposed a physics-based laughter torso model.
This model with manually-defined parameters takes the air flow of laughter
audio as input to infer torso deformation configured by spine and clavicle
motions and respiratory muscles. A force parameter is inferred from the air
flow and used to animate respiratory muscles, spine, and clavicle. Such an
approach could not be generalized to other motion modalities (e.g. head
rotation animation) being independent of the air flow.

Niewiadomski et al. [39] conducted a spectrum analysis on laughter
shoulder movements and characterized the relationship between laughter
audio and shoulder movements. The harmonic signals are used to produce
real-time trembling shoulder animations from the input laughter audio.

Niewiadomski and Pelachaud [36] found that laughter facial expression
is related to the intensity of laughter audio. They indicated that laughter
intensity can be used to infer facial motion but they do not report the
inference procedure. Later on, Niewiadomski et al. [40] proposed another
approach to infer facial expression. Their approach is based on selecting
whole motion episodes from a motion capture dataset of laughter episodes.
The selection process takes into account two factors: the intensity and the
duration of laughter episode. In their work, the intensity of each episode is
assumed to be constant and audio prosody is ignored. As such this work
lacks to capture the synchronization mechanism between laughter motion
and laughter audio.

Similar to Niewiadomski et al. [40], Urbain et al. [41] proposed to repli-
cate motion by selecting facial expression of human laughter episode from a
motion capture dataset. The selection is done based on only two variables:
mean and standard deviation between the recorded audio and the input
audio. This may not be enough to characterize long audio sequence.

Cosker and Edge [35] used Hidden Markov Models (HMMs) to synthe-
size laughter facial motion from audio features. The authors built subject-
specific HMMs to model laughter audio and motion. To compute the laugh-
ter animation of a new subject, the first step is to select one HMM from the
set of HMMs by comparing the audio similarity between the new subject
and the subjects involved in the training dataset. Then the selected HMM
is used to produce the output laughter animation from the most likely state
sequence. However, if one state in the state sequence may last very long, it
would lead to still motion, which would produce unnatural animation.

Çakmak et al. [32] [42] decomposed the sequences of facial expression of
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laughter into 3 segments: Neutral (N), Smile (S) and Audible Laugh (L).
Three motion segment subsets are collected from a human dataset. Each
subset is used to train an HMM. In the synthesis step, a label sequence
([N,L,N ] or [S,L, S]) and the lasting time of each label are used as input.
The lasting time information ensures that facial expression labeled by L be-
gins and ends at the same time with laughter sound. While this approach
could be validated for short laughter audio, it could lead to unnatural an-
imations in long episodes as a state in HMM representing a position could
last a long time. Additionally, laughter animation intensity is assumed to
be uniform within and across episodes. However, laughter intensity can be
largely different between episodes and can temporally vary during laughter
sound.

Ding and colleagues proposed different models aiming at simulating the
motion qualities of laughter.

Ding et al. [29] have attempted to generate facial expressions (mouth
region and upper face) and behaviors of head and upper torso from laughter
audio signals. Linear regression method is applied to predict lip and jaw an-
imations, where laughter pseudo-phonemes (defined by Urbain et al. [41] in
reference to speech phonemes) are used to estimate mouth shape, and, audio
prosody features are used to configure the openness amplitude of the mouth
shape. Similar to Niewiadomski et al. [40] and Urbain et al. [41], selecting
motion samples from human data is used to produce head and upper face
animations. A manually-defined Proportional Derivative (PD) controller is
proposed to compute torso behaviors. The definition of the PD controller
relies on the assumption that head motion follows torso movements during
laughter.

In a successive work, Ding et al. [38] proposed a statistical framework
combining Coupled HMM and Parametric HMM to synthesize head and
torso behaviors using the input laughter audio signals. Coupled HMM al-
lows capturing the temporal relationship between head and torso behaviors;
Parametric HMM acts as obtaining the closed correlation between audio
signals and behaviors.

Ding et al. [33] focused on computing laughter lip animations. The
underlying idea is to infer mouth shape from the laughter pseudo-phonemes
and prosody features, based on GMM. Then an HMM-based interpolation
function is trained on human data. This specific interpolation function is
capable of capturing the subtle co-articulation of the lip motions. In the
synthesis step, the built GMM and HMM are both used to configure the lip
shape at each frame.

In the above works, HMM has been applied to generate laughter anima-
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tion. In fact, HMM is a set of discrete states and fits very well to model dis-
crete variables (e.g. speech phonemes or words). However, when modeling
laughter animation, continuous behavior trajectory is regarded as a sequence
of discrete positions in [35] [32] [38] [42]. It means that the information of
the dynamics and of the continuity in behavior trajectory could be lost and
could not be captured by HMM. Tokuda et al. [43] and Brand [44] propose
HMM-based synthesis algorithms to generate continuous speech signals and
facial expressions respectively. Their algorithms make the assumption that
state transition probabilities are time-invariant. Such probabilities reflect
the overall bias towards all the training data. They could be untrue in each
testing sequence and could cause over-smoothing signal trajectories when a
state lasts for a long time. Considering that laughter movements often trem-
ble, the algorithms from [43] [44] could not be suitable to compute laughter
animations.

In our work, we develop a continuous-state statistical framework to gen-
erate laughter behavior. This framework has not only the advantage of
modeling the data sequence as HMM does but it also avoids segmenting
continuous signals into discrete variables.

3 Human Laughter Dataset

As mentioned before, a statistical framework is proposed to build a laugh-
ter behavioral controller. Its underlying idea is to automatically capture
the implicit data relationship between laughter behavior and laughter audio
from human motion dataset. To reach this goal, a human laughter dataset
is recorded; then it is used to train the statistical framework.

The motion capture sessions took place in an anechoic chamber. 8 partic-
ipants (6 males and 2 females) were recruited. During the recording session,
the participant sat in front of a PC and watched funny movies for about
25-40 minutes. The funny movies had been attentively selected for eliciting
spontaneous laughter in participants. Figure 1 shows the front and the side
views of a laughing participant who is watching funny movies. The data
collection involves one participant at a time.

