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Abstract—Classification of interbeat interval time-series which fluctuates in an irregular and complex manner is very challenging.

Typically, entropy methods are employed to quantify the complexity of the time-series for classifying. Traditional entropy methods focus

on the frequency distribution of all the observations in a time-series. This requires a relatively long time-series with at least a couple of

thousands of data points, which limits their usages in practical applications. The methods are also sensitive to the parameter settings.

In this paper, we propose a conceptually new approach called attention entropy, which pays attention only to the key observations.

Instead of counting the frequency of all observations, it analyzes the frequency distribution of the intervals between the key

observations in a time-series. Attention entropy does not need any parameter to tune, it is robust to the time-series length, and requires

only linear time to compute. Experiments show that it outperforms fourteen state-of-the-art entropy methods evaluated by real-world

datasets. It achieves average classification accuracy of AUC ¼ 0.71 while the second-best method, multiscale entropy, achieves

AUC ¼ 0.62 when classifying four groups of people with a time-series length of 100.

Index Terms—Attention entropy, the complexity-loss, peak points, heart rate variability, HRV, RR interval, interbeat interval, time-series,

synthetic signals

Ç

1 INTRODUCTION

BIOLOGICAL signals are space, time, or space-time records
of biological events such as the heart beating or a muscle

contracting [1]. Biological signals including electroencepha-
logram (EEG) [2], electrocardiogram (ECG) [3], [4], electro-
oculography (EOG) [5], surface electromyogram (sEMG)
[6], [7], galvanic skin response (GSR) [8], [9] and respiration,
are widely used in fields such as clinical disease diagnosis.

Living systems exhibit self-regulating mechanisms that
process inputs with a broad range of characteristics [10], [11].
Many biological time-series such as heart rate variability
(HRV) also called interbeat intervals extracted from ECG are
extremely inhomogeneous, non-stationary, and fluctuate in
an irregular and complexmanner [12]. Fig. 1 shows four time-
series of interbeat intervals from different subjects.We can see
that they vary in an irregular manner. HRV is used to

physiological analysis, such as depressive disorder analysis
[2], stress recognition [13], [14], [15], and affective states analy-
sis [16]. There also has been considerable interest in quantify-
ing the complexity of HRV to uncover hidden information,
such as heart failures [17], [18], [19] and coronary artery dis-
ease [20]. Typical methods such as multiscale entropy (MSE)
[21] and grouped horizontal visibility graph entropy (GHVE)
[22] analyze complexity by segmenting the signals into equal-
length sub-series and calculating the entropy based on how
frequently the artificial patterns occur extracted from the sub-
series. The process of a typical method is illustrated in Fig. 2
(top). Given a time-series X, the method segments into over-
lapping sub-series of equal length, extracts patterns from the
sub-series, and then calculates the entropy based on the fre-
quencies of the patterns. The result depends on the length of
the sub-series and the definition of the artificial patterns.

There are three main challenges with typical entropy
methods. One is that the patterns in the time-series data
must be complex enough to be able to model the data.
Therefore, it requires a lot of data to populate all histogram
bins to obtain a dense histogram. Typical entropy methods
need a time-series length of at least 30,000 samples to model
the data [21]. This takes more than 30 minutes to collect
which incurs high cost in the clinical diagnosis and there-
fore limits their usage in the real-world applications.

The second challenge is that it can take considerable time
to extract the patterns. Most methods require O(manb) time,
where m is the dimension of the vector (see Section 2), n is
the time-series length, and a, b >1. This is a dilemma as the
methods need a lot of data to calculate reliable entropy
value, but having more data means also more time required.
This prevents the use of the methods from large-scale data.

The third challenge is that the artificial patterns also lack
clear intuitive interpretation. As a result, the patterns have
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no direct analytical capability which limits its contribution
to the medical analysis of different diseases.

To overcome these challenges, we propose a conceptu-
ally new method called attention entropy, which pays atten-
tion only to the key observations and focuses on how
regularly they repeat in the time-series. Fig. 2 (bottom) illus-
trates the process of computing the attention entropy. Given
a time-series X, attention entropy extracts the key patterns
and uses the intervals between the key patterns to calculate
the entropy value.

