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Sparse MDMO: Learning a Discriminative
Feature for Micro-Expression Recognition

Yong-Jin Liu, Senior Member, IEEE, Bing-Jun Li, Yu-Kun Lai, Member, IEEE

Abstract—Micro-expressions are the rapid movements of facial muscles that can be used to reveal concealed emotions. Recognizing

them from video clips has a wide range of applications and receives increasing attention recently. Among existing methods, the main

directional mean optical-flow (MDMO) feature achieves state-of-the-art performance for recognizing spontaneous micro-expressions.

For a video clip, the MDMO feature is computed by averaging a set of atomic features frame-by-frame. Despite its simplicity, the

average operation in MDMO can easily lose the underlying manifold structure inherent in the feature space. In this paper we propose a

sparse MDMO feature that learns an effective dictionary from a micro-expression video dataset. In particular, a new distance metric is

proposed based on the sparsity of sample points in the MDMO feature space, which can efficiently reveal the underlying manifold

structure. The proposed sparse MDMO feature is obtained by incorporating this new metric into the classic graph regularized sparse

coding (GraphSC) scheme. We evaluate sparse MDMO and four representative features (LBP-TOP, STCLQP, MDMO and FDM) on

three spontaneous micro-expression datasets (SMIC, CASME and CASME II). The results show that sparse MDMO outperforms these

representative features.

Index Terms—Micro-expression, MDMO feature, sparse coding, recognition.

✦

1 INTRODUCTION

M ICRO-EXPRESSIONS are brief and involuntary move-
ments of facial muscles, typically lasting for less than

0.5 seconds [1]. Psychological studies have shown that a
person may intentionally conceal her/his genuine emotions,
but cannot fake micro-expressions [2]. Recognizing micro-
expressions from video clips is useful in many applications,
including clinical diagnosis, social interaction and national
security.

The choice of features is critical for micro-expression
recognition. A few features have been proposed and they
can be broadly divided into two classes: appearance-based
and optical-flow-based. Local binary pattern (LBP) is a clas-
sic feature in the first class, which has been successfully
applied in image-based macro-expression recognition [3].
An extension of LBP, called local binary pattern from three
orthogonal planes (LBP-TOP), is proposed in [4] for macro-
expression recognition in video clips. Pfister et al. [5] pro-
pose a micro-expression recognition method based on LBP-
TOP. By introducing local structure information into LBP-
TOP, Huang et al. [6] propose spatiotemporal completed
local quantization patterns (STCLQP). STCLQP partitions a
video clip into blocks and concatenates individual features
from all the blocks into an overall feature. However, the
dimension of the STCLQP feature may be very large.

The second feature class relies on a robust and accurate

• Y.-J. Liu and B. Li are with the Beijing National Research Center for
Information Science and Technology, Department of Computer Science
and Technology, Tsinghua University, Beijing, P. R. China.
E-mail: liuyongjin@tsinghua.edu.cn

• Y.-K. Lai is with School of Computer Science and Informatics, Cardiff
University, UK.

This work was supported in part by the Natural Science Foundation of
China (61725204, U1736220, 61521002) the National Key Research and
Development Plan (2016YFB1001202) and Royal Society-Newton Advanced
Fellowship (NA150431).

optical flow estimation. Histograms of oriented optical flow
(HOOF) [7] is an elaborated feature that is originally pro-
posed for human action recognition. To apply HOOF for
micro-expression recognition, Liu et al. [8] divide the whole
facial area into 36 regions of interest (ROIs) based on the fa-
cial action coding system [9], and compute a HOOF feature
for each ROI, from which a main direction is determined.
The main directions of all the ROIs are consolidated into a
72-dimensional feature vector. Finally, the feature vector is
averaged over time, leading to a so-called main directional
mean optical-flow (MDMO) feature. Facial dynamics map
(FDM) [10] is another optical-flow-based feature. Instead of
using 36 ROIs as in MDMO, FDM computes a pixel-level
alignment for micro-expression sequences. Each sequence is
further divided into spatiotemporal cuboids, in which the
principal optical flow directions are computed to represent
the local facial dynamics. Both MDMO and FDM make
use of special properties1 in micro-expressions to optimize
the estimated optical flow, such that it is insensitive to
illumination changes.

Our study presented in this paper is inspired by two key
observations:

• Due to the characteristics of short duration and low
intensity, any features depicting micro-expressions
are sparse in both temporal and spatial domains [11];

• The feature data is likely to reside on a
low-dimensional manifold embedded in a high-
dimensional feature space.