The laughter sound was recorded by a headset microphone at 44100 Hz
(see Figure 1). The participant was equipped with the motion capture sys-
tem Xsens, which consists of a headband, two sensors on the right and the
left shoulders and three sensors on the torso (placed at upper, middle and
lower positions along the torso). The headband samples the 3-dimensional
head rotation angles at 125 frames per second (fps). Unfortunately, the two
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Figure 1: Left figure: front view. Right figure: side view. The participant
is laughing when watching funny movies. She is equipped with a motion
capture system and a microphone.

sensors on the shoulders did not capture shoulder movements successfully.
Moreover, although three sensors are used to track the torso movement, the
rotation angles captured by the three sensors are linearly related to each
other. It means that only the 3 rotation angles from one sensor are sig-
nificant; the 6 rotation angles from the other two sensors can be linearly
interpreted from the first sensor. The torso movement was sampled at 125
fps. The impossibility to capture the more detailed movement of the shoul-
der and of the torso is due to the limitation of the motion capture system
we used.

During data processing, all laughter episodes were manually picked up
by excluding moments with only speech or silence. Finally, a total of 505
laughter episodes were collected. Each one lasts between 1 and 37 seconds.
It contains the head and torso movement data and the audio signal.

Laughter movements involve many signals. Human laughter, while shar-
ing many properties and qualities, shows high individual differences in its
acoustic and visual production. Capturing and modeling the individual dif-
ferences of laughter is beyond the scope of our current work. To overcome
this issue, our work uses the audiovisual data of one participant who has
been subjectively selected as the most spontaneous one among all the par-
ticipants. We obtained a dataset of 78 episodes, each one lasting between 2
and 34 seconds.

4 Laughter Behavior Controller

Our controller embeds two modules, a unified data-driven approach for head
and torso motions and a rule-based approach for the shoulder motion. The
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data-driven approach (see Section 4.2) is proposed to extract the temporal
relationship between human laughter audio and the accompanied head/torso
motion. Since shoulder movements are unavailable in the laughter data col-
lection, a rule-based approach is designed to define the relationship between
laughter audio and shoulder movements (see Section 4.3). In the synthe-
sis step, the extracted and defined relationships act as a function taking
laughter audio as input and outputting human-like head, torso and shoulder
animations.

4.1 Audio and Visual Features

We use the Greta virtual character [45] to visualize the laughter animation.
Its skeleton follows the MPEG-4 standard [46]. We control the upper body
with 3 joints on the neck and head, 2 on the right and the left shoulders,
and 8 on the spine. Each joint is animated by 3 rotation angles. The head,
the torso and the shoulders of the virtual character can be animated by
configuring neck, spine and shoulder joints.

Head and torso features. Since the adjacent joints on the neck/spine
are closely related to each other, a joint moves always by following its ad-
jacent skeletal joints. To overcome the lack of data for all human spine
and neck joints, the relationships between adjacent joints are modeled by
Proportional-Derivative (PD) controllers. Such an approach has also been
employed in [37]. The parameters of the PD controllers are configured by
hand as in [37]. In our work, the top joint of the neck (respectively spine)
joints (defined by the skeletal hierarchy) is selected as the head (resp. torso)
joint that leads the PD controller. So, if the head (respectively torso) joint
is known, the movements of the other joints on the neck (resp. spine) can be
inferred using the PD controllers. Hence, 6 rotation angles are taken as head
and torso motion features: 3 for animating the head and 3 for animating
the torso. During the synthesis phase, the values of the 6 motion features
are inferred at each time step.

Shoulder feature. Shoulder motions are viewed as the combination of the
up-down and the forward-backward movements. In our work, the up-down
and the forward-backward movements are considered to be linearly related
to each other. Moreover, the right and the left shoulders are assumed to
follow symmetric motions. Hence, only one dimension feature is used to
animate the right and the left shoulders.

Audio feature. The speech processing software Praat [47] is used to
extract the audio feature loudness from the recorded laughter audio at 125
fps, which matches with the sample frequency of the motion capture data,
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125 fps.

4.2 Head and Torso Behavior Controller

The data-driven approach is proposed to build head and torso behavior
controller. It is capable of computing 6 motion features at each time step
according to the laughter audio input. In particular, a unified statistical
framework is proposed to generate the trajectories of the 6 motion features
(3 head and 3 torso motion features). For the sake of simplicity, the 6 motion
features are not distinguished in the following framework description. A
generic motion feature sequence is noted by m, as follows:

m = [m1, ...,mt, ...,mT ] (1)

where mt is the value of m at time t. m stands for any one of the 6 mo-
tion features sequences. Since human motion is always continuous without
breaks, mt is a continuous variable. It can be viewed as a sample from a
continuous space.

One classical approach to model continuous variables is to quantify them
as discrete variables, also called state variables in the previous works [38] [33]
[35] [32] [42]. It is referred to as discrete-state framework in this work. The
underlying idea is to represent continuous variables with a set of discrete
variables. Particularly, a continuous variable is approximated by a discrete
value or a weighted sum of a set of discrete variables. While such an ap-
proximation may be able to model and capture some temporal relationship
of sequential data, it may also lead to some loss of information at each time
frame. And thus, it may result in degrading data accuracy, continuity and
dynamics.

To avoid the shortcomings arising from data discretization, a continuous-
state framework is proposed to model the motion temporal relationship. In
the continuous-state framework, the state variables are viewed as samples
from a continuous space instead of a discrete space (a set of discrete vari-
ables).

To build the continuous space, mt and its velocity feature (the first order
derivative), ∆mt, is combined as a joint vector as follows:

ot = [mt,∆mt]
> (2)

where > stands for the transpose of a vector. Since mt and ∆mt are contin-
uous variables, ot is a 2-dimensional continuous variable and a sample from
a 2-dimensional continuous space, denoted by S. Furthermore, the probabil-
ity distribution of ot in S is modeled by a Gaussian probability distribution,
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Figure 2: Illustration of continuous state. The blue curve represents the
mean values of Gaussian probability distribution (gpd or st) at each time
step. The width of green lines represents the variance of gpd at each time
step. The red curve represents a sample from the gpd at each time step.
As can be seen, the mean and the variance are both continuous variables in
time. This is why the sampling sequence (red curve) is smooth.

denoted by gpd and defined by a mean vector and a covariance matrix. The
mean vector indicates a sample which occurs with the highest probability;
the covariance matrix is a measure of the sample dispersion around the mean
vector. The mean vector and the covariance matrix are not uniform for ot
at different time steps. It means that gpd varies along with the time step,
t. Such a gpd is named motion state, noted by st at time t.

