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A mutual information based adaptive windowing
of informative EEG for emotion recognition

Laura Piho, and Tardi Tjahjadi, Senior Member, IEEE

Abstract

Emotion recognition using brain wave signals involves using high dimensional electroencephalogram (EEG) data. In
this paper, a window selection method based on mutual information is introduced to select an appropriate signal window
to reduce the length of the signals. The motivation of the windowing method comes from EEG emotion recognition being
computationally costly and the data having low signal-to-noise ratio. The aim of the windowing method is to find a reduced
signal where the emotions are strongest. In this paper, it is suggested, that using only the signal section which best describes
emotions improves the classification of emotions. This is achieved by iteratively comparing different-length EEG signals at
different time locations using the mutual information between the reduced signal and emotion labels as criterion. The reduced
signal with the highest mutual information is used for extracting the features for emotion classification. In addition, a viable
framework for emotion recognition is introduced. Experimental results on publicly available datasets, DEAP and MAHNOB-
HCI, show significant improvement in emotion recognition accuracy.

Index Terms

EEG, human emotions, mutual information, entropy, data reduction
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1 INTRODUCTION

Emotion related studies are popular in neuroscience and psychology, and during the recent decade they have gathered
research interest in computational science (e.g., [1], [2], [3]). Traditionally, work regarding emotion recognition use facial
images (e.g., [4], [5]), speech (e.g., [6], [7]), or both modalities (e.g., [9], [10]). In recent years, emotion recognition using
electroencephalogram (EEG) signals has become popular [11]. Such an approach consists of two main tasks: data collection,
and analysis of the collected data. This paper concentrates on the second task.

Recording EEG signals is a non-invasive method for acquiring emotion data from the brain. Furthermore, EEG signals
have good temporal resolution, making it a good option for emotion recognition. The stimuli used to evoke emotion
responses are usually audio (e.g., [12]) or video (e.g., [13], [14]). In this paper, publicly available datasets DEAP [13] and
MAHNOB-HCI [14] are used, where DEAP is the largest dataset for EEG-based emotion recognition.

The raw EEG signals have amplitude ranging between 10xV and 100uV, and include a high level of noise from
different sources, e.g., eye blinking, and muscular and vascular effects, etc. [15], [16], [17]. Both DEAP and MAHNOB-HCI
recordings involved 32 active AgCl electrodes placed according to the international 10-20 system [13], [14]. In addition, the
database includes participant self-assessment and frontal face videos of some of the participants.

Emotion recognition using EEG signals can be subject-dependent or subject-independent [18]. For the purpose of this
papet, the subject-dependent approach has been chosen. Generally, subject-dependent approach achieves higher accuracy,
but is slower as a classifier has to be trained for each subject.

The motivation of this paper is twofold. Firstly, the EEG dataset often includes recordings over long periods of time
making the signal processing computationally costly. Secondly, there exist difficulties when dealing with noise in EEG
signals, especially problematic is accurately identifying the signal components related to emotions and those related to
other brain activities. In addition, emotions are subjective, and their recognition depend on their intensity evoked by the
stimuli. This makes establishing ground truth difficult. Another challenge is removing any noise in the signal without
removing the emotion-related EEG signal features.

To overcome these problems, this paper introduces a subject-dependent mutual information-based windowing method
for extracting informative EEG features for robust and accurate classification of the associated emotions. The DEAP dataset
includes recordings where 60s of music videos are used for stimuli. For each recording the first five seconds correspond
to the baseline and the subsequent EEG recording is 60s long. The MAHNOB-HCI dataset uses video clips as stimuli. The
EEG recordings are of varying length, with the shortest being 34.9s and the longest 117s. Assuming that during the length
of EEG recording the intensity of the subject’s emotion changes, the aim of the windowing method is to search for the most
informative part of the signal for emotion recognition.

The contribution of this paper is a framework for subject dependent EEG-based emotion recognition using reduced
signals via adaptive windowing. Traditional emotion recognition framework consists of pre-processing, feature extraction
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and selection, and classification steps. It is shown that reducing the signal length after pre-processing lowers the
computational cost of the subsequent steps, i.e., feature extraction, selection and classification. Whilst the overall cost of the
method is higher using windowing method to reduce the signal length, so is the accuracy. Furthermore, by providing the
comparison of the emotion recognition performances on the use of different feature extraction and classification methods
on different datasets, the effectiveness of these methods is determined. Finally, it is shown that the proposed framework
outperforms four existing emotion recognition systems.

This paper is organised as follows. Section 2 presents the related work organised under signal pre-processing, feature
extraction and selection, and classification. Section 3 presents the proposed windowing method and additional processes
required for the emotion classification. Illustrative examples using DEAP and MAHNOB-HCI datasets together with
comparison with existing methods are presented in Section 4. The conclusion follows in Section 5.

2 RELATED WORK

There are several statistical and machine learning methods for EEG signal analysis. The processing from raw signals to
classified emotions may be grouped into four tasks [15]: signal pre-processing, feature extraction, feature selection, and
classification.

2.1 Signal pre-processing

The pre-processing of raw EEG data for further analysis involves the use of digital signal processing techniques. Noting
that useful data for emotion recognition are at frequencies between 4-45 Hz [15], [22], for efficient pre-processing the
data is downsampled to 128 Hz and bandpass filtered with a common bandwidth [12], [15], [19]. In common average
reference (CAR) the value of the entire electrode montage is subtracted from the channel of interest resulting in a spatial
voltage distribution of mean zero [20]. As it emphasizes components that are present in most electrodes, it reduces such
components and thereby functions as a high-pass filter [20], [21].

The most challenging task of signal pre-processing is to remove noise from EEG without distorting the signals related to
emotions. Noise sources, e.g., external and environmental noise from the EEG equipment, and electro-magnetic (EM) noise,
are easy to address by ensuring the equipment is in good working order and removing EM sources from the recording
room [23]. A more challenging task is to remove physiological noise, such as due to cardiac signals, movements caused
by muscle contraction (electromyogram (EMG)), and signal caused by eyeball movement (electrooculogram (EOG)) [23].
Noise due to EMG can be minimised by asking the subjects to sit in a comfortable position, and noise due to EOG can be
minimised by using stimuli that do not require eye movement [23]. However, it is not possible to completely avoid the
aforementioned noise sources. In addition, using stimuli that do not invoke eye movement is not always practical, as they
trigger a strong emotional response. Hence, a compromise between avoiding noise due to EOG and having good emotional
stimuli has to be found.

To make noise removal easier, some datasets include additional physiological signals like EOG, EMG, plethysmograph,
body temperature and measurement from respiration belt. There are two main approaches to EOG artefact correction,
namely regression based methods, and methods based on spatial decomposition. An extensive review of EOG artefact
removal methods for signals with and without prior knowledge is presented in [24].

The regression based methods smooth EEG by regressing out the reference EOG signals, e.g., [25], [26], [27], [28]. These
require the recordings of EOG signals. In addition, several muscle groups require different reference channels, which makes
this approach impractical [29].

The spatial decomposition based methods include principal component analysis (PCA), singular value decomposition
(SVD), and blind source decomposition (BSS) such as independent component analysis (ICA). Similar to regression
methods, EOG artefacts need to be known. PCA has been shown in [30] to be better in removing EOG artefacts than
regression methods [29]. In [29], ICA has been shown to recover more brain activity signals than PCA, and therefore ICA
based methods are more favourable.

In addition, one can use fully automatic methods, where artefacts are removed without any prior knowledge of the
signals, e.g., the second order blind identification [24] which involves the ICA.

2.2 Feature extraction and feature selection

EEG signals are high dimensional, hence the computational processing of these signals is often complex and expensive. The
purpose of feature extraction is to simplify the subsequent emotion classification task by identifying the important elements
of the signal, creating a feature vector based on these elements and using the vector to classify the corresponding emotion.
Available methods to extract features include wavelet transforms, higher order spectrum and higher order crossings (HOC).
For a detailed overview of existing feature extraction methods, the reader is directed to [31] and [32].