Based on these observations, we propose a sparse MDMO
feature that preserves the underlying manifold structure
and has more discriminating power than the original

1. For example, FDM assumes that most of facial areas in neighboring
frames remain motionless, due to very few facial muscles involved in
micro-expressions.
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MDMO feature. Sparse representations have been widely
used for face and facial expression recognition (e.g., [12],
[13]). The classic sparse-representation-based classification
(SRC) method [12] directly builds a dictionary D from the
entire training set as the concatenation of all k classes, D =[
c1 c2 · · · ck

]
, where ci =

[
v
i
1 v

i
2 · · · v

i
ni

]
,

v
i
j is a vector representing the jth sample image Ij by

packing the grayscale values of all the pixels in Ij column
by column, and ni is the number of samples in the ith class.
SRC does not need an explicit feature extraction scheme
and can efficiently handle occlusion and corruption in facial
images. However, using all the pixel information in training
images may lead to a dictionary of a huge size.

Rather than using a fixed dictionary like the one in SRC,
many dictionary learning methods have been proposed
to learn an effective dictionary from training data (e.g.,
[13], [14], [15], [16]). Unsupervised dictionary learning, such
as K-SVD [14], works well for image restoration, image
compression and denoising. For classification tasks, recent
studies can be broadly categorized into two classes. One
class is supervised dictionary learning which takes full ad-
vantage of class labels of training data. Two representative
works are discriminative K-SVD (D-KSVD) [13] and label
consistent K-SVD (LC-KSVD) [15]. The other class is to
consider the local geometric structure in the sparse data.
In many image and vision applications, the sample data in
a high-dimensional space is observed to lie on or close to a
smooth low-dimensional manifold. By building a k-nearest
neighbor graph to encode the local manifold structure, the
methods in this class learn a sparse representation that
explicitly incorporates the graph Laplacian as a regularizer
(e.g., GraphSC in [16]). Some other state-of-the-art methods
include [17], [18], [19]. Experimental results demonstrate
that graph regularized sparse representations have good
discriminating power for classification and have a good
scalability to large training data such as those in video
applications.

However, trivially applying existing sparse methods
such as K-SVD or GraphSC in micro-expression recognition
(MER) does not achieve good performance, since these gen-
eral sparse models do not consider the special and discrimi-
native structure inherent in MER applications. In this paper,
we introduce the classic graph regularized sparse coding
(GraphSC) [16] into the MDMO feature with the special
consideration to preserve an important manifold structure
in MER. The key idea is that in the MDMO feature space, the
low-dimensional manifold structure of data points can be
depicted by their sparsity. We propose a new distance metric
to capture this sparsity. By incorporating this new metric
into the unsupervised sparse representation GraphSC, the
desired sparse MDMO feature can be efficiently computed
by the elegant solver to GraphSC.

The main contributions of this paper are:

• A new distance metric in the MDMO feature space is
proposed based on the sparsity of data points. Based
on this metric, the manifold structure of data points
is revealed.

• The sparse MDMO feature making use of unsuper-
vised learning with sparse coding has the following
benefits: it (1) only requires a small amount of train-

(a) 36 ROIs (b) Optical flow (c) Atomic feature

Figure 1. (a) The facial area is partitioned into 36 regions of interest
(ROIs). (b) Optical flow is computed between this frame and the first
frame in the video clip. (c) MDMO represents a frame by an atomic
optical flow feature, which is a 72-dimensional vector.

ing data, (2) fits well with MER due to the limited
data availability, and (3) can be efficiently computed
by the GraphSC solver [16] with the new metric.

• The proposed sparse MDMO feature remains com-
pact but is substantially more discriminative than
MDMO, outperforming state-of-the-art features for
MER.

Extensive experiments are presented, in which two
trivial sparse codings with MDMO, the proposed sparse
MDMO and four representative features including MDMO
[8], LBP-TOP [4], STCLQP [6] and FDM [10], are evaluated
on three spontaneous micro-expression datasets, i.e., SMIC
[20], CASME [21] and CASME II [22]. The results show
that the proposed sparse MDMO outperforms the existing
features.

2 PRELIMINARIES

Since sparse MDMO is based on MDMO [8] and is also
closely related to GraphSC [16], we briefly introduce both
methods before presenting the sparse MDMO.

2.1 MDMO

Given a micro-expression video clip, i.e., an image sequence
(f1, f2, · · · , fm), the MDMO feature takes the optical flow
as the basis, due to its capacity to infer subtle motions
by detecting the changing intensity of pixels between two
frames. Based on the facial action coding system [9], MDMO
partitions the facial area in each frame into 36 regions
of interest (ROIs) using 66 facial points (Figure 1(a)). In
the first frame f1, these 66 facial points are detected by
discriminative response map fitting (DRMF) method [23].
Optical flow is computed between each frame fi, i > 1, and
the first frame f1 (Figure 1(b)). The facial points in fi, i > 1,
are then determined by the optical flow field.

