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Abstract—Appraisal theories are a prominent approach for the 

explanation and prediction of emotions. According to these 
theories, the subjective perception of an emotion results from a 
series of specific event evaluations. To validate and extend one of 
the most known representatives of appraisal theory, the 
Component Process Model by Klaus Scherer, we implemented 
four computational appraisal models that predicted emotion labels 
based on prototype similarity calculations. Different weighting 
algorithms, mapping the models’ input to a distinct emotion label, 
were integrated in the models. We evaluated the plausibility of the 
models’ structure by assessing their predictive power and 
comparing their performance to a baseline model and a highly 
predictive machine learning algorithm. Model parameters were 
estimated from empirical data and validated out-of-sample. All 
models were notably better than the baseline model and able to 
explain part of the variance in the emotion labels. The preferred 
model, yielding a relatively high performance and stable 
parameter estimations, was able to predict a correct emotion label 
with an accuracy of 40.2% and a correct emotion family with an 
accuracy of 76.9%. The weighting algorithm of this favored model 
corresponds to the weighting complexity implied by the 
Component Process Model, but uses differing weighting 
parameters. 
  

Index Terms—Affective computing, appraisal theory, 
Component Process Model, emotion, predictive models. 
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I. INTRODUCTION 
Since the 1990s a variety of computational emotion models 
have been implemented, creating an interdisciplinary field 
between psychology and computer science. This development 
has not only been driven by its numerous new applications in 
artificial intelligence, robotics and human-computer 
interaction, but also by its contribution to basic emotion 
research [1]. Computational affect modelling provides a 
framework to test psychological emotion theories and elaborate 
their structure. Furthermore, mathematical implementations of 
cognitive models can help to consolidate and extend verbal 
theories that often lack formality and explicitness. In the present 
paper, we therefore used a computational emotion model to 
extend and validate one of the most prominent approaches for 
the explanation of affect – the appraisal theories of emotion (see 
[2] for an overview), specifically, the Component Process 
Model by Scherer [3]. 

As emotions are subject to many interdisciplinary fields of 
research, many differing conceptualizations of emotions can be 
found. Most theorists though recognize that emotions are multi-
componential, integrating different elements such as somatic 
and motor functions, motivation, cognition and often feeling, 
the component describing the subjective emotional experience 
of a person [4]. How these components interact and which role 
they play in the causation of emotions is heavily debated. An 
early exploration of the emergence of affect by James [5] 
defines emotion as the perception of bodily changes that arises 
as response to the environment. This strict exclusion of the 
cognitive component in the emotion causation process has since 
been challenged. Schachter and Singer [6], for example, 
expanded James’ [5] theory by proposing a two-step procedure, 
in which a stimulus generates an unspecific physical state of 
arousal but a second cognitive elaboration is needed to interpret 
the arousal state and label it correctly. Appraisal theories of 
emotion go even further, apprehending the cognitive evaluation 
of a stimulus as the trigger of emotions, influencing all of the 
other components (e.g. [3], [7]–[9]). Appraisal is generally 
understood as the process of assessing the relevance of a 
stimulus for one’s own welfare regarding personal needs, 
values, attachments, beliefs and goals, though the presumed 
number and content of appraisal dimensions vary between 
theorists [2]. An emotion or emotion family can then be 
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described as a function of a distinct appraisal pattern – several 
of these appraisal profiles for specific emotions have been 
proposed in the literature [3], [9]–[11]. Consequently, an 
emotion is not supposed to be elicited by the stimulus itself 
(contrary to James’ theory [5]), but by its meaning for the 
individual [12]. This holds significant explanatory power, as it 
can account for the fact that the same stimulus can evoke 
completely different emotional reactions between individuals 
or even within the same person on different occasions. 

Despite the popularity of this cognitive approach to emotions 
and the strong commonalities between appraisal theories, there 
is some disagreement concerning the content of the appraisals 
and how they are mapped onto emotion categories [2]. Several 
empirical studies have been conducted to test the theoretical 
predictions made by appraisal theories (see [13] for a review), 
but as they were only able to systematically vary few appraisal 
dimensions at once, other methods need to be applied to further 
investigate these models as a whole. Here, computational 
emotion models, specifying which emotional reaction an 
individual will experience once a specific appraisal pattern is 
present, can help determine the plausibility of appraisal 
dimensions and the suspected mapping algorithms. In the past, 
several models were successfully implemented mapping 
appraisal profiles either onto distinct emotions labels (e.g. AR 
[14]) or dimensional representations of affect (e.g. WASABI 
[15]). Some of those adapted the appraisal profiles proposed by 
Scherer [3] (e.g. PEACTIDM [16]) others built on the work of 
Ortony, Clore and Collins [17] (e.g. AR [14]). Most of these 
models serve to create intelligent agents that act autonomously 
in simulated environments. To validate the underlying theory 
though, the model’s behavior has to be contrasted with 
empirical data. The computational appraisal model, formalizing 
the junction between emotion and cognition, should be able to 
predict the emotional experience of an individual correctly, 
otherwise the model may be insufficient or inappropriate to 
describe the emotion formation process. Such an approach was 
first put into practice with the Geneva Expert System on 
Emotions (GENESE) by Scherer [18]. In this framework 
participants were asked to recall an emotional episode from 
their past and answer a questionnaire intended to measure 11 
different appraisal dimensions. The expert system then 
calculates the similarity to theoretically derived appraisal 
patterns representing different prototypical emotions by 
Euclidean distance and makes guesses about the emotional state 
recalled by the participant. Subsequently, the predictions are 
validated by the participant as correctly or incorrectly 
describing the perceived emotion. In this experimental setup, 
the system was able to predict an appropriate emotion term in 
77.9% of the cases. But the post hoc verification of the 
prediction might have demand characteristics and might have 
urged participants to accept an emotion label when they 
themselves had no clear judgment about their state. 
Consequently, a new system, the Geneva Emotion Analyst 
(GEA) [19], was introduced. GEA asks users to label the 
reported emotion episode before the systems diagnosis is made 
so that an exact match or mismatch can be determined. In 51% 
of the cases the first guess of the GEA system matched one of 
the emotion labels given by the participant. GEA also operates 
by calculating the distances between users’ appraisal ratings 
and appraisal prototypes, but further incorporates a weighting 

algorithm that takes into account that some appraisal 
dimensions might be more important for emotion formation 
than others.  

The described GEA and GENESE system proceed in a 
classical deductive manner – making predictions about the 
participants emotional state based strictly on theoretical 
assumptions. Through deductive reasoning we imply, that if our 
premises (i.e. our model assumptions) are true then our 
inferences (i.e. our predictions) must be necessarily true as well 
[20]. In this manner, the assumed structure of the model can be 
validated by its predictive accuracy. In the present paper, we 
want to extend this modelling idea with a more inductive 
approach. In inductive reasoning premises are based on 
statistical data such as observed frequencies of a specific feature 
in a sample. Therefore, every inference that is drawn goes 
beyond what is logically included in the premise [20]. This 
entails some uncertainty as not all inferences necessarily need 
to be valid, but it allows to generate new premises (i.e. model 
assumptions) that can be validated subsequently. As for the 
present study, we implemented four affect-derivation models 
based on the theory of Scherer’s Component Process Model [3]. 
Similar to predecessor systems, all four models are able to 
predict an emotion term by calculating similarities between an 
appraisal profile and several emotion prototypes, but apply 
different kind of weighting algorithms in the appraisal-emotion 
mapping process. In contrast to earlier models, we also used 
empirical data to inductively elaborate the models by estimating 
the appraisal profiles of the emotion prototypes as well as the 
different appraisal weightings instead of using only 
theoretically derived parameters. We then validated and 
compared the models by evaluating their predictive out-of-
sample performance. By integrating theory-based as well as 
data-driven information in computational emotion models and 
by systematically varying their internal structure (weighting), 
we hope to engage in the theory formation process and further 
the understanding of the appraisal-emotion mapping process. 

