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The Pixels and Sounds of Emotion:
General-Purpose Representations

of Arousal in Games
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Abstract—What if emotion could be captured in a general and subject-agnostic fashion? Is it possible, for instance, to design
general-purpose representations that detect affect solely from the pixels and audio of a human-computer interaction video? In this
paper we address the above questions by evaluating the capacity of deep learned representations to predict affect by relying only on
audiovisual information of videos. We assume that the pixels and audio of an interactive session embed the necessary information
required to detect affect. We test our hypothesis in the domain of digital games and evaluate the degree to which deep classifiers and
deep preference learning algorithms can learn to predict the arousal of players based only on the video footage of their gameplay. Our
results from four dissimilar games suggest that general-purpose representations can be built across games as the arousal models
obtain average accuracies as high as 85% using the challenging leave-one-video-out cross-validation scheme. The dissimilar
audiovisual characteristics of the tested games showcase the strengths and limitations of the proposed method.

Index Terms—General-purpose representation, subject-agnostic, arousal modelling, pixels, audio, games, CNN, classification,
preference learning
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1 INTRODUCTION

D ESIGNING autonomous agents capable of performing
equally well across different tasks is a long term vision

of artificial intelligence (AI) [1]. Towards realizing such a
vision, the recent groundbreaking study of Minh et al. [2]
introduces the idea of general-purpose deep-learned repre-
sentations for controlling agents capable of performing well
across different tasks. These agents, in particular, managed
to achieve superhuman performance in playing 2D Atari
games by merely observing the pixels of the screen. As
impressive as such a result might be, the derived agents
are restricted to act in a particular set of deterministic
environments and achieve a clearly- and objectively-defined
goal: to maximize their score. Arguably, however, several of
the most interesting problems that AI is requested to solve—
such as emotion recognition and artificial psychology—have
ill-posed and subjectively-defined target functions under
non-deterministic contexts.

Inspired by the core principles of Mnih et al. [2], in
this paper we transfer and introduce the idea of general-
purpose representations to the field of affective computing.
We thus reframe the user-specific way in which affective
detection normally operates and, instead, we investigate the
degree to which general-purpose representations can learn
to predict emotion. As videos of interaction capture a user’s
behavior, we base our investigations on the assumption that
the audiovisual information contained in such a video can
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Fig. 1: Screenshots from Survival Shooter (top left), Maze-
Ball (top right), Solid Rally (bottom left) and Sonancia
(bottom right) games used in this study.

hold information about both the interaction context and the
elicited affective patterns, and thus it can be a predictor
of the user’s experience. Our key hypothesis is that we
can construct accurate models of affect based only on the
audiovisual information of videos of interaction; as in [2],
we test this hypothesis in the domain of games. In particular
we attempt to predict a game’s arousal level relying solely
on the audiovisual information of game footage.

Games provide complex yet well-defined environments,
which are designed to elicit increased levels of player
engagement and motivation [3], [4]. Players, during their
interaction with games, produce gameplay footage that has
the unique property of overlaying the game context onto
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aspects of playing behavior and affect; this suggests that
players’ affect is embedded in the gameplay context. That
embedding, in turn, renders the explicit fusion of context
with affect manifestation unnecessary—a dominant practice
within affective computing [5], [6], [7], [8]. Although we
focus on the games domain, our approach is general and
potentially applicable to different human-computer interac-
tion domains, since it relies on raw audiovisual information.
Such information fuses the interaction context with the
affect of the user as manifested during the interaction.

Given the bimodal (audio and visuals) nature of the
affect modeling task, we use a two-stream deep neural
network—both as a classifier and as a preference learner—
that considers audiovisual gameplay footage information
and predicts the player’s annotated arousal. The first stream
is a Convolutional Neural Network (CNN) that processes
visual information as pixels of video frame sequences. The
second stream is a fully connected network that processes
the game audio information of the considered sequence of
video frames. Via late fusion, we propagate the audiovi-
sual information to a fully connected network that predicts
arousal. We test the methodology across four dissimilar
3D games and their corresponding gameplay footage (see
Fig. 1). All gameplay videos have been annotated by the
players themselves (first-person) in terms of arousal using
the RankTrace [9] continuous annotation tool. Our experi-
mental evaluation validates our hypothesis in most games
and suggests that we can derive highly accurate models of
affect using general-purpose representations that rely solely
on audiovisual information of the interaction. In particu-
lar, the two representations (deep classifier and preference
learner) predict arousal for three of the games examined
with an average classification accuracy that reaches between
82% and 83% on average using the demanding leave-one-
video-out cross-validation scheme. The under-performing
models in one of the games lead to an insightful discussion
regarding the limitations of the proposed approach and the
environments it is best suited for.

Our work is novel in several ways. First, we derive
accurate models of affect in different games without relying
on any direct manifestation of emotion or modality of user
input. Instead, our work is one of the first approaches
towards modeling players’ affect through general-purpose
representations of information embedded solely in the con-
text of interaction. Our methodology, thereby, yields affect
models that are general and user-agnostic. Second, to the
best of our knowledge, this study is the first attempt to
derive a function that maps directly audiovisual gameplay
information—such as pixels and audio features—to game
experience across different games. Finally, via the employed
two-stream deep network, we investigate the degree to
which each modality, as well as their fusion, can be used
as a predictor for such a mapping in affective computing.
The paper builds upon and significantly extends the pre-
liminary results of Makantasis et al. [10], which map the
visual information of gameplay footage to players’ arousal
in one game. Specifically, in this paper we explore two
different modalities of the game footage: besides the vi-
sual information we also exploit audio information in an
attempt to yield more accurate representations of arousal.
Moreover, we approach the arousal modeling problem using

two different learning paradigms—a binary classification
and a preference learning task—and we compare their per-
formance quantitatively and their top-performing arousal
models qualitatively. Finally, we test the generality of the
proposed methodology across four heterogeneous games
with regards to both the audiovisual information they offer
to the deep learner and the arousal patterns they elicit.

The remainder of the paper is organized as follows.
Section 2 reviews related work regarding affect modeling
in games and videos. Section 3 describes the games, the
employed datasets and the data pre-processing approach
we followed. Section 4 lists the key elements of our method-
ology including the architectures of the learning models for
both binary classification and preference learning. In Sec-
tion 5 we experimentally validate and analyse our models
across the four games. Finally, Section 6 discusses our main
findings and Section 7 concludes this study.

2 RELATED WORK

This section surveys key literature on affect modelling rele-
vant to the proposed approach of mapping audiovisual data
from gameplay videos for predicting affect.

