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Spectral Representation of Behaviour Primitives
for Depression Analysis

Siyang Song, Shashank Jaiswal, Linlin Shen, and Michel Valstar

Abstract—Depression is a serious mental disorder affecting millions of people all over the world. Traditional clinical diagnosis methods
are subjective, complicated and require extensive participation of clinicians. Recent advances in automatic depression analysis
systems promise a future where these shortcomings are addressed by objective, repeatable, and readily available diagnostic tools to
aid health professionals in their work. Yet there remain a number of barriers to the development of such tools. One barrier is that
existing automatic depression analysis algorithms base their predictions on very brief sequential segments, sometimes as little as one
frame. Another barrier is that existing methods do not take into account what the context of the measured behaviour is. In this paper,
we extract multi-scale video-level features for video-based automatic depression analysis. We propose to use automatically detected
human behaviour primitives as the low-dimensional descriptor for each frame. We also propose two novel spectral representations, i.e.
spectral heatmaps and spectral vectors, to represent video-level multi-scale temporal dynamics of expressive behaviour. Constructed
spectral representations are fed to Convolution Neural Networks (CNNs) and Artificial Neural Networks (ANNs) for depression analysis.
We conducted experiments on the AVEC 2013 and AVEC 2014 benchmark datasets to investigate the influence of interview tasks on
depression analysis. In addition to achieving state of the art accuracy in severity of depression estimation, we show that the task
conducted by the user matters, that fusion of a combination of tasks reaches highest accuracy, and that longer tasks are more
informative than shorter tasks, up to a point.

Index Terms—Automatic depression analysis, Fourier Transform, Spectral representation, Time-frequency analysis, Convolution
Neural Networks
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1 INTRODUCTION

MAJOR Depression Disorder (MDD) is a psychiatric
disorder defined as a state of low mood with a

significantly higher level of duration/severity. It negatively
impacts one’s day to day life, causing people to become re-
luctant or unable to perform everyday activities, which can
negatively affect a person’s sleeping, sense of well-being,
behaviour, feelings, etc. [1]. In extreme cases it can lead to
suicide, which is the leading cause of death for men under
50 in the UK [2]. Depression is currently the most prevalent
mental health disorder and the leading cause of disability
in developed countries. A correct and early diagnosis can
be vital to provide the right mental health support at the
right time. It facilitates communication between (potential)
patients and health professionals about the support and
services they need [3] and is the key to choosing the correct
intervention for treating patients.

Standard clinical depression assessment techniques can
be subjective because these depend almost entirely on the
health professional’s own understanding of the individual’s
verbal psychological report, e.g. clinical interview and ques-
tionnaires completed by patients or caregivers [4]. In addi-
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tion, this is often a lengthy procedure which hinders access
to early treatment. In the UK it has been reported that more
than half of the patients have to wait at least 3 months be-
fore receiving talking treatment [5]. Sometimes the relevant
patient information or mental health experts may not be
accessible, which results in many patients missing the best
chance for preventing or treating their depression at early
stages of depression. This is problematic, because correct
early diagnosis is an important factor in the treatment of
depression. To improve this, automatic objective assessment
methods to aid monitoring and diagnosis have been widely
explored in recent years.

There is convergent psychological evidence [6], [7], [8],
[9], [10], [11], [12], [13] that depression is marked by non-
verbal objective cues related to head movements, facial ex-
pressions and gaze [14], [15], which can be automatically de-
tected and analyzed without the intervention of clinicians.
Building an automatic system based on such cues would
not only provide an objective and repeatable evaluation but
would also help alleviate key problems around cost and
time requirements [16].

Most current vision-based approaches to automatic de-
pression analysis [17], [18], [19], [20], [21] base their pre-
diction on the non-verbal facial behaviours of participants
during an interview. There remain several challenges to
achieve actionable results in this scenario, and our proposed
approach mainly focus on addressing three of them. The
first challenge is that the lengths of interview videos are
usually variable, with the duration of the longest video
sometimes several times longer than the shortest one. Yet
most Machine Learning models require fixed-size input.
The first research question we aim to answer is how to
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Fig. 1. The pipeline of our approach. Our approach starts with using low dimensional multi-channel human behaviour time-series data to represent
videos (Step 1, Sec. 3.1), and then converts them to spectral signal consisting of multiple frequency information of all frames (Step 2, Sec. 3.2.1).
Since spectral signals are symmetric, we only keep the first half of them. We then implement frequency alignment by removing high frequency
components and obtaining common frequencies for human behaviours of all videos (Step 3, Sec. 3.2.2). Finally, we combine aligned spectral
signals of all human behaviours (Step 4, Sec. 3.2.3) into and feed them to ML models for depression analysis (Step 5, Sec. 3.3).

encode information from variable length videos into a fixed-
size video representation while retaining as much relevant
information as possible. The second challenge is that while
a number of studies have indicated that features such as
facial expressions [6], [10], [22], head movements [23], [24],
etc., are valuable for depression analysis, it is unknown how
best to encode the temporal pattern of such features. Hence
the second research question we aim to answer is: what is
the most optimal way to extract such features preserving as
much temporal information as possible. In particular, we are
seeking feature descriptors that encode temporal patterns at
multiple temporal scales, i.e. from short-term to long-term.
The third challenge we address concerns the context un-
der which people are observed. Depression interviews are
usually made up of several tasks, e.g. reading paragraphs
[25], [26], answering questions [27], etc. As a result, different
tasks would trigger different responses from participants,
leading to different facial behaviours. We define the third
research question as how to learn such context specific
behaviour and combine them for depression analysis.

Regarding the first challenge, one popular solution is to
predict depression for each frame or short video segment,
and then fuse the predictions using either a simple average
[18], [25], [26], [28], linear regression [29] or Long-short-
term-memory Network (LSTMs) [30]. However, except for
memory-based neural networks such as LSTMs (which
needs very large datasets), these approaches ignore long-
term temporal behavior patterns of participants, which may
better predict depression because behaviour extracted from
a single frame or a short segment can be ambiguous and
explained by various causes, e.g. a smile may be caused by
feeling happy or feeling helpless. Also, the same short-term
behaviours can be expressed by subjects with different levels
of depression. In other words, depression levels can be more
reliably described using the whole video rather than short
segments of the video.

Alternatively, some studies constructed video-level de-
scriptors by fusing frame/segment-level representations. To

this end, one could consider re-sampling per-frame repre-
sentations of a video (which can be a multi-channel time-
series data) to a fixed length by using interpolation, Dy-
namic Time Warping (DTW), etc. However, this approach
will distort the original signals. To avoid distortion, other
studies employed fixed-size histogram or other statistics
to summarize the distribution of representations. Specifi-
cally, they generate video-level descriptors by computing
statistics of features [31], [32], [33], [34], using Gaussian
Mixture Model (GMM) [35], [36], [37], [38], [39], [40] or
fisher vector [38], [41], etc. Although these methods sum-
marize undistorted information, temporal relations between
segments/frames, such as the order of events, are lost after
creating the statistics.

