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What an “Ehm” Leaks About You:
Mapping Fillers into Personality Traits with
Quantum Evolutionary Feature
Selection Algorithms

Mohammad Tayarani, Anna Esposito and Alessandro Vinciarelli Member, IEEE

Abstract—This work shows that fillers - short utterances like “ehm” and “uhm” - allow one to predict whether someone is above median
along the Big-Five personality traits. The experiments have been performed over a corpus of 2,988 fillers uttered by 120 different
speakers in spontaneous conversations. The results show that the prediction accuracies range between 74% and 82% depending
on the particular trait. The proposed approach includes a feature selection step - based on Quantum Evolutionary Algorithms - that
has been used to detect the personality markers, i.e., the subset of the features that better account for the prediction outcomes and,
indirectly, for the personality of the speakers. The results show that only a relatively few features tend to be consistently selected, thus

acting as reliable personality markers.

Index Terms—Saocial Signal Processing, Personality Computing, Quantum Evolutionary Algorithms, Computational Paralinguistics.

1 INTRODUCTION

T was 1927 when Edward Sapir - widely known for
Ithe hypothesis of linguistic relativity - stated that
“[...] looking for the thing we call personality we have the
right to attach importance to the thing we call voice [...]
the nervous processes that control wvoice production must
share in the individual traits of the mnervous organization
that condition the personality” [1]. In the last decade,
computing domains like Social Signal Processing [2] and
Computational Paralinguistics [3] appeared to confirm
such an early intuition by showing that, at least to a
certain extent, it is possible to map features automatically
extracted from speech into personality traits (see [4] for
an extensive survey).

In line with the above, the goal of this work is
to show that the fillers uttered during a conversation
allow one to predict whether an individual is above
median along the Big-Five personality traits [5]. The
fillers are short vocalizations like “ehm” or “uhm” that
“are characteristically associated with planning problems [...]
planned for, formulated, and produced [...] just as any word
is” [6]. In other words, the fillers are those vocalizations
that speakers utter when they want to hold the floor,
but they do not know what to say next. Fillers occur
frequently during spontaneous conversations and, in
particular, the analysis presented in [7] shows that the
speakers involved in the experiments of this work utter,
on average, one filler every 10.9 seconds.
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To the best of our knowledge, no theory explains why
fillers should carry personality-relevant information and,
according to the literature, “[...] little research examines
the correlation between self-report personality traits and filler
words” [8]. The assumption underlying this article is
that individual differences captured through the Big-Five
traits lead to different motivations behind the use of
fillers and, hence, to different ways of uttering them.
For example, when it comes to information seeking
behaviour, people with high Openness tend to take
into account more sources [9]. Given that fillers often
correspond to planning problems (what to say next),
it is possible that the tendency to consider more alter-
natives requires one to hold the floor for longer time
and, correspondingly, to utter fillers in a different and
more sustained way. A similar explanation applies to
highly conscientious people that, in the case of planning
problems, are likely to go more thoroughly through all
possible alternatives and, hence, to utter the fillers in
a way that allows one to hold the floor longer and to
communicate high cognitive load (a tendency to use
fillers more frequently when the education level is higher
has been observed in [10]).

Extraversion has been shown to be a higher order
trait encompassing dominance, the tendency to control
people and the environment [11]. This suggests that
Extraversion is associated to a tendency to control the
floor and, hence, to utter the fillers in a way that ensures
such a goal to be achieved. In the case of Agreeableness,
the trait of those that tend to do what others need
and like, fillers are probably used as a way to ensure
smoother turn-taking. Finally, the anxiety associated to
Neuroticism has been shown to increase the number of
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speech disfluencies [12]. These include the fillers that,
in this case, are uttered in a way that conveys negative
emotions rather than planning problems.

The experiments have been performed over the 2,988
fillers - uttered by 120 individuals - of the SSPNet Vocal-
ization Corpus, a publicly available dataset that has been
used for the Interspeech 2013 Computational Paralinguistics
Challenge [13], an international benchmarking campaign
aimed at the automatic detection of fillers in spontaneous
speech streams. At the moment of the campaign, the
personality assessments were not available and, hence,
this is the first work that uses the data to perform
Automatic Personality Recognition (APR) [4], i.e., the au-
tomatic inference of self-assessed traits from observable
behavior.

The approach proposed in this work includes three
main steps, namely feature extraction, feature selection and
classification. The first step is performed using OpenS-
MILE, a feature extraction tool commonly adopted in
experiments aimed at the inference of personality, emo-
tions or other social and psychological constructs from
speech [14], [15]. The tool provides a standard set of 384
features that cover a wide spectrum of acoustic prop-
erties. Given the dimensionality of the feature set, the
approach includes a selection step based on Quantum
Evolutionary Algorithms (QEA) [16], well known for
their performance in combinatorial optimization prob-
lems. In particular, the QEA adopted in this work -
the Principal Component Analysis QEA (PCA-QEA) - is
original and it has been designed to concentrate the
search efforts in those regions of the feature space where
there is less certainty about whether the features should
be selected or discarded. Finally, the classification is
performed with eight standard classifiers.

Besides reducing the dimensionality of the feature
vectors, the selection approach allows one to identify
the features most likely to carry personality relevant
information in the fillers. This is important because it
provides insight about the relationship between person-
ality and speech production hypothesized by Sapir and
mentioned at the beginning of this section. In particular,
Section 5.3 shows that a relatively small number of
features (between 7 and 48 out of 384 depending on the
traits) is selected at least 90% of the times during the
multiple iterations of the feature selection approach used
in the experiments. Compared to correlational analysis -
the approach typically adopted in Psychology for such a
purpose [17] - the main advantage is that the features are
not considered individually, but as elements of subsets
expected to maximize the classification performance.
Thus, the selection approach provides better insights
on how multiple speech characteristics jointly convey
personality information.

The classification experiments have addressed two
main problems. The first is to predict whether the
speaker that has uttered a given filler is above median
along the Big Five traits (accuracy up to 68.0% depend-
ing on the particular trait), the second is to predict

whether the speaker that has uttered a set of fillers is
above median along the same traits (accuracy up to
81.2% depending on the trait). These results seem to
suggest that there is a relationship between personality
and fillers.

To the best of our knowledge, the main novelties of

this article are as follows:

o This is the first work showing that it is possible to
infer the self-assessed personality of speakers from
the way they utter fillers;

o This is the first work that identifies the physical
characteristics of fillers that better account for the
outcome of the classification approaches used in the
experiments and, hence, account indirectly for the
traits of the speakers;

o The classification approach includes an original fea-
ture selection methodology.

The rest of this work is organised as follows: Section 2
presents a survey of previous work, Section 3 describes
the data used in the experiments, Section 4 illustrates
the approach proposed in this article, Section 5 presents
experiments and results and the final Section 6 draws
some conclusions.