 

II. THE COMPONENT PROCESS MODEL (CPM) 
Scherer’s [3] CPM, the theoretical basis of our models, 
considers emotions as an “episode of interrelated, synchronized 
changes in the state of all or most of the five subsystems in 
response to the evaluation of an external or internal stimulus 
event as relevant to major concerns of the organism” (p. 93). 
Each stimulus event is evaluated by a number of criteria, the so-
called Stimulus Evaluation Checks (SECs). Scherer proposes 
16 of such appraisal dimensions organized in four major classes 
that determine (1) the relevance of an event to the organism, (2) 
the implications of an event for personal goals and well-being, 
(3) the ability to cope and adjust to potential or real 
consequences of the event and (4) the importance of an event 
regarding self-concept or social norms (see [3] for a detailed 
description of the 16 appraisal dimensions). How each 
dimension is appraised is highly dependent on individual and 
situational aspects such as motivation, cultural imprint or social 
pressure. From the interaction of all 16 appraisal dimensions a 
virtually infinite emotion space arises. Scherer [3] therefore 
rejects the assumption of a limited number of discrete emotion 
categories made by many other emotion theorist (e.g. [21]). 
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Nonetheless, he recognizes that certain appraisal combinations 
occur more frequently and universally than others. Scherer [3] 
calls these states, that are usually labelled with a short verbal 
expression, modal emotions. For the 13 modal emotions 
pleasure, joy, pride, irritation, rage, contempt, disgust, guilt, 
shame, anxiety, fear, sadness and despair, he proposes 
theoretically derived appraisal patterns representing the 
prototypical level of each appraisal dimension for each modal 
emotion. These prototypes, adapted over the years [3], [19], 
[22], also include open parameters indicating that a specific 
dimension might be irrelevant for a modal emotion or that many 
values are compatible with the affect [23]. Overall, the 
theoretical prototypes show moderate correlations to appraisal 
means found in empirical data [19]. During the appraisal 
process the evaluated dimensions are integrated by a weighting 
function, that considers each of the 16 appraisal dimensions to 
be differently important in the affect-centered rating of a 
situation [23]. For this weighting algorithm, theoretically 
derived parameters have been proposed as well [19]. 
 

III. EXTENDING THE CPM 
The described appraisal structure was adapted in our four 
models. The models predict an emotion label from the set of 13 
modal emotions by calculating the distance between an 
empirical appraisal profile, containing ratings for the 16 
appraisal dimensions, to 13 emotion prototypes within a 16-
dimensional appraisal space. They then return the emotion label 
indicating which prototype shows the highest resemblance to 
the empirical vector. In each of the models though, we 
implemented a different weighting of the appraisal dimensions. 
As in the GENESE system, the first emotion model (M1) did 
not use a weighting – all appraisal dimensions were considered 
to be equally important in the emotion class determination. The 
second model (M2) and the third model (M3), similar to the 
GEA system, included 16 parameters, one for each appraisal 
dimension. This weighting algorithm implies that some 
appraisal dimensions could be generally more important in the 
identification of an emotion than others (e.g. the valence of a 
stimulus being more important than its familiarity), across all 
emotions. In the fourth model (M4), we implemented a separate 
weighting parameter for each of the 16 appraisal dimensions 
within each of the 13 emotion prototypes, resulting in 208 
parameters. This more complex weighting allows each 
appraisal dimension to be differently relevant for each of the 
modal emotions. This means, for example, that for most 
emotions such as joy, anger or sadness it could be irrelevant 
who caused a situation, as all of these emotions can be triggered 
by one’s own actions as well as by actions of others. But for 
emotions such as guilt or shame, that are more often elicited by 
one’s own actions, the appraisal might be highly relevant. 
Support for this view also comes from empirical research. For 
different emotion classes, Ellsworth and Smith [9] identified 
differing subsets of appraisals, that were predictive for the 
specific emotion, implying that appraisals might be unequally 
important within different emotion classes. This assumption, 
although not expressed in the CPM, does not contradict 
Scherer’s [3] model, as the open parameters he included in the 
theoretical prototypes can be understood in the same way: If an 

emotion prototype is compatible with several different levels of 
an appraisal dimension (as implied by an open parameter in 
Scherer’s prototypes), then this dimension is not relevant for the 
specific emotion, as it cannot be used to differentiate this 
emotion from others. This should be reflected in a low weight 
of the appraisal dimension within the emotion prototype. If this 
assumption is correct, the more complex weighting algorithm 
should result in a better performance compared to the 16-
dimensional or equal weighting scheme.  

While M2 used the theoretically derived weighting 
parameters [19], parameters in M3 and M4 were estimated from 
empirical data. By comparing the predictive power of these four 
differently weighted models, we hope to evaluate if the 
weighting proposed by the CPM as well as the proposed 
weighting parameters are appropriate or whether a different 
kind of mapping algorithm yields a better predictive 
performance. Also, to evaluate the predictive performance of 
our models, we compared them to a naive classifier that 
randomly guesses classes weighted by their frequency in the 
data set (baseline model) as well as to a Random Forest machine 
learning model that should be able to yield a very high 
prediction performance by considering all potential 
interactions, presenting an upper level of performance that can 
be reached with the used data set. 
 As the theoretical prototype profiles show only moderate 
correlations to the ones found in empirical studies, it seems 
plausible that the 208 parameters can’t be fully deduced from 
theoretical assumption about the appraisal process. We 
therefore decided to derive the prototypes directly from an 
empirical data set that was collected with the GEA system by 
Scherer and Meuleman [19]. Prototype theory, first introduced 
by Rosch in 1975, defines the prototype of a category as a 
reference point for classification based on representativeness 
[24]. As we describe each emotion category on 16 continuous 
dimensions (i.e. each dimension can be described by a 
distribution function), we can assess the most representative 
instance for each modal emotion by finding the mean of each 
appraisal dimension in a representative sample. This data-
driven approach on a large data set should hence lead to a better 
prototype assessment and consequently to a better performance 
than an exclusively theoretical approach. The estimation of the 
appraisal weights (16 parameters for M3 and 16*13=208 
parameters for M4), required a more complex estimation 
algorithm. We used a genetic optimization method to determine 
the weighting parameters that would maximize the models’ 
predictive performance.  
 To summarize, we combine different modelling approaches 
to validate the CPM and expand its theoretical assumptions: (1) 
By contrasting our models’ predictions with an empirical 
ground truth, we can assess their predictive power and 
consequently the plausibility of the underlying theory. If 
emotions arise from the cognitive evaluations of the 16 
dimensions proposed by the CPM, our computational models 
should be able to predict the correct emotion labels to some 
degree. With the performance level attained, we can further 
investigate, whether the appraisal dimensions proposed by the 
CPM are sufficient to predict the subjective feeling (emotion 
label) of participants correctly. (2) The systematic variation of 
the weightings between the different models enables us to 
inspect whether the weighting algorithm implied by the CPM is 
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valid or whether different weighting parameters (generated 
from empirical data), a more complex or even no weighting at 
all yields a better performance. 
 

