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Abstract—Affect is often expressed via non-verbal body language such as actions/gestures, which are vital indicators for human
behaviors. Recent studies on recognition of fine-grained actions/gestures in monocular images have mainly focused on modeling
spatial configuration of body parts representing body pose, human-objects interactions and variations in local appearance. The results
show that this is a brittle approach since it relies on accurate body parts/objects detection. In this work, we argue that there exist local
discriminative semantic regions, whose “informativeness” can be evaluated by the attention mechanism for inferring fine-grained
gestures/actions. To this end, we propose a novel end-to-end Regional Attention Network (RAN), which is a fully Convolutional
Neural Network (CNN) to combine multiple contextual regions through attention mechanism, focusing on parts of the images that are
most relevant to a given task. Our regions consist of one or more consecutive cells and are adapted from the strategies used in
computing HOG (Histogram of Oriented Gradient) descriptor. The model is extensively evaluated on ten datasets belonging to 3
different scenarios: 1) head pose recognition, 2) drivers state recognition, and 3) human action and facial expression recognition. The
proposed approach outperforms the state-of-the-art by a considerable margin in different metrics.
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1 INTRODUCTION

A FFECT refers to the underlying experience of feeling,
emotion or mood. Affect and its physical expression

are an integral part of social interaction, informing oth-
ers about how we are feeling and influencing social out-
comes. It is often displayed via facial expressions, head
pose/movements, hand gestures, body posture, voice char-
acteristics, and other physical manifestations [1]. Observers
are capable of recognizing these affect displays, and often
react to and draw inferences from them. The mapping of
affective states onto behavioral cues is a complex problem
involving numerous factors, and psychologists attempt to
establish links between them without relying on subjective
self-report as a primary measure. The mechanization of
this process is fundamental in affective computing. There-
fore, research on automatic recognition of nonverbal be-
havior/gestures is only the first step. This has significantly
influenced the automatic recognition of nonverbal behavior
in images and videos to address this fundamental problem
in affective computing. Automatic recognition of human
gestures/actions and nonverbal body language is well-
researched within computer vision community [2], [3] and
is instrumental for various applications such as socially
assistive robots/AI, human-computer interactions, affect-
aware technologies, autonomous vehicles, sign language
recognition, virtual reality, and many more.
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Learning to predict fine-grained gestures from a single
monocular photographic image is arguably a more chal-
lenging problem and comparably less studied. The difficulty
of the problem could be linked to the lack of temporal
information, which often plays a key role in video-based
action recognition. Recently, it has gained increased atten-
tions in the research community due to the great success of
deep learning methods. In this work, fine-grained gestures
refer to the task of distinguishing sub-ordinate categories,
such as head pose, facial expression and driver’s in-vehicle
activities recognition in which the difference between fine-
grained classes is very subtle. In such scenarios, the most
discriminative cues are often not based on the global
shape/appearance variation but contained in the misalign-
ment of local parts or patterns. For example, recognition of
head poses for human attention, holding versus playing a
musical instrument and measuring driver’s inattention by
recognizing distraction activities of texting versus talking
using a mobile phone.

Previous researches on action/gesture recognition from
still images focus on body parts and their spatial config-
urations representing body pose and human-objects inter-
actions [4] [5] [6]. Therefore, most of these works aim at
modeling contextual information involving human body
pose and their interaction with objects/scenes for action
recognition. This, in turn, requires explicit annotations of
body pose (e.g. body parts/joints locations and bounding
boxes) and objects on top of image-level action annotation
(e.g. playing a flute and texting). Manual annotations of
these bounding boxes are not only tedious, laborious, and
time-consuming, but also demand special skills which are
expensive and not readily available.

ar
X

iv
:2

10
1.

06
63

4v
1 

 [
cs

.C
V

] 
 1

7 
Ja

n 
20

21



2

Over the last couple of years, attention mechanism [7]
has drawn increasing interest in machine translation [8] [9],
visual question answering (VQA) [10], image captioning
[11] [12] [13], human activities recognition [14] [15] [16],
and other applications. The aim is to imitate human per-
ception by focusing on parts of the scenes/sentences to
acquire information at specific places and times, resulting in
improved accuracy, as the model can focus on parts of the
data, which are most relevant to a given task. Such models
usually take image-level labels (e.g. kicking, riding, and
phoning) without requiring as input manual annotations of
bounding-boxes for human and/or objects of interest.

The core goal of this work is to develop a simple yet
a powerful network involving the attentional layer that
can be added on top of the existing Convolutional Neural
Networks (CNNs) to learn attention maps exploiting the
effective spatial support of the visual information in making
fine-grained action classification decisions. The proposed
attentional module does not require additional annota-
tion/supervision. It leads to significant improvements in
classification accuracy over the baseline architectures and
state-of-the-art approaches on three separate fine-grained
action/gesture recognition tasks: 1) head pose, 2) driver’s
distraction activities, and 3) human actions and facial ex-
pressions in still images. The method is based on the hy-
pothesis that there is a benefit to exploring salient regions
and amplifying their influence while suppressing the po-
tentially noisy and irrelevant information in other regions.
In particular, we reveal that enforcing a more focused and
parsimonious use of image information could efficiently aid
in discriminating subtle changes that are often observed
in fine-grained action recognition tasks. Therefore, the pro-
posed end-to-end attention-aware fine-grained classification
network uses a collection of regional CNN features, dynam-
ically weighted by the compatibility scores in classifying
fine-grained actions/gestures.

The proposed approach is inspired by R*CNN [17], at-
tention [8], and Histogram of Oriented Gradient (HOG) [18]
for combining multiple regions representing visual cues in
a given image to solve the fine-grained action recognition
problem. The main contributions of this paper are:
• A novel approach is proposed for gesture/action

recognition in still images, unlike current approaches,
without requiring bounding-box annotations and/or
body parts/object/people detection. The generalization
and easy-to-implement capability of our approach is
demonstrated by integrating it with the state-of-the-
art base CNNs that incorporate regional attentions to
give a significant improvement in the fine-grained ges-
ture/action recognition performance;

• To the best of our knowledge, the proposed region-
based attentional module is the first of its kind that
uses a hybrid approach to include hard attention, soft
attention, and self-attention on pooled regional CNN
features from a base network. We also introduce a skip
connection to the Squeeze-and-Excitation (SE) block
[19] to improve the gradient-flow from its output to the
base CNN in modeling the interdependencies between
channels of region-specific visual features;

• The efficacy of our approach is demonstrated through
in-depth analysis on 10 datasets comprising of three dif-

ferent types of action/gestures: 1) head pose, 2) driver’s
distraction activities, and 3) human actions involving
human-objects interaction and facial expressions;

• Finally, ablation study and visual analysis to show the
impact of our region-based attentional and SE module
on the base network and its performance despite being
trained with image-level classification label only.

The rest of this paper is organized as follows: Section 2
discusses the related work on fine-grained gestures/actions
recognition from monocular imagery. Section 3 describes the
proposed approach for recognizing fine-grained activities.
Experimental evaluations and results are presented and
discussed in Section 4. Finally, the concluding remarks are
given in Section 5.

