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Abstract—Inspite the emerging importance of Speech Emotion Recognition (SER), the state-of-the-art accuracy is quite low and
needs improvement to make commercial applications of SER viable. A key underlying reason for the low accuracy is the scarcity of
emotion datasets, which is a challenge for developing any robust machine learning model in general. In this paper, we propose a
solution to this problem: a multi-task learning framework that uses auxiliary tasks for which data is abundantly available. We show that
utilisation of this additional data can improve the primary task of SER for which only limited labelled data is available. In particular, we
use gender identifications and speaker recognition as auxiliary tasks, which allow the use of very large datasets, e. g., speaker
classification datasets. To maximise the benefit of multi-task learning, we further use an adversarial autoencoder (AAE) within our
framework, which has a strong capability to learn powerful and discriminative features. Furthermore, the unsupervised AAE in
combination with the supervised classification networks enables semi-supervised learning which incorporates a discriminative
component in the AAE unsupervised training pipeline. This semi-supervised learning essentially helps to improve generalisation of our
framework and thus leads to improvements in SER performance. The proposed model is rigorously evaluated for categorical and
dimensional emotion, and cross-corpus scenarios. Experimental results demonstrate that the proposed model achieves state-of-the-art

performance on two publicly available datasets.

Index Terms—Speech emotion recognition, multi task learning, representation learning

1 INTRODUCTION

PEECH Emotion Recognition (SER) is an emerging area
S of research. Since speech is a major form of affect display
[1], the success of SER will redefine human-computer inter-
actions, enabling, for example, effective service delivery in
many sectors. Call centres now track customers” emotions
for better service delivery [2]. Speech based diagnostic sys-
tems are being developed for diagnosis of depression [3],
distress [4], and monitoring of mood states for bipolar pa-
tients [5]. Many other applications including media retrieval
systems [6], smart cars [7], and forensic sciences [§] also aim
to improve their performances by utilising SER techniques.

Human emotions in speech are complex to model
due to dependency of speech on many factors including
speaker [9], gender [10], age [11]], culture [12]], dialect [13],
and among others. Researchers have explored many meth-
ods including classical models, such as hidden Markov
models, support vector classification, and deep neural net-
works (DNNs) for speech emotion recognition, wherein
DNN models have usually demonstrated better perfor-
mance compared to the classical models [14], [15]. Currently,
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the popularity of DNN models for speech emotion recogni-
tion is seeing a steep rise.

DNN models that have been successful for speech emo-
tion recognition include deep belief networks (DBN) [16],
[17], convolutional neural networks (CNN) [18], [19] and
long short term memory (LSTM) networks [20], [21], [22].
The majority of the above research presents techniques to
predict speech emotion using single task (emotion recogni-
tion) training. These techniques, however, ignore a poten-
tially rich source of information available in speech (e.g.,
information about the speaker, gender, etc.) that can be
utilised for achieving generalisation and improvement in
the performance [23]. To achieve generalisation, most ex-
isting studies tend to validate/tune models using diverse
datasets [12], [17]. However, standard benchmark datasets
are very scarce, and most problematically, they are of
smaller sizes, which creates massive roadblocks in achieving
generalisation in SER systems [23]].

An alternative and effective approach to increase the
generalisation of SER models is multi-task learning (MTL)
[24], which simultaneously solves relevant auxiliary tasks
along with the primary task. In MTL, models are better
regularised to uncover the common high-level discrimi-
native representations. MTL has been widely applied to
various speech and natural language processing related
problems [25], [26]. In SER, MTL has shown good perfor-
mance for fully supervised deep learning (DL) models [23]],
[27]], [28]. Most of these approaches jointly learn different
emotional attributes to improve both performance and gen-
eralisation [28], [29], [30]. Often, researchers use categorical
emotion as a primary task and dimensional emotion as
an auxiliary task. Discrete/categorical theories of emotions
encompass a small set of distinct emotions. The foundation



of these theories is that different emotions are associated
with distinctive patterns of triggers, behavioural expression,
and unique subjective experiences [31]. Only core emotions
including joy, sadness, fear, anger, and disgust [32] are
included in these theories. On the contrary, the foundation
of the dimensional models of emotions is that a common
and interconnected neurophysiological system generates all
affective states [33]. Generally, these models define human
emotions using a two-dimensional space having valence
in one dimension and activation or intensity in the other
dimension. To use these dimensional emotions as secondary
tasks, annotation is important. However, the meta labels for
these emotional attributes are scarcely available. Recently,
it has been shown in computer vision that the performance
of primary tasks with constrained data can be significantly
enhanced by using larger data for the auxiliary tasks [34],
[35]. Inspired by this idea, in this study, we aim to build
models that can effectively utilise auxiliary tasks with a
large quantity of available data in order to improve the per-
formance of the primary task. We use emotion recognition as
our primary task and select gender and speaker recognition
as auxiliary tasks to include larger datasets.

Within our MTL framework, we further utilise gener-
ative adversarial models due to their exceptional ability
to learn powerful and discriminative features [36]. In par-
ticular, we use adversarial autoencoder (AAE) [37], which
fundamentally aims to learn representation of data in an un-
supervised way. However, by combining AAE with the su-
pervised classification networks we enable semi-supervised
learning for AAE. This essentially incorporates the discrimi-
native component (from the supervised classification) in the
training pipeline of unsupervised learning to influence the
latent representation of AAE and by makes it suitable for
semi-supervised emotion classification.