IV. METHOD 
In the following section, we describe in more detail the data 
set that was used in the present study as well as the 
mathematical implementation of the found appraisal models, 
the parameter calculation as well as evaluation of the model 
performance. All corresponding R scripts are provided in our 
electronic appendix. 
 

A. Dataset  
For the estimation of the model parameters as well as for the 
out-of-sample validation of the resulting models, a data set by 
Scherer and Meuleman [19] was used. The data was collected 
via the freely accessible GEA system on the website of the 
Swiss Center for Affective Sciences1 over the duration of eight 
years. The questionnaire implemented in the GEA system is 
publicly available as the Geneva Appraisal Questionnaire 
(GAQ) [25] and was specifically developed to assess the results 
of an appraisal process during an emotional episode through 
memory and verbal report. In the online questionnaire, 
participants were asked to recall an emotional episode from 
their past. After describing the recalled situation, subjects were 
asked to name the perceived emotion by choosing one or two 
matching terms from a list of 13 emotions consisting of 
pleasure, joy, pride, irritation, rage, contempt, disgust, guilt, 
shame, anxiety, fear, sadness and despair. Participants could 
also indicate that none of the emotion terms described how they 
felt. Subsequently, a set of 25 questions was presented that was 
constructed to assess the appraisal dimensions of Scherer’s 
CPM. Each item, measuring the presence of a specific appraisal 
during the emotional episode, was rated on a 5-point scale 
reaching from not at all to extremely or could be labelled as not 
applicable to the situation. Further information about 
contextual factors was collected as well, which is not relevant 
for the present study. 

The dataset included 6809 reported emotional episodes. 218 
of these observations had to be dismissed because participants 
did not report any specific emotion label and were therefore 
lacking a ground truth. The final sample (n = 6591) consisted 
of 4419 female and 2171 male raters (sex and age of one 
participant was missing). The majority of participants, about 59 
% (n = 3900), were between 20 and 40 years. About 23 % (n = 
1483) were in the age group between 12 and 20 years and 
around 18 % (n = 1207) were older than 40 years. As the 
questionnaire could be completed in three different languages, 
the dataset included 625 German, 3015 English and 2951 
French speaking participants. 72% of the participants (n = 
4720) selected two emotion labels to describe the reported 
episode, while only 28 % (n = 1871) identified the reported 
emotion using one single label.  

 

 
1 

https://www.unige.ch/fapse/emotion/demo/TestAnalyst/GERG/apache/htdocs/
index.php 

B. Data Pre-processing 
For the further use in our emotion models, we aggregated the 
25 appraisal items to the 16 appraisal dimensions proposed by 
the CPM [3] by calculating means for the dimensions measured 
with more than one item. Additionally, we normalized the data 
to a range from 0 to 1. All not applicable answers were set to 
missing (about 12% of the dataset). As imputations of the 
missing cases would contradict the theoretical assumption that 
some appraisal dimensions might be completely irrelevant for 
certain emotions [23], missing values were kept in the dataset. 
Instead, we handled missing data in our emotion models by 
pairwise deletion. For all episodes with more than one emotion 
label, we randomized the order of the emotion terms, as it was 
not clear how the order was achieved within the GEA system. 
For the episodes labelled with only one emotion term the 
second emotion label was set to Undetermined. 

For the out-of-sample validation of the emotion models the 
dataset was split into two subsets by stratified sampling (using 
the stratified function from the splitstackshape [26]). Using the 
first emotion labels as strata, a training set holding 50% of the 
data (n = 3296) and a test set holding the other half (n = 3295) 
were created. As the emotion categories in the training set (as 
well as is the whole data set) were rather unbalanced, with some 
emotions (such as contempt or disgust) being underrepresented, 
we used an oversampling algorithm to create an additional 
balanced training set to use in the optimization of the model 
parameters. This is a crucial step as unbalanced datasets in 
supervised classification tasks can lead to the overpowering of 
prevalent classes and ignorance of rare ones [27]. The 
oversampling as well as all further analyses and 
implementations were conducted in R (Version 3.4.2) [28]. 
Using again the first emotion label as class label, we randomly 
sampled instances from the data set with the upSample function 
from the caret package [29], so that all emotion categories 
would have the same frequency as the largest class in the data 
set. The resulting oversampled training set consisted of 8034 
instances, 618 for each emotion category.  

 

C. Model Implementations 
To make predictions about an emotional state, the models (M1, 
M2, M3 and M4) take an input vector containing the numerical 
ratings of the 16 appraisal dimensions for that specific state. By 
calculating the sum of squared differences, the distance 
between this input vector and 13 emotion prototypes, which 
represent the mean level of an appraisal dimension within a 
specific emotion category in the original (unbalanced) training 
set, is determined. Appraisal dimensions that are missing in the 
input vector are not considered in the distance calculation. This 
means that dimensions marked as irrelevant or not applicable 
by the participant are excluded. While M1 does not include a 
weighting, M2 and M3 weighted each of the 16 appraisal 
dimension separately. Thus, giving the dimensions different 
importance during the distance calculation. In M4, each of the 
appraisal dimensions within each emotion category is weighted 
differently. Each weight therefore represents the appraisal 
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dimensions relative importance within a specific emotion 
category. Consequently, each of the 13 resulting distance scores 
in M4 is obtained with a different weighting algorithm, leading 
to different maximum distances. To compare the scores, each 
value is normalized to a range between 0 and 1. To obtain a 
consistent metric for all four models, score normalization was 
also implemented in the other two models. The normalized 
distances are subsequently reversed to similarity scores (si). 
Hence, larger values indicate a higher similarity to a prototype. 
The similarity metrics of the four models are calculated by the 
following formulas:  
 

𝑀1: 𝑠% = 1 −
()*+,*

-
*∉/

0*∉/
         (1) 

 

𝑀2,𝑀3: 𝑠% = 1 −
(5* ()*+,* )-*∉/

5*
-

*∉/
        (2) 

 

𝑀4: 𝑠% = 1 −
(5)* ()*+,* )-*∉/

5)*
-

*∉/
        (3) 

where 
si is the similarity to the ith emotion prototype, 
pij is the prototype value of the jth appraisal dimension of the ith 
emotion prototype, 
ej is the empirical value of the jth appraisal dimension, 
wj is the appraisal weight given to the jth appraisal dimension, 
wij is the appraisal weight given to the jth appraisal dimension 
of the ith emotion prototype, 
Q is the set holding the indices of missing values in the 
empirical vector. 
 
Based on the resulting similarities (si) the models make a 
prediction, returning the emotion with the highest resemblance 
to the input vector (i.e. the smallest normalized distance 
between input and prototype). By comparing the models’ 
predictions with the actual emotion labels, the classification 
performance can be obtained to evaluate their predictive power. 
 