To deal with the second challenge, i.e. retaining multi-
scale temporal dynamics, recent studies [20], [28], [42]
usually divide each video into a series of short segments
(ranging from 5 frames to a few seconds), and then extract
temporal features from them. However, the optimum dura-
tion of the segments, which determines the temporal scale, is
hard to determine. Such approaches only encodes a single-
scale or possibly a small number of temporal scales, which
ignores long-term temporal dynamics.

For the third challenge, while a few related studies
[33], [43] are available, to the best of our knowledge, there
is no study which systematically investigated what is the
optimum way to use context specific behaviours for depres-
sion analysis. In this paper we make a systematic start at
studying context by investigating the effects of a number of
user tasks, as well as the effect of the duration of the most
promising task.

In this paper, we aim to address these three challenges,
avoiding drawbacks of previous works. Our approach con-
sists of employing multiple, objective, visual and non-verbal
human behaviour attributes that are easily interpreted by
both people and machines, to wit Facial Action Units (AUs),
head pose and gaze directions. We refer to these as behaviour
primitives. By concatenating these frame-wise descriptors
we obtain a multi-channel time-series describing the visual
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expressive human behaviour signal. To obtain a multi-scale,
length-independent representation we propose two simple
spectral representations that encode the human behaviour
signal of the whole video. The proposed spectral repre-
sentations contain video-level behaviour information in the
frequency domain, where each frequency component stands
for a unique scale of dynamics. We further employ two
frequency alignment methods to create spectral represen-
tations of equal size and frequency coverage, regardless of
variation in the length of input videos. Finally, we feed
spectral representations to standard ML models (ANNs and
CNNs), allowing dynamics of human behaviour obtained
from multiple channels, to be jointly learned for prediction
of depression severity. To investigate the third challenge, we
conducted a series of experiments to compare the depres-
sion prediction results yielded by a series of tasks available
in a benchmark dataset, as well as the results achieved by
different fusion strategies, to wit, input-level fusion, feature-
level fusion and decision level fusion. The overview of the
proposed method is depicted in Fig. 1. In summary, the main
novelty and contributions of this paper are listed as follows:

1) We propose a novel Fourier Transform-based ap-
proach that converts long and variable length time-
series data to short and fixed-size spectral repre-
sentations, which can be easily used with standard
Machine Learning techniques.

2) The proposed spectral representations which en-
codes multi-scale video-level temporal dynamics
of human behaviours, are shown to be useful for
automatic depression analysis.

3) We investigate the influence of each automatically
detected behaviour primitive on depression analy-
sis, and found that AU4, AU12, AU15 and AU17 are
useful for estimating depression severity, support-
ing existing evidence.

4) We investigate the influence of interview contents
on depression analysis, and found that different
interview tasks can result in completely different
depression predictions.

5) We attain state of the art results for the estimation
of depression severity when evaluating our pro-
posed approach on the AVEC 2013 and AVEC 2014
datasets.

2 RELATED WORK

2.1 The relationship between non-verbal cues and de-
pression

In the past decade, many psychological studies have re-
searched the relationship between non-verbal human be-
haviours and depression. Among these studies, a finding
that depression is usually accompanied by reduced positive
facial expressions, has been frequently concluded [10], [11],
[12], [13], [22], [22], [44]. There is also some evidence that
depression is associated with reduction in general facial
expressiveness [12], [45] and head movements [23], [24].
Ellgring et al. [6] summarized typical symptoms of depres-
sion in terms of facial expressions, which indicates that
depression is not only associated with sad facial expression
but also with ”a total lack of facial expression corresponding to

the lack of affective experience”. Regarding the negative facial
expressions, researchers have conflicting conclusions. While
[46], [47], [48] argues that depression is marked by increased
negative expressions, other studies [12], [45] found that
depressed individuals are more likely to experience reduced
negative expressions.

As a consequence, several studies have tried to apply
such non-verbal cues to recognize depression. Cohn et al.
[4] explored the feasibility of using audio and visual non-
verbal cues for depression classification. They fed three
different kinds of non-verbal behavioural features, i.e. man-
ually annotated Facial Action Units (AUs), Active Appear-
ance Model (AAM) features and vocal prosody features, to
Support Vector Machines (SVM), individually. The results
show that all of them were informative for detecting de-
pression, with facial AUs achieving the best accuracy of
88%. The aforementioned findings suggest that automatic
facial behaviour analysis could be useful for automatic
depression analysis. Girard et al. [9] specifically investigated
the relationship between depression and non-verbal facial
behaviours, e.g., AUs and head poses, using manual and
automatic systems. The results from both systems showed
that participants with high depression severity presented
fewer affiliative facial expressions (AUs 12 and 15), more
non-affiliative facial expressions (AU 14) and diminished
head motion.

2.2 Automatic depression analysis
Hand-crafted approaches In the past decade, automatic de-
pression analysis has attracted a lot of attention, and a series
of challenges have been organized [25], [26], [49], [50]. Early
works [29], [31], [32], [51] generally use traditional Machine
Learning models, e.g. Support Vector Machine Regression
(SVR) [25], [33], decision tree [21], [43], [52], Logistic re-
gression [53], etc., to predict depression from hand-crafted
features (Local Binary Pattern (LBP) [38], [41], Low-Level
Descriptor (LLD) [21], [34], [43], Histogram of oriented
gradients (HOG) [26], etc). For example, Meng et al. [29]
extracted LBP and EOH as visual features and LLD as audio
features, and applied Motion History Histogram (MHH) to
extract dynamics from short video segments. These features
were fused together using Partial Least Square (PLS) re-
gression to predict depression. The video-level decision is
then made by combining the decisions from all segments
using linear opinion pool. Gupta et al. [32] used LBP-TOP to
summarize short-term temporal information and combined
it with motion features and facial landmarks. A feature
selection step is applied and the selected features are then
used train a SVR model. [41] is another typical approach
based on the combination of hand-crafted features and
traditional ML models. This work extended the LBP-TOP
feature to MRLBP-TOP for extracting short-term dynamics
and then applied Fisher Vector to aggregate them.

Williamson et al. [35], [54] were the winners of the AVEC
2013 [25] and AVEC 2014 depression challenge [26]. Their
methods were based on audio data and utilized formant
frequencies and delta-mel-cepstra to represent underlying
changes in vocal tract shape and dynamics. After that,
by exploring the correlations between these features and
using PCA, an 11-dimensional feature vector (five princi-
pal components for the formant domain and six principal
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components for the delta-mel-cepstral domain) is obtained.
Finally, a Gaussian Staircase Model which is an extension
of the Gaussian Mixture Model(GMM), was introduced and
used as the regression model. Another approach proposed
by Cummins et al. [36] is also based on GMM where a
GMM-UBM model was employed to learn features that
contain both audio and visual information. Jain et al. [37]
also extracted LBP-TOP, HOG, HOF and MBH features and
used GMM (Fisher Vector) to fuse the features from multiple
video segments. Another GMM-based model was employed
by Nasir et al. [55] where they proposed to use i-vector to
learn several audio features such as TECC and MFCC.

