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Abstract—Recently, deep learning models have been successfully employed in many video-based affective computing applications
(e.g., detecting pain, stress, and Alzheimer’s disease). One key application is automatic depression recognition — recognition of facial
expressions associated with depressive behaviour. State-of-the-art deep learning algorithms to recognize depression typically explore
spatial and temporal information individually, by using 2D convolutional neural networks (CNNs) to analyze appearance information,
and then by either mapping facial feature variations or averaging the depression level over video frames. This approach has limitations
in terms of its ability to represent dynamic information that can help to accurately discriminate between depression levels. In contrast,

models based on 3D CNNs allow to directly encode the spatio-temporal relationships, although these models rely on temporal
information with fixed range and single receptive field. This approach limits the ability to capture variations of facial expression with
diverse ranges, and the exploitation of diverse facial areas. In this paper, a novel 3D CNN architecture — the Multiscale Spatiotemporal
Network (MSN) —is introduced to effectively represent facial information related to depressive behaviours from videos. The basic
structure of the model is composed of parallel convolutional layers with different temporal depths and sizes of receptive field, which
allows the MSN to explore a wide range of spatio-temporal variations in facial expressions. Experimental results on two benchmark
datasets show that our MSN architecture is effective, outperforming state-of-the-art methods in automatic depression recognition.

Index Terms—Affective Computing, Depression Detection, Deep Learning, 3D Convolution Neural Network, Face Analysis,

Spatiotemporal Expression Recognition, Multiscale Processing.

1 INTRODUCTION

HE use of computer vision and machine learning tech-
Tniques for automatic diagnosis is an emerging area in
healthcare and medicine fields, since such techniques can
provide an unobtrusive and objective information about a
patient’s state. Indeed, technologies that can accurately rec-
ognize the affective state of an individual using contact-free
sensors can represent a powerful tool, providing person-
alized diagnostics and therapeutic treatment plans. These
techniques commonly recognize facial patterns, which act
as a mirror of health condition, since certain medical states
change appearance and/or expression of the face [1]. For
example, schizophrenia symptoms can be predicted using a
Deep Neural Network (DNN) for analysis of facial expres-
sions [2], and Amyotrophic Lateral Sclerosis (ALS) can be
detected using hand-crafted features by analyzing the facial
movements [3].

Among the various applications of automatic medical di-
agnosis from faces, detection of Major Depressive Disorder
(MDD) has received attention from the scientific community
because such disorder is one of the most common and costly
mental disorders. MDD, also referred to as depression, is
interpreted as negative condition of mind that remains for
a long period. The symptoms related to depression include
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pessimism, sadness, irritability, diminution of pleasure, fa-
tigue, insomnia, weight problems, lack of concentration,
feeling hopeless, feeling worthless, anxiety, low self-esteem,
and, in more grave cases, depression leads to suicide and
substance abuse [4], [5], [6]. Moreover, depression may
increase the risks of acquiring and sometimes contribute to
advance of severe clinical states, such as diabetes, cardio-
vascular disease, and cancer [7].

Normally, pharmacologic, cognitive behavioral therapy,
and interpersonal therapy are effective treatments for MDD.
However, there are frequent errors in clinical evaluation of
MDD. Indeed, depression evaluation is based on Diagnostic
and Statistical Manual of Mental Disorders (DSM-5) specifi-
cations [8], which are identified during structured clinical
interview. The intensity of depression can be verified by
using self-report inventory, such as Beck Depression Inven-
tory (BDI), or an inventory like Hamilton Depression Rating
(HAM-D), which is administered by a clinician experienced
in treating psychiatric patients. A high number of false-
positive rate has been presented by some studies, with latent
serious consequences, including death of patient [9], [10].
Furthermore, the clinical evaluations normally are time-
consuming and require considerable physician experience.

Given the challenges in the diagnosis of depression, the
computer vision community has been investigating meth-
ods for accurate estimation of patient’s level of depression
based on patterns of nonverbal behaviour. Studies have
shown a series of nonverbal manifestations, such as psy-
chomotor delay, which can convey information about the
level of depression [11], [12], [13]. In fact, subjects with
depression present gloomy and sad facial expression [14],
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and evidence low levels of social behaviors, such as less
facial movements, few body and hand gestures, limited eye
contact, and absence of smiles [4]. The automated diagnosis
of depression using facial information explores these spatial
or spatio-temporal features captured in images or videos.

This paper focuses on techniques for accurate assessment
of depression levels based on facial expression captured in
videos. This is considered to be a challenging recognition
problem and continues to drive much academic research.
A key challenge in real-world scenarios is the significant
variations over time of the facial expressions for different
persons, sensors, computing devices and operational envi-
ronments. Despite the recent advancement of various fa-
cial and speech-based technologies, developing an efficient
system for expression recognition remains a challenging
task [15].

Most of previous work on automatic depression as-
sessment focuses on extracting discriminant features from
facial regions captured in video frames to assess the inten-
sity of depression. State-of-the-art machine learning models
exploit spatial and temporal information separately, using
a 2D Convolutional Neural Network (CNNs) for feature
extraction, and some scheme for map the variation of the
features, or for averaging the level of depression in each
face frame [16], [17], [18], [19], [20]. These approaches
represent facial regions in video frames based on spatial
features, which limit their ability in encoding rich dynamic
information required for depression level estimation. To
improve estimation accuracy, some authors have employed
3D CNN:, like the Convolutional 3D (C3D) [21] to lever-
age spatio-temporal information [22], [23]. However, these
methods exploit temporal information from video in single
range, and the facial expression variations occur in wide
range. Moreover, this approach employs structures with
fixed receptive field which may impair the exploitation of
different facial areas.