2 RELATED WORK

Human gestures/action is a well-studied problem [2] [3]
with a wide range of approaches. In this section, we review
several state-of-the-art approaches on head pose recogni-
tion, driver’s distracting gestures/action recognition, and
human action/gesture/facial expression recognition. We
have also reviewed the role of attention in human ac-
tion/gesture recognition.

2.1 Head pose recognition

Head pose infers the orientation of a person’s head relative
to the camera view. Traditionally, head pose estimation is
computed by locating 2D facial landmarks (also known as
keypoints) in the target face and establishing the correspon-
dence between landmarks and a head template by perform-
ing alignment [20]. Recently, there has been a significant
progress in detecting and localizing facial landmarks using
modern deep learning models [21] [22] [23] [24]. These mod-
els aim to predict head poses and facial landmarks jointly.
However, the primary goal of the head pose estimation is
to improve the accuracy of the landmark prediction. As a
result, head pose estimation itself is usually not sufficiently
accurate on its own.

In OpenFace 2.0 [24], authors use simplified deep Con-
volutional Experts Constrained Local Model (CE-CLM) for
facial landmarks detection. Head pose estimation is carried
out using a 3D representation of facial landmarks. Hyper-
face [22] combines R-CNN [25] and AlexNet to perform four
different sub-tasks (detect faces, determine gender, detect
facial landmarks, and estimate head pose) simultaneously.
KEPLER [21] uses Heatmap-CNN (H-CNN) to predict facial
landmarks and pose jointly. To improve landmarks detec-
tion, it uses coarse pose supervision. All-In-One CNN [23]
uses a multi-task learning concept for simultaneous face
detection and alignment: face recognition, smile detection,
pose estimation, gender recognition, and age estimation
using a single CNN. Ruiz et al. [26] describe landmarks-free
head pose estimation using image intensities. They regress
head pose Euler angles by applying a multi-loss objective
function. Similarly, FSA-Net [27] uses stage-wise regression,
and feature aggregation for landmarks-free head pose esti-
mation. Our work differs from the approaches above since
we focus on the classification of head poses targeting the ex-
isting large-scale datasets for face recognition. Our work is
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also applicable to other tasks such as human actions/gesture
recognition and can be easily integrated into most of the
deep CNN architectures.

Although significant advancement has been made in
face detection, accurate estimation of head poses and land-
marks is still a challenging task, particularly in uncon-
strained “in the wild” images. Uncertainty in head pose
estimation seems to be a key factor for face recognition
and landmarks estimation [20] [22]. In extreme poses, face
detection is arguably still a difficult problem to address due
to occlusion. We aim to recognize the coarse head pose
directly from image intensities and is different from the
head pose estimation regression problem [27] [26]. This is
necessary for inferencing human attention (which direction
a person is looking), which is often explored in human-
machine/computer interactions, human-robot social inter-
actions, and nonverbal communications. To address this,
we introduce novel attention involving self-attention and
co-attention that can be easily integrated with the existing
state-of-the-art CNNs.

2.2 Driver’s Gestures Recognition
There are two types of gestures associated with a driver:
1) driving gestures - primary activities involving the inter-
actions between driver’s body parts and vehicle controls,
and 2) non-driving gestures - secondary activities are often
known as distractions (e.g. eating, drinking, etc.) that often
involve driver-objects interactions. The non-driving sec-
ondary activities are overwhelmingly to blame for the vast
majority of accidents [28] [29], and thus, there is an urgent
need for automatic monitoring of such activities. Moreover,
it is found that such activities are most wanted in-vehicle
activities in highly/fully automated driving systems when
the driver is not in control [30]. In such a scenario, there
is a need for monitoring the driver’s state and readiness
for Take-Over-Request (TOR) when the vehicle is unable to
make an appropriate decision.

Recently, there has been significant progress in monitor-
ing driver’s gesture/state using monocular images [28] [31]
[32] [33]. Most of these approaches focus on human-centric
cues such as body pose [28], body-object interactions [29],
and hand positions and movements [32] [33]. Behera et al.
[28] propose a method for drivers state/gesture recognition
by injecting latent body pose into the adapted DenseNet
architecture [34]. Baheti et al. [31] modify the VGG16 ar-
chitecture [35] to improve the driver’s state classification
accuracy by reducing the number of parameters for faster
execution. Abouelnaga et al. [32] achieve a high classifi-
cation accuracy of driver’s state/gesture by considering
a genetically weighted ensemble of five different CNNs,
making it too heavy for real-time applications, which are
very much essential in autonomous/self-driving cars.

2.3 Human Action/Gesture/Facial Expression Recogni-
tion in Still Images
There is a wide range of work in the field of action/gesture
recognition using monocular images [6] [36] [37] [38] [39]
[40] [41] [42] [43]. Recently, deep learning is making major
advances in action recognition that has attracted the best
attempts of the computer vision community for many years.

Zhao et al. [6] exploit the mid-level semantic actions
by dividing the human body into seven semantic parts,
which are combined with contextual cues to recognize the
entire body action. The work described by Zhang et al.
[36] segments the precise regions of underlying human-
object interactions with minimum annotation efforts. An
Expanded Parts Model (EPM) is proposed by Sharma et al.
[37] for recognizing human attributes (e.g. young and short
hair) and actions (e.g. running and jumping) in still images.
Zhao et al. [38] capture multi-scale cues involving semantic
region candidates at multiple scales to highlight the optimal
scale for each action. An action-specific person detection
approach is presented by Khan et al. [39] by exploiting
transfer learning to overcome the limited labeled action
examples. A region-based model is proposed by Zhao et
al. [40] for action classification in still images by introducing
a discriminative region selection method.

Facial expression recognition (FER) is widely used to
determine the affective state of the subject, regardless of
its identity. There has been a significant advancement for
automatic FER, particularly in controlled laboratory settings
[44]. However, it remains a challenge in uncontrolled real-
life situations involving unpredictable variability in head
poses, lighting conditions, occlusions, and subjects. A de-
expression residual learning procedure is proposed in [41] to
recognize facial expressions by extracting information from
the expressive components. In [45], Kim et al. propose an
approach to fuse information about non-aligned and aligned
facial states to boost FER accuracy and efficiency. A deep
model is proposed in [46] to learn a rich face representation
to capture gender, expression, head pose, and age-related
attributes, and then perform pairwise-face reasoning for
relation prediction. Similar to the above approaches, we pro-
pose an attention-driven deep model that not only improves
the FER accuracy but also generalizes its applicability to
wider related tasks such as head pose recognition and
human/driver actions/gestures recognition.

2.4 Attentions in Action/Gesture Recognition

Deep models over the full image have shown great promise,
but it raises the question of whether the fine-grained recog-
nition task can be treated as a general classification prob-
lem. Recently, human visual perception has been explored
in machine learning and computer vision community to
address this issue. It focuses selectively on parts of the
scene to acquire information by exploring vital cues such
as body parts involved, the identity of objects around them,
and their interaction with these objects. Most of the recent
attention-based approaches [8] [9] [10] [11] [12] [13] focus
selectively on these vital cues to improve the performance
of the recognition task by considering parts of the image,
which are most relevant to a given task.