2.1 Models of Affect Based on Audiovisual Information
Audiovisual information has been at the core of interest for
both eliciting and modeling emotions in affective computing
[11], [12], [13]. Typically, videos feature the face or the body
of one or more humans and their emotions are modeled
via non-verbal (visual and vocal) cues [14], [15] due to
theoretical frameworks and evidence supporting that such
modalities can convey emotion [14], [15], [16], [17], [18].
Visual information is related to the dynamic patterns of hu-
man face(s) modeled via facial cues [19], [20], body postures
[21], [22], gestures [23] or gait [24], [25]. Vocal information
relies on audio signals which are used to construct acoustic
and voice quality cues based on the pitch, the energy, the
frequency and the spectrum of the signal [26], [27].

A number of earlier studies base the construction of af-
fect models on ad-hoc features of an image. Indicatively, Liu
et al. [28] combined traditional hand-crafted image features
such as SIFT [29] and Histogram of Oriented Gradients
[30] as inputs to machine learning models for emotion
recognition in the wild. Yao et al. [31] hand-crafted image
features based on Local Binary Patterns [32] for facial image
emotion recognition. Recent advances in deep learning,
however, enable the automatic construction of features via
convolutional neural networks (CNNs); CNNs were first
applied in [33] to predict dimensional affective scores from
videos, but the small scale datasets challenged the training
of deep models of affect. The need for effectively training
CNNs triggered the development of medium- and large-
scale affect datasets such as the Celebrity Face in the Wild
[34], the Facial Expression Recognition 2013 Dataset [35] and
the Aff-Wild database [36]. Based on these datasets, Ng et al.
[37] used transfer learning and CNNs for emotion recog-
nition through visual cues and Kollias et al. [38] combined
CNNs with recurrent neural networks to model arousal and
valence. Finally, in [5] facial expressions were fused with
videos of advertisements for predicting whether viewers
liked the videos or not.
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Regarding emotion recognition via audio data, Eyben et
al. [39] conducted a detailed study on audio emotion fea-
tures. The authors constructed GeMAPS, a concise feature
set with 62 audio features. Recent studies show that fusing
audio and visual information results in more accurate mod-
els than those of a single modality [40]. In [41] energy and
spectral audio features are fused with visual information
for emotion prediction in short video clips, while in [42]
audiovisual data is used to train a deep neural network for
recognizing affect in real-world environments.

The approach presented in this paper can be seen as
unconventional for modeling affect. Following our prelimi-
nary study [10] on general-purpose pixel-based models of
affect, in the current study we use audiovisual informa-
tion of human-computer interaction as the sole input for
modeling the affect of the human across different tasks (i.e.
games). The role of the audiovisual interaction footage is
thus twofold: the audiovisual information contained in the
footage is used to model affect as the context that both elicits
and manifests emotion without the need of other external
manifestations of affect. The proposed approach is a general
method for modeling affect solely via videos containing
sound and do not contain either facial/bodily expressions
or vocal cues of humans. The experimental validation of the
proposed approach—at least within the games domain—
suggests that this subject-agnostic perspective is not only
possible, but it also yields highly accurate models of affect
in games with particular audiovisual characteristics.

2.2 Affect Modeling in Games

Affect modeling within the domain of games refers to mod-
eling the behavior and the affective responses of players
[4], [43]. A player model receives as input a modality (or
a set of modalities) regarding the player, such as gameplay
data and/or physiological measurements, and attempts to
predict aspects of the in-game behavior or the player expe-
rience. Indicatively Pedersen et al. [44] combined gameplay
data (e.g., number of deaths) with game level features
to predict players’ reported affect using Super Mario Bros
(Nintendo 1985) as a testbed. Shaker et al. [45] used the same
testbed to predict players’ affect based on players’ posture
during gameplay. Recently, Melhart et al. [46] managed
to successfully model the moment-to-moment engagement
level of PUBG (PUBG Corporation, 2017) streamed videos
by considering the chatting behavior of its viewers. Mar-
tinez et al. used various deep learning methodologies to
capture player experience via gameplay metrics and phys-
iology [47], [48]. Finally, Camilleri et al. [49] attempted to
create arousal models that are general across different games
relying solely on gameplay metrics.

This study advances the state of the art in player mod-
eling as the proposed model of affect is based solely on
the audiovisual information contained in gameplay footage.
The majority of studies that analyze and extract informa-
tion from gameplay footage rely on contextual information
about the game such as structural and game level elements,
physics and mechanics of the game (e.g. [45], [50]). More-
over, the most common approaches for analyzing player
experience heavily rely on direct measurements from play-
ers under well-defined experimental settings; the modalities

that are usually considered include facial expression and
head pose [45], speech [51] and physiology [47], [52].

Building upon and significantly extending the prelim-
inary study of Makantasis et al. [10], our methodology
models players’ experience without any a priori contextual
knowledge about the game. Instead, it uses general-purpose
deep learned representations of gameplay footage (i.e. pixels
and audio files) as it ignores functional aspects of the game
per se. As a result, our approach does not require any direct
in-game feature or manifestation of affect (e.g. via physiol-
ogy, speech, or facial expression), it is not intrusive, and it
allows the rapid collection and processing of vast amounts
of data. As gameplay videos are largely available online
in massive quantities—e.g. via service such as Twitch1 and
Mixer2—the proposed approach is potentially generalizable
to any game with available audiovisual content.

2.3 Video Affective Content Analysis
Video affective content analysis has been an active research
area focusing on classifying and retrieving videos based
on their affective content. While conventional content-based
video analysis relies on generic semantic content, video af-
fective content analysis tries to identify videos that elicit cer-
tain emotions in their viewers [53]. Recent research adopts
either direct or implicit approaches. Direct approaches infer
the affective content of videos directly from the related au-
diovisual features, while implicit approaches detect affective
content from videos based on an automatic analysis of a
user’s spontaneous response while consuming the video
[54]. Below we discuss direct approaches since they are
closely related to the present study.

Hanjalic and Xu [55] proposed one of the first direct
approaches for video affective content analysis, using hand-
crafted features of audio and visual information of video
segments to model arousal and valence. Since then, extract-
ing audiovisual features and exploiting machine learning
methods to model emotion is the most common practice in
video affective content analysis [56], [57], [58], [59]. More re-
cent work takes advantage of deep learning to automatically
generate deep features to describe audiovisual information,
such as features of motion and scene cues [60]. Wang et al.
[61] use a generative adversarial network to classify emotion
of videos, while Mitenkova et al. [62] use the output of
a pretrained network on face images [63] as input to a
tensor regression layer for prediction arousal and valence
levels. Zhu et al. [64] propose a multimodal deep quality
embedding network and a deep learning affective classifier
to efficiently process noisy affect data.

Although our study relates to video affective content
analysis studies, it is conceptually different. Video affective
content analysis tries to model and predict the emotion
elicited by a video to a viewer. In contrast, this paper focuses
not on the content creator’s side, as we aim to model the
emotional state of a player while they are playing the game.