2 ENTROPY METHODS

Entropy is a quantitative measure of the randomness and
disorder of a system. Rudolf Clausius [23] was the first to
introduce a mathematical version of the concept to measure
the proportion of heat energy transferred from a body to
another. Boltzmann and Gibbs [24], [25] extended the con-
cept into statistical mechanics to model the molecular disor-
der and chaos. Shannon later defined the entropy as the
smallest size that a message can be encoded without loss
[26]. In this section, we review the entropy measures that
are most relevant to our study.

2.1 Existing Methods

The process of typical entropy methods has four compo-
nents as summarized in Fig. 3: (1) convert the original series
into another series; (2) construct the sub-series; (3) extract
the patterns from the sub-series; (4) analyze the frequency
distribution of the patterns. Different entropy methods are
based on the different combinations of these four compo-
nents, as summarized in Table 1.

From Table 2, we can see some entropy methods convert
the original series into another series and then segment the
converted series into sub-series to extract patterns. For
example, spectral entropy [27], average entropy [28], and

MSE [21] convert the series using the discrete Fourier trans-
form [27], the grid [28], and the coarse-graining function
[21], respectively.

We can also see that there are three typical methods to
construct the sub-series: single value, template vector, and
delay vector. They can be formed as zm;t

i ¼ ½xi; xiþt; . . . ;
xiþðm�1Þt� for 1 � i � n-ðm� 1Þt, where t is the time delay,
and m is the dimension of the vector, given a finite time-
series X ¼ x1, . . ., xn with the length n. Single value is the
case of zm;t

i with m ¼ 1 and t ¼ 0. Template vector is the
case of zm;t

i with m > 1 and t ¼ 1. Delay vector is the case of
zm;t
i with m > 1 and t > 0.
Different entropy methods have major difference in the

way they extract the patterns from the sub-series. Shannon

Fig. 1. Interbeat interval time-series from a young subject with age � 55,
an elderly subject with age > 55, a subject with congestive heart failure
(CHF), and a subject with atrial fibrillation (AF).

Fig. 2. Main process of calculating the entropy of series.

Fig. 3. Typical components of entropy methods.

TABLE 1
Summary of Entropy Methods
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entropy [26], R�enyi entropy [29], Tsallis entropy [30], spec-
tral entropy [27], and average entropy [28] use the values
directly. Permutation entropy [31] and edge permutation
entropy (EPE) [32] use the permutations of the rankings of
each value in the template vectors as the patterns. Approxi-
mate entropy [33], sample entropy [34], and multiscale
entropy [21] use similar template vectors as the patterns.
Bubble entropy [35] uses the swaps of sorting sub-series
with bubble sort algorithm as the patterns. Horizontal visi-
bility entropy (HVE) [36] uses visibility graphs [37] and
GHVE [22] uses grouped visibility graphs as the patterns.
The singular value decomposition entropy (SVDE) [38] uses
the singular values obtained by performing singular value
decomposition on the embedding space spanned by the
delay vectors as the patterns.

Once the patterns are defined, the entropy values will be
calculated by analyzing the frequency distribution of these
patterns. Approximate entropy [33] and sample entropy
[34] analyze the frequency distribution of the patterns
defined with m and mþ1 dimensional template vector,
respectively. They calculate the entropy value from the dif-
ference of these two distributions.

From Table 1, we can also see that the proposed attention
entropy does not need to convert the series. It uses peak
points in the series as the patterns. It analyzes the frequency
distribution of patterns’ intervals, which will be discussed
in Section 3.

2.2 Discussion

Eachmethod introduced above has its advantages and disad-
vantages. Shannon entropy [26], R�enyi entropy [29], and aver-
age entropy [28] can be applied globally to all data, or locally
only to points around specific points [39]. However, they
ignore the temporal order of the patterns in the signal [40].

Permutation entropy [31] and edge permutation entropy
[32] use the temporal information [39], but they rely on the
occurrence of equal values in the sub-series [41]. Approxi-
mate entropy [33] has the advantage of lower computational
demand and less effect from noise, but it strongly depends
on the time-series length and therefore lacks consistency
[40]. Sample entropy [34] is invariant to the time-series
length and it performs more consistently under various con-
ditions. However, it has a strong dependency on the input
parameters [39].