Gkioxari et al. [17] propose an action-specific model
called R*CNN that uses a primary region containing the
person in question and a secondary region consisting of
contextual cues. An object relation transformer model is
proposed in [12] for image captioning that explicitly incor-
porates information consisting of the spatial relationship
between detected objects in a scene through geometric
attention. Huang et al. [13] propose a two-layer attention
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Fig. 1: Architecture of our RAN. Given an image, we select a set of candidate regions (bounding boxes). The image is passed
through a base CNN (e.g. VGG [35], ResNet [47], Inception [48], etc.). The output activation of a given region r is computed
using specialized Squeeze-and-Excitation [19] layer with skip connection. For each gesture g (head pose example), the most
informative region is selected using the proposed attention layer consisting of self-attention and co-attention representing
combined attention of regions and the whole image. The softmax operation transforms co-attention-focused activations Ca

into probabilities that form the final prediction.

(attention on attention) model for image captioning, which
generates an information vector and an attention gate using
the attention result and the current context in order to
obtain the attended information. On the other hand, Li
et al. [11] introduce entangled attention that exploits the
semantic and visual information simultaneously to enhance
the image captioning performance. In order to recognize
the human activity, Zeng et al. [15] propose LSTM-based
two attention models (temporal and sensor) highlighting the
important part of the time-series signals as well as sensor
importance. Similarly, Wang et al. [14] propose an end-to-
end deep learning model called BANet to learn temporal
and bodily parts that are more informative for the detection
of protective behavior. To address the problem of video
question answering, Li et al. [10] present an approach that
consists of positional self-attention with co-attention and
takes as inputs video frame and posed question textual
features, and then compute attentions for them simultane-
ously. Vaswani et al. [8] describe a self-attention model by
modifying traditional attention. The model calculates the
response at a position in a sequence by attending to all the
positions to perform the machine translation task.

Our proposed attention is inspired by these latest devel-
opments. It is different from the above approaches since this
work is focused on fine-grained recognition tasks involving
subtle changes in images (e.g. playing versus holding a flute
and talking vs texting on phone). Whereas, existing atten-
tional models [11] [12] [13] are mostly focused on images
with distinctive object categories and/or classes. Therefore,
it is observed that such models often use Faster R-CNN
[49] for object detection/proposal, whereas our approach
focuses on subtle changes within a given object (e.g. facial
expression and head pose). Therefore, we employ soft atten-
tion by considering the entire image, apply hard attention
in which semantic regions are selected via hard decisions,
and adapt self-attention by considering the positions of
different semantic regions within a still image to address
the fine-grained action/gesture recognition problem. The
novelty of our approach is that a semantic region is not only
conditioned on itself (soft attention) but also conditioned on
the other regions and the whole image (self-attention) before
applying attention to attentions, which is called combined
attention or co-attention. The output of the co-attention is
fed into the softmax layer for the final decision. The whole

process is carried out in an end-to-end learning fashion
without requiring component-level bounding box labeling
and/or object/people/body parts detection. Moreover, the
proposed method can be easily integrated into the state-of-
the-art CNN architectures.

2.5 Previous Work by Authors
This work builds on the published conference output [50],
focusing on coarse head pose recognition from image inten-
sities using ROIs. The proposed RAN makes a substantial
advance to it in two aspects: (i) by integrating a novel
attention mechanism to explore salient regions in images
while making recognition decisions. This approach is also
evaluated on the head pose dataset and the performance is
significantly better than that of the published approach [50].
(ii) We have also introduced a skip connection to the SE
block to model the interdependencies between channels of
ROI-specific visual features. The efficacy and generalizabil-
ity of RAN is demonstrated through in-depth analysis and
evaluation using three different tasks for action/gestures
recognition: 1) head pose, 2) driver’s distraction activities,
3) human actions involving human-objects interaction and
facial expression.

3 PROPOSED APPROACH

The proposed deep architecture is inspired by the recent
advances in attention-focused deep learning approaches to
solve fine-grained gestures (e.g. head pose, human actions,
and driver’s activities) recognition problem. The overview
of the architecture is shown in Fig. 1. An image is fed into
a base CNN, and its output is up-sampled and fed into a
regions of interest (ROIs) pooling layer, which also takes
as input a list of regions with information about spatial
location (x, y) and size (width and height). The pooling
provides a fixed-size feature map for each ROI by using
bilinear interpolation. These ROIs are computed automat-
ically (see Section 3.1). Therefore, our network does not
require the cropped region or region annotations. Subse-
quently, the ROI-pooled feature maps are passed through
the corresponding Squeeze-and-Excitation (SE) [19] layer
(red layers with skip connection described in Section 3.2)
in Fig. 1. Similarly, the output of the convolutional layer
is also passed through the proposed SE layer (green layer)
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for computing feature map of the whole image I . Region-
specific feature maps and the image-specific feature map
are then fed into the proposed attention layer to compute
region-specific attentions, and then combine them to con-
struct single activation (see Section 3.3) for fine-grained
action recognition.

We define feature map F(g; I) of a fine-grained gesture
g in a given image I with ROIs R as:

F(g; I) = WI
g · F(I;R)︸ ︷︷ ︸

Whole Image

+

Regions of Interest (ROIs)︷ ︸︸ ︷∑
r∈{R,I}

∑
r′∈{R,I},r′ 6=r

Wr
g · F(r; r′, I) (1)

where r, r′ ∈ {R, I}; F(I;R) is a feature map represent-
ing the whole image I conditioned on all the ROIs in R;
F(r; r′, I) is a feature map representing the ROI r condi-
tioned on the rest of the ROIs r′ ∈ R and the whole image
I . Similarly, the weight matrices WI

g and Wr
g correspond

to the whole image I and ROIs R for a given gesture g,
respectively. Given a feature map F(g; I) of each gesture g,
we compute the probability of a given gesture g in image I
by using a softmax layer:

Prob(g; I) =
exp(F(g; I))∑

g′∈G exp(F(g′; I))
(2)

The feature F(.) and weight matrices WI
g and Wr

g are
all trainable parameters and learned jointly for all the fine-
grained gestures g ∈ G using a CNN, trained with gradient-
based optimization of a stochastic objective function. The
above feature maps (F(I;R) and F(r; r′, I)) and weight ma-
trices (WI

g and Wr
g) are computed through our proposed

attention model.

3.1 Candidates Region Selection
Computer vision research has a long history of patch- or
component/region-based approaches to visual recognition
problems. This is mainly due to 1) different objects partially
share similar parts, 2) occlusions and cluttered scenes, and
3) changes in the geometrical relation between parts. Fine-
grained gestures often exhibit most of these characteristics.

Hand-crafted features such as HOG [18] once dominated
in solving visual recognition problem due to their superior
performance prior to the recent advances in deep learn-
ing. It often considers patches around keypoints or facial
landmarks to extract features. Not long ago, this patch-
based approach was adapted into the deep learning models
such as R-CNN (Regions with CNN features) [25], which
led to a significant impact on the simultaneous detection
and localization problem involving objects and people. Our
approach is inspired by this. In R-CNN, the selective search
is used to find 2K region proposals per image. Each region is
passed through the same network to compute its objectness
and is more suitable for the detection of distinct objects.
We aim to recognize fine-grained gestures, which can be
seen as the deformation of the same object/body parts, and
therefore, learning separate region-specific features is more
suitable. To achieve this using a CNN, each region has to
be modeled separately and will be difficult to fit a large

number (e.g. 2K in R-CNN) of regions. Thus, we adapted
the strategies (cells and blocks) used in HOG [18] for our
region proposals. We divide a given image into C × C
cells. Our region consists of one or more consecutive cells,
resulting in regions of different aspect ratios and areas from
all possible combinations within the entire image. A block
in HOG consists of 2 × 2 cells. Our region is similar to
the block but consists of different sizes (e.g. 1 × 2, 1 × 3,
2 × 1, and 2 × 2) to consider all possible semantic regions
within the entire image instead of only square ones. As
a result, there are |R| = 35 possible regions for C = 3.
Moreover, the proposed ROI-specific computation layers are
added towards the end layers of our network (Fig. 1), and
therefore, the most computational time is spent in the base
CNN, which considers the whole image. One of the main
advantages of the proposed ROI-based approach is that it
can be added onto the top of any existing CNN models. Our
evaluation using various CNNs is presented in Section 4.