2 SURVEY OF PREVIOUS WORK

This section proposes a survey of previous work on
the inference of personality traits and on the Quantum
Evolutionary Algorithms aimed at feature selection.

2.1 Mapping Speech into Personality

According to the terminology proposed in [4], the ap-
proaches aimed at the inference of personality traits
can be split into two major groups, namely those that
address Automatic Personality Recognition (APR) - the
inference of the traits that the speakers attribute to them-
selves - and those that address Automatic Personality
Perception (APP) - the inference of the traits that the
listeners attribute to the speakers. From a personality
point of view, the main difference is that people self-
assessing their own personality, unlike those that as-
sess the personality of others, do not access only the
information available in the speech signal, but also the
rest of their experience, including aspects that are not
directly accessible to the observation of others. The main
consequence of such a difference is that, in general, the
relationship between data and traits tends to be less
consistent in APR than in APP. Hence, the performance
achieved in the latter task tends to be higher than in the
former one [4]. From a methodological point of view,
APR and APP share the problem of inferring personality
traits (self-assessed or assessed) from speech. However,
there is a problem that must be addressed in APP and
not in APR, namely the reliability of the assessments
obtained through the involvement of multiple person-
ality raters [18]. In particular, whenever the judgment of
multiple raters is aggregated, it is necessary to ensure
that they agree beyond chance.
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Only a few APR works have used speech in a uni-
modal approach [19], [20]. In both articles, the goal of
the experiments was to predict whether an individual
is in the upper or lower half of the personality scores
observed in the data, a binary task similar to the one
performed in this article. The approach proposed in [20]
combines both verbal and nonverbal aspects of speech,
but the experiments, performed over the EAR Corpus,
do not lead to accuracies higher than chance. In the case
of [19], the experiments have been performed over the
PersIA corpus (119 conversations involving 24 subjects).
The features have been extracted with OpenSMILE [14]
like in this work (see Section 5) and the accuracies are
up to 95% in the case of Conscientiousness.

In other works [21], [22], [23], [24], [25], speech is
combined with other behavioral cues and, in particular,
with gestures detected automatically in videos. In these
works, the APR task to be performed is a binary clas-
sification similar to the one proposed in this work and
the features extracted from speech account for prosody
(e.g., mean and standard deviation of formants, spectral
entropy, autocorrelation peaks, energy, etc.) and speech
activity (e.g., percentage of speaking time per subject,
number and length of voiced segments, etc.). In the
case of [23], [25], the data corresponds to 12 meeting
recordings each including 4 different individuals. In
the case of [22], the data is a collection of 89 self-
presentations given via Skype. The accuracy achieved
over the meetings goes up to 90% thanks to the large
amount of information available in meeting recordings,
but it is lower (65% to 75% depending on the trait) in
the case of self-presentations.

The APP problem was addressed in a larger number of
works [20], [26], [27], [28], [29], [30] and was the subject
of an international benchmarking campaign based on
a corpus of video blogs [31]. All proposed approaches
include a feature extraction step that typically represents
speech samples in terms of the same characteristics as
those used for APR (see above). The extracted features
are then mapped into personality scores using standard
machine learning algorithms such as, e.g., Support Vec-
tor Machines. In most cases [20], [26], [28], [30], the actual
recognition task corresponds to a binary classification
similar to the one proposed in this work.

Speech based APP was the subject of the Interspeech
2012 Speaker Trait Challenge [32], an international bench-
marking campaign during which several groups have
tested their models over the same data [33], [34], [35],
[36], [37], [38], [39], [40], [41]. The experiments of the
challenge were performed over the SSPNet Personality
Corpus, a collection of 640 speech samples (322 subjects
in total) rated in terms of the Big-Five by 11 assessors.
Overall, the most successful APP approaches appear to
be those that apply feature selection methodologies to
identify the physical characteristics of speech that better
explain the perception of the raters. The importance
of feature selection in APR tasks is supported also by
Personality Computing competitions [42]. However, the

performance changes significantly from one trait to the
other. In particular, while Extraversion and Conscien-
tiousness are predicted to a satisfactory extent, the other
traits are recognised beyond chance, but with limited
accuracy. Like in the case of this work, the goal of the
experiments was to predict whether people score above
median or not with respect to the Big-Five traits.

Overall, the state-of-the-art shows that most of the
works about APP and APR propose binary classification
tasks like the one addressed in this article (see Table 1).
Furthermore, it shows that when it has been possible
to perform rigorous comparisons across multiple ap-
proaches, those that adopt feature selection approaches
tend to perform comparatively better (such a result has
been observed for APP, but such a problem is method-
ologically similar to APR).

2.2 Quantum Evolutionary Algorithms

By reducing the dimensionality of data, feature selection
has an important role in the performance of machine
learning algorithms [43]. The task is the optimization
process of finding the optimal subset of features that
offer the best performance for machine learning algo-
rithms. A variety of optimization algorithms have been
applied to feature selection, including complete search,
greedy search, heuristic search, and random search [44],
[45], [46], [47]. However, most of existing feature selec-
tion methods are prone to stagnation in local optima [48].
Because of their global search abilities, evolutionary
algorithms have recently gained much attention [49].

The feature selection methodologies can be grouped
into two major categories, namely filter and wrapper
approaches. In the first case, the classifiers are not in-
volved in the selection process and the focus is on the
identification of features that are redundant with respect
to the others through measures like, e.g., the correlation
or the covariance. Filter approaches tend to be fast and
to have a low computational burden, but they result in
feature subsets that are not adapted to any classifier in
particular. As a consequence, the performances tend to
be lower, on average, than those achieved with wrap-
per methods. These latter use the performance that a
classifier achieves using a feature subset as a criterion
to retain or discard a feature. In this way, the subset of
the selected features changes from one classifier to the
other and, in general this leads to higher classification
performances [50]. On the other hand, wrapper methods
tend to be slower and computationally heavier than filter
ones.

The main difficulty in feature selection is that the
features interact with one another, a phenomenon called
epistasis [51]. This means, for example, that a feature
that is not discriminative individually can significantly
improve its contribution to the the classification perfor-
mance when it is used in conjunction with other features.
Similarly, a feature that is discriminative individually,
can become redundant when used jointly with other
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Fig. 1. The upper chart shows the number of fillers uttered by every speaker in the corpus. The lower chart shows the
average length of the fillers uttered by every speaker (the error bars correspond to the standard errors).