In this paper, we address these challenges by intro-
ducing a new 3D convolutional architecture for accurate
depression detection. The proposed model — called Multi-
scale Spatiotemporal Network (MSN) — can directly lever-
age the spatio-temporal dependencies and dynamics of
facial structures. As the manifestations of depression indi-
cate facial dynamics that are comprised of short to long
range temporal information, our model explores different
temporal ranges in order to efficiently capture the facial
dynamics related to depression. In addition, our model
employs several receptive fields in order to maximize the
exploitation of distinct spatial areas, since different areas
of the face convey diverse information about depression
levels [18], [23]. These characteristics allow our proposed
model to explore multiscale spatio-temporal features within
an end-to-end learning strategy. To validate the proposed
approach, we compared the MSN to various state-of-the-art
(conventional and deep learning) models for automatic de-
pression recognition in terms of accuracy and computational
complexity, using videos from the Audio Visual Emotion
Challenge (AVEC 2013 and 2014) datasets. Code is available
at https://github.com /wheidima/MSN.

The remainder of this paper is organized as follows. Sec-
tion 2] provides some background on models for depression
detection. In Section 3] the proposed MSN is described. The

2

experimental methodology is defined in Section [4] and the
results and analysis are presented in Section

2 RELATED WORK

In the recent years, there has been a growing interest in
automatic depression assessment from facial information.
The Audio-Visual Emotion Challenge and Workshop in the
years of 2013 [24] and 2014 [25] (AVEC2013 and AVEC2014)
has contributed notably for researching on depression detec-
tion. These events had as part of competition the task that
required participants to predict the level of self-reported de-
pression in each video. The datasets used by the participants
are called AVEC2013 and AVEC2014 datasets and are made
available for research purposes. The mentioned datasets are
one of few datasets that provide raw data (video and audio)
information, whereas other datasets only make available
features of subjects [4].

In the AVEC2013 challenge [24], the competition pro-
vided baseline system to process visual and audio data.
The visual features are obtained by using a popular local
descriptor namely Local Phase Quantisation (LPQ) [26],
and Support Vector Regressor (SVR) [27] is employed to
estimate the depression levels. In [28], Meng et al. employed
Motion History Histogram [29] to capture motion informa-
tion of facial expressions. Cummins ef al. [30] investigated
Space-Time Interest Points (STIP) [31] and Pyramid of His-
togram of Gradients (PHOG) [32] descriptors. Wen et al.
[33] proposed to extract dynamic features based on LPQ
from Three Orthogonal Planes (LPQ-TOP). In the AVEC2014
challenge [25]], the baseline visual features are obtained by
employing Local Gabor Binary Patterns from Three Or-
thogonal Planes (LGBP-TOP) [34] which combines dynamic
and spatial texture analysis with Gabor filtering. In [35],
the authors calculated variations of eye and face positions,
combined with motion information, then employed SVR
method. Jan et al. [36] extracted three distinct texture feature
representations, and predicted the depression levels using
partial least square [37] and linear regression technique.
Finally, the authors in [38] calculated canonical correlation
analysis on LPQ and baseline features to estimate a contin-
uous depression levels.

The traditional depression detection schemes described
previously have primarily been focused on hand-engineered
representations. More recently, deep learning techniques
have been employed to model depressive patterns. Such
techniques have produced discriminant feature representa-
tions, achieving state-of-the-art results in depression recog-
nition. In one of the first works using deep learning, Zhu
et al. [16] proposed a two-stream CNN to capture facial
appearance and dynamics, with one channel inputs facial
areas, and the second one inputs facial flows. Two fully con-
nected layers perform the fusion of the features and estimate
the depression level. Jan et al. [17] extracted visual features
using Visual Geometry Group (VGG) architecture [39] from
facial images. In order to model the temporal movement
on the visual feature space, the authors employed Feature
Dynamic History Histogram (FDHH). In [18], Zhou et al.
employed deep learning model with Global Average Pool-
ing (GAP) to explore various facial areas with a scheme
to combine the response from distinct facial areas. This
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Fig. 1. Block diagram of the proposed Multiscale Spatiotemporal Network (MSN) for automatic depression assessment.

model showed that some facial regions are more important
than others for depression analysis. Finally, Melo et al.
presented a deep learning method for estimation of depres-
sion levels from facial frames through distribution learning,
using a new expectation loss function.

All these deep learning methods consider the temporal
information by integrating, in different ways, the visual
features extracted from video frames. Such an approach
generates difficulties in describing significant dynamic in-
formation frequently necessary for robust depression recog-
nition. Some attempts have been made to explore directly
the spatial and temporal information using 3D convolu-
tional neural network. Jazaery et al. proposed to employ
C3D method to produce spatio-temporal features from facial
videos at two different scales, and a Recurrent Neural Net-
work (RNN) to model transitions of the features. In [23], the
authors proposed to extract spatio-temporal features from
global and local facial regions. The local region refers to a
coarse eye region whereas global region is full-face region.
The depression level is defined by the fusion of predictions
from a C3D trained on the global region and C3D trained
on local region. Moreover, the models obtain good results
exploring a certain local region, but the performance re-
mains approximately the same after the models combine the
response of other facial regions, demonstrating difficulties to
explore spatial structures in different facial regions.