To show the advantage of our proposed MTL frame-
work, we evaluate it comprehensively on two large and
widely used emotional databases: The interactive emotional
dyadic motion capture (IEMOCAP) [38] and MSP-IMPROV
[39]. We compare the performance of our proposed frame-
work with that of recent studies, and also with popu-
lar models like CNNs, and an autoencoder based semi-
supervised model. The comparative results show that, for
categorical, dimensional, and cross-corpus emotion classifi-
cation, we achieve the improved results, which attests to the
strong generalisation power of the proposed framework.

2 RELATED WORK

Our framework utilises multi-task learning for SER. It also
uses semi supervised learning while employing adversarial
encoding, where the classification is done through CNNs.
We therefore cover these four aspects in our literature re-
view.

2.1 Landscape of Multi-task Learning for SER

Multi-task learning (MTL) has been successful for simul-
taneously modelling multiple related tasks utilising shared
representation [40], [41]. It aims to improve generalisation
by learning the similarities as well as the differences among
the given tasks from the training data [24]. The conventional
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methodology to optimise a machine learning model for
one task at a time ignores potentially rich information in
the training signal [23]]. Such information can be effectively
utilised for auxiliary tasks to improve generalisation and
performance of a system. Several MTL approaches [42],
[43], [44] have been widely used for solving problems in
computer vision. The primary reason to use MTL in vision
is that images can provide information related to different
tasks, and simultaneously learning these correlated tasks
can boost the performance of each individual task [45], [46].
For example, face detection, gender recognition, and pose
estimation can be simultaneously performed using a deep
CNN [47].

Similarly to images, speech is another such modality that
can provide information for various tasks including speaker,
gender, and emotion identification. Researchers have started
to investigate the effectiveness of MTL for improving the
performance of speech emotion recognition [27], [48], [49].
Eyben et al. [50] were first to use MTL in SER and they
showed that training the model with multiple targets helps
to improve the performance compared to single target train-
ing. Prthasarathy and Busso [28] proposed a DNN based
model to jointly learn the arousal, dominance, and valence
value of a given utterance. The authors demonstrated that
joint learning of these emotional attributes significantly en-
hances the performance of a model compared to single task
learning (STL). Similarly, Ma et al. [49] used a multi-task
attention-based DNN for SER and found that, by sharing
the information among tasks, a high performance can be
achieved. Xia et al. [30] proposed a DBN based model
for MTL and utilised activation and valence information
for speech emotion recognition. They illustrated that the
utilisation of additional information in the MTL setup can
improve the performance of their model by considering the
categorical emotion label as the primary task, and activa-
tion and valence information as secondary tasks. Similarly,
Lotfian et al. [29] used a DNN for jointly learning primary
and secondary emotions. They showed that the classification
performance of the primary task (categorical emotions) is
significantly improved by considering secondary emotions
(other emotional classes perceived by the evaluators) in the
model. In another study, Chang et al. [51] used a generative
adversarial network (GAN) for MTL with valence classifica-
tion as primary and activation classification as a secondary
task. In addition, the authors also introduced unlabelled
data from the AMI corpus [52] (a multi-modal data set con-
sisting of 100 hours of meeting recordings) to train generator
and discriminator components of a GAN and showed that
the performance of the classifier can be improved by using
task-unrelated speech data in an unsupervised way.

Another stream of research in SER—instead of using dif-
ferent emotional attributes as auxiliary tasks—has utilised
other available attributes, such as speaker identity and gen-
der to improve the performance of SER [53]. For instance,
Kim et al. [27] used gender and naturalness (natural or
acted corpus) recognition as auxiliary tasks to improve the
performance of emotion recognition using different emo-
tional databases. Zhang et al. [54] used an MTL approach to
investigate the influence of the domain (whether the expres-
sion is spoken or sung), corpus, and gender on cross-corpus
emotion recognition systems. The authors used six different



emotional databases and showed that the performance of a
cross-corpus SER system increases with the rising number
of emotional corpora used for training. Based on these
results, they also showed that effective modelling of cross-
corpus emotion recognition requires the understanding of
emotional changes as a function of non-emotional factors.

Both streams of research mentioned above conform to
the fact that MTL approaches can improve the SER perfor-
mance compared with STL. While the first stream shows
that choosing emotional attributes as auxiliary tasks leads
to improved performance of SER for the primary task, the
second stream shows that it is also possible to choose non-
emotional attributes of speech as a secondary task, and per-
formance of SER as a primary task can be improved. Our ap-
proach is motivated by the second stream as it provides the
opportunity to utilise abundantly available non-emotional
datasets. Precisely, we consider using abundantly available
non-emotional speech corpora to indirectly improve the
performance of SER by directly improving the performance
of the auxiliary tasks, which has not been widely studied in
the existing literature. In [51]], the authors used additional
data, however, unlike them, we use additional data for
auxiliary tasks. Also, unlike them, we backpropagate AE
reconstruction loss in addition to backpropagating classifi-
cation, generator, and discriminator losses. Note that, as our
training uses both labelled and unlabelled emotion data,
we therefore, introduce semi-supervised learning in MTL.
In the next section, we cover studies using semi-supervised
learning for SER.