Deep Learning approaches Due to the recent advances
in deep learning, most current approaches build on Con-
volution Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). Ma et al. [56] proposed DeepAudioNet
for audio-based depression classification, which combines
CNN with Long-Short-Term-Memory Networks (LSTMs).
Most vision-based methods divide videos into several equal
length segments, and extract deep learning features from
each segment independently. Al Jazaery et al. [42] employed
C3D network to extract short-term dynamic depression-
related features from short video segments. Then, these
features were fed to a Recurrent Neural Network (RNN)
to make segment-level predictions. The final prediction was
obtained by averaging predictions from all segments. Sim-
ilar approach was proposed by Melo et al. [28] using 3D
CNNs. To identify the salient facial region for depressed
people, Zhou et al. [18] proposed DepressNet to learn
depression representations with visual explanation. In this
method, the facial region that is most informative to de-
pression was highlighted and used to predict depression at
frame level. The video level depression score was computed
by averaging the scores from all frames. Recently, Haque et
al. [57] employed Causal Convolutional Networks [58] to
learn from audio, text and 3D facial landmarks to predict
depression severity.

Besides learning depression directly from images, some
approaches attempted learning depression severity from
higher level video representations. Yang et al. [21] proposed
selecting several equal length segments in each video to
balance the number of depressed and non-depressed train-
ing examples. They also proposed a Histogram of Displace-
ment Range (HDR) method that records the dynamics of
facial landmarks in a video segment. They used CNNs
to learn deep features from hand-crafted audio and video
descriptors and the final decision is made by fusing the
predictions from audio, video and text features using a
decision tree. To predict depression directly from variable
length videos, the previous version of our work [59], [60]
used several human behaviour primitives to represent each
frame, reducing a video to a multi-channel time-series data.
In this paper, besides applying Fourier Transform to convert
multi-channel time-series data to the frequency domain, we
further explain how to align the frequencies of converted
spectral signals to use a fixed set of frequencies to represent
any video. In addition, we also investigate the influence of
behaviours and task contents on depression analysis in this
paper.

3 THE PROPOSED APPROACH

In this section, we describe a novel video-based automatic
depression analysis approach that can extract fixed-size
descriptors from variable length videos, encoding multi-
scale temporal information. To achieve this, we first extract
a set of automatically detected human behaviour primitives
to represent a video, allowing the high dimensional videos
to be significantly reduced to a low dimensional multi-
channel time-series signal (Sec. 3.1). In Sec. 3.2, we propose
two spectral representations as the video-level descriptors
for multi-channel behaviour signals, which can not only
encode a time-series data of arbitrary length into fixed-
size representations but also retain multi-scale temporal
information from the original time-series data. Finally, we
show how to apply the generated spectral representations
to depression analysis (Sec. 3.3).

Compared to other recent methods, the main advantages
of our approach are: 1) it can convert long and variable
length time-series data to a short and fixed-size represen-
tation, allowing information from the whole video to be
used for analysis. It differs from [21], [52] in the sense that
they only use some segments from videos for analysis. Our
representations contains multi-scale video-level temporal
information, in contrast to [33], [34], [39], [41] where only
a fixed-length time window is used to encode single-scale
short-term dynamics, thereby losing temporal information
at other scales.

3.1 Human behaviour primitives extraction

In aiming to construct a video-level descriptor, the first
task is to reduce the dimensionality. Current studies either
extract hand-crafted features [38], [41], [61] or deep-learned
features [18], [20], [42] to represent each frame or short video
segment. Traditional hand-crafted features, e.g. HOG, LBP,
etc, are not specifically designed for facial behaviour appli-
cations, consequently, they are not the most optimum repre-
sentation for depression application. On the other hand, as
summarized in Sec. 2, previous psychological and computer
vision studies suggested that depression is marked by non-
verbal visual cues. Motivated by this, we propose to use
facial behaviour attributes, including AUs, gaze direction
and head pose as frame-wise descriptors. In particular, we
use OpenFace 2.0 [62] to automatically detect intensities of
17 different AUs, gaze directions and head pose, resulting
in a 29-channel human behaviour time-series data for each
video (17 corresponding to AUs, 6 corresponding to gaze
direction from each eye and 6 corresponding to head-pose).

Compared to previously used hand-crafted and deep-
learned features, these human behaviour descriptors have
several advantages. Firstly, they are more interpretable,
as they have a clearly understood meaning and are low-
dimensional; Secondly, their extraction is modular, because
standard facial attribute detection software, frequently
trained on very large databases, can be used for different
people in different scenarios; Thirdly, they are objective,
as their values are independent of the subjects’ identities,
preventing the final predictions from being affected by bias
related to gender, age, race, etc.; Fourthly, the proposed
behaviour descriptors have much lower dimensionality (31-
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Fig. 2. Reconstructed time-series signals after removing high frequency components. The original signal has 7923 frames and its spectral signal
also has 7923 frequencies.

Fig. 3. Example of the average correlation between reconstructed be-
haviour signals and original behaviour signals as a function of the per-
centage of used frequencies. It can be observed that even after remov-
ing more than 90% of high frequency components, the reconstructed
signals still have significant correlation with the original signals. (The
Pose rotation z is the least useful behaviour primitive for depression
analysis; the Gaze leftEye y achieved lowest correlation (CCC) with the
original signals when removing 90% high frequency components)

D) than the traditional hand-crafted features and deep-
learned representations.

3.2 Spectral representation for human behaviour prim-
itives
To construct a spectral representation for multi-channel
time-series data, we first transform each time-series to
the frequency domain. We further propose two frequency
alignment methods so that the spectral representation of
each video (potentially of different lengths) represents the
same frequencies. Finally, we also propose two ways to
combine spectral representations of all behaviour primitives
to produce a single representation for a given video. In this
paper, we define the fmc (n) as the cth behaviour time-series
signal in mth video.

3.2.1 Encoding multi-scale video-level dynamics
Given that depression causes changes in behaviour which
can be represented by time-series signals, temporal patterns

are significant. Depression causes long-term changes in be-
haviour and so we aim to extract video-level features which
can encode temporal patterns including long-term temporal
information.

We use the Fourier Transform (FT) to convert time-
series signals representing each behaviour primitive to the
frequency domain. The resulting spectral representation is a
decomposition of the original time-series into its constituent
frequencies. Let f(x) be a time-series signal corresponding
to a behaviour primitive, then the Fourier Transform can
convert it to a spectral representation F (w)

F (w) =

∫ ∞
−∞

f(x)e−(2πixw)/Ndx (1)

where w can be any real number and F (w) is a complex
function that can be re-written as

F (w) =

∫ ∞
−∞

f(x)(cos((2πixw)/N)− i sin((2πixw)/N))dx

=

∫ ∞
−∞

(Re(fc(x)) + iIm(fs(x)))

= Re(F (w)) + iIm(F (w))
(2)

where fc(x) and fs(x) denote f(x) cos((2πixw)/N) and
−f(x) sin((2πixw)/N), respectively. R(F (w)) is the real
part of F (w) and Im(F (w)) is the corresponding imaginary
part of F (w). Here, w determines the frequency (2πw)/N
that F (w) represents. Consequently, the spectral represen-
tation F (w), w ∈ [−∞,∞] contains information from all
frequencies present in f(x).