In each frame fi, i > 1, the optical flow vectors in
each ROI Ri

k, k = 1, 2, · · · , 36, are categorized into eight
orientation bins, and the bin Bmax with the maximum
number of optical flow vectors is selected. The so-called
main direction of the optical flow in Ri

k is defined as the
average of all optical flow vectors fallen into Bmax, de-

noted as u
i
k = (ρik, θ

i

k), where the optical flow vectors are
represented in polar coordinates (ρi, θi), ρi and θi are the
magnitude and the direction. MDMO represents each frame
fi, i > 1, by an atomic optical flow feature Ψi (Figure 1(c)):

Ψi =
(
u
i
1,u

i
2, · · · ,u

i
36

)T
(1)
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The dimension of Ψi is 36× 2 = 72, where 36 is the number
of ROIs. A micro-expression video clip Γ can be represented
by a series of atomic optical flow features

Γ = (Ψ2,Ψ3, · · · ,Ψm), (2)

where m is the number of frames in the video clip. Finally,
the MDMO feature for the video clip Γ is defined as a 72-

dimensional vector Ψ̃, which is a normalized version of Ψ:

Ψ =
[(
ρ1, θ1

)T
,
(
ρ2, θ2

)T
, · · · ,

(
ρ36, θ36

)T ]
, (3)

where

(
ρk, θk

)
=

1

m− 1

m∑

i=2

u
i
k, k = 1, 2, · · · , 36 (4)

The 72-dimensional vector Ψ̃ is represented by:

Ψ̃ = [αP, (1− α)Θ] (5)

where P = [ρ̃1, ρ̃2, · · · , ρ̃36] is a 36-dimensional row vec-

tor, ρ̃k = ρk

max{ρj ,j=1,2,··· ,36} , k = 1, 2, · · · , 36, and Θ =
[
θ1, θ2, · · · , θ36

]
is a 36-dimensional row vector. It was

shown in [8] that α ∈ [0.75, 0.98] achieves best results. In
all experiments in this paper, we use fixed α = 0.9.

2.2 GraphSC

Let X = [x1, · · · ,xN ] ∈ R
d×N be a data matrix, where N

is the number of data points, xi is a d-dimensional column
vector denoting the ith data point. Sparse coding is to find
a sparse representation for each data point, based on a
dictionary D = [d1, · · · ,dnd

] ∈ R
d×nd , which is an over-

complete matrix consisting of nd basis vectors dj , nd > d.
The sparse coding problem can be formulated as follows:

min
D,S

‖X−DS‖2F + λ
N∑

i=1

g(si),

s.t. ‖di‖
2 ≤ c, i = 1, 2, · · · , nd

(6)

where S = [s1, · · · , sN ] ∈ R
nd×N is the coefficient matrix,

in which each column vector si is a sparse representation
for the data point xi, ‖ · ‖F denotes the matrix Frobenius
norm, g is a function to measure the sparseness of si, λ is a
weight to balance the reconstruction error and sparsity, and
c is a constant imposing a norm constraint for the basis.

Directly optimizing the function (6) may lead to a so-
lution that ignores the underlying structure in the data set
X. To introduce a structure constraint into sparse coding,
GraphSC constructs a k-nearest neighbor graph G in the
data set X. Each vertex in G is a data point and the edges of
G are represented by a weight matrix W = {wi,j},

wi,j =

{
1, xj ∈ Ni

0, otherwise
(7)

where Ni is the set of k-nearest neighbors of xi. To put
the structure constraint represented by the graph G to the
sparse representation S, a graph regularization term can be
described as:

1

2

∑

i,j

wi,j‖si − sj‖
2
2 (8)

Eq. (8) can be rewritten in the matrix form using the Lapla-
cian matrix L as Tr(SLST ), where Tr(·) is the matrix trace,

L = Σ−W, Σ = diag(σ1, σ2, · · · , σN ) and σi =
∑N

j=1 wi,j

is the degree of xi in G. GraphSC optimizes the following
objective function by incorporating the graph regularization
term (Eq. 8) into the original sparse coding (Eq. (6)):

min
D,S

‖X−DS‖2F + wgTr(SLS
T ) + λ

N∑

i=1

‖si‖1

s.t. ‖di‖
2 ≤ c, i = 1, 2, · · · , nd

(9)

where wg is a regularization parameter and GraphSC
chooses ‖si‖1 for the function g(si) in Eq. (6). An elegant
numerical solver is proposed in [16] to find an optimal
solution in Eq. (9) for both D and S.

3 SPARSE MDMO FEATURE

Observing that any features depicting micro-expressions
are sparse [11], we propose a sparse representation for the
MDMO feature, which considers the manifold structure of
sparse data in the MDMO feature space and therefore is
more discriminative than the original MDMO feature.