Bubble entropy [35] and GHVE [22] are not sensitive to
the parameter settings. However, they have high computa-
tional costs, and therefore, they are not practical for large-
scale data [35], [36].

MSE [21] is capable of discovering the multiscale feature
of data but it requires long time-series to work. SVDE [38]
allows analyzing even very short and non-stationary data,
but it has high computational costs when applied to large-
scale data [38]. Spectral entropy [27] has the advantage of
simplicity, but it is sensitive to noise and relies on the
assumption that the data error is independent of time [27].

3 ATTENTION ENTROPY

To overcome the shortcomings of the typical entropy meth-
ods, we propose attention entropy. We first introduce the

general principle and then give a suggestion of how to select
the key patterns.

3.1 The General Principle of Attention Entropy

Attention entropy is calculated in three main steps: (1)
define the key patterns; (2) calculate the intervals between
two adjacent key patterns; (3) calculate Shannon entropy of
intervals. The difference between classical entropy methods
and attention entropy is demonstrated in Fig. 4. Classical
frequency-based entropy methods cannot separate Series 1
and 2, as both have the same frequency distribution of the
patterns. Attention entropy can do it because the distribu-
tion of the intervals of the key patterns (Apple) in the series
are different.

Formally, given a finite seriesX, we first define the key pat-
tern V. Second, we calculate the intervals IV ¼ fvjv ¼ j� ig
for any given sub-series ui, uk, and uj of X which satisfy that
ui and uj match in the pattern V, but uk does not match in V
for any i < k < j. We finally calculate Shannon entropy
over IV as the attention entropy.

3.2 Peak Points as the Key Patterns

We define a point xi as a peak point, including local maxima
and local minima, if it satisfies one of the conditions below:

� xi�1 < xi and xi > xiþ1 (xi is defined as local maxima)
� xi < xi�1 and xi < xiþ1 (xi is defined as local minima)
If each point in a time-series is considered as one state of

a system, the change of the state can then be seen as the sys-
tem’s adjustment to the environment. A complex system is
expected to have a complex process of the state changes

Fig. 4. Difference between attention entropy and other entropies.
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when adapting to the environment. The peak points repre-
sent the local upper and lower bounds of the state changes.
This makes them as the potential key patterns.

A time-series then can be represented by the series of the
peak points. We then calculate the intervals between two
successive peak points. We consider four cases:

� Intervals of local maxima to local maxima (Max-
Max)

� Intervals of local minima to local minima (Min-Min)
� Intervals of local maxima to local minima (Max-Min)
� Intervals of local minima to local maxima (Min-Max)
We can use any one of these four cases individually by

calculating the entropy of the respective interval distribu-
tion. We can also merge the results by analyzing the four
distributions separately and then taking the average of the
four individual entropy values. In the rest of the paper, we
use this merging strategy as our recommended method and
denote it as Average-4.

Fig. 5 shows an example of how to calculate the attention
entropy when defining peak points as the key patterns. In
general, the individual entropy values are not expected to
differ much from each other. In most cases, the result is
about the same regardless which of the four cases we use.
However, using all the four cases brings two additional ben-
efits. First, it can smooth possible abnormalities in the data.
Second, we have four times more data. This can potentially
make the method work with shorter time-series.

Fig. 6 shows the expected behavior of the attention entropy;
it increases with increasing the randomness of peak points.
Fig. 7 shows sample distributions of the intervals among peak
points of the four different subjects from Fig. 1. We can see that
all intervals of AF are smaller than 10 and the distribution of
AF always concentrates on the lower values, leading to low
entropy. Some intervals of CHF are bigger than 10 but all of
that are smaller than 20, and the distribution of CHF drops
faster than young and elderly. The difference between the dis-
tributions of young and elderly is less visible from the graphs,
but the average of the four entropy values, however, makes
the distraction clear (young¼ 2.68, elderly¼ 2.25).