3 DATASET AND DATA PROCESSING

To test the performance and the generality of the proposed
approach we used frames and sound from four dissimilar

1. https://www.twitch.tv/
2. https://mixer.com/microsoft

https://www.twitch.tv/
https://mixer.com/microsoft
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games: Survival Shooter, Maze Ball, Solid Rally and Sonancia.
Figure 1 shows a screenshot of each game. In this section, we
describe the games, the datasets obtained from these games
and the data cleaning process we followed. Participants
were recruited via snowball sampling and were primarily
university students who are casual gamers and/or follow
courses in game design and ICT, with no prior experience
in affect annotation. A different set of participants was
used for Solid Rally and Sonancia whereas the same set of
participants was used for Survival Shooter and Maze Ball
[49]. Prior to annotation, all participants were presented
with an introductory screen that describes arousal as “the
intensity of gameplay no matter whether you like the game
or not. High arousal can be a feeling of readiness, tension,
excitement or exhilaration. Low arousal can be a feeling of
fatigue, boredom, calmness or relaxation”.

3.1 Testbed Games

To test how general-purpose input representations can be
used for modelling affect, we selected the four games due
to their dissimilarities. The games belong to different genres,
with different mechanics, camera perspective, pace, visual
and audio design. Specifically, Survival Shooter is a fast-
paced shooter game that requires accurate aiming and con-
stant movement. Maze Ball is a slow-paced physics game
that needs accurate timing of movement. Sonancia is a hor-
ror game that elicits negative emotions and disorientation.
Finally, Solid Rally is a fast-paced racing game that simu-
lates a multi-player experience with AI drivers. Moreover,
the camera perspective is top-down in Survival Shooter,
third-person in Maze Ball and first-person in Sonancia and
Solid Rally. The dissimilarities between the four games
make them ideal for testing the degree to which accurate
models of affect can be based on general-purpose input
representations. We should also highlight that different sets
of players played and annotated three of the four games.

3.1.1 Survival Shooter
Survival Shooter (SS) [49] tasks the player to shoot down
as many hostile toys as possible while avoiding collisions
with them. Hostile toys spawn at predetermined areas of
the level and move towards the player’s avatar. The avatar
is equipped with a laser gun, which can kill a toy with
a few shots. Every toy killed adds to the player’s score.
Background music plays throughout the gameplay of SS;
while the player is firing the laser gun, the volume of music
lowers, and the dominant sound is the weapon sound.
Sound effects play when the avatar collides with hostile
toys, when a toy is killed, and when the player runs out
of life. The duration of the gameplay is 60 seconds.

The SS data used in this study was collected from 25
different players (10 females) aged from 19 to 54 (median
age 24). Most players considered themselves good or expert
players (70%) while the rest considered themselves novice
or non-gamers. Each player played the game and then an-
notated her recorded gameplay footage in terms of arousal;
this play-annotation cycle occurred twice. The first-person
annotation process was carried out using the RankTrace
tool [9], [65] which allows the continuous and unbounded
annotation of arousal using the Griffin PowerMate wheel

interface. Gameplay footage was recorded at 30 frames
per second (30Hz), while RankTrace provided 4 annotation
samples per second (4Hz).

3.1.2 Maze Ball
Maze Ball (MB) [66] (or Space Maze [67]) is a 3D game that
served as testbed in multiple studies investigating affect
detection in games [4], [47], [48], [49], [66]. The player
controls a cyan ball in a maze which contains dark ball-
shaped enemies and three diamond-shaped tokens of dif-
ferent colors. The player has to avoid colliding with the
enemies patrolling the maze, collect all the tokens and move
the ball to a predefined goal point (only shown after all
three tokens are collected) within 90 seconds. Each collected
token adds to the player’s score. The game ends either when
the player runs out of time or collides with enemies twice.
Background music plays during the entirety of gameplay,
and sound effects play when the player obtains a token and
when the player collides with an enemy.

A total of 25 players provided data for the MB dataset
(the same set of players as in SS) [49]. Similarly to SS,
each player conducted a play-annotation cycle twice, using
RankTrace and the Griffin PowerMate wheel for annotation.
MB game footage was also recorded at 30Hz.

3.1.3 Solid Rally
Solid Rally (SR) tasks the player to drive their car through a
closed circuit for two laps. In each race, the player competes
against three opponents, and the goal is to finish the race
on the highest possible position. Within the track, there
are several checkpoints at predetermined locations: passing
through a checkpoint adds to the player’s score. The car
engine makes sounds throughout the gameplay of Solid
Rally, and a sound effect plays during car crashes. The game
ends either after two laps or after 90 seconds of playing.

SR data was collected from 17 players (7 females) aged
from 23 to 55 (median age 32); almost half of them (47%)
were novice or non-gamers, 35% considered themselves
expert players and the rest played games only occasionally.
Each player conducted a play-annotation cycle twice using
the RankTrace annotation tool provided by the PAGAN
framework [65]. Game footage was recorded at 60Hz but
downsampled to 30Hz to match the sampling rate of the
other three games.

3.1.4 Sonancia
Sonancia (SON) [68] is a horror game taking place in a
haunted dungeon divided into rooms. The players’ task
is to find the old statue while avoiding and outrunning
monsters. The level is procedurally generated, including the
number of rooms, the positioning of lights and monsters.
Background audio plays throughout the game, and changes
based on the room the player is in. The only sound effect is
a low-volume growl when a monster sees the player.

SON data was collected from 14 players (5 females) aged
from 25 to 34; 36% of them played games everyday, 45%
played frequently or casually while the rest rarely on never
played. Each participant performed a play-annotation cycle
twice, using RankTrace and the Griffin PowerMate wheel
for annotation. Gameplay footage duration varies from 31
to 173 seconds, and is recorded at 30Hz.
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3.2 Data cleaning

For all datasets we omit short gameplay videos with a
duration under 15 seconds, in order to maintain an appro-
priate balance between sufficient gameplay and a player’s
cognitive load. This rule yields 43 videos for SS (7 short
videos were omitted), 50 videos for MB, 34 videos for SR
and 28 videos for SON (no video was omitted).

Since our approach is based on statistical machine learn-
ing, we explicitly assume that gameplay frames and sounds
can characterize a player’s arousal through an unknown
mapping that machine learning aims to discover. To pre-
serve the soundness of this assumption, we identified and
omitted outlier videos whose annotations are not consistent
with the gameplay. For all games, all players play the same
level, which has a specific structure, e.g. for the SS game
the toys keep spawning at predetermined areas and time
instances. Coupled with the fact that the duration of each
session is relatively short (60, 90, 90 and maximum 173
seconds for SS, MB, SR and SON respectively), the possible
states of the gameplay are restricted. Based on this obser-
vation, we assume that arousal annotation traces should,
on average, exhibit a specific pattern and we can thus omit
outlier videos that deviate substantially from this pattern.