D. Estimation of Model Parameters 
 
1) Emotion prototypes 
The emotion prototypes (pij) used in all four models were 
calculated from the empirical data contained in the 
(unbalanced) training set. For each emotion prototype, 
consisting of 16 prototypical appraisal values, episodes labelled 
with the according emotion term were aggregated. Episodes 
labelled with two emotion terms were included in the prototype 
calculations of both emotion categories. For each of the 13 
emotions, the mean level of each of the 16 appraisal dimensions 
was calculated over all episodes labelled with the respective 
emotion category – resulting in a 13 x 16 prototype appraisal 
matrix. Each prototype within this matrix was calculated by the 
following formula on the unbalanced training set:  
 

𝑝%9 =
𝑟%9;

<)
;=0
𝑛%

 

 
where 
pij is the prototype value of the jth appraisal dimension of the ith 
emotion prototype, 
rijk is the kth rating of the jth appraisal dimension that was 
labelled with the ith emotion class, 
ni is the number of episodes labeled with the ith emotion class. 
 
The number of observations included in the prototype 
calculation ranged from n = 81 (Contempt) to n = 992 
(Sadness), where cases with two labels counted for both 
prototypes. To assess the resemblance between the newly 
calculated prototypes and the theory, we calculated Pearson 
correlations between the 13 empirical assessed prototypes and 
the theoretical prototypes proposed by Scherer [7] (Table 
5.4.). The latter are reported as categorical variables and were 
translated to continuous values for this purpose. Also, a mean 
correlation across all prototypes was calculated by Fisher’s Z-
transforming the correlation coefficients, computing the mean 
and transforming the value back to a correlation coefficient. 
 
2) Theoretical Appraisal Importance 
The weighting parameters (wj) for model M2 were derived 
from the theoretical weights used by Scherer and Meuleman 
[19]. The authors actually present a numerical weighting 
parameter for each of the items used in the Geneva appraisal 
questionnaire.  As the items were aggregated to build the 16 
dimensions proposed by the CPM, we also averaged the 
weighting parameters to obtain one weight for each of the 16 
appraisal dimensions.   
 
3) Optimization of Appraisal Importance 
A genetic algorithm was used to find the 16 or 208 appraisal 
weights that would minimize the predictive error of M3 and 
M4. Two objective functions (i.e. the functions to be minimized 
during the optimization processes) were defined that determine 
the mean misclassification error (MMCE) of the respective 
model over all observations of the balanced training set with the 
previously calculated prototypes pij and the 16 appraisal 
weights wj or the 208 appraisal weights wij as free parameters. 
The optimizations were conducted using the Differential 
Evolution (DE) algorithm introduced by Storn and Price [30]. 
DE is a global optimization algorithm suited for high-
dimensional, non-linear problems without requiring an either 
continuous or differentiable function. As other genetic 
algorithms, DE uses biology-inspired processes such as 
mutation, crossover and selection on a population to iteratively 
minimize or maximize the objective-function over successive 
generations [31]. The parallel search within a whole population 
of parameter configurations helps to avoid local minima, which 
makes DE superior to many direct search methods [30]. To 
conduct the optimization the DEoptim package [31] was used. 
The bounds of each parameter were set to 0.000001 (lower 
bound) and 10 (upper bound). To speed up the optimization 
process and to prevent misconvergence, the default settings of 
DEoptim were adapted. The step tolerance (steptol) was set to 
200 and the relative convergence tolerance (reltol) to 0.001, 
which means that the optimization converges if there is no 
parameter configuration that decreases the MMCE by at least 
0.001 after 200 populations. Additionally, the crossover rate 
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(CR), influencing the number of mutated values in the 
parameter configuration of a new population [29], was set to 
0.9. Storn and Price [30] recommend using a higher CR of 0.9 
or 1 to speed up convergence. Finally, the differential weighting 
factor (F) that is used to create new parameter configurations in 
the mutation process was set to 0.7, as Ardia et al. [31] suggest 
to lower or higher F a little (default setting is 0.8) to prevent 
misconvergence. By default, the population size NP is set to 
10*p (where p is the number of parameters), which means that 
DEoptim optimizes 160 potential solution for M3 and 2080 
solutions for M4 in parallel.  

We repeated the optimization process several times (10 times 
for M3 and 5 times for M4) with different random seeds, 
reporting the parameter configuration with the best out-of-
sample performance (highest mean precision over all 13 
emotion classes; see next paragraph for a description of the 
performance measures) as well as the mean variance of the 
parameter solutions as robustness measure. Additionally, we 
wanted to contrast the optimized parameters of M3 to the 
theoretical weights by Scherer and Meuleman [19] that we used 
in model M2. To this end, we report the Pearson correlation 
between the theoretical weights and the best parameter 
configuration of M3.  

 

E. Model Validation 
The four models with the theoretically and empirically 
generated parameters (pij, wj and wij) were validated on the hold-
out test set. For each of the models’ predictions, we determined 
whether the predicted emotion class matched the given emotion 
label or, if two labels were present, matched either of the two 
labels. As the overall accuracy (or MMCE) can be a misleading 
performance indicator for unbalanced data sets (as more weight 
is put on frequent than on rare classes) and because we also 
wanted to analyze the performance for each emotion class 
separately, we additionally reported class-wise precision scores 
(number of real positive examples over all positive labelled 
examples) to assess the models’ performance [32].2 

To contrast the models’ classification performance with a 
naive classifier, we also reported the performance of a weighted 
guess model that randomly predicts classes dependent on their 
relative frequency in the data set. As another benchmark, we 
conducted a Random Forest classification using the 16 
appraisal dimensions as features.3 We choose the ranger learner 
from the ranger package [34] with hyperparameters set to 
default. The model computation was conducted within the mlr 
framework by Bischl et al. [35]. As the model is not able to 
handle missing data, we recoded the 16 appraisal dimensions to 
factors and included missing values as an additional level. 
Thereby, we were able to train the Random Forest on the whole 
oversampled training set and validate it on the entire hold-out 
test set. Supervised black box models are able to learn data 
inherent structures by labelled instances. Their high predictive 
power comes at the cost of their interpretability. The model can 
be seen as a conservative upper limit of performance that can 
be reached with the present input variables, as the variance that 
 

2 Because the present task is a multi-label as well as a multi-class 
classification problem and due to further characteristics of the data, no further 
performance measures were applicable. 

is not explained by the model is rather due to incomplete input 
information or measurement error than insufficient model 
complexity.  

Previous analyses by Scherer and Meuleman [19] had shown 
that the 13 emotion classes cluster into four emotion families: 
The happiness family with pleasure, joy and pride, the anger 
family including irritation, rage, contempt and disgust, the 
distress family including anxiety, fear, sadness and despair as 
well as the shame and guilt family. Because of this finding and 
the close resemblance of the emotion terms, which might make 
it difficult for participants to differentiate between the labels, 
we also assessed the classification performance for the four 
emotion families.  
Next to classical performance measures, we also wanted to test 
how well each model was calibrated. Decalibration in discrete 
classification tasks is present, when a model predicts classes in 
proportions that do not match the original class distribution 
[36]. We therefore calculated two-way intraclass correlations 
(ICCs) between the real class proportions in the data and the 
class proportions in the predictions of the models.  
 

V. RESULTS 
In the following results section, we report the results of our 
parameter calculation as well as the performance of the four 
implemented appraisal models in comparison to the naive 
baseline and machine learning model. 
 

A. Prototypes 
The prototypes (pij) for the 13 modal emotions calculated from 
the unbalanced training set can be found in the electronic 
appendix. The appraisal values of the newly attained prototypes 
showed a mean correlation of r = 0.47 to the appraisal values of 
the prototypes proposed by Scherer [3] (Table I).  
 