Algorithm 1. AttentionEntropy(X, V)

Input: X: Time-series of length n, V : key patterns
Output: E: Entropy value
FOR i ¼ 1 TO n:
IFmatchKeyPatterns(xi; V) THEN:
interval ¼ i - previous
Finterval¼ Fintervalþ 1
previous ¼ i

E ¼ calculateShannonEntropy(F)

3.3 Implementation

Implementation of attention entropy is shown in Algorithm
1. It requires O(n) time, where n is the length of time-series
X. The algorithm contains the following steps:

1) Detect whether the point is a key pattern;
2) Calculate the interval between two key patterns;
3) Count the frequencies of all intervals;
4) Calculate Shannon entropy over frequencies of all

intervals.
When a point xi is detected as a key pattern, we calculate

the interval as i – j, where xj is the previous key pattern

Fig. 5. A simulated time-series {x0, . . ., x20} to illustrate the procedure of
calculating attention entropy. First, we find local minima (circle points):
{x1, x6, x13, x17} and local maxima (squared points): {x4, x9, x15, x19}.
Second, we calculate the intervals of Max-Max, Min-Min, Max-Min, Min-
Max: {5, 6, 4}, {5, 7, 4}, {2, 4, 2}, and {3, 3, 2, 2}. Third, we calculate their
Shannon entropies: 1.58, 1.58, 0.92, and 1.01. Finally, the attention
entropy is calculated as the average of these four entropy values: 1.27.

Fig. 6. The more randomly the peaks “^” and “v” appear, the greater is
the attention entropy.

Fig. 7. Frequency distributions of the intervals between points of four subjects from Fig. 1. The numbers are the attention entropy values. The average
entropies (Average-4) are: Young ¼ 2.82, Elderly ¼ 2.68, CHF ¼ 2.25, AF ¼ 1.49.
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before xi. We store the counts of the interval values to
Finterval. Once the algorithm has analyzed all the points, it
then calculates the Shannon entropy over the frequency dis-
tribution of the intervals.

Similar to Algorithm 1, Average-4 is implemented by
checking the peak point type (local maxima or local minima)
and updating the respective frequency histogram. Thus, the
original O(n) time complexity still remains. Both Algorithm
1 andAverage-4 require extra space for storing the frequency
histograms, which is upper limited by O(n).

4 EXPERIMENTAL SETUP

Datasets. We first tested with simulated Gaussian distributed
white and 1/f noises [42]–[45], and then tested with real-
world data of healthy and pathological subjects: the interbeat
intervals dataset which is downloaded from PhysioNet [46].
There are 72 healthy subjects divided into two groups: sub-
jects with age � 55 (young) and subjects with age >55
(elderly). There are also 44 subjects with congestive heart failure
(CHF), and 24 subjects with atrial fibrillation (AF). The infor-
mation about the dataset is shown in Table 2, and the selected
sub-series of different subjects are shown in Fig. 1. The length
is the number of samples in the time-series with a sampling
frequency of 128 Hz for young, elderly, and part of CHF
and 250 Hz for AF and part of CHF [46].

Define Key Patterns. We used the peak points introduced
in Section 3 as key patterns. The same attention entropy
(Average-4) calculation illustrated in Fig. 5 was applied to
the experiments.

Baseline Methods. we compared the proposed method to
all the entropy methods in Table 1. We used the parameters
suggested from the original paper of each method.

Measurements.We used the analysis of variance (ANOVA)
[47] and the area under the receiver operating characteristic
curve (ROC AUC) [48] as the measurements. ANOVA can
determine if the means of groups of data are significantly dif-
ferent from each other. ANOVA outcomes a p-value, and if
the p-value is below the threshold chosen for statistical signifi-
cance (usually 0.1, 0.05, or 0.01), there are significant differen-
ces among the groups. The idea of receiver operating
characteristic (ROC) curve is to plot the true-positive rate
against the false-positive rate over the ranked entropy values
at various threshold values. The area under the ROC curve
(ROCAUC) serves as the accuracy evaluation ranging from 0
to 1. The value 1 corresponds to a perfect classification result.

5 RESULTS

5.1 Simulated White and 1/ f Noises

We applied the attention entropy method to the simulated
Gaussian distributed white and 1/f noises, and the results

are shown in Fig. 8.We can see that the attention entropy val-
ues of 1/f noise are significantly higher (p-value< 0.01) than
white noise. This result is consistent with the fact that, unlike
white noise, 1/f noise contains complex structures [42], [43].