The number of features extracted is largely dependent on the feature extraction method, and therefore it is helpful to
identify the most relevant set of features to enable selection of the most appropriate feature extraction method for emotion
recognition. In addition, feature selection is useful for reducing the dimensionality of the EEG signals. Existing feature
selection methods include minimum redundancy maximum relevance (mRMR), Relief, and differential evolution feature
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Figure 1: The proposed emotion recognition framework.

selection. Genetic algorithm and support vector machine (SVM) can also be used. More information about these methods
can be found in [33], [34], [35].

Since there is no one feature extraction method that is universally accepted as best for EEG, in this paper a few more
common feature extraction methods will be used and compared. Multivariate feature extraction methods have been shown
to work slightly better in general than univariate methods [32].

2.3 Classification

Multiple classification methods can be considered for EEG-based emotion recognition. If the datasets include subject
responses, then supervised classification methods can be used. It should be noted that emotions are subjective, and the
subjects” evaluation of their emotions may not be the ground truth, and thus some correction of the emotion labels needs
to be considered. In the absence of subject evaluations, it is appropriate to consider unsupervised classification.

The classification of EEG dataset into discrete sets for different brain-computer interface tasks can be achieved using
for example nonlinear Bayesian classifiers [36], [37], neural networks [38] or SVMs [39], [40]. In this paper, multiple
classification methods will be considered, namely SVM, naive Bayes (NB) classifier, and K-nearest neighbours (KNN). The
overview, comparison, and guidelines on how to choose between EEG classification methods can be found in [36], [43].
Detailed overview of the multiclass SVM can be found in [41], and the use of multiclass SVM for EEG classification in [42].

3 PROPOSED FRAMEWORK

The proposed emotion recognition framework is shown in Fig. 1. It consists of four processes: pre-processing, data
reduction, feature extraction and selection, and classification. The proposed adaptive windowing method is experimented
with a few feature extraction methods and the accuracy of the resulting emotional recognition compared.

3.1 Pre-Processing

Consider the raw EEG data, X. Matlab automatic artefact removal (AAR) toolbox [28], [50] is used for EOG artefact
removal as follows. First, using BSS, X is decomposed into spatial components with the aim of separating the artefacts
due to cerebral activity. Second, artefact-related components are detected. Finally, the EEG data is reconstructed using only
non-artefactual components [50].

The AAR toolbox was chosen for pre-processing because it is constructed in a way that if necessary, its methods can be
easily adapted and extended. The data is downsampled to have a sampling rate of 128 Hz and averaged to CAR to reduce
the components related to noise that are present in signals from a large proportion of the electrodes.

3.2 Data Reduction: Adaptive Windowing

Using all available EEG data is computationally expensive, and often will not give a viable emotion recognition. It has
been shown that mutual information is a good criterion for measuring the importance of EEG based information [15], and
has been used in feature extraction [15], [44]. These motivated us to develop an adaptive windowing which finds the most
informative window of the pre-processed signal using mutual information for the subsequent emotion recognition. It is
noted that EEG signals that correspond to emotions are noisy. Furthermore, the stimuli to evoke emotions is lengthy, e.g.,
the DEAP dataset uses a stimuli of one minute duration. During this time, a person can experience multiple emotions of
different strength even though the stimuli has been tailored to evoke one emotion. This motivated us to find a window of
short duration which extracts signal that better represents the emotion.

Consider a dataset consisting of N samples, of length M;, j = 1,.., N, together with labels y = (y1,...,y~), where
¥ € [1,...,C], and C denotes the number of classes. The adaptive windowing method for data reduction, Algorithm 1,



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, XXX 20XX 4

works as follows. First, the maximum and minimum window size, and the change constant are chosen, and denoted as
Winaz, Wmin, and ¢, respectively. Next, the window size is set to be W,;,,, and all possible combinations of signals of size
Wnin are found. That is, consider a new data matrix X’(lW) of size N X Wyin, where t = 1,2, .. Ky, . ,and Kw, ;.

is the number of different possible reduced data matrices with signal length of W,;,.The mutual information between
X{i, W,y and y, is

ML w,.. = IX(w,»Y) = H(y) = HyX(i w,.,.) 1)
where
N
Z p(y:) log p(ys) )
N c
H(y|X) = Z Z (yilx;) log p(yilx;).- ®3)

The conditional probability, p(.), is estimated using Parzen Window density estimation, i.e.,

x—x1) Byt (x—x
ZkeKy eXp(—( 9) 2})1(2( k))

x ’ 4
X—Xp) By (X—%
Zicil > keKi exp(—%)

pylx) =

where h is the width of the window.

Algorithm 1 Determine signal window using mutual information

Input: X - Data consisting of N samples of size M}, j =1, ..., N. y - the emotional labels. W,;,, - minimum window size.
Winae - maximum window size. ¢ - change.
f = sampling rate.
while W < W,,,4z do
X' € X%, where

X;;V = {X/|X/ = X(:,aj . bj),
v bj—aj :W,bj SN, andajﬂ :aj—i—f}

fori=1: Ky, Kw = size(X*) do
MI(lW w) — I( 7,7Y)

end for

W=W+c
end while
Mg,r Wiy = mazx(MI), where Wy, is the window size with highest average mutual information, and gas; contains
ipformation about best window of size W, for all data samples.
X=X, suchthatX; € X =

qm 1

Next, the size of the window is increased by the change constant c. Similarly, all possible combinations of signals of
size W,in + ¢ are found and the mutual information M [ (4,Wnin-+c) between new data matrices X’(lW +o) and emotional
labels y calculated, i = 1,2,... Ky, +¢)- This process is repeated until the window size is greater than or equal to W,a.-
Iterating this process assures that all possible signal time locations are considered.

Choosing the reduced signal matrix is achieved in two steps. First, for the sake of simplicity later on, the window size is
chosen to be uniform over all data samples. That is, from all tested window sizes the one with the highest average mutual
information is chosen and denoted as W), ;. Second, the data matrix, Xq s Where qup € [1,..., Kw,,1], for which has the
length W, and the highest mutual information is identified as the reduced data matrix. The reduced data matrix with the
highest mutual information is assumed to consist of signals with the greatest emotion intensity, and is chosen for further
analysis. The new data matrix is given by

X= X eX Warr- 5)

q1v1[| qmr1

3.3 Feature Extraction

The feature extraction methods chosen for this paper have been shown to give good results in studies that used EEG signals
[33], [46], [49], [61]. Also, the features have been extracted from five frequency bands using wavelet transform (WT). To
extract features one of the four feature extraction techniques was used: statistical features (SF), power spectral entropy
(PSE), higher order crossing (HOC), and higher order spectral (HOS).
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3.3.1 Wavelet transform (WT)

WT [45] maps one dimensional signal to a two-dimensional function by decomposing a signal as a superposition of simple
units from which the original signal can be reconstructed. WT is a spectral estimation technique where all functions are
expressed as an infinite series of wavelets. The decomposition of the EEG signal via WT leads to a set of wavelet coefficients
which represents its energy distribution in time and frequency.

The bandlimited EEG signal will be decomposed through “db4” wavelet up to five levels. This wavelet is chosen due to
its near optimal time-frequency localisation property [46]. The decomposition levels A5, D5, D4, D3, D2 and D1 correspond
to delta (§, 0 — 4 Hz), theta (0, 4 — 8 Hz), alpha (a, 8 — 14 Hz), beta (5, 14 — 32 Hz), gamma (v, 32 — 64 Hz), and noise
(64 — 128 Hz) frequency bands [46].