In our application, each video is made up of a series of
frames, resulting in one discrete time-series signal for each
behaviour primitive. We therefore apply Discrete Fourier
Transform (DFT) to the behaviour signal fc(n), where
c = 1, 2, · · · , C denotes the behaviour primitive’s index and
n = 1, 2, · · · , N denotes the frame index, as given below:

Fc(w) =
N−1∑
n=0

fc(n)e
− 2πi

N wn

=
N−1∑
n=0

fc(n)[cos(2πwn/N)− i sin(2πwn/N)]

=
N−1∑
n=0

(Re(fcc(n)) + iIm(fsc(n)))

= Re(Fc(w)) + iIm(Fc(w))

(3)
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where fc(n) is the time-series signal of cth behaviour, which
consists of N frames and Fc(w) is the DFT of the signal
fc(n) at frequency w, where w = 0, 1, 2 · · · ,W − 1.

As we can see from Eq. 3, each frequency component is
computed from all frames of the fc(n). This is to say, each
component in the spectral signal summarizes a single fre-
quency information present in the whole video. Therefore,
the spectral signal contains information corresponding toW
frequencies given by 2πw/N,w = 0, 1, 2, · · ·W − 1. These
components encode different types of behaviour dynamics,
i.e. high frequency components represent sharp behavioural
changes and low frequency components represent more
gradual changes in behaviour. As a result, the produced
spectral signal can be said to summarize multi-scale tempo-
ral information of the whole video. Here, we set the number
of discrete frequency componentsW in Fc(w) to be the same
as N in order to completely summarize the information
contained in the discrete time-series data fc(n) (It is well
known that the fc(n) can be fully reconstructed from Fc(w)
if W = N ).

3.2.2 Frequency alignment
As mentioned above, a time-series behaviour signal of
N frames can be converted to a spectral signal that has
W = N frequency components. Thus, the spectral signals of
variable-length videos will have different number of compo-
nents, which would again lead to feature representations of
varying dimensionality. To make them equal, we first note
that the spectral signals of time-series data are always sym-
metric around their central frequency W/2, i.e. if F (w) =
Re(w)+iIm(w) and F (W−w) = Re(W−w)+iIm(W−w),
then Re(w) = Re(W − w), Im(w) = −Im(W − w). This
means that the first W/2 components of the spectral signal
can fully represent the information contained in f(n). Also,
as facial actions are continuous and smooth processes, high-
frequency information usually represents noise or outliers
caused by e.g. incorrectly detected faces, errors in facial
points localization or AU intensity estimation etc. In prac-
tice, after removing the high-frequency information, the
reduced spectral signal can still represent the original time-
series data well, as applying the inverse DFT to spectral
signals can recover most of the information present in the
original time-series data. This is illustrated in Fig. 2 and
Fig. 3. In both figures, we replace all unused frequency
components by zeros.

Motivated by this, our approach only keeps the first
W/2 components of spectral signals. Then, components
corresponding to high frequencies are also removed. Since
our goal is to generate video-level spectral representation
of the same size for variable length time-series data, one
may consider to keep the first K lowest frequencies of
spectral signals for all videos, with K < W/2. However,
the wth component in videos of different lengths will rep-
resent different frequencies. Consider two time-series sig-
nals f1(n) and f2(n) of length N1 and N2 respectively.
Also consider their corresponding spectral representations
as F 1(w) and F 2(w) respectively. If N1 6= N2, the wth
component (0 < w < N1/2, N2/2) of the spectral signal
F 1(w) denotes the DFT value at frequency 2πw/N1 while
the wth component of F 2(w) denotes the DFT value at
frequency 2πw/N2. Clearly, 2πw/N1 6= 2πw/N2, and thus

the wth component of spectral signals F 1(w) and F 2(w) do
not represent the same frequency. In order to resolve the
above problem of misaligned frequencies, we propose the
following two solutions:

Solution 1: Zero-padding is a common method often
used to increase the frequency resolution after Fourier
Transformation of a discreet time series. In this method,
zeros are appended to the time-series data to increase its
length, allowing the DFT of this time-series data to have
more frequency components. In particular, the frequency
resolution W of the spectral signal is equal to the number
of frames N in the original time-series data. By padding
with zeros, we add Nadd zeros at the end of the original
time-series to create a new time-series of length N + Nadd.
Consequently, the spectral signal of the new time-series
will have W +Nadd frequency components. Please see [63]
for detailed theoretical explanation of this method. In this
paper, we first obtain the total number of frames in the
longest video of the dataset. Then, we add zeros to the
behaviour signals extracted from the rest of the videos,
making all behaviour signals to have the same length as the
longest video. Consequently, the spectral signals of all zero-
padded time-series behaviour signals will have the same
resolution. By further selecting only the first K components
of each spectral signal, the dimensionality can be signifi-
cantly reduced.

Solution 2: Although zero-padding can increase the
frequency resolution of spectral signals, the values of the
increased frequency components are estimated. Moreover,
the multi-channel facial behaviour time-series signals added
by zero-padding are zero-signal. This strategy assumes that
the facial status in the added frames is neutral and remains
unchanged, which is not correct. Therefore, the extended
multi-channel time-series signal cannot accurately represent
the facial behaviour patterns of the corresponding person
and the values of the increased frequency components are
estimations only. To avoid this, our second solution extracts
fixed-size spectral signals from variable length time-series
data by choosing k common frequencies from the spectral
signals obtained from each video. In this case, the values of
k chosen frequencies are obtained from the original signal
rather than an extended signal. Hence, each component in
the produced representation represents the accurate value
rather than estimated value of the corresponding frequency.
It should be noted that the advantage of this method is at
the cost that the spectral signals gets downsampled thereby
losing some information. Assuming that there are M time-
series signals f1, f2, · · · fM corresponding to M variable
length videos, the proposed solution follows following
steps:

1) Choose a fixed frequency resolution R, i.e. the
number of frequency components used to repre-
sent each time-series data, and then shorten the
time-series, reducing the total number of frames
in the original time-series signal fm(n) from Nm
to Nm − (Nm mod R) frames, which is a multi-
ple of R, resulting in a slightly shorter time-series
signal S(fm(n)). In practice, we remove the first
(Nm mod R)/2 frames and the last (Nm mod R)/2
frames from each video. In our experiments, Nm
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was chosen as 100 (task-based experiments) or 500
(experiments on whole videos of AVEC 2013), which
means the maximum length of removed video con-
tents were less than 4 seconds and 17 seconds,
respectively, (average 1.2 seconds and 6.6 seconds
in our experiments, respectively, while the average
full lengths of the videos are about 189 seconds and
961 seconds).