Since the mean vector and the covariance matrix are continuous vari-
ables, st is a continuous state. Figure 2 illustrates an example of motion
state, where the motion velocity feature is ignored and only the motion fea-
ture is depicted. As can be observed, the mean and the variance of gpd
are both continuous variables; they vary smoothly along with the time step,
t, which is helpful to produce a smooth curve without any discontinuities.
No additional specific smoothing operations or interpolation techniques are
employed to smooth the produced animation trajectory.

The behavior trajectory value and its velocity at each time step are
available from human data but their probability distributions are unknown.
So, while ot is observable, st is unobserved from human data. It is a hidden
variable.

st is characterized by a gpd at time step t; and ot is a sample from st.
That is ot follows st. The underlying idea of synthesizing animations is to
first determine st from the input audio signals and then to estimate ot (or
mt) from st. The synthesis process is summarized by the two following steps:

1. Step 1: Motion State Determination. The motion state, st, is deter-
mined from the audio feature at and st−1. This step is described in
Section 4.2.1.
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Figure 3: Synthesis overview. Step 1 (see Section 4.2.1) determines the
Gaussian probability distribution at each time step, st, according to the
input audio signal, at; Step 2 (see Section 4.2.2) infers the motion feature,
mt, from st.

2. Step 2: Motion Trajectory Estimation. A laughter animation stream
is estimated from st. This step is introduced in Section 4.2.2.

Figure 3 illustrates the overview of synthesizing head and torso animations.
st can be viewed as a mediate or hidden variable. It is the output of the
first step and the input of the second step.

4.2.1 Step 1: Motion State Determination

The first step is to determine st from the audio feature at. In our frame-
work, st is assumed to explicitly depend on st−1 and at. It is conditionally
independent of the audio features and the motion states at the earlier time
steps. Such dependency relationships are illustrated in Figure 4. Based on
such a framework, the key question in Step 1 is to solve st from st−1 and
at. Then the solved st and the input audio at next time, at+1, are used as
input to solve st+1. Such a solution process is carried out along with the
time step, t, as can be seen in Figure 4.

The underlying idea is first to infer two estimates of st respectively from
st−1 and from at. The estimate from st−1 is denoted by sst while the other
from at by sat ; secondly the idea is to fuse these two estimates (sst and sat ) as
the final estimate of st (the output of Step 1). So, sst , s

a
t and st are defined

as follows:

• sat : the estimate of st depending on at.

• sst : the estimate of st depending on st−1.

• st: the estimate of st depending on both st−1 and at.
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Figure 4: Dependence relationship between motion state (st) and audio
feature (at). The motion state at time t, denoted as st, depends on the
motion state at time t−1, denoted as st−1, and the audio feature at time t,
denoted as at; it is conditionally independent of st′−1 and at′ (where t′ < t)
at the earlier times. In the synthesis step, st is determined from at and st−1.
This determination process is illustrated in Figure 5.

Figure 5: Overview of motion state determination (Step 1). Step 1-A is
conducted by the developed partial parametric K-means algorithm; Step
1-B and Step 1-C framed in dash are conducted by Kalman filter.

More precisely, sst , s
a
t and st are defined respectively by a gpd. Step 1 is to

estimate respectively two gpds (sst and sat ) and then to fuse these two gpds
as a new gpd defining st.

Figure 5 illustrates the determination of st from st−1 and at, which can
be summarized in three sub-steps:

1. Step 1-A: from at to sat . Step 1-A estimates the role of at (audio
feature at the current time) on st (motion state at the current time).
The estimated result is sat . Step 1-A is represented by the operation
called State Measurement in Figure 5.

2. Step 1-B: from st−1 to sst . Step 1-B estimates the role of st−1 (motion
state at previous time t-1) on st (motion state at the current time).
The estimated result is sst . Step 1-B is represented by the operation
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called State Prediction in Figure 5.

3. Step 1-C: from sst and sat to st. Step 1-C is to fuse the estimates
obtained at Step 1-A and at Step 1-B. The fused result is st. Step 1-C
is represented by the operation called State Fusion in Figure 5.

Step 1-A and Step 1-B are independent of each other; they can be applied in
any order. In fact, Step 1-A, Step 1-B and Step 1-C are conducted once at
each time step. The output st from Step 1-C at time step t is used as input
to Steps 1-A and 1-B at time step t+1, which can be observed in Figure 5.
In particular, the mean vector and the covariance matrix of st are both used
as input to Step 1-B, while only the mean vector of st is used as input to
Step 1-A.

Step 1-A is carried out by a new statistical framework, called a partial
parametric K-means algorithm. Step 1-B and Step 1-C relies on Kalman
filter. (The description of Kalman filter is beyond the scope of this paper.)
Step 1-A, Step 1-B, and Step 1-C will be introduced as follows.

Step 1-A: Audio Feature at to Motion State sat

To compute sat , a partial parametric k-means clustering is developed. It
is a standard k-means clustering where the partial elements of the mean
vectors are conditional on the contextual variable(s) and the other elements
are fixed.

Carrying out a partial parametric k-means clustering consists of two
steps. The first step splits the data into clusters by conducting a standard
k-means clustering. Each cluster is represented by a mean vector and a
covariance matrix. The second step learns the relationship between the
partial elements of the mean vectors and the contextual variable(s). These
two steps are detailed as follows.

A partial parametric k-means clustering is carried out on the training
set, denoted by {spkt }, where sp is the abbreviation of sample. spkt stands
for a training sample at time t from the k-th training sequence. spkt is a
5-dimensional joint vector defined as follows,

spkt = [mk
t−1,∆m

k
t−1,m

k
t ,∆m

k
t , a

k
t ]>

where spkt is comprised of the audio feature at the current time step and
of the motion features and their derivative features at the current and the
previous time steps. The standard k-means clustering is conducted to split
{spkt } into J groups. The probability distribution of the samples from each
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group are modeled by a gpd with a diagonal covariance matrix. The mean
vector of the gpd is a 5-dimensional vector. The j-th gpd is characterized
by its mean vector, µj , and the covariance matrix, Σj , as follows:

µj = [µm
−1

j , µ∆m−1

j , µm
0

j , µ∆m0

j , µa
0

j ] (3)

Σj = diag[Σm−1

j ,Σ∆m−1

j ,Σm0

j ,Σ∆m0

j ,Σa0

j ] (4)

where −1 and 0 at the top-right corner respectively stand for the previous
and the current time steps. For example, µm

−1
and µ∆m−1

respectively
represent the means of mk

t−1 and of ∆mk
t−1 at the previous time step.