3.1 Overview

Let Π = {Γ1,Γ2, · · · ,Γnclips
} be a given micro-expression

video dataset consisting of nclips video clips. In MDMO,
each video clip Γi is represented by mi − 1 atomic optical
flow features (ref. Eq. (2)), where mi is the number of frames
in Γi. We collect all atomic features in Π and consolidate
them into a data matrix X ∈ R

72×N :

X =
[
Γ1,Γ2, · · · ,Γnclips

]
=

[
Ψ1

1,Ψ
1
2, · · · ,Ψ

nclips

mnclips
−1

]

(10)
where the number of data points N =

∑nclips

i=1 (mi − 1).
Whenever there is no risk of confusion, Γi is also used as a
sub-matrix

Γi =
[
Ψi

1,Ψ
i
2, · · · ,Ψ

i
mi−1

]
∈ R

72×(mi−1) (11)

Applying the objective function in Eq. (6) with Eq. (10) can
learn a sparse representation S and a dictionary D for the
data set X depicting in Eq. (10). However, our experiments
in Section 4 show that this trivial implementation does not
achieve the best performance of sparse representation.

Our key observation is that the data points contained in
X reside on multiple low-dimensional manifolds embedded
in R

72×N . The simple average operation in MDMO (ref.
Eq. (4)) can easily lose this underlying manifold structure
and most of dynamic details. To overcome this limitation
in MDMO, in Section 3.2, we propose a new distance
metric in the MDMO feature space based on the sparsity
of the data. With the aid of this new metric, the manifold
structure in X is revealed and in Section 3.3, a manifold-
structure-preserving sparse coding method is proposed by
incorporating the new metric into the GraphSC. Finally in
Section 3.4, a temporal pooling is applied to the sparse
representation of X, leading to a concise sparse MDMO
feature. Both MDMO and sparse MDMO are vector rep-
resentations, and thus, the same SVM classifier with the
polynomial kernel used in [8] can be applied. In Section 4,
experimental results are presented, demonstrating that our
proposed sparse MDMO outperforms the original MDMO
and several other representative micro-expression recogni-
tion features. The overview of our proposed sparse MDMO
feature is illustrated in Figure 2.
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Figure 2. Overview of the proposed MER system with sparse MDMO features.

3.2 A new distance metric

The structure inherent in the data set X ∈ R
72×N (Eq. (10))

is two-fold:

• in the MDMO feature space, the sample points
from each micro-expression category form a low-
dimensional manifold, and

• different micro-expression categories contribute to
multiple low-dimensional manifolds.

To reveal the above manifold structure, we propose a local
distance metric, which is defined in a subspace for each
video clip Γi ∈ Π (ref. Eq.(13)), such that in the same micro-
expression category, distance is smaller for more relevant
features. We then assemble local distance metrics into a
global distance metric (ref. Eq.(14)), such that the distance
between sample points from different micro-expression cat-
egories is infinity.

To define the local distance metric, For each data point
Ψi

j in the sub-matrix Γi (Eq. (11)), we solve the following
sparse representation problem:

min ‖γj‖1 s.t. Ψi
j = B

i
jγj (12)

where B
i
j is the basis matrix containing all the remaining

points
[
Ψi

1, · · · ,Ψ
i
j−1,Ψ

i
j+1, · · · ,Ψ

i
mi−1

]
in Γi. Eq. (12) can

be solved by the LARS-Lasso method [24]. Note that the kth
element γj(k) in the vector γj , which corresponds to the

point Ψi
k, represents the contribution of Ψi

k to reconstruct
Ψi

j . Obviously, the higher γj(k) is, the more similar Ψi
j

and Ψi
k are. Since we use γj(k) for similarity measure,

a nonnegativity constraint is imposed for all γj(k). Let

Υi =
[
γ1,γ2, · · · ,γmi−1

]
. We normalize Υi by setting Υi =

Υi/‖Υi‖F =
[
γ1,γ2, · · · ,γmi−1

]
. Note that 0 ≤ γj(k) ≤ 1,

∀j, k.
Based on the similarity measure γj(k), we propose the

local distance metric di(·) for points in Γi as:

di(Ψ
i
j ,Ψ

i
k) =

{
0 if j = k

1
γj(k)+γk(j)

2 +1
otherwise (13)

The bias 1 in the denominator is added to handle the case
that both γj(k) and γk(j) are zero. Then for all data points
in X (Eq. (10)), the global metric is defined by

d(Ψa
p,Ψ

b
q) =

{
da(Ψ

a
p,Ψ

a
q ) if a = b

∞ otherwise
(14)

Property 1. The distance d(·) defined in Eq. (14) is a metric.

Proof. We consider the case that two points p1 and p2 are in
the same set Γi and the other case can be proved trivially.
First, by definition, we have

• d(p1, p2) = d(p2, p1) and
• d(p1, p2) = 0, if and only if p1 = p2.

