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Abstract—Research in affective computing and cognitive science has shown the importance of emotional facial and vocal expressions

during human-computer and human-human interactions. But, while models exist to control the display and interactive dynamics of

emotional expressions, such as smiles, in embodied agents, these techniques can not be applied to video interactions between

humans. In this work, we propose an audiovisual smile transformation algorithm able to manipulate an incoming video stream in

real-time to parametrically control the amount of smile seen on the user’s face and heard in their voice, while preserving other

characteristics such as the user’s identity or the timing and content of the interaction. The transformation is composed of separate

audio and visual pipelines, both based on a warping technique informed by real-time detection of audio and visual landmarks. Taken

together, these two parts constitute a unique audiovisual algorithm which, in addition to providing simultaneous real-time

transformations of a real person’s face and voice, allows to investigate the integration of both modalities of smiles in real-world social

interactions.

Index Terms—Smiling, facial expressions, vocal emotions, audiovisual, real-time, video and audio signal processing
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1 INTRODUCTION

SMILES are a fundamental element of the human expres-
sive repertoire [1]. We recognize them regardless of age,

gender or culture [2], [3], [4]; they influence what we think
of a person (e.g., making them more attractive [5]), how we
behave towards them (e.g., with greater empathy [6]), and
even provoke unconscious reactions [7].

It is therefore not surprising that smiling constitutes a
much-researched part of the behavioral repertoire of embod-
ied agents designed for human-computer interactions [8], [9].
Avatars with smiling faces are judged more attractive and
positive [10] and, like smiling humans, trigger unconscious
physiological reactions in human observers [11], [12]. More
than a feature that can be turned on and off, avatar smiles can
be synthesized gradually [13] and with temporal dynamics
[14], allowing to experiment with how and when an avatar
should smile to improve the quality of a virtual interaction.
Avatar smiles were found to have a positive impact on the
ongoing interaction [15] and on its later outcomes, including
better learning [16], [17], [18] and problem solving [11].

However, because existing techniquesmostly allow to syn-
thesize and manipulate the expression of embodied agents,
but not to transform the audiovisual expression of real users,

e.g., in a live stream, their scope is mostly limited to human-
computer interactions. In the visual domain, techniques
allowing to control the morphological parameters of a syn-
thetic face (e.g., cheek-raising, mouth opening, symmetry, lip
press [9], [19]) can work in real-time, but can only apply to
human-human interactions if they are mediated by a virtual
avatar, be it photorealistic [10] (Fig. 1a). Conversely, recent
deep-learning techniques able to learn expressive transforma-
tions from a corpus of paired images [20] allow realistic facial
transformations of arbitrary users, but have yet to operate in
real-time (Fig. 1b). Similarly, in the audio domain, hidden-
markov models [21], [22], [23] and formant resynthesis [24]
techniques can reproduce realistic characteristics of speech
pronounced while smiling or laughing, but only in non-
real time applications. In the same way, in the audiovisual
domain, techniques using deep neural networks are also pro-
posed to create expressive audiovisual speech synthesis, but
are not build with real-time constraints [25]. Given how sensi-
tive humans are to small deviations of interactive synchrony
[19] and face realism [15], much more could be achieved if
one could realistically control audiovisual smiles in real-time
streams between real users, rather than in virtual interactions.

To this aim, we propose an audiovisual smile transforma-
tion technique able to manipulate an incoming audiovisual
stream in real-time to parametrically control the amount of
“smiliness” seen on the face and heard on speech, while pre-
serving other characteristics such as the user’s identity or the
interaction’s timing and content. The transformation is com-
posed of separated audio and visual pipelines, both based on
a warping technique informed by the real-time detection of
visual and audio landmarks.

The visual part of the algorithm tracks morphological
features of the face, such as the eyes and lip corners,
stretches its position using a predefined parametric model,
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and resynthesizes pixel grey-levels tomap themodified shape
of the face. This algorithm significantly extends what consti-
tute, to our knowledge, the only other example to date of real-
time smile transformation [26], by making it adaptive to the
position of the user (more precisely, to camera-user distance
and head pose), allowing users to speak during the trans-
formation (an important limitation of previous work, allow-
ing the simultaneous manipulation of smiled speech), as well
as adding the possibility to use specific smile warpings that
can be learned from a given user. We describe this algorithm,
and how it relates to the existing literature, in Section 2.

Using a similar processing pipeline, the audio algorithm
described in Section 3 tracks the frequency positions of the
vocal formants (bumps and valleys of the vocal spectral enve-
lope), shifts their positions and amplitude using a predefined
parametric model, and reconstructs the audio signal with the
new modified spectral cues. As far as we know, this part of
the algorithm is the first published technique able to trans-
form running speech in real-time to give it the characteristics
of smiling (see [27] for a similar aim with more general emo-
tional expressions). To develop it, we collected and analyzed
a corpus of smiled and non-smiled vocalizations and derived
a parametric model of how smiling affects the spectral prop-
erties of sound, all of which is described in this article.

Taken together, these two parts constitute a unique audio-
visual algorithm which, in addition to providing simulta-
neous smiled transformations in both face and voice, also
provides an experimental tool to investigate how humans
integrate visual and auditory smiles both in their productive
behaviour and in social perception. The last section of the
article (Section 4) reports on a perceptual study that both
validates each part of the algorithm separately and explores
some of these audiovisual interactions.