3.3.2 Statistical Features (SF)

Using statistical measures for feature extraction involves mean (1), standard deviation (¢), first and second order differences
(A and T, respectively), and normalised first and second order differences (i.e., AandT, respectively). These measures are
calculated for each frequency bands of all EEG signals s; , i = 1, ..., V. For a single signal, the features can be ordered and
written as

Fvi, = [Nési 1y T8, A(ssi ) Atssi I S I

:u"‘/si ) O”Ysi ) A')’si ’ A'Ysi ’ F’Ysi ’ F’Y ] . (6)

8§

Note that the order of frequency bands from which the features are extracted are for all signals J, 6 , o, 8, and . Therefore,
for each subject the frequency vector that includes all signals can be written as

FV = [FVy,FViy, ..., FVi,] . @)

3.3.3 Power Spectral Entropy (PSE)

Another method that is used to extract features from signals is PSE [61]. PSE can be calculated by first calculating the
power spectral density P(w;) using the discrete Fourier Transform of the signal, where w; is the frequency variable. Next,
the PSD is normalised to obtain PSD distribution function

P W
pi= L) )
Zi P(w;)
Finally, as information entropy can be given by
H==> pilnp;, 9
i=1

the PSE is found by substituting equation (8) in (9).

3.3.4 Higher Order Spectral (HOS)

HOS are spectral representations of higher order moments, or cumulants of a signal. There are several reasons for using
HOS in signal processing. For example, to suppress Gaussian noise when its mean and variance are unknown, to reconstruct
the phase and magnitude response of signals, and to find and characterise the nonlinearities of the signal. Decomposing
signals using WT into different frequency bands and analysing the decomposed signals using HOS give information in
multiple scales, which has been shown to provide accurate assessment of emotional stress [33].

EEG signal processing uses third order correlation, i.e., bispectrum. Consider a signal x(t) with a discrete Fourier
transform [47] evaluated on IV data points, i.e.,

t=N-—-1
X(f) = x(t) exp’™™ (10)
t=0

where f is the frequency variable. The Fourier transform of the bispectrum of a signal is [33]

Bis(f1, f2) = BE[X(f1)X(f2)X*(f1 + f2)] (11)

where X*(f) denotes the complex conjugate of X (f), and E].] is the statistical expectation operator. The normalised
bispectrum, i.e., bicoherence, is [33]

. Bis(f1, fa)
B - , 12
AR = PP T ) 2
where the power [33], [48]
P(f)=EX(f)X =(f)]. (13)

The following five features are computed: sum of the bispectrum magnitudes (f!), sum of the squares of the bispectrum
magnitudes (f?2), sum of the bicoherence magnitudes (f3), sum of the squares of the bicoherence magnitudes (f*), and test
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of Gaussianity (f 5). These features are computed for five frequency bands, namely v, 8, , 6, and J. These are arranged
into the following feature vector,

FVHOS = [ '},slvfaslafg,slvfg_’slvfg),slv'“v
1 2 3 4 5
'y,sN7fB,sN7foz,sNﬂfG,sN?f&,sN]? (14)

where the subscript pair respectively denotes the wavelet frequency band and signal from an electrode, and the superscript
denotes the different HOS features extracted.

3.3.5 Higher Order Crossing (HOC)
Simple HOC applies a sequence of high-pass filters to the zero-mean time series X (¢), [49]

TAX ()} =VIX (1), (15)
where V is the iterative difference operator. Weuse V = X (t) — X (t —1), and k = 1, ..., L, where L is the number of filters.
The HOC sequence Dy, i.e., the resulting k features, comprises the number of zero-crossings of the filtered time series by
counting its sign changes, i.e.,

X0} = S (571 ) Cvmixe-i -,

(16)

We construct a binary time series

1 g {X®)} >0 B L
Y,;(k)—{o T (X (0)] <0 k=1,2,.;t=1,.,N. 17)

Hence, the simple HOC is estimated by counting the symbol changes in binary time series Y;(k), giving the feature vector
Viwoc = [D1,...,Di], (18)

where Dy, = SN[V, (k) — Y;_1 (k)]2. The different HOC features are computed to represent the oscillatory patterns present
in the EEG data.

3.4 Feature Selection

The extraction of features from 32 signals using 5 wavelet bands resulted in 1120 SF features, 160 PSE features, 800 HOS
features, and 320 HOC features. Due to the limited number of data points in the datasets available for EEG emotion
recognition, the number of features is significantly higher than the number of data points, resulting in model over-fitting.
To overcome over-fitting, feature selection can be used to reduce the number of features used to train the model, where the
aim of the feature selection algorithm is to find a new set of the most informative features. The rule of thumb in feature
selection is to make the number of features fewer than the number of observations.

The feature selection method considered in this work is the ReliefF algorithm [55], which is an extension of Relief
algorithm [56]. Relief is not dependent on heuristics, runs in low-order polynomial time, and is noise-tolerant and robust
to feature interactions. It is simple and has low computational time. However, it does not behave well with small set of
training instances. To address this, ReliefF runs the outer loop of the algorithm over all available training instances [55]. In
addition, it can be extended to the multi-class problem.

In our feature selection method, ReliefF is applied to select features by first selecting an instance and finding k near
misses and hits. The hits are instances corresponding to the same class, and misses are instances from different classes.
These are used to calculate the weight vector corresponding to the quality of features, based on their feature values, near
hit, and near misses [55]. Finally, using the weight vector, the features with the highest quality are chosen so that the
number of selected features is fewer than the number of samples.

3.5 Classification

In our emotion recognition framework, emotion classification is achieved using SVM, KNN and NB.

3.5.1 Support Vector Machine (SVM)

SVM [39] is a binary classifier which can be extended into a multiclass classifier. It is chosen due its high-generalisation

ability, and it has been shown to work well for classification. Consider a training set (x;,y;), 1 < j < N, where x; denotes

the feature vectors extracted from EEG signals, y; denotes the corresponding emotion labels, and [V is the number of data.
The SVM decision function can be written as

N
f(x) = anyik(si, x) + b, (19)
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where x is the input vector (in this case the feature vector extracted from EEG signals), k is the kernel function, s; denotes
support vectors, «; are the weights and b is the bias. In the scope of this paper, we used the Gaussian kernel.
To train the SVM, weights «; are found for existing data such that

f(xi>={§8 PO 0)

where +1 and —1 denote positive and negative emotion classes, respectively.

3.5.2 K-Nearest Neighbours (KNN)

KNN has been shown to work well with EEG signals in [46]. The classification is based on user-defined constant integer
k, where new case will be assigned to the class most common amongst its k£ nearest neighbours measured by a distance
metric. Most commonly, Euclidean distance is used as the distance metric, but Manhattan, Minkowski, and Hamming
distances can also be used. The problem with KNN classification is that training imbalanced sets may result in the classes
with more examples dominating the classification.

For the purpose of this paper, MATLAB inbuilt function fitcknn is used to fit KNN model to the data. This function
attempts to minimize the cross-validation loss for the fitcknn by varying its parameters, including the number of neighbours
and distance metric depending on the dataset. The distance metrics available to this function are City block distance,
Chebychev distance, Minkowski distance, Euclidean and standardised Euclidean distance, Hamming distance, Jaccard
coefficient, Mahalanobis distance, and Spearman’s rank correlation.

3.5.3 Naive Bayes (NB)

A NB classifier [57], [58] assumes all input variables are independent. It aims to find the conditional probability that data
points belong to a specific class given the input features and chooses the class with the highest probability. Thus, the goal
of NB classifier is to find the probability p(C|F1, ..., F},), where C' is the class variable and F, ..., F}, are the data points.
This probability is difficult to compute, and thus the Bayes theorem is used instead. Furthermore, all input variables F; are
assumed to be independent.

Hence, the conditional probability that a given data point belong to a specific class given the input features can be
written as

o(CIFr, o Fy) = POy PUFIC)

= O [[o(E0) @
i=1

where Z is a scaling factor dependent on F1, ..., F;,. Despite the assumption, a NB classifier still performs surprisingly well
even when the assumption is not entirely accurate.

3.6 Complexity Analysis

Table 1: Reduced data results for valence using DEAP dataset.