The partial elements of the mean vector, µj , is assumed to be related

to the contextual variable. In our work, these elements include µm
0

and
µ∆m0

j ; and the contextual variable is the audio feature at the current time

step, at. In particular, µm
0

j and µ∆m0

j is picked up from µj , noted by µaj =

[µm
0

j , µ∆m0

j ], named parametric mean vector. For the sake of simplicity, µaj
is assumed to be linearly conditional on at. The dependence is formulated
as follows:

µaj (at) = W jat + µ̄j (5)

where W j is a 2 × 1 matrix; and µ̄j is an offset vector. W j and µ̄j are
learned through Least Mean Square algorithm (LMS).

According to the description above, the partial parametric k-means clus-
tering can be summarized as follows.

µj = [µm
−1

j , µ∆m−1

j , µaj , µ
a0

j ] (6)

µaj = [µm
0
, µ∆m0

] (7)

µaj (at) = W jat + µ̄j (8)

Σj = diag[Σm−1

j ,Σ∆m−1

j ,Σm0

j ,Σ∆m0

j ,Σa0

j ] (9)

which describes the j-th gpd in the partial parametric k-means clustering.
This partial parametric k-means clustering is denoted by Γ0. Then two new
k-means clustering are extracted from Γ0 by splitting the elements in µj and
in Σj into two parts.

The first one is obtained by ignoring µaj in µj and the corresponding

elements (Σm0

j and Σ∆m0

j ) in Σj and keeping the other elements in µj and
Σj , as follows:

µsj = [µm
−1

j , µ∆m−1

j , µa
0

j ] (10)

Σs
j = diag[Σm−1

j ,Σ∆m−1

j ,Σa0

j ] (11)

14



This is named Γs (s is the abbreviation of standard), which is a standard
k-clustering. The elements in the mean vector are fixed, once Γs is built.

The second one is obtained by only keeping µaj in µj and the correspond-

ing elements (Σm0

j and Σ∆m0

j ) in Σj and ignoring the other elements in µj
and Σj , as follows:

µaj = [µm
0

j , µ∆m0

j ] (12)

µaj (at) = W jat + µ̄j (13)

Σa
j = diag[Σm0

j ,Σ∆m0

j ] (14)

This k-means clustering is named Γa (a is the abbreviation of audio), where
all the elements (µm

0

j , µ∆m0

j ) in the mean vector depend on at.

In Step 1-A, the input signals contain [µm
−1
, µ∆m−1

] and at. The output
signals contain {µm0

j , µ∆m0

j } and {Σm0

j , Σ∆m0

j } which describe sat .
As can be observed, Γs and Γa respectively characterize the probability

distributions of the input signals (µm
−1

, µ∆m−1
and at) and the output

signals (motion and velocity at time step t).
Step 1-A is carried out by selecting a cluster and then calculating sat , as

follows.

1. Selecting Cluster. The input signals (at, µ
m−1

and µ∆m−1
) are

applied to Γs by computing the posterior probability of each cluster
in Γs. The cluster probability with the highest posterior probability
is selected. Its index is noted by j′.

2. Calculating sat . j′ is applied to Γa. Σa
j′ is extracted from the j′-th

cluster in Γa. The input at is used to calculate µaj′ using Equation 13.
Σa
j′ and µaj′ are taken as the output to define sat .

We observe that at is used not only to select the cluster but also to calculate
the parametric mean vector of the selected cluster. Additionally, the step
of Selecting Cluster takes not only at but also the mean vector of st−1 as
input.

Step 1-B: Motion State st−1 to Motion State sst

This sub-step computes sst , which is the estimate of st by taking into account
only st−1. sst will be fused into st with sat in Step 1-C.

In Step 1-B, st−1 (the input signal) and sst (the output signal) respec-
tively model the probability distributions of ot−1 and ot. They are re-
spectively characterized by a pair of {µt−1,Σt−1} and a pair of {µst ,Σs

t},
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where µt−1 = [µmt−1, µ
∆m
t−1 ]>, Σt−1 = diag[Σm

t−1,Σ
∆m
t−1 ], µst = [µmt , µ

∆m
t ]> and

Σs
t = diag[Σm

t ,Σ
∆m
t ]. Therefore, Step 1-B is formulated as inferring {µst ,Σs

t}
according to {µt−1,Σt−1}.

Since µmt′ and µ∆m
t′ (t′=t or t−1) respectively stand for the means of

motion feature and of velocity feature, one can derive µst from µt−1 by cal-
culating:

µst = Fµt−1 (15)

where

F =

[
1 1
0 1

]
(16)

where motion velocity is assumed to be invariable at time steps t and t−1.
Furthermore, Kalman filter provides the solution to the covariance matrix,
Σs
t as follows.

Σs
t = FΣt−1F

> (17)

According to Equation 15 and Equation 17, the pair of {µst ,Σs
t} is derived

from the pair of {µt−1,Σt−1}. That is sst is inferred from st−1.

Step 1-C: Fusion of Motion States, sst and sat

Step 1-A and Step 1-B have derived the two estimates of st: s
a
t and sst . Step

1-C consists in fusing sat and sst . The fused result is viewed as the output of
Step 1, st.

sat and sst characterize the probability distribution of ot with two different
gpds, which is respectively characterized by (µa,Σa) and by (µs,Σs). st
is described by (µf ,Σf ). Step 1-C is to infer (µf ,Σf ) from (µa,Σa) and
(µs,Σs). µf is a 2-dimensional vector and consists of µmf and µ∆m

f . Σf is a

diagonal matrix of diag[Σm
f ,Σ

∆m
f ].

In our work, µ∆m
f and Σ∆m

f are respectively estimated by µ∆m0
in µa

and Σ∆m0
in Σa, as follows.