Some authors propose methods to estimate depression
level from features or human behaviours. Such schemes
may analyze facial landmarks, head pose, gaze direc-
tion, action units, hand-crafted features and deep learning

representations  [40], [41]. In [42], the authors proposed
two frameworks for depression detection from human be-
haviour primitives. The first explores statistics of this infor-
mation while the second uses 2D CNN to leverage spectral
representation of the behaviour signals. Haque et al.
employ Causal Convolutional Neural Network (C-CNN)
to analyze 3D videos of facial landmarks. In [44], Du et
al. employed Temporal Convolutional Network (TCN)
and atrous convolutions to learn long-term represen-
tation for depression detection from visual behaviours. In
contrast to these methods, our proposed approach directly
explores the spatio-temporal dependencies, without further
method such as human behaviour detector, which may
benefit the method since it is not limited to model features
or behaviour primitives. Moreover, our method captures the
spatio-temporal information at various scales in order to
improve the depression representation whereas generally
these methods model just the temporal information using
different ranges.

Besides C3D network, some 3D CNNs have been pre-
sented to map spatial and temporal information. Such archi-
tectures primarily employ convolutional layers with fixed
temporal depth. Carreira et al. proposed the Inflated 3D
Convolutional Network (I3D) [47]. The method is based
on Inception-vl model [48]. The 2D convolutional filters
and pooling kernels employed by Inception-vl model are
inflated into 3D framework. In [49], the authors employed
ResNet expended to 3D structures. Tran et al. proposed
to decompose 3D convolutional filters into distinct spatial
and temporal filters. In summary, these architectures mostly
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employ 3D kernels and pooling layers with fixed depth
(dimension related to temporal information) and receptive
field for all layers of model. Using such methodology, the
models decrease the potential of capturing spatio-temporal
information with different sizes, regarding to depressive
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where | represents the operation of concatenation, H; is the
weight parameters of the first convolutional layer, whereas
Hjy represents parameters of the last convolutional layer,

hence M is equal to 5.

The first convolutional layer (H;) of the basic building

block is defined with convolution kernel of 1 x 1 x 3.
This layer receives features map (z) of previous layer and
generates output which is fed into next three parallel con-
volutional layers. The convolution kernels of h; x wy x dy,
ho X wa X da, and h3 x w3 x d3 constitute the parallel network.
We define hl = wi = dl, h2 = Wy = dz, and hg = w3 = dg.
In the next stage, the outputs of parallel convolutional layers
are concatenated, increasing the depth of resulting features.
For this reason, we apply the convolution kernel of 1 x 1 x 3
of the last convolutional layer (H5) to control the depth of
the features (this is also the motivation to employ the same
kernel size in the first convolutional layer). Moreover, ReLU

behaviours. We address these limitations by including di-
verse spatio-temporal kernels in the proposed architecture
for depression recognition.

3 MULTISCALE SPATIOTEMPORAL NETWORK

A patient suffering from depression exhibits spatio-
temporal alterations in his/her facial information. The spa-
tial information is related to facial expressions, texture
and structures. The movement over time constitutes spa-
tial changes and deformations which encompasses facial

dynamics of the subject. From this perspective, the aim of
this paper is to capture the facial dynamics that incorporate
plenty of the substantial information for automatic depres-
sion detection.

Deep learning architectures based on 3D CNNs have the

activation and batch normalization are employed after every
convolutional layer, with exception of H5 layer which only

applies batch normalization.

potential to encode and leverage spatio-temporal informa- O“Kmt
tion from facial videos. Such networks are comprised of 3D ' Relu

filters and pooling layers which are trained to learn spatio-
temporal features. The depth of the filters determines the
range of temporal information that can be explored, and the

{BN
spatial size defines the area of input that will be analyzed. In :
this work, we develop a Multiscale Spatiotemporal Network glﬁ ‘

onv

(MSN) which incorporates various 3D convolutional filters
with different temporal depths and spatial size in the basic
building block. In Figure [I} an overview of our proposed
method is presented.

The basic building block employs identity shortcut con-
nections to connect the input of each 3D block to its output
features. The residual connection is adopted as it enables

2O)
A

...........

Relu { BN Relu{BN

Concatenation

ReluiBN

the training of very deep networks at the same time that —

decreases problems of overfitting [51]. Two 3D convolu- h’é:g@ hzé::l’;dz hyxwixd,
tional layers with fixed spatial size and temporal depth, A o A Cc’z
and various 3D convolutional layers with different spatial ! ! i
size and temporal depths constitute the basic block. Figure Relu { BN
illustrates the basic building block. The 3D convolutional 1x1x3 ‘

filters have the depth in the range of d € {di,ds,ds}, Conv

and spatial size with dimensions equal to A x w, where +

h € {h1,ha,hs} and w € {w1,ws,w3}. In this way, the II’l]I)llt

proposed basic block has the ability to capture an exten-
sive spatio-temporal information that encode depressive
behaviours.

The predicted output of the basic building block can be
defined as:

Fig. 2. A diagram of our proposed basic building block. The dashed line
indicated an additional operation. BN refers to Batch Normalization.