TABLE I 
PEARSON CORRELATIONS OF THE APPRAISAL DIMENSIONS 

BETWEEN THE PROTOTYPES CALCULATED FROM THE DATA SET 
AND THE THEORETICAL PROTOTYPES FROM SCHERER [7].  

 
Emotion Prototype     r 

Pleasure  0.44 

Joy  0.56 

Disgust  0.48 

Sadness  0.57 

Despair  0.64  

Anxiety  0.57 

Fear  0.73  

Irritation  0.34 

Rage  0.60  

Shame  0.06 

Guilt  0.07 

3 We compared different machine learning algorithms, finding that the tree 
based approach worked best with this type of data (which is in line with the 
findings of Meuleman and Scherer [33]). The results of this benchmark 
experiment can be found in the electronic appendix. 
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Pride  0.42 

Contempt  0.31 

 

B. Emotion classification 
The weighted guess baseline model showed an overall accuracy 
of 17.9% in the classification of the 13 emotions on the test set. 
The class-wise precision (see Table II for all precision scores) 
of this naive model ranged from 2.0% (contempt) to 30.5% 
(sadness).  

The first model without any weighting (M1) yielded an 
overall accuracy of 37.1 % on the test set that was considerably 
higher than the overall accuracy of the weighted guess model. 
The class-wise precision varied widely with scores ranging 
from 3.7 % (contempt) to 82.7 % (joy). For all 13 emotion 
categories, the classification performance of M1 was notably 
higher than the performance of the baseline model. 

The second model (M2) using the theoretical weights by 
Scherer and Meuleman [19] showed an overall accuracy of 
27.1%. Again, the precision scores differed strongly between 
classes, ranging from 4.2% (contempt) to 61.8% (sadness). All 
class-wise precision scores were higher than the precision 
scores yielded by the weighted guess baseline model. 
Nevertheless, M2 was outperformed by the unweighted M1, 
that reached higher scores in all classes except for despair, 
irritation and contempt as well as a higher overall accuracy. 

The Differential Evolution optimization for the 16 
parameters of M3 was repeated using 10 random seeds. The 
parameter configurations over the 10 replications showed a 
mean variance of 1.09 (range = 0.12–4.36)4 with some 
parameters, such as the weight for the pleasantness appraisal, 
being estimated more robustly than others. The best solution 
(yielding the highest out-of-sample mean precision) converged 
after 534 iterations (populations) with an in-sample accuracy of 
42.2%. The out-of-sample accuracy on the validation test set 
reached 40.2% and was higher than the overall accuracy of the 
baseline model, M1 and M2. The class-wise precision scores, 
ranging from 4.3% (contempt) to 81.6% (joy), exceeded all 
precision scores of the baseline model. In 10 of the 13 emotion 
classes M3 reached a higher precision than the unweighted M1. 
For the emotions pleasure, joy and rage though, M1 yielded 
slightly better values. M3 also outperformed M2 in 11 of the 13 
emotion classes, yielding higher scores except for the emotions 
rage and irritation.  

The Differential Evolution optimization for the 208 
parameters of M4 was repeated five times using different 
random seeds. The parameter configurations showed a variance 
of 5.03 (range = 0.11–18.24) across optimization repetitions. 
This is substantially higher than the variation of parameters in 
M3, which points towards a strong instability in the 
optimization. Again, some of the 208 parameters were 
estimated robustly over the iterations, while some showed a 
very high variance. The parameter solution with the best out-
of-sample performance converged after 1635 iterations at an in-
sample accuracy of 45.3%. On the validation test set, the model 
showed an out-of-sample accuracy of 43.2% that outperformed 

 
4 With parameters constrained between 0.000001 and 10, the maximum variance 

possible was 25. 

the weighted guess classifier, M1, M2 as well as M3. But the 
class-wise precision scores show that M4 actually yielded 
worse precisions than the simpler M3 in all classes expect for 
two (despair and guilt). Furthermore, it outperformed the 
unweighted M1 in only five cases (despair, anxiety, shame, 
guilt and contempt) and the theoretical weighted M3 in only 7 
of the 14 classes (pleasure, joy, despair anxiety, fear, shame and 
guilt). Still, the precision scores of M4 were higher than the 
ones of the baseline model for all emotion classes.  

With an out-of-sample accuracy of 52.3%, the Random 
Forest showed overall a better performance than all other 
models. The class-wise precision scores ranged from 14.8 % for 
contempt to 78.0% for joy. The Random Forest outperformed 
M1 and M3 in 9 of the 13 classes. Only for the classes joy, 
sadness, rage and pride, M1 and M3 showed a better 
performance. M2 was outperformed in all cases except for 
sadness and rage. Again, all precision values were notably 
higher than the scores of the baseline model.  

Pearson’s correlation between class frequency in the test set 
and the precision scores revealed significant positive relations 
between class size and predictive performance for all four 
models (M1: r(11) = 0.83, p < 0.001; M2: r(11) = 0.92, p < 
0.001; M3: r(11) = 0.87, p < 0.001; M4: r(11) = 0.86, p < 0.001) 
as well as for the Random Forest (r(11) = 0.78, p = 0.002). 

 
TABLE II 

PERCENTAGE PRECISION SCORES OF THE 13 EMOTION CLASSES 
FOR M1 WITH NO WEIGHTING, M2 WITH THE 16 THEORETICAL 
WEIGHTS, M3 WITH THE 16 OPTIMIZED WEIGHTS, M4 WITH 208 

OPTIMIZED WEIGHTS, WEIGHTED GUESS CLASSIFIER (WGC), AND 
RANDOM FOREST (RF) CLASSIFIER. 

 

Emotion Na M1 M2 M3 M4 WGCb RF 

Pleasure 363 44.7 21.4 43.7 37.3 11.0 51.4 

Joy 719 82.7 49.6 81.6 75.2 21.8 78.0 

Disgust 163 12.9 11.5 15.0 7.3 5.0 20.0 

Sadness 1006 64.1 61.8 69.2 55.1 30.5 55.8 

Despair 431 25.9 28.5 28.2 33.3 13.1 31.5 

Anxiety 667 32.5 28.1 43.5 34.3 20.2 50.4 

Fear 579 37.0 34.7 38.8 36.1 17.6 42.4 

Irritation 320 26.5 27.9 26.7 22.1 9.7 32.5 

Rage 633 43.9 42.3 42.4 37.4 19.2 41.9 

Shame 189 9.1 6.7 20.0 9.3   5.7 33.3 

Guilt 226 15.3 7.1 15.5 15.7 6.9 32.7 

Pride 300 36.9 32.9 38.6 25.5   9.1 35.7 

Contempt 67 3.7 4.2 4.3 3.8 2.0 14.8 

Note: N = Sample size of the emotion classes in the validation test set. a Note 
that the class sample sizes do not add up to the total sample size of the test set, 
as many observations have two class labels. b The precision scores of WGC 
model are equivalent to those of a random model without weighting of class 
frequencies.  

C. Emotion family classification 
In the classification of the four emotion families, the naive 
weighted guess classifier showed an overall accuracy of 43.6% 
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on the test set. The class-wise precision scores ranged from 
11.9% for the shame/guilt family to 62.1% for the disgust 
family (see Table III for precision scores of all models). 