# of Features 30 31 32 33 34 35 36 37 38 39 AVG MAX

SVM | 79.06% | 78.89% | 79.72% | 82.81% | 80.39% | 79.20% | 78.89% | 77.87% | 78.26% | 80.89% | 79.60% | 82.81%
HOC | KNN | 84.38% | 84.92% | 84.06% | 83.75% | 82.66% | 84.69% | 84.14% | 84.30% | 81.80% | 82.73% | 83.74% | 84.92%
NB 82.03% | 82.73% | 82.50% | 82.73% | 83.44% | 82.27% | 82.66% | 82.73% | 82.97% | 82.89% | 82.70% | 83.44%
SVM | 85.55% | 85.70% | 85.94% | 85.55% | 84.92% | 85.08% | 86.56% | 86.09% | 87.03% | 87.11% | 85.95% | 87.11%
SF KNN | 89.61% | 89.61% | 89.06% | 89.38% | 88.98% | 88.05% | 88.98% | 88.20% | 88.59% | 89.06% | 88.95% | 89.61%
NB 86.02% | 86.48% | 86.95% | 86.95% | 87.19% | 87.03% | 86.95% | 87.42% | 86.88% | 87.11% | 86.90% | 87.42%
SVM | 69.92% | 71.88% | 71.17% | 70.78% | 70.39% | 72.78% | 71.25% | 70.08% | 70.78% | 71.09% | 71.01% | 72.73%
PSE KNN | 76.17% | 73.44% | 75.16% | 74.84% | 72.19% | 75.63% | 74.53% | 74.45% | 73.20% | 72.58% | 74.22% | 76.17%
NB 75.39% | 74.61% | 74.38% | 74.61% | 74.77% | 73.75% | 74.38% | 74.06% | 73.91% | 73.91% | 74.38% | 75.39%
SVM | 75.94% | 74.49% | 78.16% | 77.19% | 79.22% | 77.66% | 77.58% | 77.97% | 77.58% | 76.09% | 77.19% | 79.22%
HOS | KNN | 83.52% | 82.50% | 82.73% | 83.98% | 81.87% | 83.05% | 82.66% | 84.14% | 82.89% | 81.80% | 82.91% | 84.14%
NB 81.25% | 81.72% | 81.64% | 81.17% | 81.64% | 81.48% | 81.88% | 81.80% | 80.86% | 80.94% | 81.44% | 81.88%

One of the major problems with EEG-based emotion recognition system is that it is computationally very complex, and
therefore the required training time is long. The computational complexity is H (y|X) « (n? x d), where y is the vector
containing information about the dataset classes, X is the dataset matrix of size n x d, n is the number of samples and d is the
dimensionality of the feature vector. Noting that for each EEG sample there are 32 electrodes, the computational complexity
is increased further by a factor of 32. Thus, decreasing the size of the dataset in this step decreases the computational cost
of the subsequent steps.

Computational complexity varies for different feature extraction methods. The computational complexity of WT using
discrete wavelet transform is O(NN), where N is the size of the signal. Using HOS, namely bispectrum, invokes a
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Table 2: All data results for valence using DEAP dataset.

# of Features 30 31 32 33 34 35 36 37 38 39 MEAN | MAX

SVM | 75.68% | 7515% | 71.87% | 72.09% | 68.20% | 70.35% | 75.92% | 71.68% | 70.82% | 73.36% | 72.51% | 75.92%
HOC | KNN [ 77.03% | 77.73% | 77.11% | 78.05% | 77.19% | 76.09% | 78.44% | 76.72% | 77.58% | 77.03% | 77.30% | 78.44%
NB 76.33% | 76.09% | 75.78% | 76.17% | 76.17% | 76.33% | 76.25% | 76.80% | 75.94% | 76.25% | 76.21% | 76.80%
SVM | 80.00% | 81.17% | 80.23% | 81.02% | 81.48% | 80.78% | 79.38% | 80.70% | 79.38% | 80.47% | 80.46% | 81.48%
SF KNN | 81.41% | 83.98% | 81.88% | 82.42% | 82.81% | 82.66% | 84.38% | 82.66% | 81.64% | 83.75% | 82.76% | 84.38%
NB 80.78% | 80.94% | 81.48% | 81.33% | 81.95% | 81.64% | 82.58% | 82.42% | 82.50% | 83.28% | 81.89% | 83.28%
SVM | 67.03% | 69.14% | 68.13% | 66.72% | 67.42% | 67.27% | 65.94% | 66.64% | 68.13% | 67.27% | 67.37% | 69.14%
PSE KNN | 75.86% | 72.66% | 72.73% | 75.78% | 72.58% | 74.14% | 72.27% | 73.05% | 74.69% | 71.88% | 73.56% | 75.86%
NB 71.80% | 71.88% | 71.02% | 70.63% | 70.78% | 69.84% | 70.23% | 70.31% | 68.52% | 69.53% | 70.45% | 71.88%
SVM | 75.89% | 71.19% | 75.55% | 75.98% | 75.76% | 75.78% | 75.55% | 75.54% | 72.86% | 73.67% | 74.78% | 75.98%
HOS | KNN [ 79.14% | 7852% | 77.89% | 7820% | 79.77% | 76.48% | 7828% | 77.66% | 78.91% | 79.84% | 78.47% | 79.84%
NB 79.53% | 79.22% | 79.77% | 79.45% | 79.69% | 79.61% | 79.14% | 78.98% | 78.83% | 79.53% | 79.38% | 79.77%

computational cost of O(N?). For our emotion recognition framework, there is a need to compute bispectrum multiple
times, which results in large computation complexity. In addition, to calculate bicoherence, there is a need to compute
PSD, which has the computational complexity of O(NN) for a window size of N. Therefore, reducing the size of the dataset
reduces the computational cost of these methods. On the other hand, HOC and statistical feature extraction have lower
computational complexity, namely O (V).

4 EXPERIMENTS

The experiments conducted with the reduced data include the methods in Section 3.3, and include the use of statistical
features, PSD, HOS and HOC. Furthermore, to validate emotion recognition using reduced data, all studies were also
run using non-reduced data for comparison. Similarly to [15], in this paper the emotion recognition using EEG will be
considered as a subject dependent problem.

To calculate the error, leave-on-out cross validation (LOOCV) was used. The reason to use LOOCV comes from the
limited data availability. That is, the sets used for training are relatively small to split into training and testing sets. When
small datasets are used, the LOOCYV is a good alternative to use for model validation. In addition, leave-on-out cross
validation is suggested to avoid over fitting. It will be emphasised, that when using LOOCYV, the data was split into
training and test set repeatedly, where the test set is unseen by the model each time. Furthermore, Receiver Operating
Characteristic (ROC) curves were plotted to show the trade off between selectivity and sensitivity.

4.1 Dataset
4.1.1 DEAP

DEAP dataset [13] includes recordings from 32 participants. Each participant was asked to look at 40 music videos and
their EEG signals were recorded at 32 electrodes set according to the international 10-20 system [52]. In addition, the
dataset includes recordings from 12 peripheral channels, 3 unused channels and 1 status channel. In some cases, the data
from peripheral channels can be used for emotion recognition. For the purpose of this study, the peripheral channels were
used to remove noise from EEG channels, and only EEG signals were used for classifying emotions. The DEAP dataset
includes pre-processed dataset, but for the purpose of this paper, the raw data was used and pre-processed separately as
in Section 3.1.

To label the data as corresponding to an emotion, participant self-assessment was performed by each participant at
the end of each trial. For this assessment, the valence-arousal-dominance scale [53] was used, where the scales range from
unhappy/sad to happy/joyful for valence, calm/bored to stimulated/excited for arousal, and submissive to dominant. In
addition, participants rated the videos according to their liking as follows. For each video, the participant rated the valence,
arousal, dominance and liking on a continuous scale between 1 and 10.