2 VISUAL SMILE TRANSFORMATION

2.1 Transformation Algorithm

Smiling involves the activity of several muscles that raise the
corners of the mouth and cheek, and lift the lower eyelids

[28]. To recreate these distortions in real time on any face, we
designed a two-stage image processing algorithm, which
stretches morphological features of the face around the lips
and the eyes using a pre-learned parametric model, and
resynthesizes pixel grey levels to correspond to the modified
shape of the face. Fig. 2 illustrates the global process.

2.1.1 Landmarks Linear Warping

The algorithm works in real time and applies a pre-learned
smile deformation on a frame by frame basis. For each frame,
we first detect 84 landmarks on the face, as well as the head
pose (roll, pitch, yaw) using a framework from a generic face
tracking SDK provided byDynamixyz [29] - see Fig. 3a.

Instead of heuristically designing a fixed warping func-
tion to simulate the expression of a smile, wemade the choice
to learn the pattern of landmark distortion on one actor’s
expression, and then apply this pre-learned pattern to all
subsequent input videos. The reasons for this choice are the
following: first, while the smile expressions as defined e.g.,
in the Facial Action Coding System (FACS) [28] make it pos-
sible to describe or detect such deformations, we did not find
them sufficient to synthesize themwith precision. Second, in

Fig. 1. State-of-art in smile synthesis in the visual domain. (a) Common
face synthesis systems allow to generate and control smiling expressions
in real-time, but only via the mediation of avatars (adapted from [10]; left:
Original, middle: Avatar with enhanced smile, right: Suppressed smile).
(b) Deep-learning techniques can learn photorealistic transformations of
facial expressions on arbitrary photographs, but these techniques do not
typically work in real-time (adapted from [20]; left: Original picture, middle:
Manipulated picture with enhanced smile, right: Suppressed smile).
Our proposal aims to generate real-time transformations of a user’s input,
as in A, based on their normal, non-synthetic video stream, as in B.

Fig. 2. Overview of the visual smile transformation. The first stage of
the algorithm (solid line) extracts feature from the video frames: Head
pose and 84 landmarks, from which the system notably computes
the distance between the subject’s eyes. The second stage (dotted line)
operate image manipulation: First, positions of 12 of the landmarks are
modified using a learned linear model, then the grey-level pixel intensi-
ties of the image are changed using a Moving Least Square algorithm.

Fig. 3. Illustration of the tracking, warping and mapping steps in the
visual smile transformation. (a) Tracking: 84 Landmarks (turquoise dots)
are automatically detected on the face. (b) Warping: The positions of
12 of the 84 landmarks (green dots) are transformed using a pre-learned
linear model (red dots). (c) Mapping: We create a grid around the mouth
and eyes, apply Moving Least Square deformation to each vertex of the
grid and interpolate inside each resulting triangle using affine warping.
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an adaptive system, it appears interesting to learn the smile
deformations that may be specific to a given person or atti-
tude (e.g., genuine versus fake smiles [30]).

Learning is based on two images of the same subject, a
neutral face and a slightly smiling face (with mouth shut,
no visible teeth). After aligning the two faces, we calculated
a linear deformation model for 12 landmarks to model the
changes in the Zygomaticus Major (AU 12) and the Orbicu-
laris Oculi (AU 6) muscles involved in smiling [28] (2 land-
marks on the lower eyelid for each eye, 2 landmarks on the
corners of the lips, three landmarks on the upper lip and
three others on the lower lip - see Fig. 3b).

In more details, if i is one landmark (i ¼ 1::12), Xn
i its

2D coordinates from the neutral face and Xs
i its 2D coor-

dinates from the smiling face, the linear model can be
described as

Xs
i ¼ ðXn

i þQr � DxyÞ � scale � avideo; (1)

where Dxy is the learned parameters of the model and avideo

is the intensity of the smile distortion. To adapt to face-cam-
era distance and head pose, scale is computed as the dis-
tance between the two eyes multiplied by cosine of the
angle yaw, and Qr is the rotation matrix corresponding to
the roll. Fig. 3b shows an example of original and modified
landmarks for a frontal face with avideo ¼ 2:5.

2.1.2 Pixel Grey Levels Mapping

The second step of the algorithm computes the impact of
landmark warping on the pixel grey-level intensity. As in
[26], we use the rigid Moving Least Squares (MLS) method
[31]. MLS optimizes the deformation made on an image
when the position of some landmarks is modified, while
maintaining the spatial coherence of the overall shape.

We made two approximations to the standard MLS pro-
cedure in order to allow real-time performance. First, we
apply MLS only to areas of the image around the mouth
and the eyes. Second, we do not apply the algorithm to
every pixel of these areas but first approximate the areas
with grids (with smaller meshes close to the eyes and
mouth) and apply the deformation function to each vertex
in the grid. We then fill the resulting triangles using affine
warping. Fig. 3c shows an example of the grids after the
MLS algorithm.

2.2 Video Results

Fig. 4 shows some examples of original (avideo ¼ 0) and
transformed video frames with various positive and nega-
tive intensities (avideo ¼ �1::1:5). The second row shows the
absolute difference between the grey-level intensities in the
original vs transformed, confirming that modified pixels
are found inside the grids around the mouth and eye areas.