3.2 Squeeze and Excitation (SE) Layer with Skip Con-
nection

The motivation for using ROI-specific SE [19] layer is to
improve the representational power of our architecture
by explicitly modeling the inter-dependencies between the
channels of ROI-pooled features. This is done by feature
recalibration in which the network learns to use ROI-specific
global information to selectively suppress less useful fea-
tures and emphasize the more informative ones. As a result,
our model will be able to emphasize ROIs with task-specific
features. The feature re-calibration capability within the SE
layer is computed as: Firstly, the ROI-pooled features are
passed through a squeeze operation (channel-wise scaling),
which aggregates the feature maps across ROIs spatial
dimension (e.g. 7 × 7 for the ResNet [47]) to produce a
channel descriptor. This embeds the global distribution of
channel-wise feature responses. Secondly, this is followed
by an excitation operation (element-wise summation) in which
ROI-specific activations are learned for each channel by a
self-gating mechanism based on channel dependence and
governs the excitation of each channel. As a result, the
SE layer becomes increasingly specialized and responds to
different ROIs in a highly task-specific manner.

We adapted the existing SE [19] block by introducing a
skip connection (Fig. 2). Skip connections are also known as
identity shortcut connections, which are extra connections
between nodes in different layers of a network that skip
one or more layers. The introduction of this skip connection
has improved recognition accuracy. An arguable conjecture
for introducing skip connections is due to three factors: 1)
we use the pre-trained base CNNs, which are trained on a
large dataset (e.g. ImageNet [51]). Therefore, these connec-
tions provide easy access to the learned low-level features,
making it easy to use this information if needed for a new
task as part of transfer learning to smaller datasets, which
is the case here. 2) It improves the gradient-flow from the
output of the SE layer to the base network and is important
when adjusting parameters during transfer learning. 3) The
skip connections also improve the training of deep networks
partly by eliminating the singularities inherent in the loss
landscapes of deep networks [52].
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Fig. 2: Squeeze-and-Excitation layer with skip connection
added. FC: fully-connected layer, H : height, W : width and
C: channels or filters.

3.3 Attention Computation
Our attention consists of two layers: 1) self-attention and
2) co-attention (Fig 3). Let F = {f1, f2, . . . , f|R|+1} the set
CNN features fr (F ⊆ F(.)), where r ∈ {R, I} (|R| + 1
is the number of the ROIs plus the whole image I). Each
fr is the vector of output activations of the ROI r. We
introduce a self-attention layer with an attention matrix A
that contains the weight matrices WI

g and Wr
g in Eq. (1).

The aim is to capture the similarity between any ROI with
respect to the rest of the ROIs and the whole image I . This
is achieved via element αr,r′ ∈ A by considering the region
activations fr and fr′ of ROIs r and r′, respectively. The
ultimate objective is to infer how much to attend a particular
ROI r conditioned on all the other ROIs and the whole image to
highlight the importance of a given region in the decision-
making process. It is implemented using an LSTM cell as:

hr,r′ = tanh(Whfr +Wh′fr′ + bh), gr,r′ =Wghr,r′ + bg

αr,r′ =
exp(gr,r′)∑

j′∈{R,I}
∑

j′∈{R,I} exp(gj,j′)
,

lr =
∑

r′∈{R,I},r′ 6=r

αr,r′fr′

(3)

where Wh ⊂ A and Wh′ ⊂ A are the weight matrices
for the respective ROIs r and r′; Wg is the weight matrix
corresponding to their non-linear combinations, hr,r′ is
computed from Whfr +Wh′fr′ + bh using the element-wise
sigmoid function, and αr,r′ is calculated using the Softmax
function; bh and bg are the bias vectors. The self-attention-
focused activation lr of ROI r is given by the weighted
summation of region activations fr′ of all the other ROIs
r′ and their similarity αr,r′ to the ROI r in focus.

The attention-focused activations L = {l1, l2, . . . , l|R|+1}
are then used to produce a single activation Ca as shown
in Fig. 3. To achieve this, we apply another attention mech-
anism to L, i.e. attention of attentions, and we called it co-
attention representing a high-level encoding of the entire
image. It allows the model to decide the importance of self-
attention-focused activation lr for the prediction by weight-
ing them when constructing the single combined activation
Ca. We use a simple approach and is computed as:

cr = lrWc + bc, ar =
exp(cr)∑

j∈{R,I} exp(cj)

Ca =
∑

r∈{R,I}

arlr
(4)

Fig. 3: Computation of the proposed self-attention and co-
attention from the feature maps representing the ROIs and
the whole image. The input to the attention layer is the
output from the proposed SE with a skip connection layer
focusing on the respective ROIs and the whole image.

where Wc ⊂ A and bc are the respective weight matrix
and bias. The attention score of each ROI cr is computed
by multiplying the self-attention activation lr with the
weight matrix Wc and adding the bias vector bc. Then
it is normalized to construct a weight vector ar over the
regions {R, I}. Finally, the co-attention Ca is computed
as a weighted summation over all the regions using the
attention scores as weights. Our co-attention is similar to the
Attention on Attention in [13] in which the module generates
an “information vector” and an “attention gate” via two
separate linear transformations, which are both conditioned
on the previous attention result and the current context rep-
resented as a query. Whereas, in our co-attention, we use the
self-attention principle and a single linear transformation in
which the concept of the query, the key, and the value are all
the same (i.e. previous attention lr).

3.4 Training and Implementation details of RAN

The proposed approach is experimented with various state-
of-the-art CNN as a base network, and our region-specific
SE and attention layers are added on top of it. All the
layers in the base CNNs are initialized with pre-trained
ImageNet’s [51] (1.2M natural images with 1K categories)
weights. Our RAN is trained in an end-to-end fashion with
the default image size of 224 × 224 and is randomly se-
lected from 256× 256. The data augmentation also includes
random rotation of ±15◦ and a random zoom of 1 ± 0.15
and the image center. The model is trained with a batch
size of 16 using a Linux (Ubuntu) machine fitted with 16GB
GPU (NVIDIA Quadro P5000) card. During training, we
minimize the softmax probability Prob(g; I) representing
that gesture g appears in the image I computed in Eq. (2).
The loss over a batch B = {Ii, yi}Mi=1 is given by

loss(B) = − 1

M

M∑
i=1

∑
g∈G

log Prob(g = yi; Ii) (5)

where g are the gesture predictions, y are the actual labels,
i denotes the training images, and G represents a set of
gestures. We use the Adam optimizer [53] with a learning
rate of 10−5 to minimize the objective function in Eq. (5) and
train the model for 50 epochs.
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TABLE 1: Head pose recognition accuracy in percentage of different methods over different datasets. For a given dataset
and method, the best performance is shown in bold.