4.1.2 MAHNOB-HCI

MAHNOB-HCI [14] database consists of two experiments, emotion recognition and implicit tagging. For the purpose of
this paper, only stimulated emotion recognition data was used. The emotion recognition experiment has recordings from 30
participants, from which 25 participants had complete EEG recordings. EEG signals were recorded of a participant watching
20 video clips, and at 32 electrodes set according to the international 10-20 system. The raw data was pre-processed as in
Section 3.1.

Participants self-assessed the videos and were asked to rate their valence, arousal, and dominance on a nine-point scale.
In addition, participants were asked to give emotional labels. The labels included neutral, anxiety, amusement, sadness, joy,
disgust, anger, surprise, and fear. For the purpose of consistency, experiments were performed using valence and arousal
results. The labels were split into two classes, positive and negative.
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4.2 Results

There are a few things to note regarding EEG emotion recognition. First, the EEG signals are subject dependent. This will
be taken into account and classifiers will be trained separately for all participants. Second, the available number of trials
to train the classifier for each participant is limited. The number of trials for each participant is 40 in DEAP and 20 in
MAHNOB. With small dataset, it is more difficult to avoid over-fitting. To overcome this, the number of selected features
is smaller than the number of trials. For DEAP dataset the number of features has been selected to be between 30 and 39
features, and for MAHNOB dataset between 10 and 19 features.

In MATLAB Statistics and Machine Learning Toolbox [59] the hyperparameter optimisation has been included for
SVM, KNN, and NB MATLAB functions. This toolbox was used with the aim of finding suitable hyperparameters for the
problem. Furthermore, the results were validated using leave-one-out cross validation for all classifiers. The leave-one-out
cross validation, reserves one observation as validation data, and trains the model using the remaining observations. This
will be performed for all observations. The two-class classification was performed using only valence and arousal, and in
both dimensions separately.

4.2.1 DEAP dataset

Table 3: Reduced data results for arousal using DEAP dataset.

# of Features 30 31 32 33 34 35 36 37 38 39 AVG MAX
SVM | 78.24% | 76.63% | 80.00% | 78.88% | 77.40% | 77.91% | 76.39% | 75.13% | 75.39% | 77.94% | 77.39% | 80.00%
HOC | KNN | 82.03% | 81.72% | 81.64% | 81.80% | 80.86% | 80.70% | 81.56% | 80.78% | 81.09% | 81.80% | 81.40% | 82.03%
NB 77.66% | 77.34% | 77.50% | 77.19% | 77.03% | 77.42% | 77.03% | 76.95% | 76.64% | 76.64% | 77.14% | 77.66%
SVM | 82.97% | 84.45% | 83.44% | 83.83% | 83.36% | 83.83% | 84.77% | 84.84% | 84.69% | 84.61% | 84.08% | 84.84%
SF KNN [ 89.77% | 89.38% | 89.38% | 89.53% | 89.84% | 89.53% | 88.83% | 89.30% | 89.84% | 89.14% | 89.45% 89.84%
NB 85.55% | 85.55% | 85.47% | 86.72% | 86.09% | 85.63% | 85.78% | 86.33% | 86.17% | 86.48% | 85.98% | 86.72%
SVM | 72.66% | 71.41% | 72.58% | 71.64% | 70.70% | 71.56% | 71.56% | 70.47% | 69.77% | 71.56% | 71.39% | 72.66%
PSE KNN | 75.23% | 75.55% | 74.84% | 75.70% | 76.17% | 75.78% | 76.09% | 75.00% | 74.84% | 74.69% | 75.39% | 76.17%
NB 76.33% | 75.70% | 74.69% | 75.78% | 76.17% | 75.16% | 75.23% | 74.61% | 74.38% | 74.45% | 75.25% | 76.33%
SVM | 78.67% | 79.33% | 78.66% | 78.13% | 78.33% | 78.11% | 78.40% | 78.40% | 77.50% | 84.61% | 79.01% | 79.33%
HOS | KNN | 84.69% | 85.94% | 85.86% | 83.91% | 85.55% | 86.95% | 85.08% | 85.55% | 85.70% | 87.34% | 85.66% | 86.95%
NB 81.48% | 81.41% | 81.72% | 81.56% | 82.11% | 81.88% | 81.41% | 81.95% | 82.11% | 86.41% | 82.20% | 82.11%

Table 4: All data results for arousal using DEAP dataset.

# of Features 30 31 32 33 34 35 36 37 38 39 MEAN | MAX

SVM | 71.60% | 67.55% | 67.34% | 69.20% | 68.87% | 73.26% | 65.97% | 67.79% | 72.24% | 71.64% | 69.55% | 73.26%
HOC [ KNN [ 77.03% | 76.80% | 75.63% | 74.53% | 75.78% | 75.47% | 77.11% | 76.72% | 76.56% | 74.53% | 76.02% | 77.11%
NB 7375% | 7391% | 72.89% | 73.44% | 73.36% | 72.81% | 73.13% | 73.36% | 72.27% | 73.05% | 73.20% [ 73.91%
SVM | 80.47% | 81.09% | 81.72% | 81.80% | 81.48% | 81.41% | 82.73% | 80.23% | 81.56% | 81.09% | 81.36% | 82.73%
SF KNN [ 83.28% | 83.44% | 81.48% | 82.73% | 83.83% | 82.42% | 82.50% | 82.50% | 82.42% | 83.13% | 82.77% | 83.83%
NB 81.80% | 81.09% | 81.72% | 81.25% | 81.17% | 81.09% | 80.55% | 81.17% | 81.95% | 80.78% | 81.26% [ 81.95%
SVM | 71.48% | 68.59% | 68.91% | 67.19% | 67.97% | 68.91% | 68.83% | 68.59% | 69.53% | 68.05% | 68.81% | 71.48%
PSE KNN | 73.52% | 72.66% | 70.63% | 72.03% | 71.33% | 72.27% | 75.00% | 72.42% | 72.19% | 72.81% | 72.49% | 75.00%
NB 71.95% | 71.25% | 71.64% | 71.25% | 70.47% | 71.09% | 70.78% | 70.00% | 71.33% | 70.23% | 71.00% [ 71.95%
SVM | 75.68% | 73.80% | 73.36% | 74.59% | 76.64% | 74.77% | 70.31% | 75.41% | 74.30% | 77.19% | 74.61% | 76.64%
HOS | KNN | 78.13% | 80.39% | 79.38% | 80.23% | 79.22% | 80.39% | 80.00% | 80.39% | 79.14% | 81.25% | 79.85% | 80.39%
NB 79.45% | 7891% | 79.45% | 78.75% | 78.98% | 78.75% | 78.59% | 79.22% | 7891% | 79.45% | 79.05% | 79.45%

Overall, the reduced data give better results than non-reduced data for both valence and arousal. For both reduced and
non-reduced data, four different feature extraction methods were used. To avoid overfitting, features were selected using
ReliefF [60]. The number of features selected was chosen to be between 30 and 39 features. The experiments were run for
all feature sets and compared. Furthermore, three different classifiers were used.

The results for reduced data are shown in Table 1 for valence and in Table 3 for arousal. Similarly, the all data results
are given in Table 2 and Table 4 for valence and arousal, respectively. The results have been shown for all combinations of
feature extraction methods, number of features and classification methods. The best classification method for each feature
extraction method and number of features selected are denoted in bold. The highest accuracy per number of features are
highlighted in grey. The average for each method are given in the final column with the highest highlighted.

Higher Order Crossing Feature Extraction

The HOC method was chosen because it gave good results when Ekman’s picture set was used in [49]. The experiments
were run using both, reduced data and all data. Tables 4 and 2 show that the average accuracy using HOC and SVM
classification with all data is 72.51% and 69.55% for valence and arousal, respectively. The best results achieved for valence
using SVM classification is 75.92%. The highest average accuracy of 77.3% was obtained using KNN classifier with 32
features. The overall highest accuracy for all data is 78.44%. For NB classification, the average overall classification is
76.21% and the highest accuracy is 76.8%. All these results can be seen in Table 2 for valence and Table 4 for arousal.
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Comparing results in classifying valence using all data and reduced data, Table 1 shows that the results achieved using
reduced data are superior. The average increase in accuracy is 6.67%. The highest accuracy of 84.92% was obtained using
KNN classification and 31 features.