Fig. 4. Examples of original and modified images with various positive and negative intensities (avideo ¼ �1::1:5). The original image is either neutral
(subject 1) or speaking (subject 2) or already smiling (subject 3). Subject 1 D presents the difference between the non-modified and the modified
image for subject 1, the black areas show where the image is unchanged, the white areas where the image is transformed.
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A detailed quantitative evaluation can be found in Sec-
tion 4. On a qualitative level, transformations appear plausi-
ble even in contexts where the subject is speaking (subject 2)
or already smiling (subject 3).

One limitation of the warping model is that, while it is by
construction adaptive to the frame-by-frame position of the
mouth, it isn’t to the qualitative nature of pronounced pho-
nemes during speech. For instance, during real speech pro-
duction, protruded/round vowels such as [y] may be
incongruent with a large smile, whereas smiles on unround
vowels such as [i] can be amplified without breaking the
acoustic characteristics of the sound. A possible extension
of the algorithm would be to learn a separate deformation
pattern for different types of phonemes, and apply them
adaptively, but this is beyond the scope of the current work.

One limitation of the MLS algorithm is that it cannot cre-
ate textures that are not present in the original image, such
as wrinkles. In particular, there are time-varying features
(or “discontinuities”) in the mouth and eyes areas (e.g.,
teeth which appear or disappear behind opening lip tissue,
white sclera revealed by opening eyelids), which the algo-
rithm cannot “add” to a frame if not originally present.
Finally, at large intensities, the MLS algorithm may stretch
geometric shapes, resulting e.g., in unrealistically oval
rather than round iris shape, although the effect is not
observable at the intensities investigated here.

Finally, we measured the latency of the overall visual
algorithm including the 3 processing stages. The mean time
(over 1000 iterations) to process a frame depends on the
processing power of the machine. Our tests resulted in a
mean 61ms processing time for a single frame (45ms for
landmark tracking, 7ms for warping and 9ms for MLS)
which is suitable for real time applications, for instance at
15 fps. Anyway, the latency can be further diminished
either by reducing the number of landmarks in the tracking
stage—the most time consuming stage—, or by improving
the machine processing power, specially, the CPU speed.
You can find examples of the algorithm at https://archive.
org/download/StimuliExample, where speaking and head
poses/orientations variations are presented.

3 AUDIO SMILE TRANSFORMATION

3.1 The Acoustics of Smiled Speech

Although the visual features of a smile have been widely
studied, it is still an open secret that smiles can also be heard
in speech, even in the absence of visual cues [32], [33]. In a
source-filter perspective, stretching lips while speaking
changes the shape of the vocal resonator, possibly reducing
vocal tract length, and thus transmitting filtered frequency
content from the glottal impulses compared to normal
speech. However, despite years of research on the acoustics
of smiled speech, considerable debate still exists in the pho-
nological community as to what features of speech necessar-
ily result from—or rather simply co-occur with—smiling.
Initially, smiled speech was thought to involve prosody
similar to that of expressive speech, with high mean pitch
and high intensity [24], [34], [35]. However, because smiles
can also be perceived in whispered, non-pitched voices [36],
pitch and prosody do not appear to be necessary compo-
nents of smiled speech, which may more primarily affect

sound spectrum. Accordingly, in [34], smiling was found
associated with an increase of the second formant (F2) for
words with the round vowel /o:/, of intensity as well as F0.
In [37], smiling was associated with an increase of F2, in [21],
[38] with an increase of formants and F0. Higher F1 and F2
dispersion are also reported [39]. Complementing these
results, in [40] the mental representations of a smiled ’a’ pho-
nemewas found to have higher F1 and F2 aswell as increased
high frequency content. However, as the acoustic consequen-
ces of smiling do not seem to be similar across different
phonemes, recent work has not converged to a common
parametricmodel of how smiling affects the sound spectrum.

To clarify this situation, we recorded a dataset of smiled
and non-smiled French phonemes and conducted an acous-
tical analysis of the recordings. We asked N = 8 (male: 6)
participants to pronounce 9 types of phonemes (5 voiced:

and 4 unvoiced: with and without
stretched lips. Phonemes were pronounced three times
each, and at 3 different pitches. The dataset was recorded at
sampling rate 44.1kHz, in a sound-proof booth using a high
quality microphone (DPA 4088 F). In the following, we ana-
lyse the recordings with phonological analysis software to
measure the impact of smiling on three aspects of sound
spectrum: formants, spectral envelope, and spectral
centroid.

3.1.1 Consequences of Smiling in Formants

We analysed formant frequencies for all the smiled and
non-smiled voiced phonemes using the Praat software [41].
Statistical analysis showed a significant increase of mean F1

between the non smiled and the smile condition (a 5 percent
increase from M=483 Hz to M=507 Hz; paired t-test t(7)=3.5,
p=.008), and a marginally significant increase of F2 (4 per-
cent from 1572 Hz to 1634 Hz; paired t-test t(7)=1.9, p=.09),
see Fig. 5a.

3.1.2 Consequences of Smiling on the Spectral

Envelope

We analysed the spectral envelope of the recordings using
the adaptive true envelope technique [42], [43]. Spectral
envelopes produced when smiling have more energy in the
high-frequency regions, both for voiced and unvoiced pho-
nemes (Fig. 5b). For voiced phonemes, the main difference
between the smiled and non-smiled envelopes is found
between 700 and 4000 Hz, corresponding to a shift and
boost of the region around F1-F3. For unvoiced phonemes
smiling affects higher frequencies, creating both resonances
and antiresonances in the spectral envelope.