2) Each time-series S(fm(n)) is converted to its spec-
tral signal S(Fm(w)) using Equation (3). Since the
number of frequency components is equal to the
number of frames, the number of frequency compo-
nents in S(Fm(w)) will also be multiple ofR, which
can be defined as Wm = (tm×R),m = 1, 2, · · · ,M .
As a result, the frequencies represented in each spec-
tral signal can be denoted as 2πwm/(tm×R), wm =
0, 1, 2, · · · , tm × (R− 1).

3) As the number of frequencies in each spectral signal
is a multiple of R, all of them would contain the
same R components whose frequencies are given
by:

nf (m) = 2πwm(r)/Wm

= 2πr × tm/(R× tm)

= 2πr/R

(4)

where r = 0, 1, 2, · · · (R − 1). It is clear that the
R selected frequencies are independent of tm, and
these R frequencies, i.e. 2π × 0/R, 2π × 1/R, 2π ×
2/R, · · · , 2π×(R−1)/R, are encoded in all spectral
signals. This process is also illustrated in Fig. 4. Fi-
nally, we remove those high frequency components
and only keep the first K components.

As a result, solution 2 can not only align the frequencies
of variable length time-series signals, but also prevents
distortion of the aligned spectral signals.

3.2.3 Spectrum representations

After obtaining aligned spectral signals corresponding to
each behaviour primitive, we describe two different meth-
ods to construct a fixed-size joint representation so that
all behaviour spectral signals can easily be used as input
features for standard ML techniques.

Assuming that C behaviour primitives are extracted
from each frame, we produce C aligned spectral signals
consisting of K frequencies for each video. Since the values
in spectral signals are complex numbers, we convert each
of them to two spectrum maps in the real domain: an
amplitude map and a phase map, where the amplitude map
can be computed by

|Fmc (w)|/N =
√

Remc (w)2 + Imm
c (w)2/N (5)

and the phase map can be computed by

arg(Fmc (w)) = arctan
Imm

c (w)

Remc (w)
(6)

where Remc (w) and Imm
c (w) are the real and imaginary part

of Fmc (w) respectively, as defined in Equation(3). Hence, C
amplitude maps and C phase maps are extracted from a

Fig. 4. Frequency selection (Step 3 of solution 2): After the DFT, the
second half of the spectral signals are removed as they are symmetric.

video, all of which have K frequencies. We further propose
the following two methods to combine them:

1) Spectral heatmap. A C × K multi-channel ampli-
tude spectrum map and a C × K multi-channel
phase spectrum map. In both maps, each row repre-
sents an amplitude map or a phase map of a single
behaviour spectral signal while each column repre-
sents a frequency. In this paper, we combine two
spectrum maps as a two-channel spectral heatmap.

2) Spectral vector. A 1-D vector that concatenates C ×
K amplitude features and C × K phase features
from all behaviour primitives. As a consequence, the
concatenated vector contains C×K×2 components.

It is clear that both representations encode information from
all human behaviour signals. Also, their fixed size makes
them suitable for use with standard ML techniques.

3.3 Learning spectral representations

Inspired by recent advances in deep learning for multi-
channel signal processing including audio feature process-
ing [56], we employed a 1-D CNN structure [64] that has
been frequently used in the multi-channel time-series data
analysis, to extract features from spectral heatmaps. The
reason behind this is that the rows in the heatmaps, which
represent a set of behaviour primitives, have no natural or-
dering, spatial or otherwise. Therefore, standard 2-D CNNs
may not be suitable. Hence, the proposed spectral heatmaps
are treated as multi-channel 1-D data and 1-D CNNs are
used to learn depression prediction networks. As shown
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(a) The 1-D CNN model used to learn spectral heatmaps

(b) The ANN model used to learn spectral vectors

Fig. 5. The ML models employed in this paper.

in Fig. 5(a), our CNN architecture is made up of three
Conv-Batch-ReLU blocks, where each block contains a 1-D
convolution layer followed by a batch normalization layer
and a ReLU layer. In particular, each convolution layers
consists of 128 filters of kernel size 7×1, 128 filters of kernel
size 5×1, and 64 filters of kernel size 3×1, respectively. After
that, a channel-level average pooling layer is employed to
obtain a 1-D feature from each feature map, producing a 64-
D deep feature. Finally, a fully connected layer with 64 input
neurons, a dropout layer [65] (probability factor p = 0.5)
and an output layer of one neuron are used at the top of the
average pooling layer to predict depression levels.

For spectral vectors, we propose to use an Artificial Neu-
ral Network (ANN) structure used in [60], which consists
of four fully-connected hidden layers displayed in Fig.5(b)
for regression. The dimension of spectral vectors is usually
much higher compared to the amount of training data
(usually less than 200 training and validation examples [25],
[26], [27]). This may lead to model overfitting. In order to
avoid this, we introduce Correlation-based Feature Selection
(CFS) [66] to reduce the dimensionality. CFS is a popular
feature selection technique which only selects those features
which are highly correlated with the output variable but
uncorrelated with each other, thereby giving a very compact
set of useful features. In our implementation of CFS, we
employed Pearson’s linear correlation coefficient to measure
the correlations. Considering that the distribution of train-
ing labels are usually unbalanced, we group them into b
classes based on their depression severity labels and apply
a voted version of CFS to decide the final feature set. The
procedure of V-CFS is explained in Algorithm (1).

Algorithm 1 Procedure of V-CFS
1: Divide the training set into n subsets based on their la-

bels, where each subset may contain a different number
of examples.

2: Select the same number (k) of examples from each of the
subset, resulting in k × n selected examples;

3: Apply CFS to the selected examples
4: Repeat Step 2 and Step 3 t times, resulting in s selected

features;
5: Vote on all features and rank them in descending order

based on frequency;
6: Select top ranked features as the final feature set.

4 EXPERIMENTS

In this section, we first describe the experimental settings,
including the datasets (Sec.4.1), pre-processing (Sec.4.2),
model training details (Sec.4.3) and the performance metrics
(Sec.4.4). Then, we describe the interactive behaviour stud-
ies which investigates the influence of behaviour primitives
(Sec.4.5.1), task contents (Sec.4.5.2) as well as the length
of videos (Sec.4.5.3) on depression analysis. The frequency
selection was used to align frequencies for all interactive
behaviour studies. Since our approach has two frequency
alignment methods and two spectral representations, we
also present ablation studies in Sec.4.6 to evaluate their
performance. Finally, we also compare our best system to
the state-of-the-art approaches (Sec.4.7).