Furthermore, the reduced data preforms better for arousal classification. Reduced data results for arousal are shown
in Table 3. The overall average increase in accuracy is 5.72%. The highest accuracy is 77.11% on all data, and 82.03% on
reduced data when classifying arousal. Both were obtained using KNN with 36 and 30 features, respectively.

Statistical Features feature Extraction

The best overall results, for both reduced data and all data, were achieved using statistical features for valence. The
complete set of results are given in Table 1 and Table 3 for reduced data, and in Table 2 and Table 4 for all data. Using KNN
and all data, the highest accuracy when classifying valence is 84.38%. Using reduced data, the average accuracy when
using KNN increased by 6.19%. The highest accuracy overall achieved in classifying valence was obtained using reduced
data, statistical features and KNN, namely 89.61%.

When using SVM and NB with statistical features, the increase in accuracy is not as high as the increase in accuracy
when using KNN. The best result obtained using all data and SVM is 81.48%. Using NB with all data results in accuracy
of 83.28%. Table 1 shows that the highest accuracy achieved for SVM and NB on reduced data are 87.11% and 87.42%,
respectively.

Similar results were obtained in classifying arousal. For both, all data and reduced data, the best results were achieved
using statistical features and KNN. The highest accuracy achieved in using reduced data and all data are 89.84% and
83.83%, respectively. Thus, reducing data improves the classification accuracy. Using SVM and NB to classify arousal on
all data resulted in accuracy of 82.73% and 81.95%, respectively. The same methods respectively resulted in 84.84% and
86.72% accuracy using reduced data.

Power Spectral Entropy Feature Extraction

Table 5: Reduced data results for valence using MAHNOB dataset.

# of Features 10 11 12 13 14 15 16 17 18 19 AVG MAX

SVM | 85.60% | 85.60% | 85.00% | 84.40% | 85.80% | 86.60% | 84.80% | 84.80% | 85.40% | 85.40% | 85.34% | 86.60%
HOC | KNN | 93.60% | 90.00% | 92.20% | 91.60% | 90.60% | 90.80% | 90.00% | 90.60% | 90.20% | 90.40% | 91.00% | 93.60%
NB 87.00% | 86.80% | 86.80% | 88.60% | 88.40% | 87.80% | 87.20% | 88.00% | 88.00% | 88.40% | 87.70% | 88.60%
SVM | 93.40% | 92.40% | 93.00% | 91.20% | 91.40% | 90.00% | 91.60% | 92.40% | 93.20% | 91.40% | 92.00% | 93.40%
SF KNN | 93.20% | 93.20% | 94.00% | 93.00% | 93.80% | 93.60% | 93.60% | 92.80% | 94.60% | 94.40% | 93.62% | 94.60%
NB 91.60% | 91.80% | 92.00% | 91.60% | 91.80% | 91.60% | 91.20% | 92.40% | 92.80% | 93.20% | 92.00% | 93.20%
SVM | 87.40% | 86.40% | 86.40% | 87.40% | 87.00% | 87.40% | 87.00% | 89.20% | 88.00% | 85.80% | 87.20% | 89.20%
PSE KNN [ 91.20% | 91.40% | 90.20% | 89.40% | 89.60% | 90.60% | 89.40% | 90.00% | 89.40% | 89.80% | 90.10% | 91.40%
NB 89.00% | 90.00% | 90.20% | 89.20% | 90.00% | 89.60% | 90.40% | 90.20% | 90.40% | 90.40% | 89.94% | 90.40%
SVM | 87.40% | 88.60% | 89.60% | 88.20% | 89.80% | 89.00% | 89.40% | 90.40% | 90.40% | 90.60% | 89.34% | 90.60%
HOS | KNN | 91.40% | 92.40% | 91.80% | 90.60% | 91.80% | 93.00% | 91.40% | 93.60% | 93.80% | 93.40% | 92.32% | 93.80%
NB 89.60% | 88.60% | 88.40% | 89.40% | 88.80% [ 88.00% | 86.80% | 88.20% | 88.00% | 88.60% | 88.44% [ 89.60%

Table 6: All data results for valence using MAHNOB dataset.

# of Feature 10 11 12 13 14 15 16 17 18 19 MEAN | MAX

SVM | 62.40% | 64.00% | 64.00% | 63.80% | 63.80% | 62.00% | 63.60% | 64.60% | 63.80% | 62.20% | 63.42% | 64.60%
HOC | KNN [ 73.80% | 72.00% | 78.00% | 74.60% | 74.20% | 72.40% | 67.80% | 73.40% | 72.40% | 73.00% | 73.16% | 78.00%
NB 71.80% | 71.60% | 73.00% | 74.00% | 72.80% | 72.40% | 70.40% | 70.60% [ 70.20% | 70.80% | 71.76% | 74.00%
SVM | 86.00% | 86.20% | 85.20% | 83.40% | 84.60% | 84.00% | 86.40% | 87.60% | 87.20% | 88.20% | 85.88% | 88.20%
SF KNN | 88.20% | 89.20% | 91.00% | 89.20% | 89.60% | 89.20% | 90.40% | 89.20% | 88.60% | 88.80% | 89.34% | 91.00%
NB 85.00% | 84.20% | 85.40% | 84.60% | 84.80% | 85.60% | 85.20% | 84.80% | 85.40% | 85.40% | 85.04% | 85.60%
SVM | 66.20% | 68.80% | 69.60% | 69.60% | 68.80% | 66.80% | 68.40% | 65.40% | 65.60% | 66.80% | 67.60% | 69.60%
PSE KNN | 76.20% | 77.40% | 77.60% | 75.60% | 75.40% | 75.20% | 75.00% | 70.80% | 74.40% [ 77.40% | 75.50% | 77.60%
NB 71.80% | 71.80% | 69.40% | 71.00% | 69.80% | 70.40% | 69.40% | 68.60% | 68.80% | 68.80% | 69.98% | 71.80%
SVM | 73.60% | 72.00% | 73.00% | 69.80% | 70.80% | 71.40% | 71.60% | 69.20% | 70.20% | 68.20% | 70.98% | 73.60%
HOS | KNN | 78.40% | 77.80% | 76.20% | 76.80% | 78.00% | 75.80% | 71.60% | 75.00% | 76.20% [ 75.60% | 76.14% | 78.40%
NB 76.80% | 75.20% | 7520% | 75.20% | 75.00% | 74.80% | 73.60% | 75.80% | 75.20% | 73.20% | 75.00% | 76.80%

The PSE method was chosen due its good performance in extracting features from EEG for imagined left and right-hand
movements in [61]. Our results show that PSE feature extraction is outperformed by all of our chosen feature extraction
methods.

Classifying valence with PSE feature extraction gives the accuracy of 69.14% using SVM, 75.86% using KNN, and 70.88%
using NB. Reducing the data improves the accuracy of valence on average by 2.74%. The best results were obtained when
using KNN with 30 features, namely 76.17%. The accuracies in using SVM and NB on reduced data are 72.73% and 75.39%,
respectively.

Using all data in classifying arousal gives the accuracy of 71.48 using SVM, 75.0% using KNN, and 71.95% using NB
(see Table 4). As before, reducing the data increases the accuracy. The accuracies achieved using reduced data are 72.66%,
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76.17%, and 76.33% for SVM, KNN, and NB, respectively. It will be noted that when using PSE to calculate arousal, the
best results were achieved using NB.

Higher Order Spectral Feature Extraction

An accuracy of 82% for two-class classification using HOS feature extraction was achieved in [33]. Motivated by this, HOS
was chosen as one of the feature extraction methods. Using the HOS feature extraction method proposed in [33] gives the
highest accuracy of 79.84% for valence and 80.39% for arousal on all data. Reducing the data increases the accuracy of
valence to 84.14% and to 86.95% for arousal. All these results have been observed when using KNN.