µ∆m
f = µ∆m0

(18)

Σ∆m
f = Σ∆m0

(19)

µmf and Σm
f is solved by fusing two gpds: (µm

0
,Σm0

) and (µm,Σm),
which are respectively extracted from (µa,Σa) and (µs,Σs). Kalman filter
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provides the solution to µmf and Σm
f as follows:

µmf =
µaΣm0

+ µsΣ
m

Σm0 + Σm
(20)

Σm
f =

Σm0
Σm

Σm0 + Σm
(21)

Equations 18-21 provide the solutions of µf (=[µmf , µ∆m
f ]) and σf (=diag[Σm

f ,Σ
∆m
f ])

according to sat and sst . µf and σf characterize the output of Step 1, st.

4.2.2 Step 2: Generating Motion Trajectory

Generating motion trajectory consists in synthesizing the output animation
sequence from the motion state which has been inferred at each time step
at Step 1. Each motion state is characterized by a gpd. It describes the
probability distribution of the joint vector consisting of motion feature and
its velocity.

A simple method can be used to output animation sequence. It is to
concatenate the motion mean vector (µf = [µm, µ∆m]) of st at each time
step and then to apply a specific interpolation technique (e.g. spherical cu-
bic interpolation [48]) to smooth the concatenated sequence of motion mean
vector. However, such a method ignores the relationship between the mo-
tion feature and the velocity feature as the two features are viewed as being
independent of each other. Additionally, the specific interpolation technique
is unrelated to the real data in a recorded mocap dataset. Such a method
could degrade the naturalness and the dynamics of animations, although it
could ensure their smoothness. It means that a pertinent interpolation tech-
nique should ensure both the smoothness and the dynamics of animations.
To address this problem, we take into account the relationship between the
motion feature and the velocity feature in the step of generating motion
trajectory.

The data stream generation is derived by maximizing P (m|s), with re-
spect to m, where s is a sequence of st, noted as s = [..., st−1, st, st+1, ...] and
m is a sequence of mt, noted as m = [...,mt−1,mt,mt+1, ...]

>. The solution
to m is inspired by Tokuda et al. [43]. To solve m we use:

o = Wm (22)

where o is a vector concatenating ot at each time step, denoted as o =
[..., o>t−1, o

>
t , o

>
t+1, ...]

>, where ot = [mt,∆mt]
> (see Equation 2); and W is

a (2T ) × (T ) operation matrix (T is the time length of o and m) that acts
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as a mapping relationship from m to o. W is built on the relationship:
∆mt = 0.5(mt+1−mt−1). More details on the definition of W can be found
in [43].

The solution of maximizing the posterior probability P (m|s) is equivalent
to maximize P (o|s) by considering the relationship between mt and ∆mt.
The solution is formulated as:

∂logP (o|s)
∂m

=
∂logP (Wm|s)

∂m

=
∂log

∏T
t=1N (ot, µt, σ

2
t )

∂m

=
∂ΣT

t=1logN (ot, µt, σ
2
t )

∂m
(23)

m can be solved by setting this equation to 0, which has been solved by
Tokuda et al. [43].

We apply this algorithm to compute a clipped animation trajectory
within a moving window with a fixed frame size. In our experiments, the
window size is set to 5 frames and the moving step is 1 frame. After each
computation for a window, the middle frame in the clipped animation is
taken as the output motion position at the corresponding time step. It
means that the output motion value at time t depends on the motion state
at time t and those 4 motion states around time t.

Figure 6 shows the synthesis process of Step 2. As can be seen, the
output animation trajectory is smooth thanks to 2 factors. The first one
is the continuous mediate/hidden signals (the continuous-state sequence)
inferred by Step 1. The second one is to take into account the role of
motion velocity in motion trajectory, which is done by Step 2.

4.3 Shoulder Behavior Generator

As mentioned in Section 3, shoulder movement data is unavailable from
our motion capture data. Hence, the statistical framework cannot be ap-
plied to synthesize shoulder animation. To overcome this lack of data we
propose a rule-based method to produce shoulder animation from laughter
audio signals. The mapping function from the audio feature, at, to shoulder
movement value, msld

t , is defined as follows.

msld
t =

1

10
Σt−9
t′=te

( 1
2at′

)
(24)

As can be seen, msld
t is inferred from the audio features from t−9 to t. These

were inferred from an empirical pre-study we conducted. The exponential
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Figure 6: Trajectory synthesis in Step 2. The left figure shows a set of curves
with different colors. Each curve is attached to a point of the same color.
Each curve represents a clipped animation trajectory. It is synthesized from
5 neighboring motion states using Equation 23. Those points represent the
calculated value for the middle time during 5 motion states. The right
figure shows the curve following the points in the left figure. This curve is
the output animation.

Figure 7: Example of shoulder animation according to Audio Feature. The
upper curve is the input signal of audio feature; the bottom one is the output
signal of shoulder Animation. The values in both curves are normalized
between 0 and 1.

function is used to emphasize the audio feature with high value and to
degrade the audio feature with low value. Figure 7 shows an example of the
synthesized shoulder animations from the input audio features. As can be
observed, the shoulder movement follows the audio feature, but no shoulder
movement occurs when the audio signal has low values. When the audio
feature trembles with high frequency, shoulder moves with high amplitude
and embeds quick shaking. It is in line with Niewiadomski et al. [39] which
reports that shoulder movements could be composed of two types of shaking
movements with high and low frequencies.
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5 Subjective Evaluation

To validate our laughter behavior controller, we investigate: (1) whether the
continuous-state method outperforms the discrete-state method in head and
torso animation synthesis; (2) whether the rule-based method for shoulder
animations improves the perception of a laughing virtual character. These
two investigations were conducted through a subjective evaluation.

The subjective evaluation was done through an online web application.
Human participants were invited to watch clips of a laughing virtual char-
acter and then to evaluate the quality of its laughter behavior. The clips
were obtained with our laughter behavior controller and with another state
of the art model. We aim to compare our model with previous ones. So
far, only [29] [38] focused on generating laughter torso and head anima-
tions. In [29], a rule-driven approach is used to synthesize torso animation.
It is based on the hypothesis that torso movement always linearly follows
the head movement, which is not fully verified in human data. In [38], a
discrete-state approach is proposed to compute head and torso animation.
It is based on an extension of standard HMM, called Coupled Transition
Parameterized Loop HMM (CTPLHMM). To validate our approach, the
discrete-state approach by [38] is taken as reference work.