Used Base CNN MultiLab dataset [50] VGGFace2 dataset [54] MTFL dataset [20] AFLW dataset [55]
Base- ROI Ours Base- ROI Ours Base- ROI Ours Base- ROI Ours
line [50] line [50] line [50] line [50]

ResNet-50 [47] 91.50 94.17 99.65 85.40 91.40 97.28 75.47 77.67 89.61 84.54 92.80 98.95
Inception ResNet-V2 [56] 88.82 94.89 99.78 82.43 90.50 98.27 69.12 81.45 96.30 85.26 92.23 99.39
Inception-V3 [48] 90.97 95.01 99.90 85.54 93.35 99.57 70.70 80.85 97.88 83.55 92.14 99.32
DenseNet-121 [34] 90.89 92.23 99.43 85.57 87.13 95.59 77.11 78.09 94.45 85.28 96.19 99.02
DenseNet-169 [34] 91.56 92.09 98.99 85.23 85.55 98.63 75.23 76.20 95.50 84.80 96.21 98.93
DenseNet-201 [34] 90.75 92.56 99.21 85.85 86.30 96.83 72.06 76.57 95.01 85.67 96.30 98.50
VGG16 [35] 92.84 92.11 99.35 85.16 90.39 98.20 71.50 64.84 89.10 85.13 93.40 98.19
NASNet mobile [57] 91.06 96.56 99.56 85.44 91.96 99.39 64.72 66.10 96.91 84.47 91.09 98.69

4 EXPERIMENTAL EVALUATIONS

In order to validate our model, we consider 10 vari-
ous datasets depicting three different scenarios: 1) head
pose, 2) driver’s distraction activities, and 3) human ac-
tions/gestures/facial expression recognition. Its perfor-
mance is measured in two metrics: accuracy (ACC) and
mean average precision (mAP) in percentage [58] [59] [60].
The higher these values, the better the method.

4.1 Head Pose Recognition Datasets

MultiLab [50]: It is a collection of a number of publicly
available datasets for pose estimation and related research
on face analysis. The dataset consists of 24,334 images from
1288 identities, and 5 coarse head poses: 1) frontal (0◦), 2)
half profile - left (−45◦), 3) full profile - left (−90◦), 4) half
profile - right (+45◦) and 5) full profile - right (+90◦). We
use the training/test split in [50] to evaluate our proposed
architecture.
VGGFace2 [54]: It provides the pose templates similar to
MultiLab of a subset of images (10, 750) within the test
set. In our earlier work [50], we have annotated another
63, 016 images within the training set and use the same
training/test split.
Multi-Task Facial Landmark (MTFL) [20]: The dataset con-
sists of five different head poses (0,±30,±60) and contains
13, 466 faces in which 5, 590 are from LFW [61]. We use the
same training and test subset as in [20].
Annotated Facial Landmarks in the Wild (AFLW) [55]: It
consists of 25K annotated face in real-world images with
coarse head poses. It is very similar to the MTFL, but the
head pose information is provided as three rotation angles
yaw, pitch, and roll. We consider only yaw as in MTFL [20],
MultiLab [50] and VGGFace2 [54] datasets. For evaluation,
we follow the training/test split as in [55].

4.2 Driver’s State/Gesture Recognition Datasets

We validate our model using two challenging datasets: i)
Distracted Driver V1 [32], and ii) Distracted Driver V2 [33].
These datasets consist of 10 classes of actions: 1) safe driving,
2) texting - right, 3) talking on the phone - right, 4) texting -
left, 5) talking on the phone - left, 6) operating the radio, 7)
drinking, 8) reaching behind, 9) hair and makeup, and 10)
talking to passenger.
Distracted Driver V1 [32]: This dataset consists of 12,977
training and 4,331 test images. The dataset is formed using

TABLE 2: The recognition accuracy in percentage using the
state-of-the-art OpenFace 2.0 [24] facial behavior analysis
toolkit and FSA-Net [27] for head pose recognition over
different datasets.

Dataset −90◦ −45◦ 0◦ +45◦ +90◦ Overall
OpenFace 2.0 [24]

MultiLab [50] 12.31 43.82 99.25 35.86 16.87 54.14
VGGFace2 [54] 3.26 25.03 99.69 20.87 4.21 42.47
MTFL [20] 0.00 23.56 99.62 31.42 0.00 68.45

FSA-Net [27]
MultiLab [50] 10.06 66.74 98.88 68.53 21.12 70.73
VGGFace2 [54] 8.96 63.15 98.49 52.96 6.41 59.60
MTFL [20] 000 41.50 96.09 89.93 0.00 70.10

TABLE 3: The recognition accuracy in percentage of dif-
ferent methods for head pose recognition over different
datasets.

Dataset Models −90◦ −45◦ 0◦ +45◦ +90◦ Overall

MultiLab
[62] 92.84 85.57 95.82 86.36 91.94 91.76
[50] 98.37 85.44 96.84 93.95 93.92 94.42

Ours 100.0 100.0 99.63 99.86 100.0 99.84

VGGFace2
[62] 80.29 80.57 95.58 83.74 83.20 86.47
[50] 94.40 89.27 96.83 88.41 95.84 93.61

Ours 100.0 99.79 99.64 97.03 99.72 99.34

images of 31 participants (22 males and 9 females) from
7 different countries: Egypt (24), Germany (2), USA (1),
Canada (1), Uganda (1), Palestine (1), and Morocco (1).
Distracted Driver V2 [33]: It contains images from 44 partic-
ipants (29 males and 15 females) from the above 7 different
countries. We follow the training/test split in [33], which
uses 12,555 images from 38 drivers for training and 1,923
images from the rest of 6 drivers for testing.

4.3 Human Action/Gesture Recognition Datasets

Stanford-40 Actions [4]: It consists of 9,532 images with 40
different types of body actions (e.g. brushing teeth, reading
book, etc.). We use the training (4,000 images)/test (5,532
images) split in [4]. It is a challenging dataset due to a
large number of action classes and the presence of various
occlusions, body poses, and cluttered background.
People Playing Musical Instruments (PPMI) [5]: A total
of 4,209 images depict humans interacting with 12 different
musical instruments: bassoon, cello, clarinet, erhu, French
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horn, harp, recorder, flute, guitar, violin, trumpet, and sax-
ophone. These interactions are further divided into two
fine-grained categories: playing vs holding an instrument,
resulting in 24 fine-grained action classes. We follow the
training (2,110 images)/test (2,099 images) split in [5].
Facial Expression Recognition (FER2013) [63]: It contains
28,709 training, and 3,589 test and validation images of faces
consisting of 7 different emotions (Angry, Disgust, Fear,
Happy, Sad, Surprise and Neutral). We follow the standard
train/validation/test splits.
Oulu-CASIA Facial Expression [64]: It contains 480 videos
of 80 subjects, and each video is labeled as one of the six
basic expressions (without neutral). In our experiment, we
use the VIS camera (10,379 images) with a strong illumi-
nation condition. We follow the standard 10-fold subject-
independent cross-validation evaluation procedure in [64].