4.1 Datasets
We conducted our studies on the AVEC 2013 [25] and AVEC
2014 [26] audio-visual depression corpus. In the AVEC 2016
dataset, the set of tasks completed by each participant
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Fig. 6. Visualization of the most important facial actions and their face
region for depression analysis.

are sometimes different. Because the analysis of behaviour
is context-dependent and in order to avoid the negative
impact of the variation of tasks completed by the partic-
ipants, we decided against using the AVEC 2016 dataset
for our experiments. The corpus used by the AVEC 2013
challenge contains 150 audio-visual clips. Each clip records
a participant doing a series of tasks, including sustained
vowel phonation, sustained loud vowel phonation, sus-
tained smiling vowel phonation, speaking out loud while
solving a task, counting from 1 to 10, etc. All participants
are German speakers and each of them do the same tasks
in the same order during the video recording. The length of
these videos ranges from 20 minutes to 50 minutes with an
average of 25 minutes. The audio-visual depression corpus
used by AVEC 2014 challenge also contains 150 audio-visual
clips. In contrast to AVEC 2013, AVEC 2014 contains two
audio-visual files for each participant corresponding to two
different tasks, i.e. Northwind and Freeform, resulting in
much shorter length of each video. For both datasets, the
frame rate of videos were set to 30 frames per second
with resolution of 640 × 480, and each clip is labeled with
a Beck-Depression Inventory (BDI II) score indicating the
depression severity. These scores range from a minimum of
0 to a maximum of 63.

4.2 Pre-processing
In this paper, we employed the OpenFace 2.0 toolkit [62]
to automatically detect intensities of 17 AUs (AU01, AU02,
AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14,
AU15, AU17, AU20, AU23, AU25, AU26 and AU45), 6 gaze
direction descriptors and 6 head pose descriptors (detailed
explanation is in 7) resulting in a 29-D frame-wise human
behaviour representation. For frames in which no face was
detected or if the confidence value of the detected face was
small, no features were extracted and such frames were
removed from analysis. To minimize the effects of partici-
pants identity, the values of all human behaviour primitives
were normalized by subtracting their corresponding median
values computed over the whole video.

4.3 Training details
To learn from spectral heatmaps, our CNN structure was
fixed (illustrated in Sec. 3.3 and Fig. 5(a)) for all experiments

described in this paper. We also employ ANNs consisting
of four fully-connected hidden layers (illustrated in Sec. 3.3
and Fig. 5(b)) to learn from spectral vectors, where the size
(ranged from 20 to 40) of each hidden layer was optimized
for each experiment individually. For all networks, we used
Adam [67] as the optimizer and MSE as the loss function.
All training hyper-parameters for ANNs and CNNs, e.g.
learning rate, beta 1, beta 2 etc, and were optimized on
a validation set for each experiment individually. Other
hyper-parameters of the network, e.g. the number of layers
and the pooling method, were chosen based on the average
validation results of multiple experiments. They were kept
the same for all experiments.

The spectral feature extraction, feature selection and
ANN training were implemented in MATLAB 2019, while
the CNNs were implemented in Pytorch.

4.4 Performance metrics
To compare the performance of our approach to previous
solutions, we adopt two metrics used by the previous AVEC
challenges, i.e. root mean square error (RMSE) and mean
absolute error (MAE), which are defined as

MAE =
1

n

n∑
i=1

|fi − yi| (7)

RMSE =

√√√√ 1

n

n∑
i=1

(fi − yi)2 (8)

where fi is the predicted depression severity and yi is the
corresponding ground-truth. Additionally, we also report
correlations between predictions and ground-truth, based
on Pearson Correlation Coefficient (PCC, Eq. 9) and Con-
cordance Correlation Coefficient (CCC, Eq. 10). PCC can be
defined as:

PCC =
cov (f, y)

σfσy
(9)

where the cov is the covariance and σf , σy are the standard
deviations. On the other hand, the Concordance Correlation
Coefficient (CCC) is given by:

CCC =
2ρf,yσfσy

σ2
f + σ2

y + (µf − µy)2
, (10)

where µf and µy are the mean values of predictions and
labels respectively while σx and σy are the corresponding
standard deviations.

4.5 Interactive Behaviour Studies
4.5.1 Analysis of facial behaviour primitives
In this section, we independently evaluate the performance
of each human behaviour primitive on depression severity
estimation. To do so, we trained separate models from the
spectral vectors of each behaviour primitive. The results are
reported on the AVEC 2013 dataset.

As shown in Fig.7, individually using spectral vector of
AU15, AU17, AU12, AU04 and AU09 intensities achieved
decent performance, where CCC results are over 0.3 and
RMSE results are less than 10. Particularly, AU15 yielded
the best result among 29 behaviour primitives, with more
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(a) CCC results obtained by the spectral vector of each behaviour

(b) RMSE results obtained by the spectral vector of each behaviour

Fig. 7. Depression severity estimation results obtained by spectral vector
of each facial behaviour primitive, on AVEC 2013 dataset.(G0x, G0y,
G0z represent the gaze direction for left eye; G0x, G0y, G0z represent
the gaze direction for right eye; PT x, PT y, PT z represent the location
of the head; PRx, PRy, PRz represent the rotation of the head. Please
see [62] for details).

than 0.4 CCC. Head pose and gaze directions seemed less
informative to depression, at least on their own, as five
features corresponding to these ranked at the bottom end of
both CCC and RMSE. We also analyzed the temporal activa-
tion patterns of the four most informative AUs (AU4, AU12,
AU15 and AU17) through a number of statistical measures.
We did this to gain some insight in the human interpretable
differences of facial behaviour of severely depressed and
non-depressed people. For this analysis, we re-framed the
task as a binary classification problem between participants
that have BDI score between 29 − 63, which is defined as
severely depressed according to BDI II questionnaire, and
participants that have BDI score between 0 − 13, which is
defined as minimally-depressed. The findings are reported
in Table 1, showing that people with depression tend to
frequently display AU4 activation. The average duration
and intensity of AU4 activation also tend to be higher
in depressed people. On the other hand, the activation of
AU12 was found to be less frequent in depressed people. In
addition, they are also more likely to have shorter AU15 ac-
tivation and longer AU17 activation. These results show that
there is a significant amount of information present in some
of these behaviour primitives which could be exploited for
automatic depression analysis. Fig. 6 visualizes the most
important facial regions for video-based depression analysis
based on the aforementioned results.

Behav Description Correlation Mean
PCC

AU 4 Frequency of activation Positive 0.36
AU 4 Mean activation Positive 0.30

intensity
AU 4 Median activation Positive 0.26

intensity
AU 17 Mean distance between Positive 0.26

two adjacent activation
AU 17 Median activation Positive 0.25

duration
AU 15 Median duration Negative -0.25

of activation
AU 17 Frequency of activation Negative -0.24
AU 12 Frequency of activation Negative -0.23
AU 4 Mean distance between Negative -0.20

two adjacent activation
AU 4 Standard deviation Positive 0.19

of activation durations
AU 17 Mean activation Positive 0.18

duration
AU 4 Median activation Negative -0.15

duration

TABLE 1
Analysis of human interpretable temporal AU activation patterns

Table. 2 reports the results achieved by each single
modality, e.g. AUs, gaze and head pose as well as their
combinations, showing that out of the three visual cues, AUs
achieve the best performance when used independently, and
the best result were obtained by fusing all cues. To deter-
mine the added value of individual features, we conducted
an experiment where the results shown in Fig. 7 were used
to evaluate the system with increasing numbers of features
added in a greedy approach, i.e. starting with the feature
that has the highest predictive value when used on it’s own
and then the top-2 features, top-3 etc. We report on the
results using a figure Fig. 8 to explain how performance
improved with features from more behaviour primitives.
While the performance has been fluctuated a bit at some
points, it is still clear that they were increasing when more
features were used.