2.2 Landscape of Semi-Supervised Learning for SER

A number of studies have considered semi-supervised
learning for SER. Huang et al. [60] introduced semi-
supervised CNN for learning affect-salient features and
reported superior performance on four public emotional
speech databases: the Surrey Audio-Visual Expressed Emo-
tion (SAVEE) database [61], the Berlin Emotional Database
(Emo-DB) [62], the Danish Emotional Speech database (DES)
[63], and the Mandarin Emotional Speech database (MES)
[64]. The authors used CNN in an unsupervised way to
learn general features and then fine-tuned the model for
emotion recognition. Zhang et al. [55] proposed a collabo-
rative semi-supervised learning technique that can correct
mislabelled samples by re-evaluating the automatically la-
belled samples in learning iterations of the model. They
also used different models including SVMs and RNNs and
multiple modalities (audio and video) to improve the per-
formance by simultaneously minimising the joint entropy.
Recently, researchers further studied ladder network-based
semi-supervised methods for SER [57], [58], [59], [65] and
have shown superior results over supervised methods. A
ladder network is an unsupervised denoising autoencoder
that is trained along with a supervised classification or re-
gression task. Deng et al. [56] proposed a framework for SER
by combining an autoencoder and a classifier. Their work
is based on a discriminative Restricted Boltzmann Machine
(RBM) [66]], which considers unlabelled samples as an extra
garbage class in the classification problem. Our study differs
from previous studies by simultaneously training an adver-
sarial autoencoder with multi-task classifiers and utilising
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the additional unlabelled emotional data for auxiliary tasks
to improve SER performance. Joint optimisation of the sum
of multi-task supervised and unsupervised cost functions
is an important contribution leading to more discriminative
SER models. In the next section, we focus on the existing
studies that utilise adversarial autoencoders (AAE) for SER
and highlight the difference with our work.

2.3 Landscape of Adversarial Autoencoders (AAE) for
SER

Autoencoders are unsupervised learning models that have
been successfully utilised in the field of SER. They are very
powerful in learning salient representations that lead to a
notable improvement in SER performance [20], [67]. Ad-
versarial autoencoders (AAEs) are probabilistic models [37]
that turn an autoencoder into a generative model. This
has increased the popularity of AAEs in learning more de-
scriptive features compared to conventional AEs and even
compared to variational autoencoders (VAEs) [68]. In [36],
AAEs have been used in SER for encoding high dimensional
feature representations into compressed space and for the
generation of speech samples. The authors found that the la-
tent code learnt by AAE preserves class discriminability that
is very crucial for speech emotion classification. However,
most SER studies utilised AE networks to perform feature
learning and then classification was performed separately
(e.g., [36], [69]). However, it has been shown in that AAEs
can be exploited in semi-supervised way to improve the
classification performance [37]]. Therefore, we proposed a
self-sufficient semi-supervised structure that can performs
both feature representation learning and classification learn-
ing by jointly minimising reconstruction error and the sum
of multi-task classification errors.

2.4 Landscape of CNNs for SER

Convolutional neural networks (CNNs) are one of the most
popular deep learning models that have demonstrated great
success in various research fields including object recog-
nition [70], handwriting recognition [71]], face recognition
[72], natural language processing (NLP) [73], and speech
recognition [74]. CNNs overcome the scalability problem of
standard neural networks by allowing the multiple regions
of the input to share the same weights [15]. Generally,
CNN:s consist of three building blocks: convolutional layers,
pooling layers, and fully connected layers. Convolutional
layers in CNNs perform a convolution operation to compute
feature maps, which are then sub-sampled using pooling
layers. Finally, fully connected layers are used to transform
the features into a more discriminative space for target
prediction. In SER, CNNs have been widely used to learn
salient features [18], [75], [76], also directly for classifica-
tion [77]. Studies [78], [79], [80], [81] also presented CNNs
in combination with LSTM to improve SER performance.
However, this study proposes a unique use of CNN upon
using it in an MTL framework while utilising the unlabelled
data for the auxiliary task to improve SER performance.
For the convenience of the readers, in Table [l we provide
a difference of our work with that of the existing literature,
which supports the claims we make in this paper.



Table 1: Summary of comparative analysis of our paper with that of the existing literature.

Auxiliary Tasks for MTL

Emotional | Non-Emotional
Attributes Attributes

Paper/Author (Year)

Additional Data for
Auxiliary Tasks

Adversarial
Learning

Semi-Supervised
Learning

Prthasarathy and
Busso [28] (2017)

Xia et al. [30] (2017)

Chang et al. [51] (2017)

Lotfian et al. [29] (2018)

Tao et al. [53] (2018)

Zhang et al. [55] (2018)

Deng et al. [56] (2018)

Huang et al. [57] (2018)

Sahu et al. [36] (2018)
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3 PRoOPOSED MODEL

We proposed a multi-task learning framework by incor-
porating semi-supervised adversarial autoencoding using
adversarial autoencoders (AAE). An AAE combines a tra-
ditional autoencoder and an adversarial network to deliver
a surprisingly flexible framework. In AAE, the adversarial
part is attached to the latent code z, where the encoder of
autoencoder network also acts as the generator of the ad-
versarial network. It enforces the autoencoder to generate a
latent representation z by observing the statistical properties
of a given prior distribution p(d).
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Figure 1: Illustration of our proposed multitask framework
using a semi-supervised adversarial autoencoder (AAE).

In order to achieve MTL in AAE, we modify it to in-
corporate three supervised classification networks including
emotion, speaker, and gender classification. Fig.[Tillustrates
our proposed semi-supervised multitask learning model,
where we highlight the supervised and unsupervised paths.
In Equation (1) we present the multi-task autoencoding loss
Lyrag as a function of supervised and unsupervised losses.

Lyrag = a x Lag + L, (1)
Lo=pxLg+(1—p)x(Lg+ Ls). 2

Here, Lx is the reconstruction loss of the autoencoder;
Ly, L, and Lg are losses for the emotion, gender, and
speaker classification tasks, respectively; o and [ are the
trade-off parameters to control the weight of each loss term.
In addition to the autoencoding network (encoder (Ej)
and decoder (Ds)) and the and classifiers (Cy), there is
an adversarial network that includes a generator (Ep) and
discriminator (D,,).