In order to sum the resulting features of Hs convolu-

tional layer with z, the channels of such features should
be equal to channels of x. The number of channels of the
feature maps is defined by the number of filters in the
convolutional layer, consequently the number of channels
of z and Hy output can be different, which impedes the
sum operation being performed. To prevent this problem,
we insert a convolutional layer with kernel size of 1 x 1 x 3,
and batch normalization in the residual connection. After
the sum operation, ReLU activation is performed to generate
the final feature map (y) of the basic building block.

A complete description of each layer of the proposed
MSN method is presented in Table [1} In the first layer

y=o(BN(H(z,{H;}}Z)) + ) @

where z is the input of the basic block, H(.) is the func-
tion that learns the residual mapping, BN stands for Batch
Normalization, o is the activation function called Rectified
Linear Unit (ReLU), {H;}}, denotes the parameters of the
convolutional layers, and M is the total of convolutional
layers. The function 7(.) is determined by (see also Figure

2):

M-—1
H(x) = Hs ( U o(BN(Hm(BN(Hlx))))) 2

=2
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TABLE 1
A description of the proposed MSN architecture. Channels refer to the number of filters employed in the layer.

Number of Layers

Layer Spatial Output Kernel Size Channels 713 [ 51 [ 69 [ 9
Convl 56 X 56 TXTXT 64 x1 | x1 | x1 x1 x1
3D Max Pooling 28 x 28 3Xx3x3 - x1 | x1 | x1 x1 x1
1x1x3 32
h1 =3, w1 =3,d1 =3 32
Conv2 28 x 28 ha =5, wy =5,da =5 32 x2 | x3 | X3 X3 X3
hy =T, w3 =7,d3 =17 32
1x1x3 128
1x1x3 64
h1 =3, w1 =3,d1 =3 64
Conv3 28 x 28 hy =5 w2 =5,d3 =5 64 X2 | x3 | x4 x4 X4
hy =T, w3 =7,d3 =17 64
1x1x3 256
3D Max Pooling 14 x 14 2X2x2 - x1 | x1 | x1 x1 x1
I1x1x3 256
Conv4 14 x 14 h1 =3, w; =3,di =3 256 x2 | x3 | x6 | x12 X 22
I1x1x3 512
3D Max Pooling TXT 2X2x%X2 - x1 | x1 | x1 x1 x1
1x1x3 512
Convb TX 7 h1 =3, w; =3,d1 =3 512 x2 | x3 | x3 x3 X3
1x1x3 1024
3D Avg Pooling 1x1 7TXTX2 - x1 | x1 | x1 x1 x1
Fully Connected 1 x512 - - x1 | x1 | x1 x1 x1
Dropout (50%) 1 x 512 - - x1 | x1 | x1 x1 x1
Fully Connected 1 x 512 - - x1 | x1 | x1 | x1 x1
Dropout (50%) 1 x 512 - - x1 | x1 | x1 x1 x1
Regression 1x1 - - x1 | x1 | x1 x1 x1

(Convl), the convolution is performed with spatial stride
2 and temporal stride 1, downsampling spatially the input
of the network by factor of two. Max-pooling layers with
kernel size 2 x 2 x 2 and spatio-temporal stride 2 are applied
between Conv3, Conv4 and Conv5 which means the size of
output feature is reduced spatio-temporally by a factor of 2
in comparison with the layer input feature. A Max-pooling
layer with kernel size 3 x 3 x 3 is likewise placed before
Conv2 to perform spatio-temporal downsampling. Since
along the model the spatio-temporal information is reduced,
we change the structure of basic building block, removing
the convolutional layers with kernel size hy x wy X dy and
hsxws xds. In this way, the model can efficiently explore the
feature maps related to these layers and it also contributes
to control the number of parameters of the architecture.
Finally, the stage of classification is composed by 3D average
pooling layer, two fully connected layers with 512 neurons
and a regression output layer which generates depression
level scores.

For depression estimation, the model should have the
ability to predict a continuous value. Thus, the regression
loss function of the proposed MSN is Mean Squared Error
(MSE). For a given training sample (clip) n, the MSE is
determined by computing the Euclidean distance between
the estimated output prediction §,, and ground truth value
Yn. According to this distance, the loss function of the
proposed method is given by:

®)

where N is the number of samples.

4 EXPERIMENTAL SETUP
4.1 Datasets:

In order to evaluate and compare the ability of our proposed
MSN to predict the depression levels of subjects, extensive
experiments are conducted on two publicly-available bench-
mark datasets namely Audio-Visual Emotion Challenge
2013 and 2014 (AVEC2013 and AVEC2014) depression sub-
challenge datasets. As our proposed method is designed to
explore spatial and temporal information, we decided to use
these two datasets because they are the only ones to provide
the raw video information.

The datasets were used in the AVEC sub-challenge in
which the goal was to predict score of subjects on the Beck
Depression Inventory (BDI). Twenty one questions compose
the BDI-II, and a scale between 0 and 3 is used to score every
question. The BDI scores can be classified into four severity
levels: minimal (0 — 13), mild (14 — 19), moderate (20 — 28),
and severe (29 — 63).