Please note that these results only indicate the rela-
tionship between automatically detected behaviours and
depression, which may be slightly different to the result
achieved by using human annotated behaviour information.
This is because the tools we used for behaviour detection are
not 100% accurate and the errors in detection may affect the
depression analysis results.

4.5.2 Task-based depression analysis
The subjects in the videos of AVEC-2013 and AVEC-2014
dataset were recorded while doing a set of predefined
tasks. To investigate the influence of different tasks on the
performance of depression models, we divided the videos of
AVEC 2013 dataset into several segments based on the task
topics, which are: Task 1. Sustained vowel pronunciation;
Task 2. Problem solving while speaking out-loud; Task 3.
Counting from 1 to 40; Task 4. Reading a text out-loud;
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Behav MAE RMSE PCC CCC
AUs 6.92 8.22 0.67 0.56
HP 8.54 10.38 0.37 0.30

Gaze 7.51 9.04 0.49 0.35
AUs+HP 6.96 8.34 0.67 0.55

AUs+Gaze 6.85 8.29 0.74 0.66
HP+Gaze 7.49 9.15 0.52 0.37

AUs+HP+Gaze 6.68 8.10 0.75 0.68
TABLE 2

Analysis of the influence of individual behaviours, where HP denotes
head poses.

Fig. 8. The depression analysis results (AVEC 2013 dataset) for TOP-K
behaviour primitives displayed in Fig.7(a).

Task 5. Singing (Task 5 was not completed by any of the
participants); Task 6. Telling a story from one’s childhood;
Task 7. Telling a story based on a picture applying the
Thematic Apperception Test (TAT). The order of these tasks
in each video is constant, and is given by: 1. Task 4, 2. Task
3, 3. Task 7, 4. Task 6, 5. Task 1, 6. Task 2. To help other
researchers in conducting similar studies, we have made the
time-stamps and detailed description of these tasks, publicly
available at 1. In case of AVEC 2014 dataset there are already
separate videos available for the two sub-tasks used in this
dataset.

We conducted three types of experiments on both
datasets: 1. single task-based experiments, where the model
and the performance results were generated by using the
video segment of each task separately; 2. Feature-level fu-
sion of all tasks, where the video-level feature vector was
obtained by concatenating features from the video segments
of all tasks, and selected by V-CFS; 3. Decision-level fu-
sion of all tasks, where the final predictions were obtained
by combining the predictions from all tasks using linear
regression. In addition, we also report the performance
achieved using whole videos of AVEC 2013 dataset without
considering the task boundaries. It should be noticed that
only 35 training videos, 32 validation videos and 39 test
videos contain all tasks. The results in this subsection are
reported only on this subset of videos containing all tasks.

The results of all experiments achieved by are shown in
Fig.9. It can be observed that the tasks contents have sig-
nificant impact on the performance of our approach, as the

1. https://github.com/SSYSteve/Human-behaviour-based-
depression-analysis-using-hand-crafted-statistics-and-deep-learned

Alignment MAE RMSE PCC CCC
No alignment 9.09 11.16 0.29 0.11

Padding 7.66 9.59 0.53 0.33
Selection 7.44 9.46 0.52 0.39

TABLE 3
Comparison of average results generated by two frequency alignment

on AVEC 2013 test set

Alignment MAE RMSE PCC CCC
No alignment 8.67 10.82 0.27 0.14

Padding 7.55 9.40 0.52 0.36
Selection 7.18 9.27 0.56 0.42

TABLE 4
Comparison of average results generated by two frequency alignment

on AVEC 2014 test set

results achieved by different tasks varied a lot; This can be
explained by the fact that different tasks can trigger different
facial behaviours, some of which are more informative than
others, for detecting depression. Secondly, it is clear that
the feature-level fusion and decision-level fusion of all tasks
provided better results than using features from one task
only, indicating that depression can be better analyzed by
fusing information from multiple tasks. Thirdly, when com-
paring the three fusion strategies, i.e. input-level fusion (ex-
tract features from whole videos), feature-level fusion and
decision-level fusion, the decision-level fusion achieved the
best results and feature-level fusion outperformed the input-
level fusion. This result suggests that modelling depression
based on task segments can better predict depression sever-
ity than using whole videos without considering the time
boundaries of tasks.

4.5.3 Influence of video length
In this section, we used between 10% and 100% of the video
segments corresponding to task 4, in increments of 10%,
to investigate the influence of video length on depression
prediction. Since the task 4 asked participants to read the
same text, the contents of this task are constant for all
participants, which makes the analysis invariant to other
factors, such as different story topics in Task 6, etc.

As we can see from Fig. 10, when the duration of videos
is very short, the performance is low, However, when the
video length is increased, longer-term behaviour becomes
available for analysis. As a result, the depression estima-
tion performance increases significantly, with the best result
achieved by using the first 80% of task 4 video segments (the
average length of the first 80% of videos is 338.7 seconds)
in AVEC 2013 dataset.

4.6 Ablation Studies

4.6.1 Comparison of frequency alignment methods
As described in Section 3.2.2, we used two frequency align-
ment methods, i.e. zero-padding and frequency selection.
In this section, we evaluate both methods on all the task-
based and fusion experiments described in Section 4.5.2,
and report the average performance achieved by each of
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Fig. 9. Task-based results and fusion results achieved by two spectral representations on AVEC 2013 dataset and AVEC 2014 dataset.

Fig. 10. Effect of video duration on depression estimation, using a
varying percentage of the first frames of task 4.

them. In order to show the effectiveness/need for frequency
alignment, we also report the average performance of mod-
els trained without any frequency alignment of the spectral
features.

Table 3 and Table 4 compares the average (across all
task-based and fusion experiments) performance of the
two frequency alignment methods with the models where
no alignment was done. The results on both the datasets,
demonstrate that frequency alignment is necessary as both
alignment methods achieved enhanced performance com-
pared to models with no alignment. It can also be observed
that the two frequency alignment methods achieved similar
performance, with the proposed frequency selection method
performing slightly better than zero-padding. Both methods
have their own advantages: while zero-padding can increase
the resolution of the spectral signals, the use of frequency

selection prevents the original signal from distortion.

4.6.2 Comparison of spectral representations
We also compare the performance of the two spectral
representations, i.e., spectral heatmap and spectral vector,
described in Section 3.2.3. Fig.9, shows the fusion results as
well as the results achieved by each task, individually. The
performance from spectral vectors is significantly higher
compared to the performance from the spectral heatmaps,
across all experiments. One possible reason behind this
outcome is that the number of the training examples (50 for
training and 50 for validation) is too small to train CNNs
(which usually have large number of trainable parameters)
without overfitting. Secondly, we conducted feature selec-
tion before feeding spectral vectors to ANNs. This means
that a large part of less informative behaviour information
has been removed before the model training, which makes:
1. ANN models have smaller input layer and less parame-
ters, making them easier to be trained by a small dataset; 2.
the reduced data is more compact and has less noise.