4.4 Results and Discussion

Head Pose Recognition: The coarse head pose recognition
accuracy using 4 challenging datasets is presented in Ta-
ble 1. We have compared the performance with baselines
consisting of various state-of-the-art CNNs, as well as our
previous method using ROI-CNN [50]. The proposed RAN
performed significantly better than the baselines and ROI-
CNN for eight different base networks. In MultiLab, RAN’s
accuracy is over 99% for all the base networks except
DenseNet-169. The highest accuracy (99.90%) is achieved
using Inception-V3 as a base CNN and is ∼5% and ∼7%
better than those of the respective best performance by ROI-
CNN (Inception-V3 [48] as a base CNN: 95.01%) and the
baseline (VGG16 [35]: 92.84%).

A common observation is that the overall performance
of the baselines and ROI-CNN [50] is low in VGGFace2 [54],
MTFL [20], and AFLW [55] in comparison to MultiLab [50].
This is mainly due to the clutter in images. For example,
most images in the MultiLab dataset are captured in a
laboratory setup and thus, often exhibit a clean background.
The rest of the datasets contain images with mixed difficulty
(e.g. occlusion, multiple faces, and hand-over-faces) since
they are collected from the web. However, it is more often
in MTFL than VGGFace2 and AFLW. Moreover, the size
of VGGFace2 (∼63K) and AFLW (25K) is larger than that
of the MTFL (10K), resulting in an impact on the perfor-
mance because deep models learn more from large datasets.
Nevertheless, the proposed RAN performs far better (VG-
GFace2: 99.57%, MTFL: 97.88%, and AFLW: 99.39%) than
the baselines and ROI-CNN irrespective of dataset size and
complexity.

To the best of our knowledge, we are the first to provide
the quantitative evaluation of coarse head pose recognition
on VGGFace2, MTFL, and AFLW datasets. Coarse head
poses have been used to improve the detection of facial
landmarks [20], as well as the influence of head pose in
identity recognition performance [54]. We have also com-
pared the coarse pose recognition accuracy with the state-
of-the-art OpenFace 2.0 [24] and FSA-Net [27]. The results
are presented in Table 2. Test images from three datasets
are used to estimate yaw angle, which is binned into five
different poses: 1) 0◦, 2) −45◦, 3) −90◦, 4) +45◦ and 5)

+90◦. From Table 2, it can be seen that both the OpenFace
and FSA-Net perform nearly perfect (100%) for the frontal
view (0◦). However, the accuracy is significantly dropped
for both half (±45◦) and full (±90◦) profile faces. This has
impacted on the overall performance, which is significantly
lower than those of the proposed approach as well as the
baselines in Table 1. The pose estimation in OpenFace 2.0 is
carried out using a 3D representation of the detected facial
landmarks. The model is unable to detect most of these
landmarks, which are invisible in half/full profile images,
resulting in inaccurate pose estimation. The FSA-Net [27]
is a state-of-the-art landmark-free regression approach for
head pose estimation. We use their pre-trained model for
pose estimation without retraining on the target dataset
since our RAN is a classification model. The FSA-Net’s
performance is better than that of the OpenFace for profile
faces. Our RAN is a landmark-free classification approach
and is most suitable for coarse head pose recognition.

We have also carried out a performance analysis in-
volving individual coarse poses. The recognition accuracy
of various poses using FaceNet [62] as a baseline and the
proposed RAN using Inception-V3 [48] as a base network is
presented in Table 3. The accuracy of the baseline as well as
the proposed RAN is far better than that of the OpenFace in
Table 2.
Driver’s State/Gesture Recognition: The performance of
RAN using eight different base networks and their compar-
ison to the state-of-the-art approaches is presented in Table
4. For the dataset V1 [32], RAN with Inception-V3 [48] as a
base CNN is the best (99.47%) performer consistent with
that for head pose recognition in the last section. More-
over, the proposed RAN with most base networks (except
VGG16) has outperformed the approach in [31], which is the
best among existing works. RAN with Inception-V3 [48] as
a base CNN is 3.16% better than that of [31]. Similarly, RAN
with different base CNNs significantly outperforms all the
existing approaches on dataset V2 [33]. The best performer
(98.13%) is the RAN with DenseNet-169 [34] as a base CNN.

The accuracy of individual action/gesture is presented
in Fig. 4. For the dataset V1, the proposed RAN is compared
with the VGG with regularization (R-VGG) and modified
VGG (M-VGG) proposed in [31]. We also compare the
performance with that of the Genetic Algorithm Weighted
Ensemble (GA-WE) [32] in Fig 4a. It can be seen that in all
the categories, our approach is better than the state-of-the-
art ones. Similarly, in dataset V2, the proposed RAN with
DenseNet-169 as a base CNN is compared with the only
available method, Inception-V3 [33], in class-wise accuracy.
The RAN performs better in all the actions except “Talking
Right” (Fig. 4b). Moreover, if we add our proposed ROI-
pooling and attention layers to the Inception-V3 network,
the performance is 6.8% better than that of the Inception-
V3 alone. This justifies the benefits of the proposed RAN
that incorporates region-based attention into a given CNN
architecture.
Human Action/Gesture/Facial Expression Recognition:
The performance of the proposed RAN with different base
CNNs is presented in Table 5 using Stanford-40 and PPMI
datasets. In most of the previous approaches, the mean
average precision (mAP) is used as a metric over both
datasets. However, approaches in [58] [59] [60] have used
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Fig. 4: Individual action/gesture accuracy of our RAN: a) evaluated on“Distracted Driver” V1 dataset [32] with Inception-
V3 [48] as a base CNN, compared with R-VGG and M-VGG [31] and GA-WE [32] (left); b) evaluated on“Distracted Driver”
V2 dataset [33] and compared with Inception-V3 [48] (best performer) as evaluated in [33] (right).

TABLE 4: Driver state/gesture recognition accuracy in percentage of different methods over different datasets. For a given
dataset and method, the best performance is shown in bold.

Datasets/method ResNet-50
[47]

Inc. ResNet
V2 [56]

InceptionV3
[48]

DenseNet-
121 [34]

DenseNet-
169 [34]

DenseNet-
201 [34]

VGG16
[35]

NASNet
mobile [57]

V1 [32] (Ours) 99.42 98.31 99.47 98.94 98.94 98.38 95.93 99.21
V1 [32] (SOTA) R-VGG [31]: 96.31, GA-WE [32]: 95.98, MVE [32]: 95.77, M-VGG [31]: 95.54, DenseNet [28]: 94.20

V2 [33] (Ours) 94.27 96.30 96.82 94.90 98.13 95.73 91.46 94.74
V2 [33] (SOTA) Inception V3 [33]: 90.07, ResNet-50 [33]: 81.70, VGG16 [33]: 76.13

Fig. 5: The mAP of the proposed RAN with ResNet-50 as a base CNN in individual action/gesture recognition over
different datasets: 1) Stanford-40 [4] (left) - the performance with and without bounding boxes, 2) PPMI [5] (right) - the
proposed RAN verse the 10-model fusion approach by Lavinia et al. [59].

both accuracy and mAP. For a fairer comparison, we have
also used them. In both datasets, the proposed RAN us-
ing any base CNN has outperformed the state-of-the-art.
In PPMI [5], the mAP of our approach using ResNet-50
(96.68%) is 30.83% higher than that of the best performer
[59] (65.85%). Similarly, in Stanford-40 [4], the mAP of our
approach (ResNet-50: 96.12%) is 4.92% better than that of
the approach by Zhao et al. [6] (91.20%). This significant
improvement in performance proves the powerfulness of
the proposed RAN in action/gesture recognition in still
images.