AVEC2013 Dataset. The AVEC2013 depression dataset is
a subset of the audio-visual depressive language corpus
(AViD-Corpus), containing 150 videos from 82 individuals.
During a Human-Computer Interaction task, the individual
is recorded using a webcam and microphone. The dataset
is organized into three distinct partitions: training, devel-
opment and test sets. Each partition contains 50 videos
which have a label corresponding the depression level of
a subject. The longest video reaches 50 minutes in duration,
and the shortest lasts 20 minutes. The average depression
level is 15.1 and 14.8 for training and development sets,
respectively.

AVEC2014 Dataset. The AVEC2014 depression dataset also
uses a subset of AViD-Corpus. The individuals are recorded
using a webcam and microphone. During acquisition of
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Fig. 3. Samples from AVEC2013 and AVEC2014 datasets.

the videos, the subjects perform two tasks: Freeform and
Northwind tasks. In the first, the subjects respond to ques-
tions like discuss a sad childhood memory. In the second
one, subjects read audibly an excerpt from a fable. In both
activities, the recordings are segmented into three partitions:
training, development and test set. Each partition contains
50 videos which have a ground truth label. In total, there
are 300 videos ranged in duration between 6 and 248
seconds. We perform experiments employing training and
development sets from both tasks as training data, and the
test sets are used to measure the performance of the model.
Some samples from both datasets are shown in Figure 3| For
privacy concerns, all the samples shown in this paper are
blurred.

4.2 Settings:

The proposed method explores appearance and temporal
information from facial videos. As the videos in the datasets
contain more information than only facial expressions, the
first step of our proposed method is face pre-processing.
This step performs detection and alignment of the faces
captured in videos, providing frontal face regions. Fol-
lowing the methods in [19]], [23], the Multi-Task Cascade
Convolutional Network (MTCNN) [52] is chosen to simul-
taneously detect and align the faces. The MTCNN includes
the proposal network (P-Net), refinement network (R-Net)
and output network (O-Net). The P-Net and R-Net produce
and examine candidate windows as well as remove non-
face windows. The O-Net defines the bounding box and
five facial landmarks which are employed to face detection
and alignment. The facial images that are generated in
this procedure have dimensions of 112 x 112. This process
is performed for all video frames of the AVEC2013 and
AVEC2014 datasets.

Due to substantial number of frames in the samples
and redundant temporal information, the video samples in
AVEC2013 and AVEC2014 are usually downsampled [16],
[18], [19], [22], [23]. In our approach, we temporally subsam-
pling both datasets by a factor of 8. With that, we explore
the same spatio-temporal distribution in both datasets.
Training the model. To train the proposed model, we
randomly chose a frame inside the video and collect the

6

subsequent frames to make a training clip. If the selected
temporal position does not allow defining a clip, we loop the
video. We empirically define the size of clip for the proposed
method.

As it is well known, data augmentation is very important
for learning deep neural networks. In the process of training,
the frames are horizontally flipped with 50% probability,
randomly rotated with 30 degrees, and top-to-bottom ro-
tated. All produced training samples retain the identical
depression level as their original videos.

Because of the limited data in AVEC2013 and AVEC2014

datasets to train a deep model from scratch, the proposed
MSN architecture is initially trained on face recognition. The
model is pre-trained on VGGFace2 dataset that contains 3.31
million images of 9,131 identities [53]. An input is formed
by replicating an image in accordance with the number of
frames in a clip. In the training stage, Stochastic Gradient
Descent (SGD) with momentum of 0.9, weight decay 0.0001,
batch size of 24, and initial learning rate of 0.01 is adopted.
The learning rate is multiplied by 0.1 after every 10 epochs.
Additionally, the input values are subtracted by the average
value of VGGFace2. The fine-tuning process is employed in
the MSN architecture using ADAM optimization algorithm
with decaying learning rate, where the initial learning rate is
0.0001. The proposed method is implemented using Keras
framework [54] in Nvidia Tesla T4 GPU.
Testing the model. For the testing stage, the input clips
are generated by using sliding window, where the video
inputs are segmented into non-overlapped clips. The final
depression level for a subject present in a video input is
determined by averaging the estimated depression scores
for all the clips which constitute the video.

4.3 Performance Measures:

The performance of the proposed and baseline models are
assessed on AVEC2013 and AVEC2014 datasets in terms of
two evaluation metrics — Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE). The MAE is computed
using:
| M1
MAE:M; |2 — & (4)

where z; is the ground truth for ith input video, £; denotes
the predicted value, and M is the number of video samples.
The RMSE is defined by:

1 M-1
N a2
RMSE i ; (z; — ;) (5)

with identical definitions.

5 RESULTS AND DISCUSSION
5.1 Analysis of the configuration:

To determine the optimal configuration of the proposed
MSN, we start by analyzing the network size. In the
sequence, we investigate different structures in the basic
building block. Employing the basic building block, we
develop five networks with sizes of 27, 36, 51, 69 and
99. The details of each network are presented in Table
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Fig. 4. The performance of the MSN architecture in terms of RMSE and MAE for different network sizes on AVEC2013 (right side) and AVEC2014

(left side) datasets.