In particular, we denote a playthrough as an outlier if its
annotation trace is dissimilar to an annotation trace that can
be considered representative for the whole dataset. Since
RankTrace provides continuous and unbounded arousal
annotations, initially we normalise all annotation traces to
[0, 1]. Then we consider the median of all annotation traces
as the representative annotation trace for the whole dataset
and compute the distance between the annotation trace of
every gameplay footage and the representative trace using
the Dynamic Time Warping (DTW) [69] algorithm. DTW
is widely used for measuring the similarity between two
timeseries that may vary in length. The distribution of
distances for each game indicates that the density is mainly
concentrated on one cluster. Based on that, we omit outliers
above a DTW distance threshold. For the SS game we omit
videos where the distance to the median (representative)
annotation trace is larger than 0.135; for MB, SR and SON
the corresponding thresholds are 0.195, 0.4 and 0.2. After
removing outliers, the SS, MB, SR and SON datasets contain,
respectively, 37, 45, 33 and 25 videos. Figure 2 depicts the
average arousal trace of the cleaned dataset for each game.

4 LEARNING AUDIOVISUAL MODELS OF AFFECT

This study investigates the degree to which information
coming from footage of the player’s interaction with a
game—i.e. pixels of frames and sound of a gameplay
video—can act as sole predictors of a player’s affective
state. The RankTrace annotation tool provides continuous
values of arousal, and thus it may seem natural to view
the arousal estimation problem as a regression task. In
this study, however, we wish to develop a user-agnostic
and general approach for predicting affect without making
any assumptions regarding the value of the output which
may, in turn, result in biased and user-specific models [70].
Instead, we view the challenge of arousal prediction as both
a classification and a ranking task.
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Fig. 2: Arousal annotation per game, averaged from signals
processed at 4 Hz after min-max normalization per session.
Shaded areas indicate 95% confidence interval. As the dura-
tion of Sonancia sessions varies, the average arousal is de-
rived from ever-fewer sessions as time progresses resulting
in higher deviations of the average arousal signal.
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Fig. 3: The architecture of the proposed deep learning
model. The convolutional, max pooling and fully connected
layers are denoted by “C”, “P” and “F” respectively. The
green stream corresponds to the processing of visual infor-
mation, while the red stream to the audio information.

This section first outlines our approach for processing
the input and the output of both binary classification and
preference learning models of affect (see Section 4.1) and
follows with the details of the machine learning models
we employ for mapping gameplay frames and sound to
players’ arousal (see Section 4.2).

4.1 Training Data Preparation

An obvious question that arises when a learning model
is faced with video data is how many frames it should
consider. The authors in [71] and [72] argue that a rela-
tively small number of subsequent frames are adequate for
representing the core elements and the content of a scene.
Following this advice, we train our arousal models and
evaluate their performance using small segments of footage
with durations ranging from 0.25 to 3.0 seconds. We view
the duration of a segment as a hyperparameter of both
modeling approaches and we report results regarding the
performance of the learning models for varying segment
length. We construct those segments by splitting the videos
using non-overlapping windows. The frames of those seg-
ments represent the visual information of the gameplay. To
reduce the computational cost of training and evaluating the
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learning models, we convert the frames of gameplay videos
from RGB colour to grayscale and resize them to 72 × 96
pixels for SS and MB datasets and 72 × 115 pixels for SR
and SON datasets; doing so results in a more compact yet
general-purpose representation.

As far as audio data is concerned, we compute the Mel
Frequency Cepstral Coefficients (MFCCs) [73] correspond-
ing to the sound of each footage segment. MFCCs have
been successfully used for audio classification and retrieval
schemes [74], [75] as they can represent the spectral proper-
ties of audio data in a compact fashion.

To construct models of arousal, independently of the
method used, we fix the range of the annotation values of
each footage to [0, 1] using min-max normalization. Then,
we synchronize the recording frequency of videos (30Hz)
with annotations (4Hz) by extrapolating annotation values
to each non-annotated frame. Finally, the arousal value as-
sociated with each segment is the average of the annotation
values of the frames belonging to it.

4.2 Deep Learning Models of Affect
To learn the unknown mapping between gameplay pixels,
sounds and arousal we employ and train deep learning
models to infer such a function. The deep learning models
receive as input both the frames of the footage segments and
the computed MFCCs and fuse those two streams of infor-
mation. The learning architecture that processes and fuses
the audiovisual information—for both binary classification
and ranking—is depicted in Fig. 3.

The video stream feeds a convolutional neural network
that contains three convolutional layers with 8, 12, and 16
filters, respectively. The size of the filters for all convolu-
tional layers is 5× 5 pixels. A max-pooling operation of size
2× 2 pixels follows each convolutional layer. The output of
the convolutional stream (a feature vector of 640 elements
for the SS and MB datasets and 1056 elements for the SR
and SON datasets) represents the visual information of the
input in a compact fashion. We should emphasize that the
convolutional stream exploits both spatial and temporal
information of the video frames. It exploits the spatial in-
formation by learning spatial filters (filters applied along the
spatial dimension of the input). Moreover, since the learning
model processes sequences of frames that exhibit temporal
relations, the learned spatial filters implicitly capture and
encode the temporal information of the inputs.

The audio stream receives the MFCCs as its input and
propagates it directly to the fusion layer. The network does
not process the MFCCs before fusing the visual and the
audio streams since MFCCs are already a compact repre-
sentation of the sound included in a video segment. The
fusion layer, initially, concatenates the MFCCs (330 elements
for each second of footage) and the features constructed
by the convolutional (video) stream; it then propagates the
information to a fully connected layer with 64 nodes. All
aforementioned nodes use the ReLU activation function.

All the hyperparameters of the employed model, i.e.,
the number and the size of hidden layers, the activation
functions and the approach for fusing the two information
streams, are empirically selected to balance two different
criteria: (a) the computational cost of training and evaluat-
ing the model and (b) the sample complexity for avoiding

2"

Fig. 4: Class splitting procedure. Samples with annotations
above the shaded area belong to the high arousal class, while
samples with annotations below the shaded area belong to
the low arousal class. The value of the uncertainty threshold
ε defines the width of the shaded region.

under-/over-fitting. The model described above has approx-
imately 6.5 · 104 trainable parameters.

4.2.1 Deep Classifier
The task of arousal classification is formulated as follows;
we denote x ∈ Rh×w×c and as z ∈ Rp the raw visual
and audio information of a gameplay footage respectively,
where h, w and c stand for height, width and length of the
video segment, and p for the length of the video’s audio
stream. Let ξ(x) and ζ(z) represent the transformations
of raw information to informative features. In our case,
ξ(·) ∈ Ξ, where Ξ denotes all possible functions that can
be modeled by the CNN described in Section 4.2, and ζ(·) is
the function that transforms audio information to MFCCs.
Having in our disposal a training set D = {(xi, zi, yi)}Ni=1

of N samples, where yi ∈ {0, 1} for i = 1, · · · , N , and a
class of functions F that map ξ(x) and ζ(z) to (0, 1)2, our
derived model of affect corresponds to

f∗, ξ∗ = arg min
f∈F,ξ∈Ξ

1

N
L(f(ξ(xi), ζ(zi)), yi), (1)

for i = 1, · · · , N . L(·) is the negative log-likelihood loss.
In our case F is the class of functions computed by feed-
forward fully connected networks with one hidden layer of
64 neurons and 2 output neurons activated by the softmax
function (see Fig. 3). The fact that we minimize the loss in
(1) with respect to both f and ξ indicates that our model
is end-to-end trainable, i.e. the weights of the CNN (feature
construction of visual input) and the classifier are optimized
simultaneously.