Protocol. The participants were first invited to watch the clips display-
ing a laughing virtual character. Their task was to answer a few questions
according to their perception of each animation of the laughing virtual char-
acter. Here are the elements of the protocol we follow for the perceptive
evaluation study.

A. Participants: there were totally 61 participants, 34 males and 27
females, with age ranging from 18 to 63 years (M=31.23 years, SD=8.24
years)).

B. Stimuli: 9 episodes of human laughter audio were selected from the
testing dataset. They include 3 short-duration samples with low intensity,
3 short-duration samples with high intensity and 3 long-duration samples.
In the long duration samples, laughter audio is very complex; it is made
of sequences of low intensity, high intensity, and even silence. The short-
duration samples last between 4s and 6s; the long-duration samples last
between 23s and 28s.

Each audio sample is used as the input to the laughter behavior con-
troller. Then the output animations and the corresponding audio samples
are used to drive the animation of the virtual character. Each animation
of the laughing virtual character is stored in a video clip. Figure 8 shows
three representative snapshots from the animation clips used in the subjec-
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(a) Lean forward (b) Upright (c) Lean backward
and tilt

Figure 8: Snapshots of synthesized laughter animation.

tive evaluation. Our work is dedicated to behaviors synthesis and not to the
appearance of the virtual character. Therefore, the animations synthesized
by the proposed and the reference methods are displayed by the same virtual
agent (see Figure 8).

Three sets of animations of the virtual character were created for each
selected audio sample. In all the animation clips, the virtual character’s
facial expressions are produced by our previous work [29]. The three sets of
animations correspond to three conditions:

1. Condition 1: head and torso animations are generated by the reference
method (the discrete-state method) [38];

2. Condition 2: head and torso animations are generated by our proposed
method (the continuous-state method);

3. Condition 3: head, torso and shoulder animations are generated by
our proposed method.

Therefore, there are a total of 27 animation clips (3 conditions × 9 laughter
audio samples).

C. Design and Procedure: subjective evaluations were conducted online.
First, each participant filled out a demographic questionnaire concerning
their age, gender, education level, occupation and country in which partic-
ipant spent the majority of his/her life. Then, the participant is invited
to randomly watch 21 out of 27 stored animation clips. The 21 animation
clips are comprised of all the 18 ones from Conditions 1 and 2 (2 conditions
× 9 laughter audio samples) and 3 selected animation clips from Condition
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(a) Degree of naturalness (b) Degree of amusement

(c) Degree of fakeness

Figure 9: Investigation on head and torso animations. The scores are the
averaged values rated by participants in the subjective evaluation (standard
deviation is shown in parenthesis). The statistically significant difference is
estimated using independent samples t-test. ** marks p<.01.

3 containing a short-duration sample with low intensity, a short-duration
sample with high intensity and a long-duration sample with mixed intensity.
We chose to show to the participants only 3 animation clips in Condition
3 rather than all 9 ones to avoid demotivating participants over a too long
experiment.

After watching each animation clip, the participant had to answer the
following questions using a 7 point Likert scale:

1. How natural is the laughing behavior overall?

2. Is the virtual character freely expressing its amusement?

3. Is the virtual character faking laughter?
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These questions are inspired by [49]. The participants were invited to quan-
tify their perception of the laughter animation clips by answering the 3
questions above.

Hypothesis. The subjective evaluation aims to assess the following
research hypotheses:

To investigate whether the continuous-state method outperforms the
discrete-state method (the reference method) in head and torso animation
synthesis. The following research hypothesis is assessed.

• H1: the virtual character with head and torso animations from the
continuous-state method is perceived more natural (H1-nat), more
amused (H1-amu) and displaying less fake laughter (H1-fak) than
that from the discrete-state method [38].

To investigate whether the rule-based method for shoulder animations
improves the perception of the laughing virtual character, the following re-
search hypothesis is assessed.

• H2: the virtual character with the shoulder animations from our
laughter behavior controller is perceived more natural (H2-nat), more
amused (H2-amu), and displaying less fake laughter (H2-fak) than
that with no shoulder animation.

6 Results

In this section, we report the results of the perceptual studies under the
three conditions mentioned in Section 5.

Results on Head and Torso. To verify hypothesis H1, we study the
differences in perception from the continuous-state method (described in
this paper) and the discrete-state one [38]. The results from Conditions 1
and 2 are compared along with 3 factors: naturalness of animation, degree
of amusement conveyed by the virtual character’s behavior, and level of fake
expression. The comparison is separately carried out for low intensity, mixed
intensity, and high intensity. It involves only head and torso animations. Its
results are evaluated by independent samples t-test. They are shown in
Figure 9 and in Table 1. The results about naturalness, amusement and
fakeness are reported as follows.

A. H1-nat. To verify hypothesis H1-nat, we compare the rated scores of
answering the question of ”How natural is the laughing behavior overall?” in
the continuous-state method and the discrete-state method. The comparison
results are shown in Figure 9a and Table 1.
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Table 1: Comparison results between conditions 1 and 2 (discrete-state and
continuous methods) from independent samples t-test on the perception of
naturalness, amusement, and fakeness. ** marks p<.001.

naturalnessamusementfakeness

low intensity
t=-3.90 t=0.55 t=-1.31

p<.001** p<0.59 p<0.19

mixed intensity
t=-8.79 t=-5.07 t=6.67

p<.001** p<.001** p<.001**

high intensity
t=-5.95 t=-3.75 t=0.60

p<.001** p<.001** p<0.55

As can be seen, significant differences are statistically observed in low,
mixed and high intensities for the question about naturalness. The continuous-
state method is quantified with higher values than the discrete-state method.
It is also observed that the difference of mixed/high intensity between both
methods is approximately 1 (1.14(=4.15-3.01) for mixed intensity and 0.93(=4.52-
3.59) for high intensity) and the difference of low intensity is less than
1 (0.64=5.18-4.54). The differences of mixed intensity and high intensity
are higher than that of low intensity. It suggests that the continuous-state
method is capable of capturing more complex relationship than the discrete-
state method and it is capable of rendering the captured relationship into
the synthesized animations.