Ref. Subj. Samples Features Task  Ext. Agr.  Con. Neu. Ope. Other
[19] 12 119 conversations ~ OpenSMILE speech C(2) 63.0 56.3 95.0 32.8  40.3
features ACC ACC ACC ACC ACC
[20] 96 96 conversation prosody C(2) 57.3 58.3 53.2 50.4 61.4
transcripts LIWC, MRC ACC ACC ACC ACC ACC
[21] 43 4 collaborative prosody, turn takings C(2) 814 69.8 69.8 81.3 60.5
tasks per subject motion activity ACC ACC ACC ACC ACC
[22] 89 89 self prosody, posture, C(2) 70.8 65.2 73.0 76.4 66.3
presentations face/hand /head ACC ACC ACC ACC AcCcC
movements
[25] 48 12 meetings prosody, speech activity ~ C(3)  94.4 ACC for LOC = 94.9
of 4 persons body movements C(3) 85.0 ACC for LOC = 86.0
ACC
TABLE 1

APR and nonverbal communication. The table (included from th

e survey in [4]) shows the main APR works based on speech

and/or nonverbal communication. The columns contain, from left to right, the number of participants involved in the experiments,
number and type of behavioural samples, main cues, type of task and performance over different traits. The column “Other” refers

to works using models different from the Big-Five. C(n) for Class

ification with n classes, LOC for Locus of Control and ACC for

accuracy (percentage of correctly classified samples).

features. Therefore, any method that evaluates features
individually is very unlikely to find the optimal subset
of features. This means that it is necessary to perform a
global search if one intends to find the optimal subset
of features. Note, however, that this optimal subset de-
pends to a significant extent on the evaluation criterion
and on the classification algorithm. Thus, any optimal
subset that is found for a particular classifier works best
only for that particular classifier and most probably is
not the best subset for other classifiers.

Many selection approaches have used evolutionary al-
gorithms, including Genetic Algorithms [52] and Genetic
Programming [53], particle swarm optimisation [48] or
ant colony [54]. Other global search algorithms recently

used for feature selection include defferential evolu-
tion [55], memetic algorithms [56], learning classifier
systems [57] and artificial immune systems [58].

3 THE DATA

The experiments of this work have been performed
over 2,988 fillers extracted from the SSPNet Vocalization
Corpus, a publicly available dataset used for the Inter-
speech Computational Paralinguistics Challenge [13]. The
benchmarking campaign was aimed at the automatic
detection of vocalizations in a speech stream and the
personality assessments were not available (see below
for more details). Thus, this is the first work that uses the
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data for Automatic Personality Recognition and, to the
best of our knowledge, it is the first work that uses fillers
to perform such a task. The extraction of the fillers has
been performed manually. An annotator has identified
the time boundaries of every filler and has provided
the resulting audio segment to two other annotators.
These have validated the segment or asked to change
the boundaries depending on whether the filler was
segmented correctly or not.

The fillers have been extracted from 60 dyadic con-
versations between unacquainted individuals (see [4],
[7] for a full description of the data) for a total of
120 participants (63 female and 57 male), all native
English speakers of British nationality. The conversations
are based on the Winter Survival Task (WST) [59]: The
participants are said to be part of a rescue team that will
assist the survivors of a plane crash in a polar area. In
particular, the participants are given a list of 12 items!
that the survivors have found in the area of the accident
and the goal of the conversation is to identify those that
are most likely to be helpful while the survivors move
from the place of the crash to a point where they can
be rescued. The participants are asked to cooperate and
provide their suggestions as quickly as possible because
it is dangerous for the survivors to remain in the area of
the crash.

The total number of fillers is 2,988, corresponding to
an average of 24.9 samples per subject. The average
duration of the samples is 502 ms with a standard
deviation of 262 ms. Figure 1 shows the distribution
of the number of samples across the subjects and the
average duration of the fillers for every subject. Overall,
female and male subjects have uttered 1,297 and 1,691
fillers, respectively (the averages are 20.6 for female
speakers and 29.7 for male ones.). According to a x?
test, the difference is statistically significant (p < 107'?)
meaning that the male subjects, on average, tend to utter
fillers more frequently than the female ones.

Each of the 120 subjects included in the corpus has
filled the Big-Five Inventory 10 (BFI-10) [60], a 10-items
questionnaire aimed at personality self-assessment in
terms of the Big-Five traits [5] (see Table 2). As a result,
it is possible to know, for every subject, the five scores
corresponding to the Big-Five traits, namely Openness
(the tendency to be intellectually curious and open),
Conscientiousness (the tendency to be planful and reli-
able), Extraversion (the tendency to be socially active
and assertive), Agreeableness (the tendency to do what
others appreciate) and Neuroticism (the tendency to ex-
perience the negative side of life). The Big-Five is the
most commonly applied personality model - both in
computing [4] and psychology [61] - and it is particularly
suitable for technology because it represents personality
as a 5-dimensional vector, thus allowing the application
of statistical approaches like those adopted in this work.

1. Steel wool, axe, pistol, butter can, newspaper, lighter without fuel,
clothing, canvas, airmap, whisky, compass and chocolate.

5
ID  Trait Question
1  Ext. Iam reserved
2 Agr. Iam generally trusting
3 Con. Itend to be lazy
4 Neu. I am relaxed, handle stress well
5 Ope. Ihave few artistic interests
6 Ext. I am outgoing, sociable
7 Agr. Itend to find fault with others
8 Con. Ido a thorough job
9 Neu. I get nervous easily
10  Ope. Ihave an active imagination

TABLE 2
The BFI-10 questionnaire used in the experiments of this
work. The version reported here is the one that has been
proposed in [60].

T T
Openness: : : : :
20 e EEEEREE Peeeles R

30 . T T T T T T T T
Conscientiousness . : . . . .

No. of Subjects

Score

Fig. 2. The chart shows the distribution of the scores for
each of the Big Five Traits. The vertical dashed line cor-
responds to the median and separates the two classes,
namely low (left of the line) and high (right of the line).

Figure 2 shows the distribution of the trait scores across
the 120 participants of the experiment.

4 THE PROPOSED APPROACH

The proposed approach includes three main steps,
namely feature extraction (see Section 4.1), feature selection
(see Section 4.2) and classification (see Section 4.3).

4.1

The proposed approach extracts the features with OpenS-
MILE [14], [15], a publicly available tool commonly
adopted for the inference of social and psychologi-
cal constructs from speech. OpenSMILE applies the

Feature Extraction
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methodologies typical of computational paralinguistics [3],
namely it converts a speech sample into a sequence
Y = (#1,...,yr) of short-time feature vectors and, then,
it estimates the statistical properties of the short-term
features to build a vector # that represents the sample as
a whole. The short-term feature vectors 7 are extracted
from analysis windows that must be long enough to
allow a reliable extraction of the features, but short
enough to ensure that the signal properties are stable.
The literature shows that, in the case of speech, windows
of length between 20 and 40 ms lead to satisfactory
results (see [3], page 188). Thus, the approach proposed
in this work adopts 25 ms long windows. Similary,
the literature suggests that a frame rate - number of
short-term vectors ¢, extracted per second - suitable for
speech is 100, meaning that the windows must start at
regular time steps of 10 ms (Ibidem). Thus, the approach
proposed in this work adopts such a rate for the exper-
iments. The only feature that is extracted from the filler
as a whole without passing through the process above
is the duration. The reason is that such a measure is not
a short-term property and can only be measured taking
into account the whole sample.