For training the binary classifier we transform the contin-
uous annotation values of the segments into binary values
(low and high arousal) by using the mean of the annotation
trace of each video as the class splitting criterion (Fig. 4).
We opt for the mean value of the annotation trace as it is
the most intuitive and unbiased way to split a continuous,
unbounded annotation trace. Finally, we employ a thresh-
old parameter (ε) to determine a region around the mean
within which annotation values are labeled as uncertain and
ignored during classification (see the shaded area in Fig. 4).

4.2.2 Deep Preference Learner
The preference learner indicates, via its output, which
one of two input segments is associated with a higher
arousal value. By denoting a function gi(f(ξ(xAi ), ζ(zAi )) −
f(ξ(xBi ), ζ(zBi )) → (0, 1)2 for the i-th (A,B) pair of inputs
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and a dataset D = {xAi , zAi , xBi , zBi , yi}Ni=1, of N pairs, the
derived preference learner corresponds to

f∗, ξ∗ = arg min
f∈F,ξ∈Ξ

1

N
L(gi, yi). (2)

In our case, g(·) is the softmax function. Based on this for-
mulation, the preference learner employed here—similarly
to RankNet [47], [76]—can be seen as a binary classifier
which takes as input a pair of samples and outputs 1 if the
first sample in the pair is ranked higher, and 0 otherwise.
Again, the output nodes employ the softmax activation.

Similarly to the ε parameter of binary classification, in
preference learning we employ a threshold δ which deter-
mines if the absolute difference between the mean arousal
values of two segments is high enough for the segments
to be considered as a preference pair (i.e. a datapoint for
training). Based on δ we create input pairs by comparing
them in both ways; i.e. we use both (a, b) and (b, a) pairs,
where a and b represent the audiovisual information of
two different segments. This approach gives us a perfectly
balanced dataset for deep preference learning.

5 EXPERIMENTAL RESULTS

This study aims to test the hypothesis that there is a
general-purpose learnable mapping of gameplay footage
representation to players’ affect. Towards this direction, we
use the two-stream neural network (see Section 4.2) for
classifying game video and audio segments as high or low
arousal, and for ranking them. For all the experiments in this
paper we report the average cross-validation accuracy and
the 95% confidence following the demanding leave-one-
video-out cross-validation scheme [10], [77] which offers a
highly conservative estimate for the generalization capacity
of the models. To avoid model overfitting we employ early
stopping by randomly selecting 4 videos of the training set
to form the validation set. Early stopping is activated if the
classification accuracy on the validation set does not im-
prove for 30 training epochs. We compare the performance
of the model against a baseline model which always outputs
the most common class in the training set. The baseline
accuracy for preference learning is always 50%, since we
have a perfectly balanced dataset (see Section 4.2.2).

5.1 Classifying Arousal
To investigate the impact of the two input modalities (video
frames and audio) on the performance of the model, we
report the classification accuracy of three model types: two
single-stream (unimodal) neural networks which are trained
on either the visual or the audio information, and the two-
stream bimodal neural network (see Section 4.2) which is
trained on both visual and audio information. Figure 5
reports the average classification accuracy values obtained
for different input modalities for all games, across different
thresholds ε for omitting uncertain values near the annota-
tion’s mean value. For ε = 0, all segments of a trace are
labelled high or low if their mean arousal value is above
or below the mean value of the entire annotation trace (µ),
respectively; for ε > 0, segments with mean arousal values
within [µ − ε, µ + ε] are omitted from the data (see Fig. 4).
Note that preliminary experiments established that splitting

Fig. 5: Average classification accuracy (%) on the test set
across the two modalities and different uncertainty thresh-
old values (ε). The time window is 0.5 seconds and shaded
areas indicate the 95% confidence interval.

the traces into segments of 0.5 seconds (see Section 5.3) led
to the highest accuracies across the different modalities and
parameters, and as such the exploration of the best ε in
Fig. 5 focuses on a time window of 0.5 seconds, while Table
1 presents the size of the employed datasets.

Unsurprisingly, the deep learning models perform better
when both audio and visual inputs are considered. For
SS and MB the bimodal classifier reaches accuracies as
high as 30% above the baseline classifier, but only 1% to
3% above the visual-only classifier. Similarly, for SR the
bimodal classifier reaches accuracies 20% above the baseline
classifier and 2% above the unimodal visual-only model.
For these three datasets, most of the information regarding
arousal is stored within the pixels of the video, while audio
seems to play a minor role. For SS, however, audio can
also be a good predictor of arousal, since even audio-only
classifiers reach accuracies between 10% and 20% above the
baseline. The same holds for SR when ε = 0.2, in which
case the audio-only model reaches accuracies nearly 15%
above the baseline. On the other hand, audio-only models
cannot predict arousal for the MB dataset and the SR dataset
(when ε < 0.2), as accuracies are on par or worse than the
baseline. For MB, audio information per se is not a reliable
predictor of arousal, most likely because sound effects are
rather sparse (see Section 5.5). However, it can contribute to
the model’s predictive capacity when combined with visual
information. For the SR dataset, audio information does
not seem to affect the performance of the model when it
is combined with visual information. For the SON dataset,
both bimodal and unimodal models perform on par or
worse than the baseline. In this case, neither visual nor audio
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TABLE 1: Sizes of the employed datasets for different un-
certainty thresholds and time windows. For splitting the
dataset into training and testing sets we follow a leave-one-
video-out scheme. For the validation set (early stopping) we
randomly select and use four videos in the training set.

Classification
Time Window (t): 0.5 second ε=0.2
ε=0.00 ε=0.05 ε=0.1 ε=0.2 t=0.25 t=0.5 t=1.0 t=2.0 t=3.0

SS 3, 381 3, 102 2, 621 1, 972 3, 698 1, 972 1, 002 4, 83 345
MB 5, 989 5, 574 4, 379 2852 5, 393 2, 852 1, 419 700 448
SR 4, 925 3, 608 2, 225 711 1, 446 711 358 180 119
SON 4, 719 3, 707 2, 977 1, 846 3, 474 1, 846 905 426 282

Preference Learning
Time Window (t): 2 seconds δ=0.6(SS/MB), 0.4(SR), 0.75(SON)

δ=0.0 δ=0.2 δ=0.4 δ=0.6 δ=0.75 t=0.5 t=1.0 t=2.0 t=3.0
SS 20, 916 13, 804 7, 532 3, 860 2, 138 67, 576 16, 380 3, 860 1, 584
MB 43, 090 25, 740 13, 854 6, 072 2, 766 104, 258 25, 330 6, 072 2, 488
SR 39, 813 14, 146 4, 898 2, 324 1, 358 41, 588 9, 940 4, 898 888
SON 43, 844 25, 108 10, 364 3, 502 1, 282 26, 527 6, 509 1, 282 532

information is a reliable predictor of arousal. We believe
that this occurs due to the specific nature and design of the
game; SON is a horror game with a delayed effect in arousal
which may not be captured by the class splitting criterion
(one of the limitations of our study discussed in Section
6). As far as the design of the game is concerned, visual
information in SON comes in highly vignetted frames with
no HUD elements, which makes the vision-based pattern
recognition task difficult and ambiguous. The background
audio of the game also changes suddenly when the player
moves from one room to another. Since these changes do
not follow a specific pattern, audio information encoded in
MFCCs cannot be easily associated with arousal.