For the input data x, overall model is trained in three
phases: (1) the reconstruction phase; (2) the regularisation
phase; and (3) the classification phase. In the reconstruction
phase, the autoencoder updates the encoder (£g) and the
decoder (Ds) and minimises the reconstruction error by en-
coding x into latent representation z. The objective function
for the autoencoder is defined below:

Lag(w, Ds(Eg(w))) = [lo — &3 ©)

In the regularisation phase, the adversarial network first
updates its discriminator (D,) to distinguish between
the samples coming from the prior distribution p(d) =
N(d;0,1I) [real] and that generated using the latent codes
(2) [fake] computed by the autoencoder; and then updates
its generator (Ejp) or encoder . The objective here is to
fool the discriminator (D,,) by learning to encode data that
D,, perceives as real. The update is done by keeping the
weight and bias of the discriminator network fixed and by
backpropagating the error to Ey and updating its weight
and bias values. The objective function for the discriminator
(D,,) is defined as:

Ldisc - mjx (EdNPd [log(‘Dw (d) )]

+Egp, [log(1 — Dy, (Eg(2)))]).

Here p,; is the data distribution and p(d) = N (d;0, I) is the
prior multivariate Gaussian distribution.

In the classification phase, classifiers (Cy) use the latent
code (z = Ey(x)) as input and minimise standard class en-
tropy loss (using predicted values and target vector contain-
ing the labels for three tasks) and error is back-propagated

(4)



through the network to update Ejy. The encoder/generator
network (Fjp) is updated by optimising the following objec-
tive function:

Lene = nbin<Ex~pz log(1 — Dy, (Ep(x)))]

B [Beas(e, Ds(Bo@) - O
EI:.UNPX,Y [[’C(Ee(x)7 Y C¢>])

Unlike the discriminator, the encoder/generator is up-
dated in all three phases. The first term in Equation (5) is
updated in the regularisation phase, and the second term
in the reconstruction phase and the third term is updated
in the classification phase. Also, these three phases run in
serial: the reconstruction phase runs first followed by the
regularisation and classification phase. In this way, the latent
code generation, which is an unsupervised process, gets
influenced by the supervised classification task and thus
facilitates semi-supervised learning. Note here that when
using additional auxiliary data with no labels for emotion,
loss functions for gender and speaker are only calculated to
update the encoder.

4 EXPERIMENTAL SETUP
4.1 Datasets

To evaluate the performance of our proposed model, we use
two different datasets: IEMOCAP and MSP-IMPROYV, which
are commonly used for emotion classification research [82],
[83]. Both datasets have similar labelling schemes and
were collected to simulate naturalistic dyadic interactions
between actors. In order to use additional data for the
gender and speaker recognition auxiliary tasks, we use
Librispeech [84], which is a corpus of read English speech,
suitable for training and evaluating speech recognition and
speaker identification systems. Below we briefly describe
these datasets.

4.1.1 IEMOCAP

This database contains 12 hours of audiovisual data in-
cluding audio, video, facial motion information, and tex-
tual transcriptions [38]]. The recordings were collected from
10 professional actors, including five males and five fe-
males, during dyadic interactions. This allowed actors to
perform spontaneous emotion in contrast to reading text
with prototypical emotions [85]. Each interaction is around
five minutes long and segmented into smaller utterances of
sentences. For categorical labels, each sentence is annotated
by three annotators and the participant. Finally, an utterance
is given a label if at least three annotators assigned the same
label. Overall, this corpus contains nine emotions: angry,
excited, happy, sad, neutral, disgust, frustrated, fearful, and
surprised. For dimensional annotation, two annotators and
the participant were asked to label activation and valence on
a scale of 1 to 5. Similarly to prior studies [86], we used utter-
ances of four categorical emotions including angry, happy,
neutral, and sad in this study by merging “happy” and
“excited” as one emotion class “happy”. The final dataset
includes 5531 utterances (1103 angry, 1708 neutral, 1084
sad, and 1636 happy).

4.1.2 MSP-IMPROV

The MSP-IMPROV dataset is a multimodal emotional
database recorded from 12 actors performing dyadic inter-
actions [39]. The utterances are grouped into six sessions
and each session has one male and one female actor similar
to IEMOCAP [38]. The scenarios were carefully designed to
promote naturalness, while maintaining control over lexical
and emotional contents. The emotional labels were collected
through perceptual evaluations using crowdsourcing [87].
The utterances in this corpus are annotated on four categor-
ical emotions: angry, happy, neutral, sad. To be consistent
with previous studies [15], [88]], we use all utterances with
four emotions: anger (792), happy (2644), sad (885), and
neutral (3477). For dimensional annotation (i.e., activation,
and valence), similar to IEMOCAP, these utterances are also
annotated on a scale of 1 to 5.

4.1.3 LibriSpeech

The LibriSpeech dataset [84] is derived from audiobooks
and it contains 1000 hours of English read speech from
2484 speakers. This corpus is commonly used for speech
recognition and speaker identification problems [89], [90].
The training portion of this corpus is split into three sub-
sets, with an approximate recording time of 100, 360 and
500 hours. We used the subset that contains 360 hours of
recordings. These recordings span over 961 speakers. Our
selection is motivated by the fact it is obviously larger than
the 100-hour subset, which spans over only 251 speakers.
Also, it offers higher recording quality compared to the 500-
hour subset [84]. From this subset, we randomly select 600
speakers (the rationale for choosing the number of speakers
is discussed in Section [p.2).