As can be observed, the 3D convolutional kernels are
defined by h1 = w1 = d1 = 3, hg = Wy = d2 = 5,
and hs = ws = d3 = 7. Figure |4 shows the results for
this configuration using the five networks, where we can
see that the performance of the model improves, i.e. the
value of RMSE and MAE decrease, with the increase of the
network size until achieves 69 layers. For the size of 99, there
is an increment of RMSE and MAE. Therefore, increasing
the number of layers does not imply in improvement of
the performance. The reason is a meaningful number of
parameters and a limited amount of depression data.
Given that the depressive behaviours consist of wide
range of spatio-temporal variations, the temporal depth, the
receptive field and the number of parallel 3D structures in
the basic building block are very important in capturing
these variations. We investigate these three components,
considering hy = wy = di, ho = wa = dy, hg = w3 = ds
and hy = wy = dy, i.e. the temporal depth and receptive
field of 3D convolutional kernels are concurrently changed
with equal values. In Table [2| the results of the proposed
MSN are presented using different 3D convolutional kernels
and from 1 to 4 parallel convolutional layers. The results
indicate that the increment of layers for a maximum of 3
parallel kernels may contribute to improve the performance
of the method. However, it is necessary to select the di-
mensions of the kernel carefully. For instance, the network
with basic building block with three parallel layers h; = 3,
hy = 5 and hg = 9 outperforms the one without parallel
layers hy = 3, whereas the network using hy = 3, ha =7
and hs = 11 increases the error in relation to network with
hi1 = 3. Moreover, for a same number of parallel layers, it
is possible to observe that structures which explore short,
mid and long range obtain better results. The comparison
between the network with Ay = 3, ho = 5 and hs = 9 and
the one with Ay = 3, hg = 7 and hs = 11 is an example
of this fact. The best results are achieved by using three
parallel layers with hy = 3, ha = 5 and hs = 7. These
results confirm that structures with different kernels may
contribute to capture wide range spatio-temporal variations.

The previous discussion shows that the best results are

TABLE 2
Analysis of different 3D convolutional kernels. As h = w = d, we omit
the terms w and d.

3D Convolutional Kernels RI\I/?‘S/EE C[Z(I)\}I?:AE RI\IE‘S]]}EE C[Z(I)\}IAAIAE
h1 =3 8.79 6.92 8.36 6.50
h1 =3 hy = 8.68 6.82 8.14 6.40
hi=3hy =7 8.71 6.55 8.45 6.37
hi =3ha=5hy =7 7.90 5.98 7.61 5.82
h1 =3ha=5h3 =9 8.18 6.29 7.78 6.04
h1 =3ha=5hsy =11 8.35 6.63 7.74 6.16
hi=3hy=Th3 =9 8.52 6.96 8.60 6.95
h1 =3ho =Thsy =11 8.82 6.92 8.72 6.76
hi=3hy=5h3=Ths4 =9 8.31 6.51 8.03 6.45

obtained by using 69 layers and the basic building block
with three parallel 3D convolutional kernels which are by =
w1:d1:3,h2:wQ:d2:5andh3:w3:d3:7.
For the following analysis, we use this configuration for the
proposed MSN.

5.2 Comparison with State-Of-The-Art Methods:

The performance of the proposed method is compared with
other spatio-temporal methods (e.g. C3D and I3D) and with
the recent state-of-the-art schemes for automatic depression
recognition on the AVEC2013 and AVEC2014 datasets.

With the objective of conducting a direct and fair com-
parison with the state-of-the-art methods, we present results
in terms of MAE and RMSE. Moreover, in order to better
gain insight into the potential of MSN model, we also
generate results by employing Inflated 3D Convolutional
Network (I3D) [47] and Convolutional 3D (C3D). It is im-
portant to mention that I3D has been successfully applied
in action recognition, demonstrating potential to capture
efficiently spatio-temporal features.

Analysis on AVEC2013. Table |3 shows results obtained
using the proposed method, I3D, and C3D architectures
on AVEC2013 dataset. The I3D network produces more
discriminant features than C3D, achieving better results.
This difference of performance over C3D can be justified
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TABLE 3
Performance of Proposed Method on AVEC2013.
[ Proposed Methods | RMSE  MAE |
C3D 9.31 7.25
13D 8.66 6.64
MSN 7.90 5.98

by the fact that the I3D model has a deeper network and
an efficient structure called Inception module. Our MSN ar-
chitecture also outperforms the C3D model, reducing MAE
and RMSE by margin larger than 1.00. This indicates that
the basic building block of MSN is more efficient than the
structure that employs a fixed kernel size of 3 x 3 x 3. In the
comparison between MSN and I3D, the MSN architecture
seems to capture spatio-temporal features more efficiently
than I3D model. Such result confirms that exploring the
spatio-temporal dependencies using distinct ranges is very
important for encoding facial expression modifications for
depression detection from facial information.

TABLE 4
Performance of Proposed Method on AVEC2014.

[ Proposed Methods | RMSE  MAE |
C3D 8.99 7.20
I3D 8.55 6.36
MSN 7.61 5.82

Analysis on AVEC2014. The results using 13D, MSN
and C3D architectures on AVEC2014 dataset are presented
in Table @] The performance of C3D model is again the
worst, showing that architectures with fixed kernel size are
not efficient to capture spatio-temporal information with
different sizes. Moreover, these results confirm that MSN
architecture can represent a short, middle and long facial
variations related to depression more efficiently than I3D.
It is worth noting that I3D model employs one 7 x 7 x 7
3D convolutional layer and the other layers use basically
3 x 3 x 3 kernels while MSN employs several layers with
multiscale kernels that means various 3D convolution oper-
ations with distinct spatio-temporal sizes which increase in
potential the exploitation of depressive facial variations.

TABLE 5
Complexity study of MSN, C3D and 13D architectures.