3.1.3 Consequences of Smiling on the Spectral

Centroid

Finally, we analysed the spectral centroid (where the
“center of mass” of the spectrum is, a measure related to
perceived brightness) for all the phonemes of the database
(Fig. 5c) and found that the mean spectral centroid increases
for every phoneme of the database when smiled, regardless
of whether the phoneme is voiced, unvoiced, opened or
closed. The overall effect is statistically significant (paired
t-test t(7) = 6.2, p=.0004).
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In sum, the mean acoustic consequence of smiling on
sound spectrum is to shift both formants F1 and F2 by 5-10
percent (Fig. 5a) and to boost the high frequency energy
(Fig. 5b).

3.2 Transformation Algorithm

To simulate these changes on arbitrary spoken input, we
designed a two-stage signal processing algorithm, which
warps the vocal spectral envelope, then filters the recon-
structed signal adaptively. Both stages are informed by
a prior detection stage which tracks the positions of the
formants. Fig. 6 shows a general view of the algorithm.

This approach is different from the literature in several
ways. First, compared to [21], [23], [24], [34], we implement
here a transformation (i.e., operating on real speech input,
and preserving its identity, prosody and content) rather
than a synthesis technique (i.e., which generates speech
from scratch). Second, by operating only on the spectral
envelope and preserving the harmonic partials of the origi-
nal voice, we avoid artifacts caused by the synthetic
glottal impulses found with other formant re-synthesis
approaches. Finally, like for the visual part of the algorithm,
the frame-by-frame architecture of the system makes it suit-
able for real-time processing.

3.2.1 Piecewise Linear Frequency Warping

In order to model the transformation of the whole vocal
tract filter due to smiling, we use a spectral envelope

manipulation technique, frequency warping, which does
not only transform the local peak resonances (formants) but
also the acoustic details besides these local peaks, e.g., anti-
resonances. Frequency warping was introduced to normal-
ize vocal tract differences across speakers in order to
improve the performance of recognition and categorization
algorithms [44]. More recently, it has been applied to do
speaker de-identification [45] and voice and gender conver-
sion [46], [47]. Here, we use frequency warping to shift the
spectral envelope (with its formants) either high or down
with the aim of reinforcing or reducing the smile impression
of a voice. The algorithm operates on a frame-per-frame
basis. For each frame, it estimates the vocal spectral enve-
lope (fin), using the ’true envelope’ technique [42], [43], and
manipulates it using a non-linear change, or warping, of the
frequency dimension (fout). The intensity and direction of
the warping are controlled by the parameter aaudio, such as
fout ¼ Fðfin;aaudioÞ.

The transformation function F, illustrated in Fig. 7, was
heuristically designed to shift the voice’s formants by
stretching and warping parts of the spectral envelope, to
generate similar formant distributions as the ones seen in
the voice recordings (Fig. 5). Namely, to increase F1 and F2
frequencies. F is piece-wise linear with cut-frequencies
defined as a function of the input signal’s formant frequen-
cies Fi: the output spectral envelope is untransformed
below F1=2 and above F5; the segment between F1=2 and F2

is warped so that the spectral envelope at F2 is mapped to
aaudio:F2 and F3 to aaudio:F3; eventually, the last segment

Fig. 5. Smiled speech corpus analysis. (a) Consequences of smiling on formants: Mean frequency shift of the first three formants, expressed in per-
centage of the non-smile utterance, averaged for all phonemes (left) and for each voiced phoneme (right) in the corpus. (b) Consequences of smiling
on the spectral envelope. Top: Time-averaged spectral envelope of a single utterance of a French phonemes ’a’ and ’s’ , pronounced with and with-
out smile. Middle: Averaged spectral envelope for all ’a’s and ’a’s of the corpus in smile and non-smiled conditions. Error bars represent standard
errors. Bottom: Mean spectral envelope difference (smile minus non-smile) for all voiced and unvoiced phonemes of the corpus. (c) Consequences
of smiling on spectral centroid. Mean spectral centroid for voiced (top), unvoiced (bottom left) and all (bottom right) phonemes in the corpus. Error
bars represent 95 percent confidence intervals on the mean.
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between aaudio:F3 and F5 is warped to return to identity after
F5. Finally, we reapply the warped spectral envelope to the
harmonic information and resynthesize the signal using the
phase vocoder technique [48], [49]. Note that, if aaudio ¼ 1
then fout ¼ fin; if aaudio > 1, the algorithm shifts the enve-
lope towards the high frequencies, and the higher aaudio, the
higher the shift, which should increase the smile impression
in a voice; Conversely, if aaudio < 1, the acoustic effect
is opposite and the envelope is shifted towards the low
frequencies, which should reduce the smile impression.

As for the warping of face landmark positions in the
visual part of the algorithm, the output of the frequency
warping stage is also adaptive to the input signal, since
frequency breakpoints follow formant frequencies in the
signal. This adaptability can be used at different time
scales: at low adaptation rates, if mean formant frequen-
cies are computed for a range of sentences by a given
speaker, the algorithm will adapt to speaker characteris-
tics such as sex or body size (e.g., males have lower, more
dispersed formants [50]); at faster rates, if formant fre-
quencies are computed for each frame, the mapping will
change phoneme per phoneme. In the current implemen-
tation and its validation in Section 4, mean formant
frequencies were computed for each 1-second sentence in
the validation set by averaging the formants over all the
harmonic parts of the signal. Formant frequencies are
estimated by taking the peaks of the 45-coefficient LPC
envelope at a window size of 512 samples and hop size 8
samples (2ms), using the superVP software [49] - a non
real-time alternative would be to use the formant estima-
tion algorithm from the Praat software [41].