4.2 Speech Preprocessing

We have represented the audio utterances in the form of
spectrograms, which is a popular 2D representation widely
used for speech emotion recognition [81], [91], [92]. The
spectrograms were computed using a short-time Fourier
transform (STFT) with an overlapping Hamming window of
size 25ms with a 10 ms shift. The height of the spectrogram
is 128, which represents the frequency range 0-8 kHz. Due
to the varying lengths of the audio samples, the spectro-
grams vary in width, which poses a problem for the batch
processing of the model training. To compensate for this, a
context window of 256 frame is applied to create fixed width
segments following the procedure used in [51], [93]. Each
segmented spectrogram was assigned the emotion label of
the corresponding utterance. It is pointed out by previous
research that removing silence pauses provides better SER
results using deep learning [94], [95]. One of the reasons
is that silence adds no speech information to the training
data, especially for deep learning models. Nevertheless,
we empirically tested that removing silence pauses offers
slightly better performance than retaining them. In our ex-
periments, we removed silence pauses from the utterances.
We trained all models using segmented spectrograms. In
order to calculate the utterance level prediction during the
testing phase, posterior probabilities of segments of spec-
trograms for given utterances were averaged. This is a well
known strategy used in SER [93], [96] and also in studies on
speaker identification [97].



4.3 Model Configuration

Our semi-supervised architecture is illustrated in Figure
The encoder part of the autoencoder network consists
of three convolutional layers. Each convolutional layer is
followed by a pooling layer. These convolutional layers
identify emotionally salient regions within the spectrogram
and create feature maps. The pooling layer extract highly
relevant features by reducing their dimensions. We use max-
pooling layer as it offered better performance compared to
average pooling during validation. The encoder/generator
part encodes the spectrograms into latent code z, which has
the dimension 16 x 16 x 32. The size of the latent code was
determined using the validation set. Here, we use a multi-
variate Gaussian distribution (p(d) = N(d;0, I)) with zero
mean and unit standard deviation as prior distribution p(d)
that we impose on the latent codes z in the regularisation
stage. It helps the AAEs to disentangle important attributes
of the input data and makes it suitable for speech emotion
classification [98]]. In SER, using N'(d; 0, I) as prior helps the
autoencoder networks to learn the distribution of emotional
structures compared to standard autoencoders as validated
with variational autoencoders (VAEs) [86] and AAEs [98],
[99]l.

The model was trained with the batch size of 32, where
Stochastic Gradient Descent (SGD) with learning rate of
0.0001 was used as optimiser. During validation, accuracy
was computed at the end of each epoch. If the accuracy
of the model did not improve on the validation set after 5
epochs, we restored the model to best epoch and learning
rate was halved. This process continued until the learning
rate reached below 0.00001. We applied batch normalisation
[100] after each convolutional layer to achieve a stable dis-
tribution of activation values throughout the training. The
batch normalisation layer was used before the nonlinearity
layer. We used a rectified linear unit (ReLU) as non-linear
activation function type as it gives us better performance
compared to leaky ReLU and hyperbolic tangent during
validation. The decoder block has the same structure as the
encoder/generator except that the convolutional layers are
replaced with transposed convolution layers.

The latent code z was fed to the classifiers, which has
four components: (1) convolutional layer, (2) max-pooling
layer, (3) dense layers, and (4) softmax layer. We used
one convolutional layer followed by max-pooling in each
classifier to capture features related to the classification
tasks. After each max-pooling layer, we used dense layers
followed by a softmax layer to provide prediction. We used
two dense layers in each classifier and used a dropout layer,
with a dropout rate of 0.3, between them to avoid overfit-
ting. The discriminator of the AAE had a similar architecture
to the classifiers, which consists of one convolutional layer
followed by a max-pooling layer, and two dense layers
followed by a softmax layer.

We performed the step-by-step training of all models.
We randomly initialised the model and trained first on
Librispeech dataset for speaker and gender classification
only. The weights learnt in this stage were used to initialise
the autoencoder network when emotional data is fed to the
model.

5 EXPERIMENTS AND EVALUATIONS

In this study, we evaluated the performance of the proposed
framework using 10-fold cross-validation and leave-one-
speaker-out validation to compare with multiple studies.
For 10-fold cross-validation, we followed the strategies used
in [88]. We created the ten folds based on speaker ID
so that each fold has all speakers. This allows us to use
speaker identification as secondary task. In each step of
the validation, one fold was used as validation set for
parameter selection, eight folds were used for training, and
the remaining fold was used for testing (same as used in [88]]
).

The 10-fold cross-validation scheme does not allow for
speaker-independent testing as such since each fold has
data from all speakers. To perform speaker-independent
testing we used the leave-one-speaker-out cross-validation
scheme commonly used in the literature [30], [86]. This en-
sures that the speakers are independent in each fold. How-
ever, speaker-independent testing limits the use of speaker
identification as secondary task. Therefore, we performed
speaker verification in this scheme. We consider the d-vector
framework [101] for speaker verification, which uses the
output of the last hidden layer as speaker representation.
During training, the speaker classifier is trained to classify
speakers on training data and the evaluation phase involves
the extraction of a d-vector from the test utterance using the
trained speaker classifier. Then cosine distance is computed
between the d-vectors of the test and the claimed speaker.
The standard test set of the Librispeech data [84] consisting
of 40 speakers along with the test sets of IEMOCAP or
MSP-IMPROV were used for enrolment and verification
purposes. Equal Error Rate (EER) is used as a measure of
performance in the speaker verification system. For SER,
we used weighted accuracy (WA) and unweighted accuracy
(UA) as comparison measures due to their widely accepted
use in studies on speech emotion recognition. For each
model used in this work, we repeated the evaluation ten
times and calculated the mean and standard deviation of
WA and UA.