The short-term feature vectors ¢ include 16 features
with their respective delta regression coefficients [14], [15],
for a total of 32 features. The 16 features are the Root
Mean Square (RMS) of the energy, the first 12 Mel Fre-
quency Cepstrum Coefficients (MFCC), the Zero Crossing
Rate (ZCR), the Voicing Probability (VP) and the funda-
mental frequency or pitch (F0). All features have been
smoothed, meaning that the value of a feature extracted
from window k is replaced with the average of the
feature values extracted from windows k—1 to k+1 (the
delta regression coefficients have been extracted after
that the features have been smoothed).

The MFCCs have been included because they are
well known to capture information about the energy
(coefficient 1) as well as about the phonetic content of
the signal (coefficients 2 to 12) [62], [3]. This allows one
to investigate whether the particular type of filler being
uttered - e.g., the use of different vowels like in “eh” or
“uh” or the presence of a final consonant like in “ehm” or
“uhm” - has a relationship with the speaker’s traits. Root
Mean Square of the energy, F'0 and length of the filler
account for the Big Three of prosody, namely loudness,
pitch and tempo, respectively. Prosodic features have
been widely applied in Personality Computing [4] and
they have the advantage of being controlled - at least
when it comes to loudness and tempo - by the speaker.
Hence, they can provide information about the speaking
style. The remaining features (ZCR and VP) provide
information about the possible presence of unvoiced
segments in the filler [63], [64].

For each of the 32 short-term features described above,
the approach estimates 12 statistical properties, thus
resulting into a 385-dimensional vector - the 385" is the
duration, for which no statistical properties are estimated
because there is only one value. The statistical proper-

s b f(2)> ) A
0 0 true 0
0 1 true 0
1 0 true 0
1 1 true 0
0 0 false 0
0 1 false B
1 0 false —Bm
1 1 false 0
TABLE 3

Calculation of Af. The z; is the i-th element of a solution
in © and b; is the i-th element of the best solution until
iteration ¢.

ties are minimum, maximum, range (difference between
maximum and minimum), position of the window where
the maximum value has been extracted, position of the
window where the minimum value has been extracted,
arithmetic mean, slope of the linear approximation of the
contour, offset of the linear approximation of the contour,
difference between linear approximation and actual con-
tour, standard deviation, skewness (third order moment)
and kurtosis (fourth order moment minus three).

4.2 Feature Selection

The goal of the feature selection step is to identify a
subset of the original feature set F' - a solution hereafter
- that allows one to achieve the highest possible per-
formance while including the smallest possible number
of features. A solution can be represented as a D-tuple
z = (#1,...,zp) of binary numbers, where D is the
dimension of the original feature vectors, z;, = 1 if the
k" feature has been retained and z, = 0 otherwise.
The selection approach proposed in this work is based
on Quantum Evolutionary Algorithms (QEA) [16], [65].
These represent all possible solutions with the help of
two elements, namely a D-tuple 6 = (01,0s,...,0p) -
called quantum individual - and an operator O - called
the Observation Operator. The components ), € [0, 7/2]
are angles such that p(z, = 1) = cos? 0y, Vk € [1,..., D).
The operator O, when applied to a quantum individual,
produces a solution z by assigning every z; value 1 or
0 with probabilities cos®; and sin’ 6y, respectively. In
this way, a quantum individual is sufficient to generate
all 2P solutions that can result from a selection process.
The main characteristic of QEA based selection pro-
cesses is that they can be modeled as a search through
the space of quantum individuals. The main novelty of
the approach proposed in this work is that it adopts
the Principal Component Analysis (PCA) to identify the
directions of such a space along which the search is more
worth (see below for more details). Given the important
role of the PCA, the approach has been called PCA-QEA.

The PCA-QEA is an iterative process and the first step,
aimed at initialization, starts with the creation of a set
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Algorithm 1 PCA Quantum-Evolutionary Algorithm

1: procedure PCA-QEA ITERATION
2: Generate Z**! by applying the O operator to the quan-
tum individuals of ©°¢;
3: Evaluate Z'*1;
4: Store the best solution that each quantum individual
has generated into B'*?;
Obtain the set H'*! = Ht U Z'+1;
Rank the solutions of H according to their classification
performance and keep in H only the M = 50 top ranking
solutions;

AL

7: Apply PCA to the elements of H;
8: Update ©' taking into account the results of the PCA;
9: Go back to step 2 unless the termination condition has

been reached.

0® = (6.6} in which the components of the
quantum individuals 9,(60) are set to m/4 so that every
feature is selected or discarded with probability 0.5 (V =
20 in the experiments of this work). The application of
the operator O to each of the N quantum individuals
generates a set Z(*) = {21,..., 2y} of binary solutions -
one per quantum individual - that can be evaluated, i.e.,
that can be used to perform a task with performances
f(#1),..., f(2n), respectively. In the experiments of this
work, the task is a classification and the performance is
measured in terms of accuracy (the percentage of times
that the classification is correct). The last two tasks of
this step are the initialization of a set H - expected to
contain the history of the best solutions - to the empty
set §, and the creation of a set B = Z(©). At every
step t, the set B® includes the best solutions - meaning
that they lead to the highest performances - that every
quantum individual has generated until step ¢t. The best
solution in B® is called b and, at the initialization step,
it corresponds to the best solution in B(®).

The transition between iterations ¢ —1 and ¢ takes place
by evaluating the solutions in Z{=!) and by changing
the components of the quantum individuals in ©¢~1) by
a value Af calculated according to the rules in Table 3,
thus resulting into the set (). The rationale behind
the rules of Table 3 is that the quantum individuals
generating solutions that perform better than b must
not be changed (see upper part of the table), while the
others have to be changed so that they are more likely
to generate solutions similar to b (see lower part of the
table).

Once the set O®) is available, the iteration follows
the steps of the pseudocode described in Algorithm 1.
The application of O allows one to generate a set Z(*)
of solutions that can be evaluated. These can then be
used to update B*~Y to B® and to set H = HU Z®.
The subset of the best M solutions in H (M = 50 in
the experiments of this work) is then analyzed with
PCA to find the directions that account for the largest
variance. When the variance concentrates on a relatively
small number of Principal Components, it means that
most components in the best solutions tend to be stable.
In other words, the selection approach has reached a

local minimum where most features tend to be always
retained or always discarded [66], [67]. In such a con-
dition, further exploration of the solutions” space can
be effective - meaning that the uncertainty above can
be removed - only if another local minimum can be
reached. For this reason, the core-idea of the PCA-QEA,
is to ensure that the search through the solutions’ space
tends to explore to a finer scale the directions that the
PCA shows to carry most of the variance [68], [69].