4.7 Comparison to the state-of-the-art
We compare the performance of our top 2 best systems to
state-of-the-art results on both datasets, in Table 5 and Table
6. For AVEC 2013 dataset, as only 39 test videos contain all
tasks, it is not appropriate to compare any task-based result
shown in Fig.9, to other published works. Instead, we report
the results obtained by spectral representations extracted
from whole videos of AVEC 2013 dataset. In particular,
our best system in AVEC 2013 applied zero-padding to
align frequencies and used spectral vector as the spectral
representation. As shown in Table 5, our system achieved
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Method MAE RMSE
Baseline [25] 10.88 13.61

Kachele et al. [68] 8.97 10.82
Meng et al. [29] 9.14 11.19

Cummins et al. [36] N.A. 10.45
Wen et al. [17] 8.22 10.27
Kaya et al. [69] 7.86 9.72
Zhu et al. [19] 7.58 9.82
Ma et al. [70] 7.26 8.91

Jazaery et al. [42] 7.37 9.28
Melo et al. [28] 6.40 8.26
Zhou et al. [18] 6.20 8.28
Ours (Sel+SV) 6.67 8.11
Ours (Pad+SV) 6.16 8.10

TABLE 5
Comparison between our top 2 best systems and other works on AVEC

2013 test set

the best RMSE and MAE results with 2.2% and 0.7% im-
provement respectively, over the current state-of-the-art. In
terms of correlation metrics, the CCC and PCC of the second
best system (Sel+SV) reached 0.68 and 0.75, respectively,
while the best system (Pad+SV) achieved 0.60 and 0.73,
respectively. The detailed predictions of the system (Sel+SV)
is visualized in Fig. 11(a).

Both of our top 2 best systems in AVEC 2014 dataset out-
perform the current state-of-the-art. Our best system used
selection to align frequencies for each task, i.e. Northwind
and Freeform, and used spectral vectors as the representa-
tions. Meanwhile, the second best system used zero padding
to align frequencies for each task and used spectral vectors
as the representations. The final predictions of both systems
were computed through decision-level fusion of the two
tasks. As we can see from Table 6, our best system achieved
RMSE and MAE results with 4.2% and 10.7% improvement
compared to the current state-of-the-art. The CCC results
of the best system (Sel+SV+Dec-fusion) and second best
system (Pad+SV+Dec-fusion) are 0.67 and 0.63, respectively
while the PCC results of both systems are 0.78. When only
a single video set is used, our best results still outperformed
all listed approaches (The result reported in [20] used both
Northwind and FreeForm videos). The detailed predictions
of our best system (Sel+SV+Dec-fusion) is visualized in Fig.
11(b).

5 CONCLUSION

This paper proposed a novel video-based automatic depres-
sion analysis approach using automatically detected facial
behaviour primitives. As long-term temporal dynamics are
important asset for depression analysis, the proposed ap-
proach first employs Fourier Transform to convert time-
series behaviour signals to frequency domain as spectral
signals, where each component in spectral signal encodes
different frequency information of the whole video. As a re-
sult, the produced spectral signals contain multi-scale video-
level temporal information. However, due to the variation in
length of original videos, the length of their corresponding
time-series behaviour signals and spectral signals are also
variable. To allow spectral signals to be easily processed by

Method MAE RMSE
Baseline [26] 8.86 10.86

Perez et al. [71] 9.35 11.91
Sidorov et al. [72] 11.20 13.87

Kaya et al. [73] 7.96 9.97
Zhu et al. [19] 7.47 9.55

Jazaery et al. [42] 7.22 9.20
Melo et al. [28] 6.59 8.31
Jan et al. [20] 6.68 8.01

Zhou et al. [18] 6.21 8.39
Ours(Sel+SV+Freeform) 6.78 8.30
Ours(Pad+SV+Freeform) 6.85 8.36

Ours(Pad+SV+Dec-fusion) 6.04 7.25
Ours(Sel+SV+Dec-fusion) 5.95 7.15

TABLE 6
Comparison between our top 2 best systems for single task/fusion and

other works on AVEC 2014 test set

standard ML models, we also propose two frequency align-
ment methods. Additionally, we also propose two spectral
representations, i.e., spectral heatmap and spectral vector, to
encode aligned spectral signals, allowing them to be learned
by CNNs and ANNs, respectively.

We evaluated the proposed approach on AVEC 2013 and
AVEC 2014 datasets, as the videos in each of them contain
the same tasks. There are a series of studies conducted in
our paper. Firstly, the analysis of facial behaviour primitives
show that AU15, AU17, AU12, AU04, and AU09 are the
most valuable behaviour primitives for depression estima-
tion. Then, the task-based experiments and fusion experi-
ments demonstrated that the contents of task affect depres-
sion estimation results significantly. Also, detecting depres-
sion from multiple tasks usually generate better results than
using a single task alone. Thirdly, we compared two pro-
posed frequency alignment methods, i.e, zero-padding and
frequency selection. The results showed that they achieved
similar results. Meanwhile, the comparison between the
two spectral representations illustrated that spectral vec-
tors clearly outperform the spectral heatmap. However, we
believe that the performance of spectral heatmap can be
potentially enhanced if more training data is available, as
the amount of training data in the current audio-visual
depression databases is not enough to train deep CNNs.
Finally, we also compared our best systems to the state-of-
the-art works. The results clearly showed that our approach
outperform all other works.

As mentioned above, the performance of using CNN to
train from spectral heatmaps can be potentially improved
if more training data is available. Consequently, our future
work will focus on collecting a large database for video-
based depression analysis. Meanwhile, as this paper only
used automatically detected AUs, gaze and head pose, for
extracting frame-wise representation, which still ignores
some other potentially useful information (e.g. microexpres-
sions, speech, etc.). In future, we plan to explore what other
kinds of behaviour primitives could be useful for automatic
depression analysis.
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(a) AVEC 2013

(b) AVEC 2014

Fig. 11. Predictions of our best systems on AVEC 2013 (top) and AVEC
2014 (bottom) datasets
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M. Montes-y Gómez, D. Pinto-Avedaño, and V. Reyez-Meza,
“Fusing affective dimensions and audio-visual features from seg-
mented video for depression recognition: Inaoe-buap’s participa-
tion at avec’14 challenge,” in Proceedings of the 4th International
Workshop on Audio/Visual Emotion Challenge. ACM, 2014, pp. 49–
55.

[72] M. Sidorov and W. Minker, “Emotion recognition and depres-
sion diagnosis by acoustic and visual features: A multimodal
approach,” in Proceedings of the 4th International Workshop on Au-
dio/Visual Emotion Challenge. ACM, 2014, pp. 81–86.
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