Parameters Time FLOP
Methods (x109) (seconds)  (x10%)
C3D 32.1 0.040 8.9
13D 13.0 0.030 26.2
MSN 77.7 0.074 164.9

Space and time complexity of the MSN. In spite of
the fact that deep learning algorithms are able to produce
discriminative representations, the 3D convolutions tend to
be computationally expensive and memory intensive. Table
shows the computational complexity of the proposed
method MSN in comparison with C3D and I3D models.
Compared to I3D, C3D has approximately 2.5 times more
parameters. It also implies that C3D needs more disk space
than I3D. Despite this result, I3D method has better results
in terms of RMSE and MAE when compared to C3D due

8

to its efficient architecture. Our proposed MSN employs
around 2.5 and 6 more parameters in comparison with
C3D and I3D, respectively. This result is expected since
our method has structures to explore wide range spatio-
temporal information whereas C3D and I3D basically cap-
ture the spatial and temporal facial expression variations
within a fixed range.

In Table[5| we also report the computation cost in terms
of (1) the number of Floating Point Operations (FLOPs), and
(2) the time required to predict the depression level given an
input clip. We evaluated the performance of the models on
Nvidia Tesla T4 GPU. When compared to I3D, the number
of FLOP of the C3D is less. The reason is that the Inception
module is more complex than the basic block of C3D, and
I3D is a deeper network than C3D. However, I3D requires
less time to estimate the output for an input clip in contrast
with C3D. We understand that the Inception module has
3D convolution layers that are parallel which allows the
multiprocessing systems to compute the output of each
layer simultaneously, decreasing the inference time. Our
proposed MSN increases the FLOP values by approximately
19 and 7 compared to C3D and I3D, respectively. The MSN
requires 0.074 seconds to estimate the depression level of
subjects in a clip which means 1.85 times more than C3D
and 2.46 times more than I3D. Therefore, the parallel layers
of basic building block of MSN allow to generate features
simultaneously like 13D, producing reasonable inference
time.

TABLE 6
Comparison of Schemes for Predicting The Level of Depression on
AVEC2013 Dataset.

[ Proposed Methods [ RMSE  MAE |
Baseline [24] 13.61 10.88
LPQ + SVR (Kéchele et al. [56]) 10.82 8.97
MHH + LBP (Meng et al. [28]) 11.19 9.14
PHOG (Cummins et al. [30]) 10.45 -
LPQ-TOP + MFA (Wen et al. [33]]) 10.27 8.22
LPQ + Geo (Kaya et al. [58]) 9.72 7.86
Two DCNN (Zhu et al. [16]) 9.82 7.58
C3D (Jazaery et al. [22]]) 9.28 7.37
HOG + HOF + MBH + FV (Ma et al. [20]) 8.91 7.26
C3D (Melo et al. [23]) 8.26 6.40
Four DCNN (Zhou et al. [18])) 8.28 6.20
ResNet-50 (Melo et al. [[19]) 8.25 6.30
MSN (proposed) 7.90 5.98

Comparison on AVEC2013. In Table [f] we show the
performance of our proposed method compared with base-
line and state-of-the-art methods on AVEC2013 dataset. The
models in [20], [24], [28], [30], [33[l, [56], [58] are based on
hand-engineered representations. For example, Kachele et
al. [56] employ Local Phase Quantization (LPQ) and Support
Vector Regression (SVR) to predict depression levels. The
results of MSN architecture outperform all other methods.
In [16], the authors proposed a method that explores tem-
poral information (optical flow) and appearance separately.
The MSN obtains better results than this method, indicating
that exploring spatio-temporal information directly is more
suitable for depression prediction. The authors in [22] and
[23] employ two C3D models to explore different face re-
gions. The MSN outperforms both methods, showing the
power of the model in capturing spatio-temporal infor-
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mation from diverse facial regions. MSN outperforms the
methods in [18], [19] which only explore spatial information.
Observe that the method in [18] is more efficient than C3D
and I3D models (see Table[2). These results show the impor-
tance of capturing the spatio-temporal information rather
than only the spatial information, but the structures of the
model should have the ability to explore spatio-temporal
information in different ranges.

TABLE 7
Comparison of Schemes for Predicting The Level of Depression on
AVEC2014 Dataset.

[ Methods [ RMSE MAE |
Baseline [25] 10.86 8.86
MHH + PLS (Jan et al. [36]) 10.50 8.44
LGBP-TOP + LPQ (Kaya ef al. [38]) 10.27 8.20
MHI + MSI (Espinosa it al. [35]) 9.84 8.46
DTL (Kang et al. [57]) 9.43 7.74
Two DCNN (Zhu et al. [16]) 9.55 7.47
C3D (Jazaery et al. [22]) 9.20 7.22
C3D (Melo et al. [23]) 8.31 6.59
VGG + FDHH (Jan et al. [17]) 8.04 6.68
Four DCNN (Zhou et al. |[18])) 8.39 6.21
ResNet-50 (Melo et al. [19]) 8.23 6.15
MSN (proposed) 7.61 5.82