In this respect, the most important difference with the
standard QEA is that the PCA-QEA does not apply the
rules of Table 3 with the same A6 for all components,
but takes into account the results of the PCA to explore
the directions along which there is most variance. In
particular, the PCA-QEA randomly selects one of the
Principal Components according to the following prob-
ability distribution:

€k
pler) = =p— @™
> j=1€J
where ¢, is the eigenvalue associated to the kth Principal
Component vy, i.e., the data variance along the direc-
tion identified by vj. Following such a distribution, the
eigenvectors along which the variance is larger tend to
be chosen more frequently. Once a Principal Component
v; has been selected, the k' components of the vectors
in ©f are modified by a value Awy, calculated as follows:
Af

Awk:Aﬁx(l—uk)—i-?, (2)

where the value uy, corresponds to the following:

|vir| — minf”, [v;;]

= 3

rnaxf:1 lvij| — minl?:1 |Vij|7 ®)
where |v;;| is the absolute value of the j* component
in v;. The use of 1 — u, in Equation (2) ensures that the
update is smaller in those directions along which the
components of the eigenvectors are larger. The reason
for such a choice is that it is important to explore at a
finer scale those directions along which the variance is
larger, because these are the directions corresponding to
features about which the algorithm is uncertain. Hence,
it is along these directions that it is possible to find
the minima where there is no uncertainty about the
corresponding features.

4.3 Classification

The classification step is based on eight classifiers,
namely the Cascade Forward Neural Network (CENN) [70],
the Feed Forward Neural Networks (FFNN) [71], the Fuzzy
Neural Networks (FNN) [72], the Generalized Regression
Neural Networks (GRNN) [73], the k Nearest Neighbors
(kNN) [74], the Linear Discriminant Function [74], the
Naive Bayes Classifier (NB) [74], and the Support Vector
Machines (SMV) [75]. While the goal of the work is to
predict whether a person is above median or not along
the Big-Five traits, the actual classification takes place
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[ Trait [ Ope. [ Con. [ Ext. [ Agr. [ Neu. |
p(low) fillers | 56.7% | 54.2% | 51.7% | 66.7% | 50.8%
p(high) fillers | 43.3% | 45.8% | 48.3% | 33.3% | 49.2%

a fillers 50.9% | 50.3% | 50.0% | 55.5% | 50.0%
p(low) subjs. 56.7% | 50.8% | 54.2% | 66.7% | 51.7%
p(high) subjs. | 43.3% | 49.2% | 45.8% | 33.3% | 48.3%

[ G subjects [ 50.9% [ 50.1% [ 50.3% | 55.5% [ 50.0% |

TABLE 4

Class Distribution. The table shows the a-priori
probabilities of class high and low for different traits, both
for individual fillers and subjects. Furthermore, the table
shows the accuracy of a baseline classifier that assigns

a sample (filler or subject) to a class according to the
a-priori probabilities.

at the level of individual fillers. The main advantage
of such an approach is that the number of samples at
disposition for performing feature selection and training
is significantly larger. In fact, the number of subjects is
120, but the number of fillers is 2,988 (see Section 3).

If ® = {¢1,...,¢r} is the set of the L fillers uttered
by a given speaker, then the classification at the level
of the subject is done through a majority vote (a subject
is assigned to the class that her or his fillers are more
frequently assigned to):

¢" = argmax [{¢y : c(¢x) = c}, 4)

where c* is the class actually assigned to the subject, C is
the set of all predefined classes (above median and below
or equal to median in the experiments of this work), |.| is
the cardinality of a set, and ¢(.) is the classifier mapping
the fillers into one of the classes ¢ € C. If there is a tie,
the subject is assigned to one of the classes according to
the respective a-priori probabilities.

5 EXPERIMENTS AND RESULTS

Every speaker is either above median (class high) or
not (class low) along the Big-Five traits. Therefore, it is
possible to perform, for each trait, the following two
main tasks:

o Filler Classification: to infer the class of a speaker
from one individual filler (see Section 5.1);

o Speaker Classification: to infer the class of a speaker
from the set of all the fillers that she or he has
uttered (see Section 5.2).

Both tasks can be considered a form of Automatic Per-
sonality Recognition because they both allow one to infer
information about the traits of a speaker. In addition to
the tasks above, the selection approach allows one to
identify the features most likely to increase the classifica-
tion accuracy and, hence, most likely to carry personality
relevant information (see Section 5.3).

Table 4 shows the distribution over the classes for both
fillers and speakers. Correspondingly, the table shows

the accuracy & (percentage of times that the classification
is correct) of a random classifier that assigns a sample to
class ¢ with probability p. (p. is the a-priori probability

of ¢):
&= Zpgv (5)

ceC

where C is the set of the predefined classes. Such an ac-
curacy is used as a baseline to test whether the proposed
approach performs better than chance.

5.1

The fillers adopted in the experiments have been uttered
by 120 individuals involved in 60 dyadic conversations
(see Section 3). This allows the adoption of a leave-one-
conversation-out experimental setup: the fillers uttered by
the two subjects involved in a given conversation are
used as a test set while all of the others are used to
train the classifiers and to perform the feature selection.
The process is iterated 60 times and, at each iteration,
a different conversation is left out as a test set. The
main advantage of such a setup, inspired by the leave-
one-out approach, is that it allows one to perform tests
over the whole dataset at disposition while still keeping
a rigorous separation between training and test sets.
Furthermore, in the case of the experiments of this work,
the setup has the advantage of being speaker independent,
meaning that none of the subjects is represented in both
training and test set. This ensures that the approach
recognizes the personality traits and not the voice of the
speakers.

Table 5 shows the results that have been obtained
over the 2,988 fillers both with and without feature
selection. The maximum accuracy is above 60% for all
traits except Agreeableness where it is 59.3% (a possible
reason is that the distribution of the samples over the
two classes is more unbalanced for such a trait than for
the others). Furthermore, the accuracy o of the systems
that include the feature selection step is always higher, to
a statistically significant extent, than the corresponding
& values in Table 4. Therefore, it is possible to say that
the relationship between the physical characteristics of
the fillers and the personality traits is consistent enough
to allow the automatic inference of the latter from the
former (to an extent that is better than chance to a
statistically significant extent). A possible interpretation
of such an observation is that people with different
personality traits tend to utter the fillers in a different
way and the difference is sufficiently consistent to allow
the inference of the traits above chance.