5.2 Real-World Heart-Rate Data

We next tested the interbeat interval time-series dataset
with time-series length ¼ 100. The p-value results are shown
in Table 3. We used the star symbol (�) to mark the results
that are statistically significant (p-values<0.01). We can see
that the results of attention entropy are statistically signifi-
cant in all the important cases of separating healthy and
non-healthy subjects. The differences of the entropy values
in case of young-vs-elderly and CHF-vs-AF are as we
expected but not statistically significant. The possible reason
is that the number of samples in the data is too small for
this. Attention entropy is the only method capable to sepa-
rate all six groups when time-series length ¼ 1000 so that
the result is statistically significant (p-values <0.01).

Another measurement of the results of classifying binary
groups is shown in the AUC in Table 4.We can see that atten-
tion entropy outperforms other entropy methods on average
(AUC: 0.71 versus 0.62 with time-series length ¼ 100, 0.81
versus 0.77 with time-series length ¼ 1000, 0.79 versus 0.77
with time-series length ¼ 10000). This indicates that the
attention entropy is more powerful to separate the groups
than the other methods. It gives evidence that analyzing the
frequencies of the intervals between patterns is more benefi-
cial than analyzing the frequencies of patterns, especially
when the time-series length is short, for example, 100.

5.3 Effect of the Time-Series Length

We studied the effect of the time-series length and the results
are summarized in Tables 3, 4 and Fig. 9. From Tables 3 and 4,
we can see that, except for the case of CHF-and-AF with the
times-series length of 100 (p-value ¼ 0.116) and the case of
elderly-and-CHFwith the time-series length of 10000 (p-value
¼ 0.038), the attention entropy values between each group are
always statistically and significantly different (p-values <
0.01). This indicates that the attention entropy can differenti-
ate the groups at the same time very well and is robust to the
time-series length. However, all the other methods are sensi-
tive to the length of the time-series.

TABLE 2
Dataset Information

Group Instance Min. length Avg. length Max. length

Young 26 75,100 101,277 126,945
Elderly 46 76,926 106,234 136,527
CHF 44 74,985 111,144 147,879
AF 24 34,837 48,701 61,915

Fig. 8. Attention entropy analysis of 30 simulated Gaussian distributed
(mean zero, variance one) white and 1/f noise time-series. Symbols rep-
resent the mean values of entropy, and bars represent the standard error
(SE ¼ standard deviation /

ffiffiffi

n
p

, where n is the number of subjects).
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TABLE 3
P-Value Results

The “�” symbol means the p-values <0.01.

TABLE 4
ROC AUC Results
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From Fig. 9, we found that, regardless of the time-series
length, the attention entropy values decrease by following the
order: entropy (young)> entropy (elderly)> entropy (CHF)>
entropy (AF). These results are consistent with the concept
that the cardiac dynamics of healthy young subjects are the
most complex [43] and provide stronger support for the

hypothesized complexity-loss of aging and disease theory [49] than
multiscale entropy. The attention entropy method reflects the
regularity of repeating patterns of signals and plays more
critical roles behind the complexity-loss of aging and dis-
ease. The regularity-loss ignored by conventional entropy
methods is explicitly addressed by the attention entropy.

5.4 Intervals Between Peak Points

To study the intervals among peak points further, we tested
the intervals between local maxima and local maxima (Max-

Fig. 9. Attention entropy analysis of interbeat intervals time-series
derived from healthy subjects with age �55 (young), healthy subjects
with age >55 (elderly), subjects with congestive heart failure (CHF), and
subjects with atrial fibrillation (AF). Symbols represent the mean values
of entropies, and bars represent the standard error (SE ¼ standard devi-
ation /

ffiffiffi

n
p

, where n is the number of subjects).

TABLE 5
Average AUC of Binary Groups

Time-series length 100 1000 10000

Max-Max 0.68 0.81 0.80
Min-Min 0.71 0.80 0.78
Max-Min 0.64 0.75 0.75
Min-Max 0.68 0.75 0.76
Average-4 0.72 0.81 0.79

TABLE 6
Average AUC of Binary Groups

Time-series length 100 1000 10000

Attention entropy 0.72 0.79 0.78
Mean 0.57 0.56 0.54
Root mean square 0.58 0.56 0.54
Standard deviation 0.61 0.48 0.55
NN50 0.57 0.63 0.58

Fig. 11. Contour plot showing how the percentage of outliers and their
amplitude (relative to the mean value of the time-series) affect the atten-
tion entropy.