Comparison on AVEC2014. Table 7| compares the re-
sults of our proposed method against the state-of-the-art
on AVEC2014 dataset. The obtained results by MSN ar-
chitecture generate values of MAE and RMSE lower than
conventional schemes such as Local Gabor Binary Patterns
from Three Orthogonal Planes with Local Phase Quantisa-
tion (LBGP-TOP + LPQ) [38]. Deep Transformation Learning
(DTL) is employed in [57] to project deep features from face
recognition task into new subspace - our proposed method
obtains better results than this method. The MSN also
outperforms the deep models in [16]. In [17], the authors
present a deep learning method to explore spatial infor-
mation and employ Feature Dynamic History Histogram
(FDHH) to capture changes in the features. The MSN out-
performs such method by significant margin. It shows that
encoding jointly spatial and temporal information is a better
approach to capture different ranges of facial dynamics
related to depressive behaviours. The MSN also outper-
forms the deep models that only explore spatial information
in [18], [19] and the model based on C3D in [23]. The results
in Tables {4f and |5 confirm our assumption that spatial and
temporal information captured in a multiscale approach is
very important to encode facial expression variations for
depression detection.

In Figure 5| we provide the predictions for all videos in
the test sets of AVEC2013 and AVEC2014. When patients
with a minimal level of depression, it can be seen that
some samples were misclassified as mild level. These are
the worst cases, which means that the proposed model
can avoid misclassifications of patients with minimal level
as severe level of depression. For patients with a severe
level of depression, the model misclassified the samples as
having the minimal level in 2 and 5 cases on AVEC2013 and
AVEC2014, respectively. Moreover, we present the correla-
tion between predictions and actual value by using Pearson
Correlation Coefficient (PCC). As can be seen in Figure the
proposed model achieves PCC values of 0.727 and 0.750
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Fig. 5. Estimations of the proposed method on AVEC2013 (top) and
AVEC2014 (bottom).

on AVEC2013 and AVEC2014 datasets, respectively. These
results indicate that the model provides a good level of accu-
racy, and a low likelihood of a very serious misclassification.

5.3 Visualization of activation mapping

Figure [6] presents the visualization attention over input
clips produced by our MSN architecture. We visualize the
activation maps by using Grad-CAM [55]. In our analysis,
we considered two cases: the network with basic building
block using single kernel and the proposed MSN. We show
two images from an input clip (16 frames) — first and last
frames. We consider all severity level of depression in order
to analyze spatial and temporal regions that most favors to
depression recognition. It is possible to observe that both
networks focus attention in almost the whole facial area,
i.e. the models capture facial expression variations from
diverse facial areas. As the appearance and the motion
information are employed to explore facial dynamics, the
models increase, along the time, the region where it is paid
more attention toward eye and mouth area in all depression
levels which also indicates that such areas are important for
generating a rich depression representation.
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Fig. 6. Depression attention maps for input images with different depression levels. MSN-Single kernel means the network that employs the basic
building block with only one 3D convolutional layer, h1 = w1 = d1 = 3. MSN-Proposed refers to the network that uses the basic building block with
three parallel 3D convolutional layers — h1 = w1 = di = 3, ho = w2 = d2 = 5 and hg3 = w3 = d3 = 7. To generate the visualization, we employ

the algorithm in .

In Figure [6} we can also observe the effect of the multi-
scale ability of the MSN architecture. Analyzing spatio-
temporal variations of mouth area, we can see that the pro-
posed method explores more information from such area.
For instance, examining the heatmap of the patient with
minimal level of depression, it can be noted that the pro-
posed model explores intensively nearly the whole mouth
whereas the model with single kernel has more difficulties
to analyze such area. It is also observed similar result on
the patient with moderate level of depression. Such results
are due to the capacity of the proposed MSN to investigate
longer range of spatio-temporal variations when compared
to the model with single kernel. Furthermore, the proposed
MBSN seeks to pay attention to the most relevant facial areas.
In the example of the patient with mild level of depression,
the model with single kernel pay high attention to the
corner of the face in the first frame. Then, the exploration
of this corner expands as we can see in the last frame of

the clip. The proposed MSN does not pay high attention
to this corner. Instead of that, the MSN focuses mainly
on facial area that involves roughly eyes and mouth. For
the patient with severe level of depression, the proposed
MSN pays high attention to an area encompassing eyes and
mouth which is slightly smaller than the one explored to the
model with single kernel. Based on these observations, we
can claim that the proposed MSN explores more efficiently
the spatio-temporal information when compared with the
model with single kernel.

6 CONCLUSION

In this paper, we explored the importance of spatial and
temporal information for automatic depression assessment.
We conducted this study by introducing a novel framework
to represent the facial expression alterations called Multi-
scale Spatiotemporal Network (MSN). The architecture has
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the potential to encode rich spatio-temporal information of
modifications in facial expressions using 3D convolutional
layers with various kernel sizes, which allow the method to
capture appearance and dynamics in different ranges. Such
ability is important for modeling depressive behaviours
from facial expression variations. In the experiments carried
out with benchmark AVEC2013 and AVEC2014 depression
datasets, the proposed MSN demonstrated to be more ef-
fective than I3D and C3D architectures in exploring spatio-
temporal information. Moreover, MSN achieved good re-
sults and outperformed state-of-the-art methods, showing
its effectiveness for depression detection. We believe that
the results of this work can contribute to the progress of
automatic medical diagnosis based on face analysis. The
basic building block of MSN has the potential to capture rich
spatio-temporal features and can be explored for detecting
other abnormalities reflective of diseases in person’s facial
expressions. As a future work, we intend to employ our
MSN model in another health care application based on
facial information.
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