The application of the feature selection step reduces to
a statistically significant extent the accuracy of a system
using the full feature set only in one case (FNN for
Openness). In contrast, there is a statistically significant
improvement in 17 cases out of 40 (see Table 5). These
observations confirm that the feature selection approach
is effective in discarding the features that do not carry
relevant information while retaining those that allow the

Filler Classification Results
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Classifier [ O(%) | O(F) [ CO [ C® [ EG) [ E® [ AG) | A® [ N©) | N®
CFNN | 547" | 508 | 628 | 578 | 595 | 563 || 58.1" | 534 || 576" | 529
FFNN | 566 | 499 || 628 | 550 | 609 | 516 | 570~ | 517 | 587 | 576
FNN 522 | 557" || 604 | 597 || 601 | 580 || 577 | 517 | 609 | 579
GRNN | 556° | 521 || 578 | 548 || 560 | 544 || 587" | 549 || 574 | B4l
KNN 557 | 543 || 587 | 573 || 572 | 548 | 593 | 566 | 570 | 550
LDF 634~ | 508 || 678" | 603 || 648" | 563 | 589 | 540 | 633 | 602
NB 594 | 572 || 629 | 621 || 541" | 488 || 591 | 566 | 585 | 57.1
SVM 561 | 548 || 622 | 575 || 621 | 594 || 580 | 573 || 597 | 57.1

(& [ 509% | 509% || 503% | 50.3% || 50.0% | 50.0% || 55.5% | 55.5% || 50.0% | 50.0% |

TABLE 5

Filler classification. The table reports the accuracies obtained over individual fillers. In the column titles, the letter “S”
stands for “selection” (the results have been obtained by applying the PCA-QEA) and the letter “F” stands for “full
feature set” (the results have been obtained without applying the feature selection). The acronyms of the first column
stand for Cascade Forward Neural Network (CFNN), Feed Forward Neural Networks (FFNN), Fuzzy Neural Networks
(FNN), Generalized Regression Neural Networks (GRNN), k Nearest Neighbors (kNN), Linear Discriminant Function
(LDF), Naive Bayes Classifier (NB) , and Support Vector Machines (SVM). The double and single stars mean that the
accuracy after the selection is higher than the accuracy without feature selection with 99% and 95% confidence level,
respectively (according to a two-tailed ¢-test with Bonferroni correction). The ¢-tests have been performed according
to the approach proposed in [76] to take into account the dependence across the the multiple fillers uttered by the
same subject. The accuracy written in bold is the highest in the column. The last row shows the baseline accuracy &
(see Table 4).

Classifier | O(5) | O || CG) | C® [ EG) [ E® [ AG) | A®) [ N©) | N
CFNN | 583" | 425 || 783" | 592 || 683 | 658 | 558 | 517 | 675" | 550
FFNN 642" | 517 || 733~ | 542 | 692~ | 517 || 633~ | 450 || 600 | 625
FNN 475 | 575 || 692 | 658 || 650 | 633 | 650~ | 458 | 708 | 625
GRNN | 608" | 483 | 642 | 533 | 625 | 575 || 71.7° | 600 || 617 | 583
KNN 600 | 567 || 650 | 642 || 625 | 533 | 617 | 592 | 60.0 | 517
LDF 7337 | 425 || 775 | 767 || 7500 | 617 | 667~ | 522 | 700 | 700
NB 700 | 642 || 675 | 700 | 558" | 433 | 658 | 583 | 650 | 617
SVM 625 | 583 || 708 | 617 | 725 | 668 | 650 | 617 || 625 | 675
& [ 509% | 509% | 50.1% | 50.1% || 50.3% | 50.3% || 55.5% | 55.5% || 50.0% | 50.0% |
TABLE 6

Speaker Classification. The table reports the accuracies obtained over the 120 speakers by applying a majority vote
over all fillers they uttered. In the column titles, the letter “S” stands for “selection” (the results have been obtained by
applying the PCA-QEA) and the letter “F” stands for “full feature set” (the results have been obtained without applying

the feature selection). The acronyms of the first column stand for Cascade Forward Neural Network (CFNN), Feed

Forward Neural Networks (FFNN), Fuzzy Neural Networks (FNN), Generalized Regression Neural Networks
(GRNN), k Nearest Neighbors (kNN), Linear Discriminant Function (LDF), Naive Bayes Classifier (NB) , and Support
Vector Machines (SVM). The double and single stars mean that the accuracy after the selection is higher than the
accuracy without feature selection with 99% and 95% confidence level, respectively (according to a two-tailed ¢-test
with Bonferroni correction). The accuracy written in bold is the highest in the column. The last row shows the baseline
accuracy & (see Table 4).

classifiers to perform better than chance. Therefore, the an observation is that the LDF is more deterministic

features that are selected more frequently can reliably be
considered as personality markers, i.e., as physical and
machine detectable externalizations of the personality.
The Linear Discriminant Function is the classifier that,
in combination with the feature selection approach, ap-
pears to consistently outperform the others for all traits.
In the case of Agreeableness, where the top performing
classifier is kNN, the accuracy difference with respect to
LDF is not statistically significant (p > 0.05 according to
a two tailed ¢-test). One possible interpretation of such

than the others. This allows the selection process to
measure the fitness of the solutions more accurately and,
correspondingly, to limit the noise that can decrease the
effectiveness of the search process.

Section 3 shows that there are two orders of magnitude
between the minimum and the maximum number of
fillers uttered by a given speaker in the corpus. Given
a particular classifier and a particular trait, it is possible
to obtain L = 120 pairs (n;, o;), where n; is the number
of fillers that speaker i has uttered, «; is the accuracy
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achieved over the fillers of speaker ¢ and L is the total
number of speaker. The Spearman correlation coefficient
- more robust to the outliers than the Pearson coefficient -
has been estimated for each of the combinations between
a classifier and a trait that have been tested in Table 5.
The results show that the coefficient is statistically sig-
nificant (p < 0.05) only in 2.5% of the cases (after Bon-
ferroni correction). This seems to suggest that, overall,
the accuracy does not depend on the number of fillers
at disposition for a given speaker. This is important
in view of the application of a majority vote aimed at
classifying the speakers rather than the individual fillers
(see Section 5.2).

5.2 Speaker Classification Results

Table 6 shows the results that can be obtained by apply-
ing a strict majority rule (when there is a tie, a subject is
considered to be wrongly classified). Like in the case of
the individual fillers, the feature selection never reduces
the accuracy of the approach to a statistically significant
extent. The LDF accuracy is the highest for two traits
(Openness and Extraversion), while it is within a statis-
tical fluctuation from the highest accuracy for the other
traits. Therefore, it is possible to say that the combination
between the selection approach and the LDF remains the
most effective at the level of the speakers as well.

The accuracy is above 70% for all traits, thus con-
firming that, unlike most previous approaches in the
literature, the inference of the traits from the fillers leads
to satisfactory results along all the traits rather than
along only some of them. This appears to confirm that
the fillers carry personality relevant information and
can act as reliable markers, at least in the conversation
scenario targeted in the experiments. When it comes
to the traits, the highest accuracies are observed, like
in the case of the individual fillers, for Openness and
Conscientiousness. However, in the case of the subjects,
the difference between the highest and lowest accuracies
- 78.3% and 70.8%, respectively - is not statistically
significant.