M1 with no weighting algorithm showed an overall higher 
accuracy of 73.9% on the test set. All precision scores, ranging 
from 24.5% (shame/guilt) to 90.1% (happiness), were 
considerably higher than the scores of the naive baseline model. 

Model M2 with the theoretically derived weighting 
parameters yielded an overall lower accuracy of 62.4%. The 
precision scores of the emotion families were higher than the 
ones of the baseline model, but worse than the precisions of M1 
for all classes. 

M3 with the 16 optimized appraisal weights reached a higher 
out-of-sample accuracy (76.9%) than M1 and showed higher 
precision scores for all emotion families except for anger. The 
precision scores ranged from 27.7% for shame/guilt to 92.0% 
for happiness. 

With an overall out-of-sample accuracy of 71.9%, the 
complex weighted model M4 with the 208 optimized 
parameters performed again better than the baseline model, but 
showed a lower accuracy than M1 and M3. The class-wise 
precision scores ranging from 21.6% (shame/guilt) to 92.0% 
(happiness) were again lower than the precision scores of the 
simpler M3 for all classes except for happiness, where both 
models performed equally well. In the three other classes, M4 
reached also lower precision scores than the unweighted M1.   

Finally, the Random Forest classifier again showed an 
overall higher out-of-sample accuracy than the other models 
(80.8%). With precision scores ranging from 37.5% 
(shame/guilt) to 94.3% (happiness), the Random Forest also 
yielded higher precisions for the happiness, anger and 
shame/guilt family, but was surpassed by M1 and M3 for the 
disgust family. 
 

TABLE III 
PERCENTAGE PRECISION SCORES OF THE 4 EMOTION CLASSES 
FOR M1 WITH NO WEIGHTING, M2 WITH THE 16 THEORETICAL 

WEIGHTS, M3 WITH 16 WEIGHTS, M4 WITH 208 WEIGHTS, 
WEIGHTED GUESS CLASSIFIER (WGC), AND THE RANDOM FOREST 

(RF). 
 

Emotion 

family 
Na M1 M2 M3 M4 WGCb RF 

Happiness 953 90.1 64.7 92.0 92.0 28.9 94.3 

Anger 981 54.0 49.7 53.6 49.8 29.8 60.5 

Disgust 2048 86.2 83.5 86.3 84.6 62.2 85.0 

Shame/Guilt 393 24.5 18.8 27.7 21.6 11.9 37.5 

Note: N = Sample size of the emotion classes in the validation test set. a Note 
that the class sample sizes do not add up to the total sample size of the test set, 
as many observations have two class labels. b The precision scores of WGC 
model are equivalent to those of a random model without weighting of class 
frequencies.  
 

D. Model calibration 
With an ICC of 0.317 (p = 0.134, CI [-0.259, 0.727]), the class 
probability distribution of M1 showed a poor consistency with 
the actual class probabilities in the data. M2 had a worse ICC 
of -0.129 (p = 0.67, CI [-0.619, 0.433]. With an ICC of 0.411 
(p = 0.072, CI [-0.156, 0.774]), M3 yielded a slightly higher 

calibration than M1. M4 reached a moderate ICC of 0.705 (p = 
0.002, CI [0.277, 0.900]). The Random Forest classifier showed 
an even higher ICC of 0.808 (p < 0.001, CI [0.484, 0.937]). 
Naturally, the model with the highest ICC was the weighted 
guess classifier, reproducing the class probability distribution 
of the data set perfectly with an ICC of 0.997 (p < 0.001, CI 
[0.989, 0.999]).  
 

E. Appraisal weights 
Table IV shows the parameter configuration (wj) of M3 that 
yielded the best out-of-sample performance. The 16 optimized 
weighting parameters ranged from 2.53 (outcome probability) 
to 9.71 (intrinsic pleasantness). The Pearson correlation 
between the optimized weights and the theoretical weights 
reported by Scherer and Meuleman [19] was modest (r(14) = 
0.30, p = 0.26). The theoretical weights (wj) as well as the 208 
parameters (wij) for M3 can be found in the electronic appendix. 
As many of the parameters of M3 showed a rather high variance 
(which indicates that the optimization results are lacking 
robustness), we caution against interpreting these parameters. 
 

TABLE IV 
16 APPRAISAL WEIGHTS OF THE DIFFERENTIAL EVOLUTION 

OPTIMIZATION OF M3 WITH THE BEST OUT-OF-SAMPLE 
PERFORMANCE. 

Appraisal dimension Weights wj 

Intrinsic pleasantness 9.71 

Urgency 7.94 

Goal/need Relevance 7.68 

Internal standards 6.89 

Power 6.12 

External standards 5.89 

Adjustment 5.82 

Suddenness 5.45 

Familiarity 5.42 

Predictability 5.17 

Conduciveness 4.47 

Control 4.01 

Cause: Agent 3.52 

Discrepancy from expectation 3.05 

Cause: Motive 3.01 

Outcome probability 2.53 

 

VI. DISCUSSION 
In the present study, we used a predictive modelling approach 
to validate and extent the CPM model, an appraisal emotion 
theory, by assessing the emotion prediction accuracy of four 
computational emotion models. The models used ratings of 16 
appraisal dimensions assessed in an online questionnaire to 
predict an emotion term by calculating the similarities between 
the ratings and 13 emotion prototypes. Different weighting 
algorithms (mapping of appraisals to emotions) were 
implemented in the four models to assess their plausibility by 
comparing the models’ performances. To generate new 
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information, parameters within these models, including the 
emotion prototypes as well as the weighting parameters (for M3 
and M4), were generated from the empirical data and contrasted 
with theoretical assumptions from the literature.  
 All four theoretical models performed notably better than the 
baseline model (weighted guess classifier), that randomly 
predicted emotion classes weighted by their frequency in the 
data set. This shows that the appraisal dimensions, evaluating 
16 different emotion-relevant aspects of a situation, are able to 
explain a part of the variance in the subjective feeling 
experienced by subjects. By integrating all 16 dimensions 
equally strong during the classification task, M1 was able to 
predict one of the given emotion labels correctly in 37.1 % of 
the cases. The precisions scores of M1 varied strongly between 
emotions with classes included more frequently in the data 
being predicted with higher precisions. This observation, that 
was apparent for all models, is only partly due to the lower 
baseline probability in smaller classes. It is plausible that the 
prototypes (pij) calculated from these small classes are less 
reliable, as there might be insufficient information to build a 
prototype and because of the mean’s sensitivity to outliers and 
skewedness. Consequently, the classification performance in 
classes with poor prototypes drops. When looking at the family 
classification performance of M1, it can be seen that even 
though the exact emotion label was found in only a third of the 
cases, the model actually predicted the correct emotion family 
in 73.9% with precision rates up to 90.1% (happiness family). 
As presumed, this high increase in performance might be due 
to the fact that the emotion labels often were very similar to 
each other (e.g. pleasure vs. joy or fear vs. anxiety). The lack of 
clarity in the terminology might lead to a differing 
understanding of the emotion labels between participants or to 
randomness in the selection of emotion terms. As a 
consequence, prototypes calculated from a subset with many 
“wrongfully” labelled ratings lack the ability to differentiate 
between emotion classes. Also, many appraisal ratings might 
not be true instances of the modal emotion they are identified 
as, because participants are forced into a few distinct emotion 
classes. Especially when two labels are given, the appraisal 
patterns rather reflect a blend of two modal emotions or even a 
separate emotion state. The characteristics of the broader 
emotion families, might therefore be more stable and better 
differentiating. As an additionally performance evaluation, we 
looked at the models’ calibration to the class probability 
distribution in the data, where M1 yielded a poor performance 
as it was not able to reproduce the true class frequencies.  
 With an overall accuracy of 27.1% for the emotion classes 
and 62.4% for the emotion families, model M2 with the 16 
theoretical derived weighting parameters, yielded the worst 
performance of all four CPM models, also showing the worst 
model calibration. This indicates that the appraisal importance 
assumed by Scherer and Meuleman [19] seems to be not a very 
good estimation of the true appraisal importance – at least in the 
context of the present data and with the current computation of 
the similarity index. Even the equally weighted (or unweighted) 
model M1, showed a better overall accuracy as well as higher 
precision scores for most classes. Furthermore, the 
implementation of the 16 empirically derived weighting 
parameters in M3 lead to an overall increase in model 
performance. M3 reached a substantially higher out-of-sample 