For evaluations, we considered two types of emotional
labels: categorical and dimensional. For categorical emo-
tions, we used four emotions including anger, sad, happy,
and neutral. For dimensional emotions, we used two dif-
ferent configurations. Firstly, we manually clustered contin-
uous values of dimensional emotions into three levels. We
interpreted activation as low, medium, high, and valence as
negative, neutral, positive, as used in [30], [102]. Both, the
IEMOCAP and MSP-IMPROV databases are annotated for
activation and valence using integral values in the range 1
to 5. Table 2| shows the range of three clusters for activation
and valence for both datasets, which has also been adopted
from [30], [102].

Table 2: Three Levels of Mapping Rules for IEMOCAP and
MSP-IMPROV.

Corpus Low/Negative | Medium/Neutral | High/Positive
IEMOCAP [1,2] (2,3.5] (3.5,5]
MSP-IMPROV [1,25] (25,3.5] (35,51

Secondly, we considered dimensional emotion represen-
tation using the valence-activation space, which combines
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Figure 2: Three clusters of the MSP-IMPROV data in the
valence-activation space.

the information of both activation and valence. Previous
work has shown that the combination of these two di-
mensions provides richer emotional information in con-
trast to using valence and activation separately [103]. To
be consistent with previous studies [30], [104], [105], we
validated our model on the joint classification of the valence-
activation space by building three and five clusters. The
cluster midpoints in the valence-activation space were deter-
mined by applying K-means clustering on the dimensional
annotation values of the respective datasets (i. e., IEMOCAP
and MSP-IMPROV). A label was assigned to each utterance
by choosing the cluster label that minimised the Euclidean
distance between the utterance and the cluster centroid. This
is highlighted in Figure 2]

5.1 Benchmarking Results

We start our evaluation by benchmarking the performance
for multi-task over single-task. We implemented a single-
task learning (STL) version of our proposed model for
a fair comparison. Also, to expand our comparison, we
implemented a supervised convolutional neural network
(CNN) and an autoencoder (AE) based semi-supervised
framework, both using single task learning. We compared
the performances of these models for both categorical and
dimensional emotions.

As mentioned, while investigating categorical emotion,
we use it as the primary task and speaker verification and
gender identification as the auxiliary tasks. Then, we use
dimensional emotions as the primary task in two ways:
grouping continuous values into three levels; and cluster-
ing valence-arousal space into three different groups as
discussed before. For both ways, the secondary tasks are
gender classification and speaker verification.

We trained the single task implementation of our model
and the autoencoder in a semi-supervised way for the
emotion recognition task. The overall loss function was
optimised by tuning the values of a and 3 in Equation
and (2) to maximise the system performance and minimise
the reconstruction loss, Lag. Here, Equation contains
only first term (L. = 8 * Lg) as we are only using emotion
classifier. We evaluated the model for different values of «
and and § ranging from 0.1 to 1.0 on the validation set to
select the best value. For the IEMOCAP data, we achieve
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the best performance for the AE using o = 0.3 and 8 = 0.7,
and for our AAE based models, we achieve the best results
fora = 0.4 and g = 0.6.

For two configurations of dimensional emotions, we also
identify o and 3 using the validation set and use it for the
test set. We achieve the best performance for the AE using
a = 0.6 and 8 = 0.4, and for our AAE based models, we
achieve the best results using o« = 0.3 and 8 = 0.7.

The comparisons of results are all summarised in Fig.
We observe that, our proposed MTL framework performs
better than the STL implementation of our model—the
supervised CNN, and the autoencoder. We note this for both
categorical and dimensional classification of emotion and
for both the IEMOCAP and MSP-IMPROV datasets.

5.2 Comparison with Previous Studies

To further extend our comparison scope, in this section,
we include results published in recent studies. Note that
for IEMOCAP and MSP-IMPROYV, there are no standardised
training and testing splits to evaluate the results. However,
we observe that most of the related studies have used either
a 10-fold or a leave-one-speaker-out validation strategy. We
therefore implement these schemes and present the compar-
ison results in Table [3| These are, however, accordingly, to
be interpreted with the necessary care and merely serve as
indication.

Table 3: Comparison of results (UA %) of our proposed method
with those of recent studies using categorical emotions.

10-fold cross validation results
Model IEMOCAP MSP-IMPROV
ProgNet (Transfer Learning) [88] 65.7 £1.8 60.5 £2.1
CNN (Muli-task implementation) 65.6 £2.0 | 595 +24
Semi-supervised AE (Muli-task implementation) | 66.4 £1.6 | 60.2 £2.3
Semi-supervised AAE (Proposed) 68.8+1.2 63.6£1.7
leave-one-speaker-out

DBN (Multi-task) [30] 62.2 -

CNN (Multi-task) [106] 59.54 -
Semi-supervised AAE (proposed) 66.7+1.4 60.3+1.1
CVAE-LSTM (Single Task) [20] 62.8 -

CNN (Single Task) [107] 64.2 -
Proposed (Single Task) 64.5+1.5 | 58.1+1.7

For 10-fold cross validation, we followed the evaluation
scheme used in [88]. In [88], authors used progressive neural
network and transfer learning (TL) to transfer knowledge
from gender and speaker identification to improve the SER
performance. Compared to this study, we are achieving
better results by exploiting speaker and gender identifi-
cation as auxiliary tasks within our multi-task learning
framework. This shows that, transferring knowledge using
auxiliary tasks in MTL can provide more useful information
to improve SER performance. In Table 3} we also report
the performance of a CNN and an AE when implemented
for multi-task learning. We implemented a multitask CNN
with two convolutional layers shared with the classification
networks following the technique used in [42], [51]. The
classification networks consisted of one convolutional layer,
two dense layers, and one softmax layer. The AE model
had a similar architecture (i.e., hidden units, layers, and
model parameters) as our AAE based model—just without
the discriminator.