3.2.2 Optimal Alpha Range

Here, we present an acoustical evaluation of the algorithm
performance, to choose the optimal aaudio values, and to test
whether changes of aaudio do produce formant movements
comparable to those observed in the corpus analysis.

We analyze the formant frequencies of a set of 15 French
speech sentences (mean duration = 2.3s, Fs ¼ 44100), for
five manipulation intensities (0.8, 0.9, 1, 1.1, 1.25) for which
we compute the statistical effect on F1 and F2. The analysis
was done with two one-way, within-sound-files, repeated-
measures analysis of variance (RM-ANOVA). Data were
analyzed using R (R Development Core Team, 2016), effect
sizes are reported as generalized h2 (Eta-Squared), Green-
house-Geisser adjustment for sphericity corrections was
applied when needed, and corrected p-values are reported
along with uncorrected degrees of freedom.

The analysis revealed a significant main effect of the
audio coefficient aaudio on F1 (F(4,56)=61.5, p=7.7e-10,
h2 =0.14) and F2 (F(4,56)=137.1, p=4.8e-13, h2 = 0.5), as illus-
trated in Fig. 8, showing that the manipulation does indeed
shift formant frequencies. The optimal aaudio value to recre-
ate the formant movements caused by smiling as observed
in the natural recordings in Section 3.1 (5 percent for F1
and 4 percent for F2) is aaudio ¼ 1:25, which increased F1 of
4.8 percent (from 717 Hz to 756 Hz) and F2 of 3.9 percent
(from 1765 Hz to 1698 Hz). Conversely, for aaudio < 1, we
observe the opposite acoustic effect—a decrease of formant
frequencies—for both F1 and F2. For instance, for aaudio ¼
0:8, F1 and F2 decreased 2.9 and 3.8 percent respectively
(from 717 Hz to 696 Hz for F1; from 1765 to 1698 for F2).
Thus, the range [0.8, 1.25] for aaudio seems to recreate the
formant variation range seen in the corpus recordings.

3.2.3 Dynamic Filtering

In addition to warping the signal’s spectral envelope with
the consequence of shifting the first formant frequencies,

Fig. 6. Overview of the audio smile transformation. The first stage of the
algorithm is a transformation of the audio frames to the frequency
domain, followed by both spectral envelope and f0 analysis. Spectral
envelope analysis allows to compute speech’s formants and F0 analysis
to extract its harmonicity, and to categorize it either as a voiced or
unvoiced frame. The two dotted blocks are the sound transformation
stage, informed by the formant frequencies and harmonicity parameters
extracted in the first stage.

Fig. 7. Piecewise linear warping function mapping the frequency axis of
the input envelope to the frequency axis of the output envelope. This
function defines how the segments of the input spectral envelope are
warped to the segments of the output spectral envelope. For instance,
the segment [F1/2 , F2] will be warped to the segment [F1/2, F2 aaudio],
which will shift F2 either towards the high frequencies if aaudio > 1 or
towards the low frequencies when aaudio < 1. The same logic applies to
all the segments of the picewise linear function.
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smiling also increases spectral energy in the higher-mids of
the signal, between 1 and 4 kHz (Fig. 5b, Bottom left panel)
for harmonic signals, a frequency area typically associated
with F3. To simulate this element of smiled speech, in a sec-
ond stage of the algorithm, we filter the reconstructed audio
signal with an adaptive bell IIR filter which cut-frequency
follows the third formant frequency. The filter gain is com-
puted as g ¼ 20ðaaudio � 1Þ dB, which for aaudio in the range
½0:75; 1:25� varies from -5dB to 5dB, which is in line with the
changes observed on real smiled utterances in Section 3.1.
The cut-frequency refresh rate for the filter was chosen
heuristically at 15ms, thus low-pass averaging the formant
frequencies extracted at a rate of 2ms in the previous stage.

3.2.4 Special Case of Non-Harmonic Frames

Unvoiced phonemes, such as s, don’t have clearly defined
formants like voiced phonemes, and when they do, not in
the same frequency region. To avoid formant estimation
errors, we measure the signal harmonicity frame by frame,
using the confidence of the pitch estimation algorithm of
superVP. Upon reaching a low-harmonicity frame, neither
the frequency warping stage nor the filtering stage update
their parameters to the estimated formants of the frame;
rather, they continue using the formant frequencies of the
last-seen harmonic frame (until a new incoming harmonic
frame is process, at which point continuous adaptation
resumes with new formant frequencies). In addition, in
order to recreate the type of resonance seen in Fig. 5b, non-
harmonic frames are processed with a static filter centered
at 6000 Hz with a Q of 1.5 and gain g ¼ 20ðaaudio � 1Þ dB.