We have also evaluated the mAP of individual actions
over the Stanford-40 and PPMI datasets, and the results
are presented in Fig 5. In Stanford-40, overall mAP with-
out bounding box (96.12%) is marginally better than that
with bounding box (95.72%). However, the individual mAP
with bounding box is better for actions ‘blowing bubble’,
‘climbing’, ‘fixing bike’, ‘phoning’, ‘rowing a boat’, ‘shooting
an arrow’, ‘watching TV’, ‘waving hands’, ‘writing on a
board’ and ‘writing on a book’ (Fig. 5). The reason could
be due to: 1) specific body pose involved in these actions,

and 2) human-objects interaction, and most of these objects
appear within the bounding box. In PPMI, our approach has
significantly outperformed the best approach [59] in all the
actions.

The recognition accuracy using RAN outperforms the
state-of-the-art with a significant margin on FER2013 dataset
[63] consisting of facial expressions of seven emotions. The
accuracy of RAN using six different base CNNs is shown
in Table 5. The best accuracy (97.21%) is achieved with
the lightweight NasNet mobile [57] as a base CNN and is
21.4% higher than the highest accuracy (75.8%) in [69]. We
also evaluate our RAN on the Oulu-CAISA facial expres-
sion dataset [64]. The accuracy of the proposed RAN with
DenseNet-121 as a base CNN and those of the state-of-the-
art are presented in Table 6. The accuracy of our approach
(88.74%) is better than that of the best approach (88%),
De-expression Residue Learning (DeRL) [41]. This demon-
strates the wider applicability of our proposed RAN in
recognizing human action/gesture/facial expression from
monocular RGB images by adding our proposed attentional
module on top of the existing state-of-the-art base CNN
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TABLE 5: Human action/gesture/facial expression recognition accuracy (ACC) and mean average precision (mAP) (%) of
different methods over different datasets. For a given dataset and method, the best performance is shown in bold.

Datasets/method ResNet-50
[47]

Inc. ResNet
V2 [56]

Inception
V3 [48]

DenseNet-
121 [34]

DenseNet-
169 [34]

DenseNet-
201 [34]

NASNet
mobile [57]

PPMI [5] (Ours, ACC) 97.58 97.00 97.08 97.50 96.54 98.63 96.08
PPMI [5] (SOTA, ACC) 65.94 [59], 64.94 [59]
PPMI [5] (Ours, mAP) 96.68 95.67 95.60 96.24 94.76 94.71 94.15
PPMI [5] (SOTA, mAP) 65.85 [59], 64.93 [59], 51.70 [40], 49.40 [65], 47.00 [66], 46.70 [67], 45.30 [68], 36.70 [5]

Stanford-40 [4] (Ours, ACC) 97.43 96.81 95.71 96.70 96.37 96.47 95.52
Stanford-40 [4] (SOTA, ACC) 84.24 [59], 83.69 [59], 83.12 [58], 81.74 [60]
Stanford-40 [4] (Ours, mAP) 96.12 94.48 92.39 94.45 94.07 94.63 92.71
Stanford-40 [4] (SOTA, mAP) 91.20 [6], 83.25 [59], 82.64 [36], 81.20 [47], 78.80 [38], 77.80 [35], 75.50 [39], 72.30 [37]

FER2013 [63] (Ours, AAC) 90.64 - 95.68 90.72 90.72 91.69 97.21
FER2013 [63] (SOTA, AAC) 75.8 [69], 75.2 [44], 75.1 [46], 73.3 [45], 72.7 [70], 71.2 [71]

TABLE 6: Facial expression recognition accuracy (%) of
different methods over the Oulu-CASIA dataset [64].

Method Setting Accuracy (%)
LBP-TOP [72] sequence-based 68.13
HOG 3D [73] sequence-based 70.63
STM-Explet [74] sequence-based 74.59
Atlases [75] sequence-based 75.52
DTAGN-Joint [76] sequence-based 81.46
FN2EN [43] image-based 87.71
PPDN [42] image-based 84.59
DeRL [41] image-based 88.00
Our RAN image-based 88.74

architectures.
In our experiments, the proposed RAN is evaluated on

10 different datasets ranging from smallest size (PPMI: 4,209
images) to the largest size (VGGFace2: 73,766 images) with
varied numbers of image categories. It is well known that
deep models using smaller datasets often result in lower test
accuracy, perhaps because the training set is not sufficiently
representative of the problem and the model might over-fit.
Similarly, their result is better on larger datasets, but perhaps
slightly lower than ideal test accuracy because the dataset
might over-represent the problem and might not have the
capacity to learn. In order to avoid these, we have used
transfer learning (pre-trained base CNNs that are trained
over large diverse ImageNet dataset [51] (1.2M natural
images with 1K categories) since our RAN includes a base
CNN as a major component. Moreover, we also introduce a
skip connection (see Section 3.2) that provides easy access
to learned features from pre-trained layers in base CNN,
making it easy for transfer learning to smaller datasets. It
also improves the gradient flow from output layers to the
base CNN and is vital when adjusting parameters during
transfer learning. We also apply data augmentation (see
Section 3.2). As a result, there is no significant performance
difference of our model over either smaller or larger dataset,
as demonstrated in Table 5, Table 4 and Table 1.

4.5 Ablation Study

In this section, we conduct an ablation study to understand
the impact of various components: base CNN architectures,
SE block, attention, and the number of regions in our RAN.
Firstly, we evaluated the base CNNs by simply using the

transfer learning (fine-tuning the pre-trained models) and
then our ROIs were added with/without proposed attention
(±Attn) and SE block (±SE). We also experimented RAN
with SE block, ROI only SE (ROI-SE) and the whole image
only SE (I-SE). Finally, we evaluated the model accuracy
with varying number of regions. We were not able to
experiment with more than 50 ROIs due to GPU memory
limitations. The results are shown in Table 7 using Stanford-
40 and PPMI datasets. For various base CNNs over both
datasets, it can be seen that the addition of our novel ROI-
based modeling has significantly enhanced the accuracy of
the original base CNNs. Moreover, the highest gain is when
our novel ROI-based attention is added (columns 4 and 12).
The overall best accuracy is when both the attention and SE
layer are used (columns 8 and 16). It is also observed that the
performance improves with the increasing number of ROIs
(columns 7-9 and 15-17). However, the model complexity
and memory requirement also increase with the number
of ROIs. The accuracy using 50 ROIs is not significantly
higher than that using 35 ROIs. For 50 ROIs, the batch size
is reduced to 8 since the model is unable to fit in 16GB
GPU memory. The accuracy using 35 ROIs is significantly
better than that using 8 ROIs. Considering our model’s
performance and complexity, the optimal number of ROIs
was set as 35.