In order to evaluate the proposed model for speaker-
independent SER, we used leave-one-speaker-out training
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Figure 3: Benchmarking results of the proposed multi-task model (MTL) against a single task implementation of the same model
(STL), single task implementation by CNN, and a single-task semi-supervised implementation of an autoencoder (AE) using

leave-one-speaker-out scheme

with five-fold cross-validation. As speaker independent
scheme limits speaker identification as an auxiliary task,
therefore, we performed speaker verification. We compare
our results with recent studies [20], [30]], [107]] using speaker-
independent SER. In [30], the authors used a multi-task
DBN for SER and showed the improved results compared to
STL. In [106] the authors used multi-task CNN and utilised
additional unlabelled data in an unsupervised way to im-
prove SER performance. Similar to these studies, we also
consider MTL framework and achieved better performance
than their approaches as reported in Table 3} The authors in
[30] and [106] utilised other emotional attributes as auxiliary
tasks which limit the use of additional data.

While using the leave-one-speaker-out training with
five-fold cross-validation, our proposed model in STL set-
ting also provides better results compared with the other
recent studies [20]], [107] using STL. Note that these studies
did not report any result for the MSP-IMPROV dataset. Also
note that, due to the difference in the activation and valence
classification strategies, we could not present the results of
[51] in Table

5.3 Cross-Corpus Results

To verify the generalisability of the proposed model, we also
perform a cross-corpus analysis. In this scenario, we trained
models using IEMOCAP, and testing is performed on the
MSP-IMPROV set. We selected IEMOCAP as training data
since it is more balanced and also for good comparison with
recent studies, as these studies used a similar scheme [106],
[108]], [109]. We used 30% of the MSP-IMPROV data for
parameter selection and 70 % as testing data. Here, we used
gender classification and speaker verification as an auxiliary
task, as speakers in both datasets are different.

We compared our results with other studies on cross-
corpus SER. For example, Neumann et al. [106] utilised the
representations learnt by autoencoder from unlabelled data
fed into a CNN-based classifier. They used the Librispeech
and Tedlium (release 2) [110] datasets as unlabelled data,
and were able to improve the performance for cross-corpus
SER. Our proposed model provides better results compared
to this study by using additional data for auxiliary task.

In [108], the authors used Cycle consistent adversarial
networks, i.e., the (CycleGAN)-based method to transfer
feature vectors extracted from a large unlabelled speech
corpus into synthetic features representing the given target
emotions. They used Tedlium (release 2) as unlabelled data
to generate synthetic data and used this data to augment
the classifier. Similarly, Sahu et al. [109] applied generated
samples by GANSs as additional data to train the classifiers
for cross-corpus SER. Both of these studies [108], [109] used
additional data to augment the classifiers for cross-corpus
SER. However, our approach is different as we are using
additional data for auxiliary tasks and achieving similar
results without augmenting the system with synthetic data.
We compare our results with those of these studies and the
comparisons are presented in Table[d] The results show that
we achieve competitive accuracy attesting the generalisation
ability of the proposed model.

Table 4: Cross-corpus evaluation results for emotion recogni-
tion.

Model UA (%)
Attentive CNN [[106] 45.76
Conditional-GAN [109]] | 45.40
CycleGAN-DNN [108] 46.5240.43
Proposed 46.414+0.32

6 ANALYSIS AND DISCUSSION

The experimental results clearly show that the proposed
semi-supervised multi-task framework offers an improved
performance in speech emotion recognition compared to
previous studies. In this section, we focus on three aspects
of our proposed model: (1) we elaborate on the impact
of a secondary task on improving the performance of the
primary task; (2) we quantify the impact of using additional
data; and (3) we quantify the impact of tuning the trade-
off parameters. All the results in this section are computed
using speaker-independent evaluation.

6.1 Impact of Secondary Tasks on Primary Task

We consider four categorical emotions from both the IEMO-
CAP and MSP-IMPROV datasets as described in Section
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Figure 4: Impact of additional data injection on gender, speaker and emotion recognition.

Table 5: Impact of auxiliary tasks on categorical emotions.

Primary task: categorical emotion
Secondary Tasks TEMOCAP MSP-IMPROV
WA UA WA UA
Gender 67.5+£15 | 66.1£1.7 | 60.1£1.2 | 59.3£1.1
Speaker 67.2£13 | 65.9£1.6 | 60.5+1.2 | 59.1+1.5
Both 68.5+1.2 66.71+1.4 62.5+1.4 60.2+1.2

Table 6: Impact of auxiliary tasks on dimensional emotions.

Primary Tasks: dimensional emotion
Secondary Tasks Individual levels of activation and valence
TEMOCAP MSP-IMPROV

Activation Valence Activation Valence
Gender 62.6+1.3 61.44+1.2 53.7+2.1 53.4 +1.8
Speaker 63.7 £1.2 60.84+0.8 52.6 +£2.5 52.6+2.3
Both 64.51+1.5 62.24+1.0 54.6+1.4 55.44+1.6
Secondary Tasks Joint activation-valence space

3 Clusters 5 Clusters 3 Clusters 5 Clusters
Gender 65.7+1.3 53.2 £0.8 60.1+1.5 43.6+1.5
Speaker 64.8 £1.5 542 +1.2 61.4+1.0 43.1+1.2
Both 65.1+0.9 55.1+1.4 62.1+1.8 44.3+1.3

We also use dimensional emotions in our experiments.
In Table [f| and Table [6| we present the results of using
the auxiliary tasks separately and jointly to improve the
performance of the primary task for categorical and dimen-
sional emotions, respectively. We observe that, while using
the auxiliary tasks individually, our model offers similar
performance improvement. However, when using the aux-
iliary tasks jointly, our model offers the highest accuracy for
the primary task across both categorical and dimensional
emotion representations. Intuitively, jointly learning a rep-
resentation for emotions with speaker and gender helps to
uncover the common high-level discriminative representa-
tions, which leads to the performance improvements in the
SER system.