When using HOS feature extraction, the overall average increase in accuracy is 4.46% for arousal and 2.97% for valence.
For both valence and arousal, the highest increase in accuracy is when using KNN.

4.2.2 MAHNOB dataset

Similarly to DEAP dataset, different classification methods were trained to compare their performance using the reduced
data and all data. For all methods, the reduced data give the higher accuracy for both valence and arousal. The highest
accuracy achieved in classifying valence is 94.6% and for arousal 94%.

Likewise, the classification methods were trained using four different feature extraction methods, including HOC, HOS,
SF, and PSE. Using each of these methods, features were selected. Since the number of observations per subject is 20, the
number of features selected was between 10 and 19. The classification methods used were SVM, KNN, and NB. All results
for reduced data are shown in Table 5 for valence, and Table 7 for arousal. In addition, the all-data results are given in
Table 6 for valence and Table 8 for arousal.

Table 7: Reduced data results for arousal using MAHNOB dataset.

# of Features 10 11 12 13 14 15 16 17 18 19 AVG MAX
SVM | 87.00% | 86.60% | 89.00% | 87.80% | 86.80% | 88.00% | 87.60% | 87.20% | 90.20% | 88.20% | 87.84% | 90.20%
HOC | KNN [ 91.20% | 91.20% | 92.60% | 92.80% | 91.60% | 90.40% | 93.00% | 89.20% | 91.60% | 92.23% | 91.58% | 93.00%
NB 89.60% | 89.00% | 89.40% | 90.20% | 88.80% | 89.40% | 89.00% | 88.80% | 89.40% | 89.40% | 89.30% [ 90.20%
SVM | 89.60% | 91.40% | 92.00% | 91.40% | 91.60% | 91.00% | 90.20% | 91.40% | 90.60% | 91.00% | 91.02% | 92.00%
SF KNN [ 93.60% | 91.60% | 91.40% | 93.60% | 93.40% | 93.20% | 92.40% | 92.40% | 94.00% | 92.40% | 92.80% | 94.00%
NB 90.20% | 92.40% | 90.60% | 91.00% | 91.40% | 90.40% | 92.00% | 92.00% | 93.20% | 92.00% | 91.52% | 93.20%
SVM | 87.40% | 87.40% | 88.00% | 86.80% | 87.40% | 86.20% | 85.40% | 86.40% | 86.80% | 85.80% | 86.76% | 88.00%
PSE KNN | 89.60% | 88.20% | 87.60% | 86.80% | 85.60% | 88.60% | 87.60% | 86.20% | 85.20% | 88.40% | 87.38% | 89.60%
NB 90.60% | 90.20% | 91.20% [ 90.80% | 90.40% | 90.20% | 89.60% | 89.00% | 90.60% | 90.60% | 90.32% | 91.20%
SVM | 88.80% | 89.40% | 89.60% | 89.40% | 90.20% | 91.40% | 90.00% | 90.40% | 91.00% | 91.80% | 90.20% | 91.80%
HOS [ KNN | 89.60% | 90.27% | 91.00% | 91.40% | 93.60% | 92.60% | 92.00% | 91.00% | 93.60% | 91.20% | 91.63% | 93.60%
NB 88.40% | 88.20% | 88.60% | 87.40% | 86.80% | 88.20% | 88.20% | 87.80% | 89.20% | 88.40% | 88.12% | 89.20%

Table 8: All data results for arousal using MAHNOB dataset.

# of Features 10 11 12 13 14 15 16 17 18 19 MEAN | MAX

SVM | 66.00% | 66.40% | 66.80% | 65.60% | 66.40% | 67.00% | 67.00% | 69.40% | 65.80% | 68.00% | 66.84% | 69.40%
HOC | KNN | 75.40% | 76.00% | 78.80% | 77.60% | 77.40% | 79.00% | 77.60% | 74.80% | 78.00% | 77.93% | 77.25% | 79.00%
NB 7420% | 74.60% | 75.40% | 74.60% | 75.00% | 74.40% | 74.60% | 74.60% | 75.40% | 74.00% | 74.68% | 75.40%
SVM | 87.40% | 87.80% | 87.40% | 88.00% | 88.40% | 88.40% | 89.60% | 89.00% | 87.40% | 89.40% | 88.28% | 89.60%
SF KNN | 90.20% | 90.20% | 89.40% | 92.20% | 89.40% | 88.20% | 89.80% | 88.80% | 88.40% | 89.20% | 89.58% | 92.20%
NB 86.60% | 84.80% | 85.80% | 83.60% | 86.20% | 86.00% | 85.20% | 85.40% | 86.60% | 86.00% | 85.62% | 86.60%
SVM | 70.20% | 70.20% | 69.80% | 68.80% | 67.80% | 67.40% | 68.40% | 67.80% | 67.80% | 68.80% | 68.70% | 70.20%
PSE KNN | 79.80% | 76.60% | 77.60% | 78.00% | 77.60% | 77.60% | 76.40% | 75.80% | 75.40% | 76.20% | 77.10% | 79.80%
NB 75.80% | 74.40% | 74.80% | 76.00% | 73.80% | 74.20% | 74.20% | 73.60% | 74.00% | 70.80% | 74.16% | 76.00%
SVM | 81.20% | 81.00% | 84.40% | 85.80% | 82.80% | 86.00% | 86.60% | 87.80% | 85.40% | 86.40% | 84.74% | 87.80%
HOS | KNN [ 89.00% | 86.20% | 85.40% | 88.80% | 86.40% | 86.80% | 88.40% | 88.60% | 89.60% | 90.00% | 87.92% | 90.00%
NB 82.00% | 81.40% | 83.00% | 81.60% | 82.60% | 83.20% | 83.40% | 83.00% | 83.00% | 81.80% | 82.50% | 83.40%

Higher Order Crossing Feature Extraction

When using all data to classify valence, the best results were obtained using KNN with 12 features, resulting in accuracy of
78.0%. The performance of NB and SVM on all data are 74.0% and 64.6%, respectively. These results were obtained using
13 features for NB and 17 features for SVM, Table 6.

Table 5 shows that using reduced data improves accuracy on average by 18.56%. This takes into account different
number of features and classification methods. The highest increase of 21.92% was achieved using SVM. The lowest
increase in accuracy was achieved using NB, namely 15.94%. The highest accuracy achieved using reduced data is 86.6%,
93.6%, and 88.6% for SVM, KNN, and NB, respectively.

In addition to classifying valence, HOC was used to classify positive and negative arousal. Like in the valence case, the
best results were obtained for both on all data and reduced data using KNN. Table 8 shows the highest accuracy achieved
on all data is 79.0% and Table 5 shows the highest accuracy on reduced data is 93.0%. The average increase in accuracy
due to data reduction is 16.65%.

Comparing with the results obtained for DEAP, the accuracy achieved is much higher on MAHNOB-HCI.
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Statistical Features feature Extraction

Similarly to results on DEAP, statistical features give the best overall results for both all data and reduced data. The results
on reduced data are shown in Table 5 for valence and Table 7 for arousal. Similarly, all-data results are given in Tables 6
and 8 for valence and arousal, respectively.

When using all data, the best results for valence were obtained using KNN with 12 features giving 91.0%. Reducing the
data increases the accuracy to 94.6% with KNN. The highest accuracy achieved using SVM on all data is 88.2% and using
NB is 85.6%. Using reduced data, the average accuracies are 93.4% for SVM and 93.2% for NB. The overall average increase
is 5.8%. For KNN the average increase in accuracy is 4.3%, for SVM is 6.1%, and for NB is 7.0%.

The highest accuracy of 94.0% for arousal was reached using KNN with 18 features using reduced data. SVM and
NB achieved 92.0% and 93.2%, respectively. The average increase in accuracy is lower than for valence classification. For
arousal, the accuracy increases on average by 3.95%. The lowest average increase per classification method was achieved
using SVM with 2.74%, and highest average when using NB with 5.9%.