In summary, for 3 out of 4 datasets, the high perfor-
mance obtained by varying the uncertainty bound indicates
that the mapping between general-purpose representations
of audiovisual gameplay information and arousal can be
learned statistically with very high accuracy. Results for the
SON dataset indicate that the performance of our models
depends on the specific nature of the game, as well as on
the underlying assumptions of our approach (see Section 6).

5.2 Ranking Arousal
Similar to Section 5.1, we investigate how different modal-
ities affect the performance of the preference learner by
training three preference learning models with different
inputs. The preference learner compares two input segments
and outputs which segment has a higher arousal value.
Based on preliminary experiments we focus on the best time
window for the preference learner, which is 2 seconds.

The δ parameter (as defined in Section 4) sets the min-
imum absolute difference between the mean annotation
value of two segments that can be considered as a prefer-
ence. In this section, we investigate the performance of the
preference learner in terms of average classification accuracy
for 5 different values of δ, i.e., δ = {0.0, 0.2, 0.4, 0.6, 0.75},
and for the different input modalities. For all the experi-
ments presented, we follow the leave-one-video-out vali-
dation procedure using segments of 2 seconds. Figure 6
summarises the results of this investigation, and the sizes
of the datasets are presented in Table 1.

The preference learner achieves up to 32%, 28%, 22% and
11% higher accuracy than the random baseline for the SS,

Fig. 6: Average accuracy (%) of the preference learner on
test set across the two modalities and different uncertainty
threshold values (δ). The time window is 2.0 seconds and
shaded areas indicate the 95% confidence intervals.

MB, SR and SON dataset, respectively. As with the classifier,
the models that exploit both audio and visual input perform
better than unimodal models. While high values for δ yield
pairs of inputs that have significantly different annotation
values, this also results in smaller datasets. According to
Fig. 6, for SS and MB we obtain the highest performance
values when δ = 0.6, for SR when δ = 0.4 and for SON
when δ = 0.75. These threshold values seem to balance
between highly informative and comparable inputs, and
adequately large dataset size for training (see Table 1).

5.3 Impact of the Time Window
In all experiments presented so far we investigated the
performance of the arousal model by keeping the time
window of the input signal constant (0.5 seconds for clas-
sification and 2 seconds for preference learning). In this
section, we vary the time window while retaining the best
δ and ε values found in Sections 5.1 and 5.2 respectively.
We assume that the duration of the gameplay videos affects
the model performance for three reasons: first, the length
of the window determines directly the size of the dataset;
second, the duration of footage segments determines the
amount and the quality of the audiovisual information
contained in a segment (i.e. the longer the segment, the
richer the information contained in it); third, the duration
of the window affects the ground truth arousal values as
those are averaged from the window’s annotation trace.

Figure 7 (left) summarizes the impact of window du-
ration on the accuracy of our proposed two-stream (audio
and visual) neural network for the classification task. For all
results, the uncertainty threshold value is fixed to its best
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Classification Preference Learning

Fig. 7: Average accuracy (%) on test set for the best audiovi-
sual model across different time windows, for classification
and preference learning. Shaded areas indicate the 95%
confidence intervals.

value: ε = 0.2. For the SS game, accuracy is consistently
over 70% for all durations. However, the model achieves the
best performance for 0.5 second windows, and accuracies
drop for longer windows. It appears that the fast pace of
the game does not favor inputs of long duration since their
ground truth annotation values are over-smoothed. For the
MB game, the accuracies deviate wildly in different time
windows. In particular, the performance of the model is over
80% for segments of 0.5 or 1 seconds, and less than 65% for
shorter segments (∼0.25 second). Contrary to SS, MB is a
slow paced game. Therefore, in this game it seems that short
segments do not contain sufficiently rich information for
the classification task, and thus do not contribute towards
the efficient training of the model. Both games (especially
MB) perform worse in segments over 1 second, also due
to the fact that the size of the dataset becomes too small
for training (for 3 seconds and ε = 0.2 the datasets for SM
and MB are only 345 and 448 segments). For the SR dataset
the classification accuracy is ∼80% for all time windows.
However, it shows wide confidence intervals due to the
small number of training samples (as shown in Table 1, for
2 or 3 second windows less than 200 samples are retained).

Figure 7 (right) similarly visualizes the impact of time
window length on the accuracy of the preference learner
using audiovisual input, and with the best δ value (δ = 0.6
for SS and MB, δ = 0.4 for SR and δ = 0.75 for SON).
As indicated in Section 5.2, the best performance for both
datasets is obtained for segments of 2 seconds. For the SS
dataset the learner that uses 2 second segments as input
performs 5% and 2.7% better that the models that use 1
and 3 second segments, respectively. For the MB and the SR
games, all models perform almost the same irrespective of
the time window considered, although for short time win-
dows (0.5 seconds) the performance drops in both games.
For SON the preference learner performs best for 2 seconds
time windows (11% above the baseline), and 3 seconds
(6% above the baseline). This suggests that Sonancia, as a
horror game, elicits affect in a delayed fashion and thus
requires longer segments of gameplay to be considered. Due
to the way that preference learning processes the dataset, the
number of preferences increases exponentially compared to
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Fig. 8: Kendall’s τ across modelling approaches, games, and
best time windows for each approach. Values are averaged
from the leave-one-video out cross-validation and error bars
denote the 95% confidence interval.

the number of segments themselves: based on Table 1, the
number of preferences at 0.5 seconds are in the power of 104

(up to 50 times the number of preferences at 2 seconds). For
segments of 0.25 seconds, the dataset explodes and training
becomes problematic due to computational effort.

5.4 Classification vs. Ranking

In this section we compare the preference learner against the
binary classifier. While both methods yield high accuracies
for three of the four games, such a metric is not appropriate
for conducting a fair comparison between the methods as
the set of input-output pairs for the two approaches is
not the same [48]. Following the method introduced by
Martinez et al. [48], we compare the two approaches based
on the global orders of arousal they produce when they are
fed with inputs that belong to the same gameplay footage.
The orders produced by the models are evaluated against
the ground truth global order which is derived by the
arousal annotation values. Inspired by [48], [70] we compare
the methods using the Kendall’s rank correlation coefficient
(τ ), which measures the ordinal association between two
rankings [78]. We calculate τ on the test video in a leave-
one-video-out cross-validation process, and report the 95%
confidence intervals across all videos in each dataset.