The results of Table 6 have been obtained by applying
a strict majority rule, i.e., by making a decision only
when there is not a tie between the number of fillers
assigned to class low and the number of fillers assigned
to class high. However, when there is a tie, it is still
possible to assign the subjects to one of the two classes
- high or low - according to the a-priori probabilities of
Table 4 (estimated over the training set). In this respect,
the results of Table 6 can be considered as a lower
bound of the accuracy that can be achieved through the
aggregation of the decisions made at the level of the
individual fillers.

Table 7 shows the average accuracies obtained after
100 repetitions of the experiment (given that there is a
stochastic component, the accuracy changes from one
repetition to another). The results are similar to those
of Table 6: for every trait, the LDF accuracy is either the

highest or it is within a statistical fluctuation with respect
to the highest accuracy. Furthermore, the accuracy is
below 75% only in the case of Agreeableness, the trait
for which the class distribution is the most unbalanced
(see Table 4).

Section 3 shows that there is a difference between
female and male subjects in terms of number of fillers
(female subjects tend to utter less fillers). According to
a t-test with Bonferroni correction, there is only one
case (Neuroticism with FFNN) in which the difference
is statistically significant. This seems to suggest that the
approach performs in the same way over both female
and male subjects and the observable differences be-
tween the fillers uttered by subjects of different gender
(in particular the length that tends to be lower for male
subjects) do not play a role in APR.

In the majority vote, every speaker is assigned to the
class that her or his fillers are most frequently assigned
to. Therefore, it is possible to measure the correlation
between the percentage of fillers such a class is assigned
to and the trait scores of the speakers before the bina-
rization (see Figure 2). In this way, it is possible to test
whether the fillers of the speakers that are at the extreme
of the scales tend to be assigned more consistently than
the others to the winning class. The results show that,
for any trait and any classifier, the correlation is not
statistically significant. This seems to suggest that the
effectiveness of the majority vote does not change with
the trait scores. In other words, the speakers that are
at the extremes of the scales are not classified with an
effectiveness different from the others.

5.3 Feature Selection and Personality Markers

On average, the selection process retains half of the
original features and this suggests that the speakers
externalize their personality through large numbers of
markers. However, there are features that are selected
- for a given trait - with higher probability across the
multiple classifiers and this suggests that they are more
likely to act as personality markers. For this reason Fig-
ure 3 shows, for every feature and trait, how frequently
a feature is selected during the application of the PCA-
QEA. The main pattern that can be observed is that the
delta regression coefficients (the features with the suffix
“de” in the figure) tend to be selected less frequently
than the others. One possible explanation is that these
features are expected to capture temporal variations, but
the fillers tend to be uttered as prolonged vowels in
which the speech properties remain stable and, hence,
no major variations are observed. The main exceptions
with respect to such a general pattern can be observed
for Extraversion, where the delta regression coefficients
appear to be selected more frequently in the case of
energy (“pecm-RMSEnergy” in the figure), voicing prob-
ability (“voiceProb”) and Fundamental frequency (“F0”).
One possible explanation is that the speakers externalize
their Extraversion through the variability along such di-
mensions - correlational analysis suggests that the most
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Classifier [ O(5) | O(F) [ €O [ C® [ EG) [ E® [ AG) | A® [ N©) | N®
CFNN | 620" | 458 | 812" | 629 || 701 | 700 || 587 | 559 | 70.8°" | 567
FENN 659" | 538 || 7707 | 575 | 7097 | 538 | 666~ | 475 | 621 | 662
FNN 521 | 596 || 725 | 675 || 679 | 645 || 6797 | 49.0 || 729 | 662
GRNN | 654" | 529 || 671 | 575 | 650 | 608 || 734~ | 637 | 646 | 595
KNN 633 | 588 || 667 | 654 | 646 | 570 | 654 | 621 | 633 | 546
LDF 762 | 479 || 799 | 788 || 754" | 642 | 688 | 555 | 750 | 725
NB 733 | 659 || 712 | 737 | 583" | 458 | 675 | 625 | 687 | 642
SVM 646 | 608 || 729 | 650 || 754 | 679 | 671 | 638 | 650 | 696

(& [ 509% | 509% || 50.1% | 50.1% || 50.3% | 50.3% || 55.5% | 55.5% || 50.0% | 50.0% |

TABLE 7

Classification Results. The table reports the average accuracies obtained by assigning the subjects for which there is
a tie to one of the two classes according to their a-priori probabilities. In the column titles, the letter “S” stands for
“selection” (the results have been obtained by applying the PCA-QEA) and the letter “F” stands for “full feature set”
(the results have been obtained without applying the feature selection). The double and single stars mean that the
accuracy after the selection is higher than the accuracy without feature selection with 99% and 95% confidence level,
respectively (according to a two-tailed ¢-test with Bonferroni correction). The accuracy written in bold is the highest in
the column. The last row shows the baseline accuracy & (see Table 4).
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Fig. 3. Selection probability. The plots show the probability of every feature to be selected. The red horizontal lines
show the median of the selection probabilities corresponding to the 12 statisticals associated to every feature extracted
from the speech signal.

extraverted subjects tend to display more variability - being uttered (see [3], page 198) - act as a personality
but the same variability does not change consistently —marker.
with the other traits (the relationship between Extraver-
sion and energy has actually been observed earlier in the For what concerns the Big Three of prosody - pitch
literature [77]). (“FO” in the figure), loudness (corresponding to “pcm-
RMSenergy” in the figure) and tempo (“length” in the
Another observable pattern is that the first two MFCCs  figure) - Figure 3 shows that the first plays an important
tend to be selected more frequently for Conscientious- role in the case of Conscientiousness, Extraversion and
ness and Neuroticism than for the other traits. This Neuroticism, the second interplays significantly with
seems to suggest that energy (related to the firts MFCC) Extraversion, Agreeableness and Neuroticism, while the
and the particular vowel a filler corresponds to - the third is not selected frequently for any of the traits.
second to twelfth MFCCs change with the phonemes This is in line with the previous results of the literature
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(see [4] for an extensive survey) where features related
to prosody are often successfully applied in Automatic
Personality Recognition. One possible explanation is that
prosodic features can be controlled, up to a certain
extent, by the speakers and then they are more likely
to act as personality markers than other features that
depend on anatomy and therefore less dependent on the
speaking style of the speaker.

The more frequently a feature is selected, the more it
is likely to carry personality relevant information that
allows the classifiers to achieve a high accuracy. In
other words, the subset of the features that are selected
more frequently is likely to include the most reliable
personality markers. Therefore, in addition to the general
patterns outlined above, it is possible to analyze what
are the most frequently selected features for all traits. In
particular, the subset of the features that are retained at
least 90% of the times is appears to be different for the
various traits, both in terms of size and of elements (48
for Openness, 13 for Conscientiousness, 39 for Extraver-
sion, 13 for Agreeableness and 7 for Conscientiousness).