3.2.5 Latency

As all time-frequency based digital audio effects, the
overall latency of the algorithm depends on the window
size of the FFT. An accurate time-frequency analysis is
essential for high quality transformations as it is used to
extract both the spectral envelope and the formants in the
analysis-resynthesis stage. Here, for a sampling rate of
44100 and for a window size of 1024 samples, which is
suitable for human voice signals, the latency of the algo-
rithm is 75ms. This is satisfactory for real time human-
human interactions, but not for sensorimotor feedback
[51]. As an example of the overall transformation, Figs. 9a
and 9b present the transformed spectral envelope and
spectrogram of an utterance of phoneme [a] for different
aaudio values. You can find examples at https://archive.
org/download/StimuliExample.

4 PERCEPTUAL AUDIOVISUAL VALIDATION

In this section, we present a quantitative validation of how
videos processed with the visual and audio smile algorithms
are perceived by human observers (manipulation examples
can be downloaded from https://archive.org/download/
StimuliExample). In a first experiment, we validate the two
modalities separately, by presenting our experimental par-
ticipantswith video-only and audio-only stimuli. In a second
experiment, we examine how the two modalities of smile
transformation interact when the video and audio channels
of an audiovisual stream are processed simultaneously.

4.1 Validation of Each Modality

Ten participants (M=23, SD=3.21, 4 female, 6 men) took part
in an experiment measuring the perceptual consequences of
both the audio and the visual algorithm. Participants were
naive to the fact that stimuli may be algorithmically manip-
ulated, gave informed consent and were compensated for
their participation.

Audio and video channels were separated from audio-
visual recordings of 15 sentences with neutral content
(6 Males, 9 female speakers, same audio as in Section 3.2.2).
The 15 audio channels were transformed with the audio
smile algorithm at 5 levels of intensity aaudio (0.8, 0.9, 1.0,
1.1, 1.25), for a total of 75 audio stimuli. The video channels
were transformed with the visual smile algorithm at 6 levels
of intensity avideo (-1, -0.5, 0, 0.5, 1.0, 1.5), for a total of
90 video stimuli without audio.

The task was composed of two blocks. In the first block,
participants heard each of the 75 audio stimuli and had
to answer the question “to what extent was this sentence
pronounced with a smile?” in a unipolar continuous scale
anchored with “not smiling at all” and “with a lot of smile”
(a mid-point was also included, which was - perhaps confus-
ingly - labeled as “neutral”). In the second block, participants
had to answer the same question, using the same scale, for
each of the 90 video stimuli. Both in the audio and in the
visual block, the presentation distance betweenmanipulated
variants of the same utterance was maximized. Stimulus
order was pseudo-randomized following this constraint.

Participants’ ratings are presented in Fig. 10 (where they
are z-score normalized for visualisation purpose). The effect

Fig. 8. Formant changes as a function of alphaaudio. F1 frequency and
F2 frequencies averaged over 15 validation sentences for intensities
of manipulation aaudio. Error bars represent 95 percent CI on the mean.

Fig. 9. Examples of the audio transformation. (a) Spectral envelopes of
recorded and transformed phonemes [a]: Solid bold: Original version,
pronounced with a neutral tone; dotted bold: Original version, pro-
nounced with stretched lips (smiled); dotted light: Original version trans-
formed with aaudio ¼ 1:25; solid light: Original neutral transformed with
aaudio ¼ 0:8. Red area represents spectral energy added to the neutral
spectral envelope when aaudio ¼ 1:25; blue area represents energy
taken out from the neutral envelope when aaudio ¼ 0:8. (b) Spectrogram
of a single phoneme [a] transformed with the audio algorithm with
a time-varying aaudio (a sigmoid going from 0.8 to 1.25; orange).
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of smile intensity parameter aaudio on participants’ ratings in
the first block, and avideo on ratings in the second block,
was analysed with two separate one-way within-subjects
RM-ANOVA (statistics are reported as in Section 3.2.2).

In the audio block, intensity of audio smile (aaudio) had
a significant main effect on participant ratings of smiliness
(F(4,36)=4.8, p=0.004, h2=0.07), with increasing manipula-
tion intensities (i.e., larger formant shifts and energy boost)
perceived as increasingly smiling (Fig. 10a). Similarly, in
the video block, we found a main effect of the video coeffi-
cient (F(5,45)=11.0, p=0.001, h2=0.37), with increasing
manipulation intensities (i.e., larger deformation of the
mouth corners and eye regions) perceived as increasingly
smiling (Fig. 10b). In sum, both the audio and the video
manipulations had a significant influence on participants’
ratings of smiliness. The effect of the video smile intensity
parameter (h2=0.37) was about 5 times larger as that of the
audio smile intensity (h2=0.07).

A breakdown of the effect on male and female videos can
be seen in Figs. 10c and 10d. The visual smile transforma-
tion appears relatively stable across speaker gender, but at
high visual smile intensity (avideo=1.5, 2) female speakers
received higher ratings of smiliness than male speakers.
Similarly, the audio smile transformation appears to work
better on female than male voices. Indeed, although for
both male and females an aaudio > 1 does change positively
the impression of a smile, aaudio < 1 seem to reduce the per-
ception of smiles only for female speakers.

In both modalities, such disparities across speaker gen-
der may result from algorithmic limitations with certain
physical features of the input stimuli. For instance, the
audio disparities might come from difficulties shifting
down the formants in low-pitched male voices. The visual
disparities might be due to face size differences between

genders—females have generally smaller face size than men
[52]. Because the deformation model is linear, the visual
transformation may transform more face area in small faces,
giving higher ratings to females. Another possibility is that
these disparities are in fact perceptual asymmetries. Female
speakers may be perceived as more emotional than males at
similar levels of expressive intensity.