According to these results, Hypothesis H1-nat is verified in low intensity,
mixed intensity, and high intensity.

B. H1-amu. To verify hypothesis H1-amu, we compare the rated scores
of answering the question of ”Is the virtual character freely expressing its
amusement?” in the continuous-state method and the discrete-state method.
The comparison results are shown in Figure 9b and Table 1.

As can be seen, a significant difference is statistically observed in high/mixed
intensity but no significant difference is found in low intensity. The continuous-
state method is rated with the higher score than the discrete-state method.
In both methods, it is observed that the highest values are observed in high
intensity and that the values in mixed intensity are higher than those in low
intensity.

According to these results, Hypothesis H1-amu is verified for laughter
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Table 2: Pairwise comparisons using the Tukey HSD test on perception of
shoulders. * marks p<.05 and ** marks p<.001.

naturalnessamusementfakeness

Conds 1
vs. 2

p<.001** p=.003* p=0.46

Conds 1
vs. 3

p<.001** p<.001** p<.001**

Conds 2
vs. 3

p<.001** p<.001** p<.001**

with high and mixed intensities but it is not verified for laughter with low
intensity. It suggests that mixed-intensity or high-intensity animations from
the continuous-state method are perceived as more amused than those from
the discrete-state method.

C. H1-fak. To verify hypothesis H1-fak, we compare the rated scores
of answering the question ”Is the virtual character faking laughter?” in the
continuous-state method and the discrete-state method. The comparison
results are shown in Figure 9c and Table 1.

As can be seen, no significant difference between both conditions is sta-
tistically found for low and high intensities related to the degree of fakeness
but a significant difference is observed for mixed intensity. The continuous-
state method is rated with a lower score than the discrete-state method.

We can also observe that, for both methods, the rated values of low
intensity is slightly higher than those of high intensity and that the rated
values of low and high intensities are much higher than those of mixed
intensity.

According to these results, Hypothesis H1-fak is verified only for laughter
with mixed intensity and it is not verified for laughter with low intensity and
high intensity. It suggests that the mixed-intensity laughter of the virtual
character animated by the continuous-state method appears more authentic
than the one computed by the discrete-state method.

Results on Shoulders. To verify hypothesis H2, we compare three
conditions in terms of naturalness, amusement, and fakeness. In this com-
parison, laughter intensity is not a variable. To conduct the comparison
among the three conditions, 3 animation clips, from each condition which
uses the same 3 audio stimuli with mixed intensity, were selected and in-
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(a) Degree of naturalness

Figure 10: Investigation on shoulder animation. The scores are the aver-
aged values under Conditions 1, 2 and 3, which are rated by participants
in terms of naturalness, amusement and fakeness (the standard deviation
is shown in parenthesis). * and ** stand for the statistically significant
difference between the discrete-state (reference) and continuous-state (pro-
posed) methods. The statistically significant difference is estimated using
independent samples t-test. * marks p<.05 and ** marks p<.001.

volved in this comparison. They differ only in the animation of the virtual
character. The 61 participants evaluated all the clips.

Figure 9 shows the evaluated average scores. One-way ANOVA is applied
to measure if there are significant differences between the three conditions
in terms of naturalness, amusement, and fakeness, respectively. The test
results show that there are statistically significant differences between the
three conditions in terms of naturalness (F(2,546)=94.68, p<.001), amuse-
ment (F(2,546)=31.54, p<.001), and fakeness (F(2,546)=86.1, p<.001). To
determine which specific conditions differ from each other, we carry out
Tukey HSD (honest significant difference) post-hoc tests on all pairwise
comparisons in terms of naturalness, amusement, and fakeness, respectively.
The results of pairwise comparisons are shown in Figure 10 and Table 2.
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Pairwise comparisons revealed that Conditions 1-2 and Condition 3 are sta-
tistically different along all three terms. The animations of Condition 3 are
perceived as the most natural and amused, as well as the least fake (the
most authentic).

According to the results above, Hypotheses H2-nat, H2-amu and H2-
fak are verified in mixed intensity. It suggests that the produced shoulder
animations make the laughing virtual character to appear more natural,
amused and authentic.

7 Discussion

This section discusses the results of the subjective evaluation. First, it
focuses on the results on head and torso animations in terms of naturalness,
amusement, and fakeness; then it continues to discuss the results on shoulder
animation.
A. Head and Torso: Perception of Naturalness.

The perceived level of naturalness in the animations of the virtual charac-
ter appears much higher when animations are computed with the continuous-
state method than with the discrete-state method. These results suggest
that the continuous-state method is able to capture better the subtle dy-
namics of human laughter movements than the discrete-state method. The
continuous-state method focuses not only on learning the correlation be-
tween laughter audio features and visual motions at the frame level but
also on capturing dynamic movements between neighboring frames. On the
other hand, the discrete-state method only focuses on extracting the cou-
pling between the discrete intensities of laughter pseudo-phoneme and shak-
ing motions types. In other words, the continuous-state method works at the
level of frame, while the discrete-state method works at the level of laughter
pseudo-phoneme. Working at the frame level ensures the continuous-state
method to consider laughter intensity variations at a precise level and thus to
render with more precision the laughter motion dynamics. The discrete-state
method works at a coarser level, which results in degrading the animation
quality.

The significant differences between both methods are much higher in
the animations with high/mixed intensity than in the animations with low
intensity. [49] suggests that low- intensity laughter audio is perceived as
being natural when it is accompanied with low-intensity animations. The
continuous-state and the discrete-state methods seem to both capture such
a congruent coupling between laughter audio and animations with low in-
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tensity. This is not true for animations with high and mixed intensities
where body motions vary a lot. In these cases, the animations computed
with the continuous-state method appear more natural. They can render
the dynamics of laughter motion with more accuracy increasing its quality.
B. Head and Torso: Perception of Amusement Level.