accuracy of 40.2% than M1 and M2, with higher precision rates 
for most of the emotion classes. The same pattern was found for 
the emotion family classification where M3 again reached a 
higher overall accuracy and higher precision rates. The 
difference in performance between M2 and M3 is also in line 
with the finding that the optimized parameters of M3 did not 
show a substantial correlation with the theoretical derived 
parameters of M2, subsequently the parameters differed 
strongly. Even though smaller classes were oversampled in the 
balanced training set, precision differences between smaller and 
larger classes remained. Again, this suggests that performance 
differences between classes could be due to insufficient 
information in the prototype calculation. The ICC between the 
model’s class distribution and the true class distribution showed 
a slightly better model calibration than M1. The weighting 
parameter configuration, assessed across repeated Differential 
Evolution optimizations, showed a low mean variance which 
indicates a good stability of the optimization results and suggest 
that the found parameters reflect the global minimum of the 
objective function. Within M3, the appraisal dimension 
pleasantness received by far the highest weight (w = 9.71) for 
the emotion classification. Intrinsic pleasantness, the basal 
evaluation whether a stimulus is likely to result in pleasure or 
pain [23], is also included in other appraisal theories (e.g. [9], 
[10]). The very importance of pleasantness in the emergence of 
emotions is also reflected in other emotion models, such as 
Russell’s [37] theory of Core Affect. He describes emotions as 
an integral blend of two dimensions, arousal (activation vs. 
deactivation) and valence (pleasure vs. displeasure) of a 
stimulus. It is plausible that the valence of a stimulus is a strong 
predictor, as it clearly separates the emotions space into positive 
and negative emotions. This can be seen in the prototype values 
for pleasantness (see appendix), as all positive emotions 
(happiness, joy and pride) showed very high pleasantness while 
all negatives emotions showed a very low pleasantness 
prototype. The second highest appraisal weight was placed on 
the dimension urgency (w = 7.94). Sander, Grandjean and 
Scherer [23] describe urgency as the appraisal that determines 
if an event endangers high priority goals or needs and if the 
organism has to react quickly or flee. Hence, a high rating of 
urgency should lead to an immediate increase in action 
readiness and response of the automatic nervous system. 
Scherer [3] links urgency to the dimension of activation or 
arousal, that has been identified as the second of two relevant 
dimensions by Russell [37]. Both dimensions together, are able 
to perfectly separate negative and positive emotions with joy, 
happiness and pride having very high prototype values for 
pleasantness as well as low prototype values for urgency, while 
the other negative emotions have very low values in the 
pleasantness dimensions and higher values in urgency. But it is 
obvious that the two dimensions are not sufficient to 
differentiate between all the thirteen emotions categories. 
Another argument against the two-dimensional approach to 
emotions is the fact, that none of the remaining 14 appraisals 
were shrunken down to a weight of 0. In fact, further 
dimensions such as goal/need relevance (w = 7.68) as well as 
internal standards (w = 6.89) yielded considerably high 
weights, while outcome probability obtained the lowest value 
with w = 2.53. This indicates that all 16 appraisal dimensions 
contributed to the emotion determination to some degree, which 
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supports the belief that two dimensions are not sufficient to 
represent and describe emotional states properly [38]. The 
attained weighting can also be compared to other instantiations 
of appraisal models. Lazarus’ cognitive-motivational-relational 
theory [39], for example, includes only six dimensions, four of 
which are also present in the CPM (goal/need relevance, 
conduciveness, cause and power). The weighting parameters 
show though, that the additional parameters not included in 
Lazarus’ simpler model such as urgency (w = 7.94) or internal 
standards (w = 6.89) also seem to contribute strongly to the 
prediction of emotions. Especially, the absence of the 
pleasantness appraisal in his model seems striking, as this 
appraisal yielded the highest weight (w = 9.71) in our model 
and is included in many other appraisal theories (e.g. [9], [10]). 
Besides the four dimensions included in the CPM, Lazarus’ 
model additionally contains the dimension goal content and 
future expectation. The former appraisal, which is also included 
in the appraisal theory of Roseman [11], defines the current type 
of goal being at stake, while the latter evaluates whether one 
thinks an event will work out favorably in the future. Both 
dimensions could potentially explain additional variance in the 
emotion classification. Another appraisal theory, the OCC 
model [17], reduces the evaluation process to only three main 
appraisal domains: The evaluation of events in terms of their 
desirability, the rating of actions as praise or blameworthy as 
well as the appraising of objects as either appealing or 
unappealing. These three dimensions are presented by the 
appraisals conduciveness, compatibility of internal and external 
standards as well as pleasantness in the CPM. Again, our results 
indicate though that these three dimensions are not sufficient 
enough to differentiate between all 13 emotion classes used in 
the present study. It has to be remarked though, that the 
differences in number and identity of dimensions between 
appraisal theories is mainly due to the number of emotions a 
model aims to explain – when trying to predict only four 
emotion classes such as joy, anger, fear and disgust, one 
obviously does not need as many predictors as a model trying 
to explain a broader range of emotions [4]. Furthermore, 
theorist differ in their view on parsimonious modelling, where 
some try to include only sufficient or typical appraisals, while 
others focus on completeness [4]. When comparing the present 
results to other appraisal theories, it is also important remark 
that most theories don’t make particular assumptions how the 
appraisals are aggregated during the emotion emergence 
process (i.e. they don’t make any comments on the importance 
of different appraisals). The comparison between M1 and M3 
though clearly shows that an equal weighting of appraisals 
restrains the model performance. 
 Model M4 used a more complex weighting algorithm than 
M3 with a separate weighting not only for each appraisal 
dimension but also for each appraisal dimensions within each 
of the 13 modal emotions. The application of the 208 weights 
resulted in a slightly higher out-of-sample accuracy of 43.2%. 
The precision analysis though showed that M4 actually yielded 
lower precision rates than M3 for most emotion classes and 
even some lower precisions rates than M1. This apparent 
paradox – the model with the higher accuracy actually showing 
a poorer class-wise predictive performance – can be explained 
by the classification behavior of M4 as well as the calculation 
of the precision scores. M4 very frequently predicts the classes 