4.6 Visualization and Analysis

In this section, we investigate why the proposed RAN is so
effective for human action/gesture/facial expression recog-
nition through the “visual explanations”, using Gradient-
weighted Class Activation Mapping (Grad-CAM) [77] to
produce coarse localization map, highlighting the salient
regions in the decision-making process. The Grad-CAM is
applied to our RAN with ResNet-50 [47] as a base CNN.
The visualizations of randomly selected images from three
different datasets (“Distracted Driver”, PPMI and Stanford-
40) are presented in Fig. 6. The visual explanation using
our RAN is compared with that of the ResNet-50 [47]
as a baseline. Therefore, we use the feature map from
5c branch2c convolution layer (just before the attention
layer) of ResNet-50 since Grad-CAM requires a convolu-
tional layer to produce localization maps. Each sub-figure
in Fig 6 consists of two outputs from: 1) baseline model
(left) and 2) RAN model (right). From the figure, it can
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(a) Texting Right (b) Drinking (c) Hair and Makeup (d) Talking Right (e) Driving Safely

(f) With Guitar (g) With Erhu (h) Play Violin (i) Play French Horn (j) Play Erhu

(k) Pushing a Cart (l) Gardening (m) Fixing a Car (n) Climbing (o) Washing Dishes

Fig. 6: Visual explanation of decision using Gradient-weighted Class Activation Mapping (Grad-CAM) [77] for “Distracted
Driver” (a-e), PPMI (f-j) and Standford-40 (k-o) datasets. This figure analyzes how localizations change qualitatively as we
perform Grad-CAM with respect to feature maps in 5c branch2c convolution layer of ResNet-50 [47] using the original
model (left) as a baseline versus our proposed RAN (right) with ResNet-50 as a base CNN.

TABLE 7: Human action recognition accuracy of the proposed RAN with different components and parameters over
different datasets. Following abbreviations are used for 35 regions (ROI): 1) ±Attn: with/without our novel attention, 2)
±SE: with/without SE layer, 3) ROI-SE: regions only SE layer, 4) I-SE: image only SE layer. The number of regions is
increased from fewer 8 (from 2× 2 cells) to mid-level 35 (from 3× 3 cells) to larger 50 regions (from 4× 4 cells).

Base People Playing Musical Instruments (PPMI) [5] Standford 40 without bounding-box [4]
base -Attn

+SE
+Attn
-SE

ROI-
SE

I-
SE

8-
ROI

35-
ROI

50-
ROI

base -Attn
+SE

+Attn
-SE

ROI-
SE

I-
SE

8-
ROI

35-
ROI

50-
ROI

ResNet-50 [47] 77.6 94.8 97.2 97.0 97.0 93.5 97.6 98.3 78.8 87.8 97.0 97.5 97.5 94.7 97.6 97.7
DenseNet-121 [34] 81.9 83.6 95.0 93.9 93.6 96.3 97.5 98.1 82.2 83.5 94.0 95.3 95.7 93.9 96.7 97.0
DenseNet-169 [34] 83.5 92.8 95.5 95.1 95.7 95.3 96.5 97.8 83.5 84.0 93.5 96.2 96.4 95.7 96.4 97.2
DenseNet-201 [34] 83.2 93.9 97.0 93.0 93.5 94.8 98.6 99.1 83.6 91.0 96.2 96.3 95.4 95.8 96.5 96.9
NASNet-M [57] 71.6 69.8 94.0 94.8 93.7 88.8 96.1 96.5 77.6 80.8 90.2 84.4 97.1 92.1 95.5 95.0

be seen that the salient regions using the RAN are more
appropriate and indicative for a visual explanation during
decision-making in comparison to the respective baselines.
Moreover, the visual explanation is similar to the “saliency
in context” (SALICON) [78] in which human visual atten-
tion on the popular MS COCO dataset often focuses on
interacted objects or objects of interests that humans look
at frequently and rapidly during natural exploration. These
results clearly explain why the proposed RAN is effective
for human action recognition.

We also visualize the feature discrimination ability of the
proposed RAN versus ResNet-50 [47] using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [79]. The t-SNE is
known to visualize high-dimensional data by converting it
to low-dimensional embedding using similarities between
data points as joint probabilities. We extract features from
ResNet-50 base CNN just before the Softmax layer. Simi-
larly, features from our RAN are extracted at two different
layers: before and after our proposed region-based attention
layer (the same as ResNet-50 base CNN and that before
Softmax). Test data in both PPMI [5] and Stanford-40 [4]
datasets are used for feature extraction and then used to

visualize the class separability. Fig. 7 clearly shows that
the class separability (the gap between clusters and com-
pactness of data points within each cluster) in ResNet-50
(baseline) is low in both the datasets. Whereas, in RAN, the
clusters are farther apart and more compact, resulting in
a clear distinction of various clusters representing different
actions. To understand the impact of the proposed regional
attention, we extract features at the same layer (Fig. 7b and
7e) as in baseline (Fig. 7a and 7d) since our regional attention
is added on top of the base CNNs. Such t-SNE analysis
clearly shows that the addition of our regional attention
layer not only improves the recognition accuracy but also
significantly enhances the discrimination capability of the
base CNN (Fig. 7b and 7e). The cluster separation after the
attention layer (Fig. 7c and 7f) is clearer than that after the
base CNN (Fig. 7b and 7e). These results further explain the
effectiveness of the proposed RAN in discriminating subtle
changes in images for fine-grained action recognition.

5 CONCLUSIONS AND FUTURE WORKS

In this work, we have proposed a novel end-to-end RAN
that uses a hybrid attention mechanism to combine ROI-
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(a) PPMI: Baseline (b) PPMI: before attention (Ours) (c) PPMI: after attention (Ours)

(d) Stanford-40: Baseline (e) Stanford-40: before attention (Ours) (f) Stanford-40: after attention
(Ours)

Fig. 7: Visualization of outputs (before Softmax) of ResNet-50 [47] as a baseline and our RAN with ResNet-50 as a base
CNN using t-SNE [79]. For baseline, ResNet-50 has trained on the target datasets (Stanford-40 [4] and PPMI [5]) using
transfer learning. For RAN, we consider two outputs: before and after our proposed region-based attention layer (the same
place as in ResNet-50 baseline and that before Softmax).

pooled features by exploring multiple regions of different
sizes. The proposed network learns to benefit from infor-
mative regions, while suppressing less useful ones. The
innovative attention mechanism applies soft attention by
considering the entire image, employs hard attention in
which semantic regions are selected via hard decisions and
engages self-attention by considering the spatial distribution
of various semantic regions within an image to address the
challenges associated with the fine-grained action/gesture
recognition problem. We also adapted the existing Squeeze-
and-Excitation (SE) block by introducing a skip connection
to model the interdependencies between channels of region-
specific CNN features. This has improved the represen-
tational power of the RAN. The proposed region-specific
layers are added on top of the existing CNN models, and
therefore, most computational processing is in the base
CNN, which processes the whole images.

The proposed approach is evaluated on ten challeng-
ing datasets about three different scenarios: 1) head pose
recognition, 2) driver state recognition, and 3) human ac-
tion/gesture/facial expression recognition. The proposed
method is shown to outperform the existing state-of-the-art
methods in this field by a large margin, thereby establishing
a new benchmark in the field and demonstrates the effec-
tiveness of the proposed network. In future, we will extend
the proposed model to recognize the fine-grained actions in
videos.
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