Second, if p1 6= p2, we have 0.5 ≤ d(p1, p2) ≤ 1, since
0 ≤ γj(k) ≤ 1, ∀j, k, in Eq. (13). Lastly, we show the
triangle inequality. Since 0.5 ≤ d(p1, p2) ≤ 1 and 0.5 ≤
d(p2, p3) ≤ 1, we have 1 ≤ d(p1, p2) + d(p2, p3) ≤ 2, and
thus, d(p1, p3) ≤ d(p1, p2) + d(p2, p3). That completes the
proof.

3.3 Manifold-structure-preserving sparse coding

GraphSC (ref. Eq. (9)) relies on a weight matrix W that en-
codes a k-nearest neighbor graph G. To explore the manifold
structure of data points in X, we build the graph G using the
metric defined in Eq. (14). Accordingly, the resulting weight
matrix W has a block diagonal structure:

W =




W1

W2

. . .

Wnclips


 (15)

where the sub-matrix Wi is constructed by applying the
k-nearest neighbor method to the video clip Γi using the
metric in Eq. (13). We apply the optimization scheme in [16]
to solve Eq. (9) with the weight matrix in Eq. (15), from
which the optimal dictionary D and the manifold-structure-
preserving sparse representation S are obtained.
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Disgust The original MDMO feature The sparse MDMO feature Repression The original MDMO feature The sparse MDMO feature

Figure 3. Two representative micro-expressions (disgust and repression), each of which contains two example video clips from the CASME dataset.
For each of four video clips, its original MDMO and sparse MDMO features are illustrated. Note that sparse MDMO features show higher similarity
for the same micro-expression than the original MDMO features.

3.4 Temporal pooling

Given the sparse representation S for the video set Π, a
micro-expression video clip Γi ∈ Π can be represented
by a coefficient matrix Si = {sikj} ∈ R

nd×(mi−1), where
nd is the size of the dictionary. To maintain the simplicity
of MDMO in sparse MDMO, biologically-inspired pooling
operations [25] can be applied, which further make the
feature invariant to small translations and thus more robust.
A pooling function replaces a pool of scale values {sikj},
j = 1, 2, · · · ,mi − 1, by a summary statistic; e.g., the max
and the average poolings are two representative functions.
We use a mixed pooling strategy to obtain a vector repre-
sentation zi for the video clip Γi:

zi = {zi1, z
i
2 · · · , z

i
nd
},

zik = ωmaxj{s
i
kj}+ (1− ω)meanj{s

i
kj},

j = 1, 2 · · · ,mi − 1
(16)

where the parameter ω ∈ [0, 1] is optimized in Section
4. We call the vector zi the sparse MDMO feature for the
video clip Γi. Figure 3 illustrates four examples of sparse
MDMO features with the comparison to the original MDMO
features, showing that sparse MDMO features have higher
similarity for the same micro-expression than the original
MDMO features.

3.5 Computational complexity

The computational complexity of computing sparse MDMO
features includes three parts:

• compute and collect all atomic optical flow features
in Π, which takes O(nclipskfmp) time [8], [26];

• build the k-nearest neighbor graph G using the met-
ric (14), which takes O(nclipsk

2.2
f ) [24];

• GraphSC optimization and temporal pooling take
O(nclipskfnd) time [16], [27];

where nclips is the number of video clips in the dataset, kf
is the number of frames in each clip, mp is the number of
pixels in each frame and nd is the size of dictionary.

4 EXPERIMENTS

We implement the proposed sparse MDMO feature in MAT-
LAB R2016a and the source code is available2. Three sparse
versions of MDMO feature are compared:

2. http://cg.cs.tsinghua.edu.cn/people/∼Yongjin/Yongjin.htm

• BasicSC-MDMO: this feature is trivially obtained by
optimizing the objective function in Eq. (6) with the
data matrix X in Eq. (10) and the function g(si) =
‖si‖1, followed by the temporal pooling in Section
3.4.

• GraphSC-MDMO: this feature is trivially obtained by
optimizing the objective function in Eq. (9) with the
data matrix X in Eq. (10) and using the Euclidean
distance metric to construct the k-nearest neighbor
graph G, followed by the temporal pooling in Section
3.4.

• Sparse MDMO, this feature is obtained by optimizing
the objective function in Eq. (9) with the data ma-
trix X in Eq. (10) and using the manifold-structure-
preserving distance metric in Eq. (14) to construct
the k-nearest neighbor graph G, followed by the
temporal pooling in Section 3.4.

We compare these sparse features with four representa-
tive MER features, including two (LBP-TOP [4] and STCLQP
[6]) from the appearance-based class and two (MDMO [8]
and FDM [10]) from the optical-flow-based class. In partic-
ular, we implement two versions of LBP-TOP feature:

• LBP-TOP: it is the original LBP-TOP feature applied
to the entire facial region;

• LBP-TOP-ROIs: it is a combinatorial LBP-TOP fea-
ture, constructed by applying the LBP-TOP feature
in each of 36 ROIs and consolidating them into one
feature.