that are prevalent in the data set such as sadness, joy, fear and 
rage. This better calibration to the class probability distribution 
in the data also shows in the higher ICC score of the model. In 
the more frequently predicted classes, M4 classifies more cases 
correctly than the two other models (leading to a higher overall 
accuracy) but also produces way more false positives. As the 
precision score is the proportion of correctly classified 
instances in all as positive labelled observations, the precision 
scores of M4 are lower for these emotion categories even 
though more instances were classified correctly. The same 
pattern was present for the emotion families, where M4 showed 
a poorer performance in three out of four classes. The 208 
parameters obtained by the optimization showed a notably 
higher variation than the parameters of M3 with some 
parameters yielding almost diametrical values over the five 
optimization repetitions. This indicates that the optimizations 
which all stopped at a similar in-sample accuracy found 
different equivalent parameter configurations. Hence, no global 
optimum was found and the parameters should not be 
interpreted. 
 By contrasting the four models M1, M2, M3 and M4, we 
wanted to test the plausibility of their underlying weighting 
algorithms. With a higher over-all accuracy, higher precision 
rates for most classes and a better calibration, M3 can be 
preferred over the unweighted M1 model and M2 with the 
theoretical derived parameters. Even though the increase in 
performance between M1 and M3 is not massive, the 
differential weighting of the 16 appraisal dimensions as it has 
been proposed in the literature [19], [23] leads to a considerable 
improvement. The big gap in performance between M2 and M3, 
suggest though that the 16 theoretical weighting parameters 
don’t seem to be a good representation of appraisal importance 
within the used data set. A more ambiguous picture emerges 
when M3 is compared to the more complex weighted model 
M4. Even though M4 yields a higher over-all accuracy, the 
precision rates drop due its strong calibration to the few large 
classes in the sample. Despite the better calibration of M4 
(higher ICC), a good estimation of the class distribution cannot 
be a stand-alone criterion for model performance as the 
weighted guess classifier, the naive baseline model, satisfied 
this aspect perfectly. A clear detriment of M4 is that the 
weighting parameters in the model are not interpretable due to 
the missing stability of the optimization results. Under the 
principle of parsimony, which recommends choosing the 
simpler and interpretable model, we would therefore favor M3, 
the model that is implied by Scherer’s theory. Also, from a 
perspective of cognitive economy, the complex weighting of 
M4 might be too costly for a highly automated process like 
emotion formation. This preference contradicts the findings of 
Ellsworth and Smith [40], that believe that appraisal importance 
differs between emotion classes. 

We additionally included the Random Forest model to see 
what an uninformed black box model could derive from the 
data. As expected, the model showed an overall good 
performance, yielding higher accuracies and higher precision 
scores for many emotion classes and emotion families. The 
Random Forest also showed a good calibration to the class 
frequencies in the data. Nonetheless, there was still variation in 
the emotion labels that could not be explained by the model as 
47.7% of the emotion classes and 19.2% of the emotion families 
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were classified incorrectly. This shows that even with a more 
elaborate structure, there is an upper boundary of model 
performance that probably cannot be exceeded with the present 
data. With regards to our computational emotion models, this 
means that there is a limited scope for further model 
improvement. Instead, it seems likely that the appraisal ratings 
in the present data set are not sufficient to explain all variance 
in the subjective feeling of the participants. There could be 
further appraisal dimensions necessary to clearly distinguish 
between all 13 emotion classes, but it is also plausible that the 
models’ performances are impaired by measurement error in 
appraisal ratings or emotion labelling. Particularly the usage of 
self-report for the measurement of appraisals has been criticized 
(e.g. [41]), as it relies on information that is consciously 
accessible and can be verbalized easily. Therefore, the method 
might not be suitable to assess automatic and subconscious 
processes. The CPM actually implies that the 16 appraisal 
dimensions rely on different cognitive functions some of which 
are more basal and automatic like memory- and attention-
driven processes whereas others also engage higher cognitive 
functions like reasoning and evaluation of self-image [23]. It 
can be questioned whether appraisal dimensions driven by more 
basal cognitive functions are actually consciously accessible 
and consequently, whether we can measure these constructs 
adequately using subjective self-reports. Many theorists 
recognize this limitation of self-assessed appraisals ([39], [42], 
[43]). Scherer [43] himself states that it is unlikely that all 
appraisal processes are consciously accessible and easy to 
verbalize – specifically those processed subcortically. He 
believes that some subliminal processes can be reconstructed 
from memory, but that many self-reported ratings are more 
likely constructed by using established schemata of emotions 
and prototypes for certain event types. If participants use these 
rather heuristic methods for the evaluation of some dimensions, 
ratings have to be affected by measurement error to some 
degree. This measurement problem, relying on introspection for 
the assessment of cognitive and psychological processes, many 
of which being at least partly subconscious or not accessible 
due to a lack of self-knowledge, is common to many fields of 
psychology. In the past, studies have tried to detect 
physiological markers of different appraisal dimensions (see 
[13] for an overview), which could help to develop a more 
objective operationalization of the appraisal process. 
Unfortunately, these studies were only able to manipulate a few 
appraisal dimensions at a time (but never the complete set of 
appraisals) and even though there is some knowledge about 
physiological feedback related to specific appraisals, it is very 
difficult to assess an underlying appraisal dimension in an 
experimental setting [19]. Scherer [43] expresses his hope that 
technological progression of neuroscientific methods will 
someday enable us to map different contents of processing (not 
only cognitive processes) in the brain. But until this or other 
methodological developments enable a more objective 
measurement of the appraisals, studies on this topic will 
continue to rely on self-reported ratings. In further research, the 
subjective measurements of appraisals might be improved 
though, by using more direct and less retrospective evaluations 
of an event. Asking participants to rate an event immediately 
after they experienced it, could make the appraisal evaluation 
more accessible, but the main problem, the reliance on 

introspection, will remain nonetheless. This important 
limitation of the present study, the reliability of the appraisal 
measurements, has to be kept in mind when interpreting the 
results. Not only has this limitation an influence on the upper 
performance that can be reached with the present models, but it 
will also affect the estimated model parameters. We therefore 
cautioned against generalizing the found parameters and further 
urge to validate the weights on different types of data sets – not 
only changing the appraised contexts, but also using more 
reliable measurement techniques, when they are made 
available.  
 In summary, the computational modelling approach used in 
the present study lends some support to the psychological 
appraisal theories of emotion and the CPM. Using the 16 
appraisal dimensions proposed by the latter, we were able to 
predict emotions given by subjective self-report much more 
frequently than simply by chance. The comparison of the four 
weighting algorithms also suggest that the 16 appraisal 
dimensions contribute differently strong to the emotion 
classification process. Even though this is also in line with the 
model assumptions, the weighting parameters of the preferred 
model that were attained by optimization deviate from the 
theoretical weights. As the new parameters have been derived 
inductively from the data and due to the limitations of the 
present data set, further research has to be conducted to validate 
these findings in different contexts. As the ratings of appraisal 
by self-report are very likely afflicted by a high measurement 
error, future research needs to focus on the development of 
more objective assessments of appraisal. Also, due to its many 
advantages, the application of computational emotion 
modelling as a way of validating and extending hypotheses 
generated by empirical research or theory, should be integrated 
more strongly in the theory development process. 

ELECTRONIC APPENDIX 
The electronic appendix and further supporting information 
are provided via the Open Science Framework (OSF) at 
https://osf.io/te4z3/. 
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