Power Spectral Entropy Feature Extraction

Similarly to statistical features and HOC, the highest accuracy on all data with PSE was achieved using KNN. The highest
accuracy achieved for valence is 77.6% using KNN with 12 features. Using SVM and NB respectively gives accuracies of
67.6% and 70.0%, Table 6.

Reducing the data increases the accuracy with the average increase for valence being 18.1%. For KNN, the average
increase is 14.6%. The best result using KNN is 91.4%. The best results on reduced data using SVM is 89.2%, and using NB
is 90.4%, Table 5.

Likewise, when classifying arousal, reducing the data increases the accuracy. Using all data, the highest accuracy
reached is 79.8%, and after data reduction the classification accuracy increases to 91.2%. Note that in using all data the
best result was achieved using KNN, but for reduced data the best result was obtained using NB. The average increase in
accuracy for all classifiers is 14.83%.

When classifying the DEAP dataset, PSE was outperformed by all of our chosen feature extraction methods. It is noted
that even though not giving the best results on the MAHNOB-HCI dataset, PSE feature extraction results are comparable
to the other feature extraction methods.

Higher order Spectral Feature Extraction

Tables 5 and 7 show the accuracies achieved on reduced data, and Tables 6 and 8 show accuracies for on all data.

The best results were obtained using SVM. HOS is the only feature extraction method that works better with SVM and
NB. Using all data, the highest accuracy in classifying valence is 78.4% using SVM, 76.8% using NB and 73.6% using KNN.

On reduced data, the best result was obtained using KNN with an accuracy of 93.8%. The corresponding best results
for SVM and NB are 90.6% and 89.6%, respectively. The average increase in valence accuracy is 16.0% The highest increase
in accuracy when using KNN is 21.3%. The increases in using SVM and NB are 13.2% and 13.4%, respectively.

The highest accuracy in classifying arousal using all data is 90.0%. This is much higher than using the same method in
classifying valence. Using reduced data, the classification accuracy increases to 93.6%. Similar to valence classification, the
best results were achieved using KNN for both all data and reduced data. The increase in accuracy, even though highly
noticeable, is much smaller than in classifying valence. The average increase in accuracy in classifying valence is 16.0% and
in classifying arousal is 4.93%.

4.3 Analysis and Comparison with other Emotion Recognition Systems

Accuracy may not always be the best way to evaluate classification performance, especially when the dataset is imbalanced,
as accuracy treats all examples the same. Thus, Receiver Operating Characteristic (ROC) curve has also been used to
visualise the performance of the classifiers.

ROC curve shows classifier performance as a trade off between specificity and sensitivity, giving a good estimate on
how well the classifiers separate the classes. A good classifier generates a ROC curve close to the upper left corner, whereas
a poor classifier has a curve close to a diagonal line, corresponding to a random guess.

ROC curves were generated for all feature extraction methods. Using the DEAP dataset the ROC curves in classifying
valence and arousal are shown in Figure 2 and Figure 3, respectively. Similarly, Figure 4 and Figure 5 show the curves
using the MAHNOB-HCI dataset. These figures show that the ROC curves of all classifiers are very close to the upper left
corner, indicating a good separation between the classes. Furthermore, Figures 3 and 5 show that for arousal calculation,
HOS features separate the classes slightly better than statistical features for both datasets. Also, Figure 2 shows that using
HOC features separates classes better than using statistical features.

The overall trend as observed from our experimental results indicates that reducing data increases the accuracy in
emotion recognition. The mRMR-SVM method for emotion classification is proposed in [15] and evaluated using the DEAP
dataset. Table 9 shows the comparison of this method with the proposed. The accuracy for two-class classification using
mRMR-SVM is 73.06% for valence and 73.14% for arousal. Whereas, the proposed method achieves accuracies of 89.61%
and 89.84% for valence and arousal, respectively. Therefore, it can be concluded that using mutual-information windowing
to reduce the data has a positive effect on accuracy. The reduced data was also used for three-class classification as well as
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Figure 2: ROC curve for DEAP Valence Classification.
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Figure 4: ROC curve for MAHNOB Valence Classification.

five-class classification. Table 9 shows that the proposed method achieves better performance for larger number classes as
well. The average accuracy of the proposed method is 61.88% for valence.

We compared with two other existing methods. The accuracy for four-class classification achieved by the method in
[62] reached 81.3% using IAPS (2D emotional space) dataset. For our proposed framework, both three-class classification
and five-class classification reached 92.50% accuracy for a single subject, i.e., it is far more superior. Furthermore, for two-
class classification the method in [63] achieved 94.4% for a single subject. For single subject classification, our framework
reached 99.9% for both DEAP and MAHNOB-HCI dataset for a number of subjects. Note that to give a more representative
performance of our framework, the results in Section 4.2 are presented as average accuracies over all subjects.

Finally, three-class classification was performed using MAHNOB-HCI dataset. Table 10 shows that using this dataset
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Figure 5: ROC curve for MAHNOB Arousal Classification.

Table 9: Using DEAP dataset to compare proposed method with method in [15].

Method No. of classes | Valence | Arousal
Reduced Data, 2 89.61:/«) 89.842/0
Statistical Features, KNN 3 5027 75.707
’ ! 5 61.88% 67.19%

2 73.14% 73.06%

mRMR-SMV [15] 3 62.33% 60.70%

5 45.32% 46.69%

gives more superior results than using DEAP dataset. There are two explanations for this. First, DEAP used music videos,
whereas MAHNOB-HCI used mostly clips from motion pictures. It can be argued, that the stimuli used in MAHNOB-HCI
are more effective in evoking emotional response. Second, both datasets are noisy and the pre-processing may not have
been as effective on DEAP dataset.

In addition the method was evaluated on a dataset generated by a commercial wireless EEG recording device, i.e.,
DREAMER [64]. For two class classification, the average accuracy of valence and arousal are respectively 91.7% and 90.4%,
i.e., adequate accuracy for emotion recognition. Since the dataset is smaller that DEAP and MAHNOB, no in-depth results
are presented.

5 CONCLUSION

This paper introduces a mutual information based data reduction via windowing for the purpose of increasing the accuracy
of subject-dependent emotion recognition. Several feature selection methods as well as classification methods were used
with the data reduction method. Overall, selecting an appropriate reduced signal improves accuracy.

PSE features did not perform as well as other features. When using accuracy as a measure to validate the methods,
statistical features gave better results. However, when the experimental results were analysed more thoroughly using
sensitivity and specificity of the models, it can be concluded that HOS and HOC feature extraction methods gave better
results. Furthermore, using ROC curves to analyse different classifiers, SVM and NB classifiers should not be discarded, as
on average when using statistical features, NB and SVM separate the classes better than KNN.

There are multiple factors to consider when dealing with emotion recognition using EEG signals. First, the EEG signal is
noisy. Furthermore, with most noise removal techniques there is no good way to identify which part of the signal is related
to emotions. Another factor is the required training time. For a single participant, full training using the proposed data
reduction took around 12 hours, depending on the size of the maximum data window. This was overcome by parallelising
the code, so that all training was performed simultaneously. From the experimental results, reducing the data gives more
accurate emotion recognition, and therefore is an option to consider. Depending on the feature extraction method used the
proposed data reduction method can still be a faster way of training the EEG emotion classifier.

Another challenge is the size of the datasets. The largest publicly available dataset, DEAP, has been used together with
a smaller similar dataset. In addition, due to subject dependency of the signals, the classification algorithms are trained
for each subject separately. The classification task is more challenging when higher number of emotions are involved.

Table 10: Classification using MAHNOB-HCI dataset

Method No. of classes | Valence | Arousal
Reduced Data, 2 94.6 94.00%
Statistical Features, KNN 3 86.00% 87.20%
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Appropriate steps have been taken to address small datasets, namely leave-one-out cross validation and ROC curves which
give the trade-off between sensitivity and specificity. Reducing the data showed promising results in 3-class classification
as well as 5-class classification.
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