For both approaches we use the trained models pre-
sented in Sections 5.1 and 5.2 which achieve the best classi-
fication accuracy: for classification, the best models are with
ε = 0.2 and a time window of 0.5 seconds for all games,
and for preference learning the best models are with δ = 0.6
for SS and MB, δ = 0.4 for SR and δ = 0.75 for SON
and a time window of 2 seconds. Fig. 8 also shows the τ
values for models trained on both time windows for both
approaches, for a more holistic comparison. The average
Kendall’s τ for both datasets indicates—unsurprisingly—
that the produced orderings are positively correlated to
the ground truth independently of the method used. For
the SS and SR games both approaches seem to perform
almost the same for their best models (with no significant
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differences). For MB the classifier yields higher τ values
than the preference learner and for SON the best preference
learner yields higher τ values than the best classifier (which
is also at 2 seconds), but these differences are not statistically
significant. As evident from Section 5.3, the classifier per-
forms worse at 2 seconds windows (except for SON) while
preference learning performs worse at 0.5 second windows
compared to each method’s optimal time window. It should
be noted that the way classification and preference learning
process the data results in a very different treatment (classes
versus ranks) which makes a completely fair comparison
very difficult. Indicatively, classification with 2 second win-
dows and ε = 0.2 operates on a dataset of size 483, 700, 180
and 426 for SS, MB, SR and SON respectively, versus 3, 860,
6, 072, 4, 898 and 1, 282 for preference learning (with the
best δ values per game). Therefore, using the best models
for each approach even if the input is different (specifically,
the number of frames used as input to the CNN, and the
number of MFCCs for audio) is the most straightforward
comparison as the number of samples (with the chosen ε, δ
parameters) are in the same order of magnitude.

Based on the comparison above, we conclude that a
binary classifier can reach comparable accuracies to the
preference learner, or higher in the case of MB. The accuracy
of the binary classifier comes at the cost of the resolution of
the output (as there are only two classes). If the problem
requires larger output resolution (e.g., high, medium and
low arousal), it is not clear how a 3-class classifier could
produce such orderings. On the other hand, preference
learning models can always produce orderings via pairwise
comparisons of inputs and they appear to be more robust
across time windows and across all games tested.

5.5 Analysis of Findings

The experiments presented in this paper showed that it is
possible to construct accurate models of players’ arousal
based on general-purpose representations of gameplay
footage. The results obtained across different input modal-
ities also indicate that the visual information is key for the
efficiency of the models. Moving towards higher degrees
of model expressivity and explainability, in this section
we attempt to identify the features of the gameplay video
that contribute more to the output of the arousal models.
One way to achieve this is by visualizing the areas of
the frame that have the highest influence on the model’s
prediction. For that purpose we use the Gradient-weighted
Class Activation Mapping (GCAM) method [79]. For any
given input, GCAM computes the gradient of the output
neuron with respect to the neurons of a convolutional layer.
By multiplying the given input with the computed gradient,
we obtain a heatmap that indicates how much each area of
the input contributes to the output.

Figure 9 depicts the activation maps for a sample footage
segment for different games and learning paradigms; for
visualisation purposes, we display the last frame of the
segment. We observe that aspects of the heads-up display
(HUD) affect the arousal prediction. For SS, the score located
at the top centre of the screen—which keeps increasing
during the progression of the game as the player kills more
and more hostile toys—contributes significantly to arousal

Original Classifier Preference learner

Fig. 9: Activation maps of a sample footage segment for all
games. We display the last frame of the segment.

prediction. The pixels of the avatar and the hostile toys,
however, seem to have the highest impact on the outcome
independently of the method used. Similarly, the time in-
dicator on the HUD of the MB game contributes highly to
the arousal prediction regardless of the learning paradigm
used. Besides the time indicator, the location of the ball, the
enemies and the tokens appear to have a substantial impact
on arousal prediction. Interestingly, the HUD element of the
player’s health was not considered for either game. For SR,
the HUD elements and the player’s avatar (car) do not seem
to be important features for either approach; the focus is
instead on level elements immediately in front of the car
such as the finish line or the loop in the horizon. For SON,
it is obvious that the lack of HUD and dark visuals (only
a small part of the screen contains information) confuse the
classifier, although both approaches identify the statue (the
goal of the game) and the monster as important features.

As a general comment from our qualitative analysis,
there are two key differences in how sound influences the
arousal models in different games. On the one hand, sound
effects in SS follow shooting and enemy deaths which are
common events and information-rich (e.g. killing an enemy
means that the player survives longer), while for MB sound
effects are rare since they trigger when a token is picked
(with three tokens in the game) or when the player dies
(which will not be a common event). Sound effects are
more common and can thus be exploited better in SS, which
explains the low performance of audio channels in arousal
detection for MB. SR on the other hand has a persistent
sound from the engine, making some frequencies in the
MFCC near-constant. Finally, in Sonancia there are almost
no sound effects (only if a monster sees the player) and
the background audio changes based on the room in a
non-diegetic way [80]. The sound design in SON is thus
expected to confuse the models of affect as the soundscape
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variation is sparse and only captures the gameplay context
very indirectly.

6 DISCUSSION

The most common approaches for modelling affect rely on
direct observations and measurements of human behaviour.
The proposed study, to the best of our knowledge, presents
one of the first attempts to model affect via general-purpose
representations of information that comes solely from game-
play footage that does not display human behaviour di-
rectly. Human behaviour is embedded into the gameplay
footage, e.g. as avatar movement and actions, since emotion
is manifested through and annotated on the video per se.

We exploit bimodal audiovisual information to build and
test a deep neural network for predicting players’ arousal
states via two different approaches; binary classification and
preference learning. Results show, on the one hand, that
building such models is possible, and on the other, that these
models can be highly accurate in most cases. Moreover,
more robust and accurate models can be constructed when
the dataset is pruned from ambiguous data.

In this study, we make several assumptions which im-
plicitly indicate possible limitations of our approach. First,
we use the mean value of each annotation trace to split data
into high and low arousal classes. Although this criterion
is intuitive and straightforward, it makes sense only for
stationary processes. In our study, this criterion results in
robust annotations due to the short duration of gameplay.
For long playthroughs, however, this assumption will not
hold and using the mean as the class splitting criterion may
produce misleading classification and preference learning
results. Second, we use a representative annotation trace
(median trace) to detect and remove outliers. In other
words, our data cleaning methodology considers only the
distribution of the annotation values. In our study, such
a methodology can efficiently detect and remove outliers
since the games considered can be played in specific ways,
and gameplay duration is short. For sandbox games or
long play sessions, a data cleaning methodology that takes
into consideration simultaneously the input and the output
distributions should be used (i.e., the joint distribution of
audiovisual information and annotation values). Finally, the
data points used for training the affect models are generated
sequentially. Thus the annotation of a data point at a specific
time instance might depend on the annotation value of
the data point generated before. Our models, however, are
not able to exploit this information. To take advantage of
this kind of information, models that explicitly take into
consideration the temporal ordering of data, such as LSTMs,
should be used.