All aforementioned features are compared on three spon-
taneous micro-expression datasets, including SMIC [20],
CASME [21] and CASME II [22]. In our experiments,
leave-one-subject-out (LOSO) cross validation is applied for
subject-independent evaluation, i.e., in each fold, one subject
is used as the test set, and the others are used as the training
set. After n folds, where n is the number of subjects in the
dataset, each subject has been used as the test set once, and
the final recognition accuracy was calculated based on all
of the results. In addition to LOSO cross validation, other
commonly used metrics including precision, recall and F1

rate are also evaluated. LIBSVM [28] with the polynomial
kernel is used for multiclass classification, i.e., for a dataset
with k classes, k(k− 1)/2 classifiers are constructed, each of
which is used to train data from two classes.
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Feature
Dictionary size nd

SMIC CASME CASME II
nd = 128 nd = 192 nd = 256 nd = 128 nd = 192 nd = 256 nd = 128 nd = 192 nd = 256

BasicSC-MDMO 63.46% 68.59% 67.95% 70.86% 70.86% 62.91% 58.05% 62.29% 60.59%
GraphSC-MDMO 65.38% 66.67% 67.95% 72.19% 72.19% 72.19% 56.78% 63.56% 60.17%

Sparse MDMO 66.67% 69.23% 70.51% 74.83% 73.51% 74.83% 59.75% 63.56% 66.95%
MDMO 58.97% 56.29% 51.69%

Table 1
In sparse MDMO representations, the average LOSO recognition rates in three spontaneous micro-expression datasets are not sensitive to

different dictionary sizes; their results are all better than the results from the original MDMO feature.
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Figure 4. The confusion matrices of STCLQP, MDMO and sparse MDMO on the SMIC datset. MDMO has the best performance for recognizing
negative micro-expression. Sparse MDMO has the best performance for recognizing the other two micro-expressions and has the best average
performance over three classes.

4.1 Parameter setting

The three sparse versions of MDMO feature have the same
vector representation as the original MDMO feature. So
they can be used in the same recognition process as that
in MDMO. The parameters in our proposed method are
specified as follows:

• the size of dictionary nd, the regularization parame-
ter wg , the sparsity balance weight λ and the pool-
ing parameter ω: these parameters are optimized by
five-fold cross validation with the candidate values
{128, 192, 256} for nd, {0.01, 0.1, 1, 10, 100} for wg ,
{0.1, 0.2, 0.3, 0.4, 0.5} for λ and {0.01i}100i=0 for ω.

• the number of nearest neighbors k: following [16],
we set k = 5 empirically;

In practice, our sparse representations are not sensitive
to these parameters. Table 1 summarizes the results of three
sparse MDMO representations with three dictionary sizes
nd = 128, 192 and 256 on three datasets. As a comparison,
the results of the original MDMO feature are also summa-
rized in Table 1. The results show that for all three dictionary
sizes, the sparse MDMO representations are all better than
the original MDMO feature. The results summarized in
Table 2 demonstrate that the performance of sparse MDMO
is stable with the parameter k in the range of 3 to 7.

Furthermore, we use the optimal parameters specified in
[8] for MDMO and LBP-TOP-ROIs, the optimal parameters
specified in [6] for STCLQP and LBP-TOP, and the optimal
parameters specified in [10] for FDM.

4.2 Experimental results

Evaluation on SMIC. The SMIC dataset [20] has three subsets
and we take the largest subset SMIC-HS in our experiment.
SMIC-HS contains 164 spontaneous micro-expression video

Dataset
the number of nearest neighbors

k = 3 k = 4 k = 5 k = 6 k = 7
SMIC 70.51% 69.87% 70.51% 70.51% 71.79%

CASME 74.83% 74.17% 74.83% 74.17% 73.51%
CASME II 64.83% 65.68% 66.95% 63.98% 63.16%

Table 2
The average LOSO recognition rates of sparse MDMO in three

spontaneous micro-expression datasets are stable with the number of
nearest neighbors k in the range of [3, 7].

clips recorded from 16 subjects in three classes: positive,
negative and surprise. All video data were recorded by a
high speed camera of 100 fps with 640× 480 resolution. We
follow [29] to optimize the normalized frame number to 20
for each clip using the temporal interpolation model (TIM).
The LOSO recognition rates of eight features, averaged over
three classes, are summarized in Table 3. The results show
that in previously existing features, the best appearance-
based feature is STCLQP, whose average recognition rate is
64.02%, and the best optical-flow feature is MDMO, whose
average recognition rate is 58.97%. The sparse represen-
tations of the MDMO feature improve the performance
and the sparse MDMO is the best sparse MDMO feature
(70.51%), demonstrating that manifold-preserving sparse
coding with our proposed new metric (Eq. (14)) achieves
good discriminating power for classification. We further
compare the confusion matrices of STCLQP, MDMO and
sparse MDMO in Figure 4. The results show that MDMO
has the best performance for recognizing negative micro-
expression; while sparse MDMO has the best performance
for recognizing the other two micro-expressions and has the
best average performance over three classes.