Fig. 10. Effects of different amounts of Gaussian distributed white noise
on attention entropy curves. SNR corresponds to a single-noise-ratio.
The attention entropy curve labeled original corresponds to the attention
entropy results for the interbeat intervals from a healthy subject. Fig. 12. Log-log plot of running time over time-series in Table 7.
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Max intervals), the intervals between local minima and local
minima (Min-Min intervals), the intervals between local
maxima and local minima (Max-Min intervals and Min-Max
intervals). We calculated Shannon entropy of these four
intervals and the average of Shannon entropy of these four
intervals (Average-4). The AUC results are summarized in
Table 5. We can see that the choice of the interval does not
matter regardless ofwhich time-series length is used. To sim-
plify the choice, we recommend usingAverage-4 by default.

5.5 Compared With Basic Statistics

Basic statistics such as mean, standard deviation, root mean
square, and the number of pairs of successive interbeat inter-
vals that differ by more than 50 ms (NN50 defined in [50]) are
also used to analyze the interbeat time-series [50]. We make
comparisonwith attention entropy and the results are summa-
rized in Table 6. We can see attention entropy outperforms all
basic statistics regardless of the time-series length.

5.6 Effect of Noise and Outliers

The result of an experiment may be affected by the type
of noise. Here, we discuss the effects of superimposing
uncorrelated (Gaussian distributed white) noise on a physio-
logic time-series. Fig. 10 shows that the attention entropy
method is sensitive to the noise. The same observation in
Fig. 11 holds for the effects of outliers. This is because noise
and outliers affect the key patterns, namely the peak points.

5.7 Computational Complexity

Attention entropy takes O(n) time, where n is the time-series
length. To measure the actual processing time of the algo-
rithm, the algorithm was implemented in Python 3.7, which
can be found from the web1 and tested using PC with CPU
Intel Core i7, 16 GB RAM, and clock frequency 2.3 GHz.
Fig. 12 and Table 7 show the relationship between the run-
ning time and the time-series length of one young subject.
We can see that with the increase of the time-series length,
attention entropy requires much less computing time than
most of the competing entropy methods, including the com-
petitive MSE [21].

5.8 Discussion

In this section, we discuss the potential usability of the method
in affective computing, its limitations, and the threats to the
validity of the results of the proposed method. Many methods
based onHRV have been developed for affective state analysis.
This is because plenty of affective computing researches con-
sider that specific emotional states can elicit changes in the

autonomic nervous system, which can be exactly monitored
by HRV analyses as shown by studies over the decades.
However, quantifying HRV with entropy-based methods
has been rarely used for affective analysis although it has
beenwidely adopted inmany tasks such as disease detection
and classification. Thismay be because conventional entropy
methodswere proposed for long-termHRV analysis as intro-
duced in Section 2, therefore, they were not applicable to
short duration HRV analysis. This obstacle is expected to be
removed by attention entropy, which can work well with
short durationHRV signals and, therefore, can be potentially
applied to affective state analysis. Moreover, attention
entropy may be able to capture the change of affective states
in a timely manner considering its advantage of requiring
linear time complexity.

One limitation of the proposed method is that it needs to
define key patterns in advance. The limitation of using peak
points as key patterns is that it is sensitive to outliers and noise.
The key patterns may be application-specific, which may be a
threat to the validity of the results. However, these threats may
be overcome by defining different key patterns and combining
the results from multiple key patterns; future work could
explore this strategy. The mechanisms behind the key patterns
such as peak points could also be explored in futurework.

6 CONCLUSION

A novel complexity analysis method called attention entropy
is proposed, which does not need any parameter tuning when
using peak points as key patterns. It has linear time complexity
and is robust to the time-series length.We compared it to four-
teen state-of-the-art complexity analysis methods with real-
world datasets. The results show that attention entropy out-
performs all the compared methods and is the only method to
be able to separate all groups with statistical significance using
time-series length of 1000. This shows attention entropy has
higher discrimination power in short duration HRV signals
and has potential in other tasks such as affective computing.
Future work could uncover more key patterns and the hidden
mechanisms behind them.
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