In the case of Openness, the features that are selected
at least 90% of the times include mainly the statisticals
of the MFCCs between 2 and 11 (41 out of the 48
elements of the subset). This seems to suggest that the
phonetic content of the fillers is the main marker for
the trait. The other features of the subset correspond
to the voicing probability, the fundamental frequency
and their respective delta regression coefficients. This
suggests that variations of the intonation and the voice
emission are an externalization of Openness. In the case
of Conscientiousness, the subset of the features selected
at least 90% of the times includes only the statisticals of
the MFFCs coefficients between 2 and 12. Therefore, the
phonetic content of the fillers seems to be the main cue
adopted to manifest the trait.

For Extraversion, 26 out of the 39 features selected
at least 90% of the times account for the energy (how
loud the fillers are uttered), fundamental frequency (and
its delta regression coefficients) and voicing probability
(and its delta regression coefficients). In particular, the
correlational analysis suggests that more extraverted
people tend to utter fillers more loudly, to have higher
and more variable pitch and, finally to have higher
variability in the voicing probability. For the last two
traits (Agreeableness and Neuroticism), the features in
the subset are the MFCCs between 2 and 12, meaning
that it is the phonetic content of the fillers that plays the
role of the marker.

6 DISCUSSION AND CONCLUSIONS

This work has shown that it is possible to predict
whether a person is above median along the Big-Five
traits using the fillers that she or he utters during a
spontaneous conversation. The results show that the
accuracy - percentage of times the proposed approach
makes the right decision about a filler - is close to or

above 60% for all the traits. Furthermore, the results
show that the application of a majority vote over the
fillers uttered by a given speaker, allows one to predict
whether this latter is above median along the traits
with an accuracy around 75% for all traits. To the best
of our knowledge, these performances are in line with
the previous results observed for the same task in the
literature (though a rigorous comparison is not possible
because the experiments have not been performed over
the same data).

The results above are interesting from at least two
points of view. The first is that they further confirm
the relationship between speech and personality traits,
while still being innovative because, to the best of our
knowledge, the fillers have never been used before for
Automatic Personality Recognition from speech [4]. The
second is that the fillers can provide a more honest
evidence of personality traits with respect to self’s as-
sessment psychometric instruments known to be af-
fected by social desirability biases - people may bias
their answers in order to provide a positive view of
themselves [78]. Furthermore, the approach presented
in this article can be of help to other technologies.
For example, interactive artificial agents such as social
robots [79], companions [80] or Embodied Conversa-
tional Agents [81] can infer the personality traits of
their users from the fillers these utter and adapt their
behavior correspondingly (see, e.g., [82] for the benefits
resulting from matching the personality of the users).
Finally, fillers can be synthesized to make artificial voices
more effective in conveying personality traits [83].

The literature shows that the personality traits tend
to be distributed differently across persons of different
gender [84]. However, in the data of this work, the
Kullback-Leibler Divergence between the trait distri-
butions of female and male participants is, within a
statistical fluctuation, null (according to a one-sample
t-test). In other words, the traits appear to be equally
distributed over female and male participants. Such a
peculiarity makes it unnecessary to use gender normal-
ized scores and, as a confirmation, the results show that
there is no statistically significant difference between the
accuracies achieved over participants of different gender
(see Section 5). The collection of further data in which the
distributions are different, in the same way as it happens
in the general population, can possibly show whether
the use of gender-dependent normalizations can further
improve the performance of the proposed approach.

The personality questionnaire used in this work [60]
includes only 10 items (see Table 2). This reduces the
time needed to obtain a personality self-assessment, but
it lowers the granularity of the scores. In particular,
the BFI-10 approximates the personality traits, that are
continuous variables, with an integer score that can
assume only 9 different values. The main consequence is
that most of the participants tend to concentrate around
the median and to form two classes rather than to
distribute along a personality dimension. In the case



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

of this work, the percentage of participants that fall
within 2 points from the median is 68% for Openness,
75% for Conscientiousness, 65% for Extraversion, 73%
for Agreeableness and 58% for Neuroticism. Such a
situation makes it possible to perform effectively the
binary classification presented in this article and in most
APR works presented in the literature (see Section 2),
but does not allow one to apply regression approaches
capable to better account for the natural variance in the
data.

In addition, while being widely used, the BFI-10 ques-
tionnaire is affected by the problems typical of short
questionnaires that “[..] may measure only some sub-
dimension of a trait [...] leading to either regression dilution
or overestimation of the association between a trait and a
criterion measure” [85]. In addition, it has been shown that
short questionnaires can increase both Type 1 and Type
2 errors, thus increasing the chances of overestimating or
missing the relationship between personality and other
observable variables [86]. This suggests that the use of
questionnaires including more items (see [4] for a survey
of the main instruments) is a necessary step to improve
the state-of-the-art in APR.

Section 5 shows that there is no statistically significant
correlation between the number of fillers available for a
given person and the performance of the approach in
inferring her personality. Such an observation suggests
that a few fillers can be sufficient to reliably predict
whether a person is above median along the traits. This
is important because it means that it is not necessary to
collect large amounts of data about a person and, hence,
the time necessary to collect a sufficient number of fillers
remains comparable to - if not lower than - the time
required to fill a questionnaire (the most popular self-
assessment instruments include several tens of items and
take up to one hour to be filled).

The main limitation of the current approach is that
the fillers have been extracted manually from the speech
stream. The application of an automatic filler extraction
methodology is likely to introduce noise in the data and,
hence, to reduce the performances observed in this work.
For this reason, the future work will focus on the analysis
of the interplay between the errors resulting from the
automatic analysis of the fillers and the accuracy of the
APR approach. Given that a few fillers are sufficient to
achieve a good performance, the manual extraction can
still be an option, but the possibility of a fully automatic
approach that takes as input spoken data and gives as
output an assessment of the personality of the speakers
can allow the use of the methodologies proposed in
this work in applications like, e.g., implicit tagging [87],
personality based recommender systems [88] and the
indexing of large-scale collections of multimedia record-
ings [89], [90].

The application of a feature selection approach has
allowed the identification of the features - physical mea-
surements automatically extracted from the data - that
appear to maximize the accuracy of the classifiers. In

particular, the adoption of a feature selection approach
allows one to identify patterns - subsets of features that
possibly interact with one another - rather than individ-
ual features. This is an advantage with respect to most
psychological works that tend to work on the correlation
between individual features and constructs of interest,
thus missing that “most biological and behavioral phenomena
are the products of patterns of conditions [...] investigators
have to Qather patterns of measures in order to differentiate
among the varied sequences that can give rise to the same
outcome” [91]. In this respect, this article contributes to
shed further light on the interplay between speech and
personality originally hypothesized by Edward Sapir
(see beginning of Section 1) [1].
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