The results we obtained for stimuli with different intensities are in line
with previous research. Indeed, Niewiadomski and colleagues [49] report
that high-intensity laughter is considered to express amusement more freely
than low-intensity laughter. It implies that low-intensity laughter may be
perceived as corresponding to the low level of amusement, or even to no
amusement. This could explain why in our perceptual study no significant
difference between both methods was found for low-intensity animations.
The authors also suggest that high-intensity laughter is often perceived as
corresponding to the high level of amusement. This is also supported by
our evaluation study which found that the animations with high and mixed
intensities are perceived expressing amusement more freely than animations
with low intensity.

When comparing the animations from both computational models, we
find that mixed-intensity and high-intensity animations from the continuous-
state method are capable of expressing amusement more freely than those
from the discrete-state method. This observation suggests that the continuous-
state method is more suitable to produce amusing laughter animations than
the discrete-state method.
C. Head and Torso: Perception of Fake Expression.

The comparisons in term of fakeness show that no significant difference
is observed for low and high intensities and that a small difference is ob-
served for mixed intensity. This suggests that the continuous-state method
has no obvious contribution to make the laughing virtual character appear
more authentic than the discrete-state method. It could be explained since,
when participants viewed a laughing character, they did not know why the
character was laughing. No contextual information had been provided to
participants. Not knowing why the agent laughed could enforce the impres-
sion of fake or exaggerated laughter. Moreover, participants heard identical
laughter audio in both methods while observing different animations of the
virtual character. The laughter audio could contribute more to the estima-
tion of fake laughter than the visual animations.

From the results, the rated scores in low and high intensities are higher
than the mean value (4.0); but the rated scores in mixed intensity is close
to the mean value (3.5). These observations can be found for both methods.
They are probably related to the length of laughter episodes. The laughter
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episodes in low and high intensities are relatively short about 4s-6s while
the ones in mixed intensity last for 23s-28s. The laughter episodes with
long duration provide more information to be perceived than the ones with
short duration. With more information, the participants could perceive the
laughter more reasonable and authentic (neither fake nor exaggerated).

It is also found that the continuous-state method leads to a lower score in
term of fake laughter than the discrete-state method when more information
is perceived in mixed intensity. Considering the results from head and torso
animations in terms of naturalness, amusement, and fakeness, it suggests
that more natural laughter animation is perceived more authentic and more
freely expressing amusement.
D. Shoulders: Naturalness, Amusement and Fakeness.

The comparisons between the animations with and without shoulder
animations show that significant differences are observed in terms of natu-
ralness, amusement, and fakeness. It indicates that the shoulders play an
important role in laughter perception. The results show that the anima-
tions with shoulder motions are perceived as more natural and more freely
expressing amusement. Importantly, it is found that shoulder animations
make the laughing virtual character less fake its laugh. These observations
suggest that shoulder animation is effective. Shoulder animation is inferred
from audio features at each frame. It not only reflects the dynamics of
laughter audio but also avoids discontinuities.

According to this investigation on shoulder animation in terms of natu-
ralness, amusement, and fakeness, we learn that laughter animation, when
viewed as more natural, is perceived as expressing amusement more freely
and appears as more authentic. This result is also found for laughter ani-
mations made of only head and torso motions.

8 Conclusion

In this paper, a laughter behavior controller is proposed to synthesize laugh-
ter animations of virtual characters upper body. The controller takes laugh-
ter audio signals as input. It performs at each time frame, based on the
current audio input and the output inferred from the previous time frames.

To build the laughter behavior controller, a human laughter dataset was
recorded. It contains laughter head and torso behaviors as well as laughter
audio while shoulder movements are unavailable. The laughter behavior
controller is comprised of two modules: one infers head and torso animations
by a unified method, which is based on a statistical framework; the other
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one yields shoulder animations, which is based on a rule-based method.
We conducted a perceptive study to validate our laughter behavior con-

troller. We compared animations obtained with our model, also referred to
as a continuous-state method, with the state-of-the-art method taken as the
reference method (the discrete-state method). The contribution of shoulder
animations was measured by rating animations of the virtual character with
and without shoulder animations. The animations were evaluated along
with three factors: degree of naturalness, level of amusement and degree
of fakeness. The evaluation results show that our method outperforms the
reference method in terms of naturalness, amusement, and fakeness.

Considering the results on naturalness and amusement, it is observed
that the laughter with the continuous-state method expresses amusement
more freely than that with the discrete-state method; and it is also observed
that our method is capable of producing animations where the character
appears more natural and authentic than with the reference one. The mod-
ule of generating shoulder animation contributes to the improvement of the
quality of animation in the three factors.

To conclude, in this paper, we have presented a new statistical frame-
work to learn the correlation of laughter behaviors and its audio. Our main
contribution is to propose a continuous-state statistical framework which dif-
fers from the existing discrete-state statistical frameworks which are used to
synthesize speech animations or laughter animations. The continuous-state
framework is capable of capturing the laughter dynamics from human data,
rendering the human motion dynamics into the generated animations, and
directly generating smooth animation trajectories without any additional
specific interpolation techniques.

One major limitation lies in that our laughter behavior controller is not
compared with ground truth data. We could not perform such a comparison
as our mocap dataset does not contain shoulder motion and it captures
incomplete torso data. So the recorded mocap data is inadequate to display
real human movements. In our pilot study, the animations produced by our
method outperform the torso data collected by all three sensors placed along
the torso, but it is inappropriate to report this observation as human data
is not accurately captured (see Section 3).

In future work, motion tracking algorithms will be implemented to detect
shoulder movements from the recorded laughter videos. This will allow us to
develop a statistical framework to produce shoulder animations. In addition,
as laughter can be related to multiple emotions (see Section Introduction),
we are thinking about extending our approaches to yield laughter animations
which convey various emotions. Since our laughter behavior controller works
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at the frame level, it could make real-time synthesis possible. It can be used
to simulate a virtual character laughing while interacting with a human user.
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versational agent as museum guide – design and evaluation of a real-
world application,” in Intelligent Virtual Agents, 2005, pp. 329–343.

[22] Y. Ding, M. Radenen, T. Artières, and C. Pelachaud, “Speech-driven
eyebrow motion synthesis with contextual Markovian models.” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
2013, pp. 3756–3760.

[23] Y. Ding, C. Pelachaud, and T. Artières, “Modeling multimodal be-
haviors from speech prosody,” in Intelligent Virtual Agents, 2013, pp.
217–228.
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