Finally, it should be noted that we did not evaluate here
the perceived naturalness of the transformations, i.e.,
whether transformed stimuli are readily accepted by listen-
ers as authentic, plausible human expressions. Naturalness
is an important consideration for audio/visual transforma-
tions. It is often found to be negatively affected by the effect
intensity [27]. Future work should investigate this aspect
of the transformations, but also how these interact with
speaker identity (“sounds/looks human, but not like this
speaker”), temporal dynamics (“nobody would smile con-
tinuously for such a long time”) or semantics (“nobody
would smile while saying that”).

4.2 Audiovisual Interaction

In a second experiment, we examine how the two modali-
ties of smile transformation interact when the video and
audio channels of an audiovisual stream are processed
simultaneously. A separate group of N=15 participants
(M=22, SD=3.6, 8 female, 7 men) took part in the study, in
similar circumstances as above.

A subset of 12 videos (3 males, 9 females) taken from the
first experiment was manipulated using the same five aaudio

and six avideo levels as before, only this time conjointly.
For each original audiovisual recording, we thus created
30 (6*5) manipulated videos with all the pairs of possible
audiovisual manipulations, for a total of 360 rated videos, in
which both congruent and incongruent audiovisual smiles
are present. In a single experimental block, participants were
presented all 360 stimuli, for each of which they were asked
to rate their answer to the question “What is the emotional
state of this person?” on a unipolar continuous scale ranging
from “negative” to “positive”. Note that, in this task, we
used a more holistic question about emotional valence as a
proxy to smiling, in order to force participants to use both
audio and visual cues, as we found in pilot experiments that
participants asked to evaluate “smilingness” in multimodal
stimuli interpreted the task as the purely visual question
whether the speaker’s face showed the visual features of a
smile, regardless of audio content.

Participants ratings are presented in Fig. 11. Fig. 11a
presents mean participant rating (z-scored) for each pair of
audio and video intensity levels. As can be seen, there was a
clear horizontal gradient of emotional ratings from left to
right, following the video intensity parameter, but no obvi-
ous vertical gradient of ratings following the audio smile
intensity parameter. Figs. 11b and 11c slice through the
same data, grouping by separate values of visual smile
intensity (a), and audio smile intensity (c). A repeated meas-
ures-anova (RM-anova), with two within factors (audio
coefficient : 5 levels, and video coefficient : 6 levels),
confirmed a significant main effect of the video coefficient
(F(5,70)=25.9, p=2.2e-5, h2 = 0.24) and a non-significant
effect of the audio coefficient (F(4,56)=1.6, p=0.19, h2 =
0.003) on participant rating of the emotional state displayed

Fig. 10. Validation of the audio (A-C) and video (B-D) smile transformations
in separate modalities. (A) Mean participant ratings of smiliness (z-score)
in transformed audio recordings as a function of audio algorithm intensity
(male and female stimuli). (B) Mean participant ratings of smiliness
(z-score) in transformed video recordings (w/o sound) as a function of
visual algorithm intensity (male and female stimuli) (C) Breakdown of audio
results by speaker gender. (D) Breakdown of video results by speaker
gender. Error bars represent 95 percent CI on themean.
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in these stimuli. Because the audio smile manipulation was
found in Section 4.1 to operate more strongly on female
than male speakers, we analysed the subset of the current
audiovisual data restricted to female stimuli (Figs. 11d and
11f). This time, an RM-ANOVA revealed a significant main
effect of both the audio (F(4,56)=3.0, p=4.7e-2, h2 = 0.006)
and the video (F(5,70)=23.5, p=8.4e-5, h2 = 0.3) coefficients
on participant ratings of emotion, as well a significant inter-
action between the audio and the video coefficients (F
(20,280)=2.04, p=3.5e-2, h2 = 0.015). Even restricted to female
speakers, the size of the effect of the video transformation
(h2 = 0.3) remained 50 times larger than that of the audio
effect (h2 = 0.006), a ten-times increase of the difference in
effect size seen in Section 4.1.

In sum, while the audio smile transformation is effective
in an audio-only presentation, its effect is largely overrid-
den by that of the video smile transformation in an audiovi-
sual context. It appears cognitively plausible that visual
cues are considered more reliable and salient in judging a
given speakers emotion, and that in some cases, audio cues

are only useful when visual cues are ambiguous or other-
wise unavailable. The present data supports this interpreta-
tion: Fig. 11g breaks down the relation between the audio
coefficient and participant ratings for the different levels
of video transformation intensities for female stimuli.
At extreme positive and negative video transformation
intensities, the relation between aaudio and participant rat-
ings is a flat horizontal line. However, for intermediate
avideo values (i.e., when positive or negative cues are not, or
not as much, available in the visual modality), the correla-
tion between the strength of the audio transformation and
the ratings becomes positive and statistically significant
(R=0.9, p=.02 for avideo ¼ 0).