6.2

For the auxiliary tasks of speaker and gender recognition,
we use additional data that is not labelled for emotion and
show that, when the MTL model is trained with additional
data from auxiliary tasks, the performance on the emotion
recognition task for both datasets. To further show how
performance improves while increasing the amount of data,
we trained our model by varying the amount of data for
auxiliary tasks. Note that we use the LibriSpeech dataset to
introduce additional speakers so, in order to increase the
amount of data, we increase the number of speakers.

Fig. 4a| shows the effect of varying the amount of ad-
ditional data on the UA (%) of categorical emotion clas-
sification using both datasets. We observe that up to 600
speakers, the performance improvement is quite strong,
however, beyond that we observe a plateauing effect. This

Impact of using Additional Data

is an important observation as it can guide researchers to
select a possible operating point when using our suggested
method.

To get some further insight into the above improvement,
we plot the improvement in auxiliary tasks with the increase
of data. Fig. [4b] Fig. Fig. [fd] summarise the results.
Here, the performance is calculated using our model in
the single task learning mode. We plot the results as we
increase the number of speakers. We notice a similar trend
as we observe in Fig.[#a] After 600 speakers, improvement in
secondary tasks sees a plateau effect. Here, we also plot the
speaker verification EER (%) with the increase of number of
speakers by using 20 utterances of speakers for enrolment
and remaining for evaluation. The performance of speaker
verification also improves with the increase of speaker
data. Therefore, summarising Fig. {4} it can be noted that
improvement in the auxiliary tasks while adding additional
data eventually helps to improve the performance of the
primary task, which cements the contribution of this paper
in proposing a multi-task semi-supervised framework for
SER. Intuitively, through the feed of additional data for
the auxiliary tasks, a better representation of the intrinsic
properties of speech is achieved, which eventually improves
the performance of SER.

6.3

In this section, we investigate the impact of the trade-off
parameters « (Eq (1)), and 8 (Eq (@), which are the weights
of unsupervised, and supervised primary and secondary
tasks, on the performance (UA) of the system.

Fig [5| shows the impact of changing the weights «
and 8 on UA (%) for categorical, activation, and valence
classification. In the first experiment, we keep the value of 8
fixed at 0.5. This assigns equal weights to both the primary
and secondary tasks, but vary the weights (0.1 to 1.0) for
the unsupervised task. It can be seen from Fig. [f] that very
low and very high weights of o hurt the performance of the
system. However, a with values ranging from 0.4 —0.6 gave
better results for both datasets. This shows that controlling
the weights of the unsupervised task through o can improve
the performance of the system, however, a suitable range for
a needs to be identified that offers the best performance.

Further, Fig. [5| also illustrates the relationship of 3 and
UA (%). To highlight this, we select « = 1 and vary the
weights of 5 (0.1 to 0.9), which controls the weights for both
the primary and secondary tasks classification losses (see
Equation (2)). It can be noted from Figs. Bb} and
that a very high value of 3 (i. e., the frameworks essentially
become single task) gives poor performance. However, we

Impact of Tuning Trade-off Parameters
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Figure 5: Impact of varying the weights of o and § on the
performance of categorical (5a), activation (Bb), and valence
classification on both, the IEMOCAP and MSP-IMPROV
datasets.

also note that too much significance given to auxiliary tasks
also diminishes the performance as a very low value of 3
gives poor performance. For both the IEMOCAP and MSP-
IMPROV datasets, the system performed better with values
of 3 in the range of 0.4 — 0.7.

7 CONCLUSIONS

In contrast with previous studies, this article proposes semi-
supervised multi-task learning using adversarial autoen-
coders for speech emotion recognition (SER). Specifically, we
put considerable emphasis on a novel technique of utilising
unlabelled data for auxiliary tasks through the proposed
multi-task semi-supervised learning model to improve the
accuracy of the primary task. We evaluated our proposed
model using the popular IEMOCAP and MSP-IMPROV
emotion datasets, and demonstrated that it performs no-
tably better than (1) the comparable state-of-the-art studies
in SER that use similar methodology and/or implementa-
tion strategies; (2) supervised single- and multi-task meth-
ods based on CNN, and (3) single- and multi-task semi-
supervised autoencoders. We observe this for categorical
and dimensional emotion classifications, and cross-corpus
SER. Our proposed approach can overcome the challenge of
limited data availability of emotion datasets, which is a sig-
nificant contribution towards developing a robust machine
learning model for SER.

Our analysis shows that (1) improvement of the auxiliary
tasks through the injection of additional data predominantly
drives the improvement of the primary task, (2) a combined
effort of auxiliary task is better for improving the accuracy
of the primary task, than using them individually, (3) for
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the IEMOCAP and MSP-IMPROV datasets, it is possible to
reasonably determine an operating point in terms of how
much additional data for the auxiliary task is sufficient,
(4) it is important to control the weight of loss function
of the unsupervised task in the proposed semi-supervised
MTL setting to improve the accuracy of SER, and (5) it is
important to control the weight of the loss functions of the
primary and secondary tasks to achieve the best possible
accuracy for SER.

Future work should further focus on the tighter coupling
between the generation of data and modelling a richer
selection of speaker states and traits simultaneously aiming
at ‘holistic’ speaker analysis [111]. In addition, it appears
highly attractive to integrate reinforcement learning into
such a framework given a real-life usage such as in a
dialogue manager. Likewise, semi-supervised and unsuper-
vised aspects can be benefited by reinforced information.
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