Evaluation on CASME. The CASME dataset [21] contains
195 spontaneous micro-expression video clips recorded
from 20 subjects in seven classes. Since the three classes
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Feature
SMIC CASME CASME II

LOSO P R F1 LOSO P R F1 LOSO P R F1

LBP-TOP 53.66% 53.62% 53.69% 53.65% 37.43% 36.35% 30.14% 32.96% 46.46% 41.52% 30.87% 35.41%
LBP-TOP-ROIs 51.28% 50.54% 49.38% 49.95% 53.64% 56.64% 45.87% 50.69% 44.49% 40.88% 30.28% 34.79%

STCLQP 64.02% 64.69% 64.06% 64.37% 57.31% 56.30% 56.06% 56.18% 58.39% 59.95% 55.18% 57.47%
FDM 54.88% 55.63% 52.74% 54.17% 56.14% 57.36% 52.82% 54.99% 45.93% 43.32% 29.63% 35.19%

MDMO 58.97% 60.08% 56.91% 58.45% 56.29% 58.17% 53.09% 55.51% 51.69% 52.24% 47.33% 49.66%
BasicSC-MDMO 68.59% 70.03% 68.08% 69.04% 70.86% 70.31% 65.63% 67.89% 62.29% 64.82% 58.56% 61.53%

GraphSC-MDMO 67.95% 68.03% 68.87% 68.44% 72.19% 76.87% 68.35% 72.36% 63.56% 65.01% 62.34% 63.64%
Sparse MDMO 70.51% 70.09% 70.73% 70.41% 74.83% 77.59% 72.54% 74.98% 66.95% 69.81% 68.42% 69.11%

Table 3
Average LOSO recognition rates, precision (P ), recall (R) and F1 metrics of different features in three spontaneous micro-expression datasets.

The best result for each dataset is shown in bold.
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Figure 5. The confusion matrices of STCLQP, MDMO and sparse MDMO on the CASME dataset. Sparse MDMO has the best performance for
recognizing each of four micro-expressions.
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Figure 6. The confusion matrices of STCLQP, MDMO and sparse MDMO on the CASME II dataset. STCLQP has the best performance for
recognizing surprise and others micro-expressions. Sparse MDMO has the best performance for recognizing all other three micro-expressions.

of happiness, fear and sadness contain very few samples,
we chose the remaining four classes in our experiment:
disgust, surprise, repression and tense. All video data in
CASME were recorded by a 60 fps camera with 1280 × 720
resolution. We follow [29] to optimize the normalized frame
number to 64 for each clip using TIM. The LOSO recog-
nition rates of eight features, averaged over four classes,
are summarized in Table 3. The results show that in previ-
ously existing features, the best appearance-based feature
is STCLQP (57.31%), and the best optical-flow feature is
MDMO (56.29%). All three sparse representations of the
MDMO feature improve the performance and the best
sparse MDMO feature is sparse MDMO (74.83%). These
results are consistent with those in SMIC. We further com-
pare the confusion matrices of STCLQP, MDMO and sparse
MDMO in Figure 5. The results show that sparse MDMO
has the best performance for recognizing each of four micro-
expressions.

Evaluation on CASME II. The CASME II dataset [22]
contains 246 spontaneous micro-expression video clips
recorded from 26 subjects in five classes: happiness, sur-
prise, disgust, repression and others. All video data in
CASME II were recorded by a high speed camera of 200
fps with 640 × 480 resolution. The cropped facial area in
each video frame is only of 170 × 140. We follow [29] to
optimize the normalized frame number to 90 for each clip
using TIM. The LOSO recognition rates of eight features,
averaged over five classes, are summarized in Table 3. The
results show that in existing features, the best appearance-
based feature is STCLQP (58.39%), and the best optical-
flow feature is MDMO (51.69%). Consistent with SMIC and
CASME, on CASME II, all three MDMO-based sparse rep-
resentations improve the performance and the best sparse
MDMO feature is sparse MDMO (66.95%). We further com-
pare the confusion matrices of STCLQP, MDMO and sparse
MDMO in Figure 6. The results show that STCLQP has the
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best performance for recognizing surprise and others micro-
expressions, while sparse MDMO has the best performance
for recognizing other three micro-expressions and has the
best average performance over five classes.