5 CONCLUSION AND PERSPECTIVES

We created an audiovisual smile transformation algorithm
able to manipulate an incoming video stream in real-time to
parametrically control the amount of smile seen and heard
on the users’ face and voice. To simulate visual smiles, we

Fig. 11. (A) Mean participant rating of speaker emotionality (z-score) in transformed audio-visual recordings as a function of audio and video algo-
rithm intensity (male and female stimuli). (B) Mean participant ratings of speaker emotionality (z-score) in transformed audio-visual recordings as a
function of visual algorithm intensity only (male and female stimuli) (C) Mean participant ratings of speaker emotionality (z-score) in transformed
audio-visual recordings as a function of audio algorithm intensity only (male and female stimuli) (D-E-F): Same data as A-B-C, restricted to female
stimuli. (G): Scatter plot and linear fit between the audio coefficient and participant ratings, broken down by level of video transformation intensities
(female stimuli only). Error bars represent 95 percent CI on the mean.
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use face recognition and automatic landmark positioning,
followed by a warping and a mapping stage. For the audio
transformation, we measured the acoustic consequences of
phonation with stretched lips, and implemented an algo-
rithm that simulates these acoustic cues on speech using
adaptive frequency warping and dynamic filtering, with the
consequence of significantly increasing formant frequency
in running speech.

We validated the transformation using audio-only,
video-only, and audiovisual stimuli processed with these
algorithms. In separate modalities, both the audio and video
smile transformations were associated with increased par-
ticipant evaluations of speaker’s smiliness, with some
gender differences (stronger effects for female speakers).
However, in audiovisual contexts, the strength of the audio
transformation was largely overridden by that of the video
smile transformation, which average effect was quantified
as fifty times larger than the audio effect even when
restricted to female stimuli. Further analysis revealed that
the audio smile transformation was only significantly asso-
ciated with participants’ ratings of speaker emotionality
when smile visual cues were weak or ambiguous, which
suggests that human observers use a hierarchy of perceptive
processes, with higher priority/saliency to visual than
audio cues, when judging audiovisual smiles.

This does not entail that audio smile transformations are
not useful. First, they find a natural application in audio-
only interactions. With more than 60 percent of all customer
experience interactions still happening over the telephone
[53], it would be particularly interesting to test the effect of
audio smile enhancement on variables like customer satis-
faction or retention rates in naturalistic contexts like a call-
center [33]. Second, the fact that auditory smile cues may be
secondary to visual cues does not diminish their usefulness
in contexts where it is inappropriate or otherwise impossi-
ble to manipulate visual cues, e.g., when manipulations
need to remain undetectable.

Several algorithmic improvements can be pursued for
the techniques reported here. In the audio modality, it
should be clarified whether the difference in perceived
smile intensity between male and female stimuli result from
algorithmic limitations when processing male rather than
female voices. One notable possibility is that lower-pitched
male voices suffer from spectral estimation artifacts at the
time resolution used in the algorithm, thus hurting the pre-
cision of pitch and formant frequency estimation in the
analysis stage, or the precision of phase-vocoder reconstruc-
tion in the synthesis stage (similar problems were discussed
e.g., in [27]). It remains an intriguing possibility, however,
that these differences are explained by a cognitive, rather
than an algorithmic, asymmetry, in which observers judge
objectively-identical levels of transformation differently
depending on speaker gender [54].

In the visual algorithm, the transformation described here
is based on a parametric warping model learned from a sin-
gle subject. While this approximation proved reasonable
here, as shown e.g., by quantitative evaluations in video and
audio/video contexts, the method could be extended to sim-
ulate different kinds of smiles (e.g., genuine vs fake smiles,
the discrimination of which may depend on processing
the eye region and temporal dynamics [55]) or to convey

different types of smile-expressed affect as amusement, joy,
or shame. The tool would also readily lend itself to modeling
specific smile transformations for different users, potentially
allowing more precise or realistic expressions across e.g.,
gender or individual differences. This may be particularly
needed when manipulating facial features of well-known or
familiar speakers, for which observers may have more strin-
gent representations of what’s real andwhat’s not.

Finally, independently from work in each modality,
further improvements to the system may consider its inte-
grationwithwider information about the context of the inter-
action. First, algorithms in both modalities can be controlled
in real-time using their intensity parameter a, which opens
the question of modeling appropriate temporal dynamics for
both effects in the course of an interaction, such as e.g.,
detecting phrase boundaries to smile as a back-channel at
the end of a turn [56]. Second, the effects could be integrated
in a wider audiovisual emotion recognition system, and thus
make the transformed smiles adaptive to a speaker’s emo-
tional expression. Finally, an intriguing possibility would
also be to use our audiovisual system to generate large
amounts of parametrically-varied training examples for face
and voice classification algorithms to learn from.

Beyond affective computing and human-computer inter-
action, we anticipate that this technology will find wide-
ranging applications as an experimental method in the
behavioral sciences, because it enables a high level of con-
trol over the acoustical, visual and emotional content of
experimental stimuli in a variety of laboratory situations,
including video-mediated real-time social situations. Possi-
ble applications include e.g., creating stimuli with systemat-
ically- varying degrees of audio and visual smiles to study
their audiovisual integration in observers [57], modeling the
process of facial mimicry and emotional contagion in
observers depending on the intensity of the facial and audi-
tory cues that are presented to them [58] or studying the
impact of emotional processes on group performance by
manipulating smile expressive cues in a group of partici-
pants while they are interacting to solve a problem [59].
Efforts will be made to make the tool available in a user-
friendly format to support this type of applications.
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