We note that micro-expression labels in [8] are grouped
in a non-standard manner; e.g., four classes of positive,
negative, surprise and other are used for CASME II in [8],
but in the original CASME II dataset [22], five classes of
happiness, surprise, disgust, repression and other are used.
In this paper, to facilitate comparison with state-of-the-
art methods, we use the standard labels from the original
datasets, and thus the results of MDMO and LBP-TOP are
different from [8].

Statistical significance. The Friedman test is the non-
parametric alternative to the one-way ANOVA with re-
peated measures and is used to detect differences in treat-
ments across multiple test attempts [30]. We performed the
Friedman test for statistical significance measurement, since
it is suitable for comparing multiple algorithms on different
datasets. To reduce randomness, 10-fold cross validation
was run 10 times on all the three datasets. We compare
sparse MDMO with original MDMO, BasicSC-MDMO and
GraphSC-MDMO. The differences between these features
were all statistically significant (p < 0.001). In statistics,
the Nemenyi test is a post-hoc test intended to find the
groups of data that differ after performing the Friedman
test [31]. In our case, a follow-up Nemenyi test showed
that the mean ranking of original MDMO, BasicSC-MDMO,
GraphSC-MDMO and sparse MDMO were 3.613, 2.235,
2.278 and 1.873 (where 1 is the best and 4 is the worst), and
the improvement of sparse MDMO over GraphSC-MDMO
(p < 0.001), and all three sparse features over the original
MDMO (all with p < 0.001) were statistically significant.

4.3 Comparison with other state of the art

We further compare sparse MDMO with [29], which uses an
appearance-based feature called HIGO and has state-of-the-
art performance (LOSO recognition rate 65.24% for SMIC
and 57.09% for CASME II). Their results show that even
TIM and Eulerian motion magnification can significantly
improve the HIGO performance (68.29% for SMIC and
67.21% for CASME II), sparse MDMO still has comparable
performance (70.51% for SMIC and 66.95% for CASME II).

Different from designing elaborate artificial features for
MER, recently blossoming deep learning methods can au-
tomatically learn effective features in a multi-layer style.
Some pioneering works [32], [33], [34] have applied deep
learning methods to MER. However, their performances
(LOSO recognition rates are 47.3%, 60.98% and 59.47% for
CASME II, respectively) are inferior to the performance of
sparse MDMO (66.95% for CASME II).

5 CONCLUSION

In this paper, we propose an effective sparse representation
that learns a discriminative feature called sparse MDMO
for spontaneous micro-expression recognition. To introduce
sparsity into the original MDMO feature, we construct a
data set X that contains all the atomic optical flow fea-
tures in video frames. We further propose a new distance

metric (Eq.(14)) in the MDMO feature space, such that
the underlying manifold structure inherent in X can be
revealed. By incorporating this new metric into the clas-
sic GraphSC scheme, an efficient sparse representation for
micro-expression recognition is built and the concise sparse
MDMO feature is obtained by applying temporal pooling
to this sparse representation. Experimental results on three
spontaneous micro-expression datasets (SMIC, CASME and
CASME II) show that sparse MDMO outperforms the state-
of-the-art features including LBP-TOP, STCLQP, MDMO
and FDM.
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spontaneous micro-expression database: Inducement, collection
and baseline,” in IEEE Intl. Conf. on Automatic Face and Gesture
Recognition, 2013, pp. 1–6.

[21] W.-J. Yan, S.-J. Wang, Y.-J. Liu, Q. Wu, and X. Fu, “For micro-
expression recognition: Database and suggestions,” Neurocomput-
ing, vol. 136, pp. 82–87, 2014.

[22] W.-J. Yan, X. Li, S.-J. Wang, G. Zhao, Y.-J. Liu, Y.-H. Chen, and
X. Fu, “CASME II: An improved spontaneous micro-expression
database and the baseline evaluation,” PloS ONE, vol. 9, no. 1, p.
e86041, 2014.

[23] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Robust dis-
criminative response map fitting with constrained local models,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2013, pp. 3444–3451.

[24] S. Han, H. Huang, H. Qin, and D. Yu, “Locality-preserving l1-
graph and its application in clustering,” in ACM Symp. Applied
Computing, 2015, pp. 813–818.

[25] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of
feature pooling in visual recognition,” in International Conference
on International Conference on Machine Learning (ICML), 2010, pp.
111–118.

[26] T. Senst, V. Eiselein, and T. Sikora, “Robust local optical flow
for feature tracking,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 22, no. 9, pp. 1377–1387, 2012.

[27] T. Ge, K. He, and J. Sun, “Product sparse coding,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014,
pp. 939–946.

[28] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM Trans. Intelligent Systems and Technology, vol. 2,
no. 3, p. 27, 2011.

[29] X. Li, X. Hong, A. Moilanen, X. Huang, T. Pfister, G. Zhao,
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