The differences in performance among the four games
also illuminate some concerns regarding the impact of the
game environment on the feasibility of general-purpose
models. As discussed in Section 3 and Section 5.5, each
game is different in terms of what the player sees (camera
perspective, color scheme, illumination), hears (background
audio, variety and volume of sound effects) and performs
(control schemes, actions per minute, degree of immediate
feedback, available actions, clarity of game goal). Based on
these differences, it is expected that the player also feels (and

annotates) differently in each game (see Figure 2). While
in games such as Survival Shooter highly accurate models
of affect could be trained via either approach, in Sonancia
specifically the performance of the classifier was not better
than the baseline and the preference learner could reach
accuracies of ∼ 60% with the best parameter setup. It can
be gleaned that arcade games with fast-paced interactions
(such as SS and SR), a top-down camera perspective that
shows more of the level (SS and MB), distinct forms and
colors to distinguish game objects (MB and SR), loud sound
effects tied to game events (SS) could help the model pre-
dict affect from the audiovisual signals alone. In contrast,
Sonancia has none of the above design patterns; moreover,
the actions that a player takes (e.g. choosing a room to go
into) do not have immediate gameplay (and, one would
assume, affective) impact as a monster could be hiding
in a remote part of the room she chooses to go. Future
work should explore where the limits are in terms of game
environments and visual, audio or interaction design for
which this method can be applied. While it is expected
that high-contrast and fast-paced arcade games such as the
ATARI games studied by Mnih et al. [2] will work very well
for this method, it is unclear whether audiovisual signals in
time windows of a few seconds would work well for e.g.
role-playing games (which require long interactions), visual
novels (where the story consequences are not displayed
visually or immediately) or turn-based games (where real-
time windows are irrelevant). Exploring how these different
design patterns affect the quality of predictive affect models
based on audiovisual data alone can be useful not only
for affective computing but also for game design, as it can
inform designers how to maximize the emotional impact of
their content.

While this study is one of the first attempts at the chal-
lenging task of predicting affect states from general-purpose
gameplay footage information, the results are promising
and point to a number of extensions in future work. In this
paper, our models require training on each particular game;
while the method is robust and general-propose, the models
themselves have not been tested for their generality. To
test for the model’s generality, a future direction would be
to devise leave-one-game-out validation schemes once our
game corpus becomes even larger. Such a cross-validation
scheme would allow us to test the degree to which cer-
tain characteristics of audiovisual information are general
predictors of arousal and transferable to other games. In
terms of the model’s input, we use grayscale frames to
represent the visual information and MFCCs for the audio
information. Grayscale frames and MFCCs can compactly
represent the audiovisual information of gameplay footage
and reduce the computational cost of training the models.
These representations, however, can be enhanced without
sacrificing the generality of our approach. In terms of
sounds, MFCCs can be fused with the concise GeMAPS
feature set [39] which has been successfully used for voice
recognition and affective computing applications. As far
as the representation of visual information is concerned, it
can be enhanced by using RGB channels or hand-crafted
channels that include low-level image information [81]. For
example, exploiting hue and saturation information could
better detect the red monsters present in Sonancia. In terms
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of output (affect labels), we use the mean arousal value
within a time window. That is an intuitive approach, which,
however, can be further investigated and refined. For exam-
ple, amplitude and average gradient [9], [49] could be used
for processing annotations within a time window.

Beyond arousal, the method’s robustness needs to be
tested for other affective dimensions—including valence
and dominance—or continuous affective states such as en-
gagement [46]. Beyond games, the method appears to be
generalizable to any rich human computer interaction do-
main that interweaves the context of interaction with user
behavior and user affect, such as mobile app interaction
and web navigation. Additional experiments in datasets of
that type, however, need to be performed to validate this
hypothesis.

7 CONCLUSIONS

In this paper we introduced a general methodology for
predicting affect solely from audiovisual aspects of human
computer interaction. Our hypothesis is that arousal em-
bedded in affective interaction can be modeled accurately
without considering any user manifestation of affect besides
the pixels and the sound of the interaction. The hypothesis
was tested in digital games, a domain that interweaves affect
with audiovisual content through gameplay interaction. The
audiovisual content in games has a dual role: it is both
the elicitor of affect and the context of the interaction.
We developed two deep learning paradigms for mapping
directly from pixels and audio of videos to the annotated
arousal of gameplay: a deep classifier and a deep preference
learner, both using a combination of CNN and feedforward
architectures. Our experimental results across four dissimi-
lar games suggest that arousal can be predicted with very
high accuracies via such general-purpose representations (as
high as 85%) as long as the audiovisual feed captures the
gameplay context accurately (which depends on the game’s
design). The fusion of the two modalities (gameplay pixels
and sounds) unsurprisingly appears to be beneficial for the
predictive capacity of the models. Our key findings also
show that activation maps can visualize the areas on the
screen that lead to high arousal—in our case primarily the
score, the avatar and the enemies. The GCAM visualization
increases the explainability of the models [82] and can be
very useful for game designers when adjusting the appear-
ance or in-game function of the game elements to increase
or decrease the elicited emotion of certain events.

This paper defines one of the first steps towards the
creation of general representations of affect by studying
arousal detection in games. The results showcase that it is
possible to detect arousal accurately by only considering
low-level contextual information of the interaction. The
key findings are relevant to any application area within
affective computing and directly applicable to domains of
rich human computer interaction that consider user affect.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
constructive feedback and detailed comments that helped

us improve the quality of the paper. Konstantinos Makan-
tasis was supported by the European Union’s H2020 re-
search and innovation programme (Grant Agreement No.
101003397). Antonios Liapis and Georgios N. Yannakakis
were supported by the European Union’s H2020 research
and innovation programme (Grant Agreement No. 951911).

REFERENCES

[1] B. Goertzel and C. Pennachin, Artificial general intelligence.
Springer, 2007, vol. 2.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[3] D. Melhart, A. Azadvar, A. Canossa, A. Liapis, and G. N. Yan-
nakakis, “Your gameplay says it all: Modelling motivation in tom
clancy’s the division,” in Proceedings of the IEEE Intl. Conference on
Games, 2019.

[4] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer Nature, 2018, vol. 2.

[5] D. McDuff, R. el Kaliouby, D. Demirdjian, and R. Picard, “Predicting
online media effectiveness based on smile responsesgathered over
the internet,” in Image and Vision Computing, 2014.

[6] C. Ringer and M. A. Nicolaou, “Deep unsupervised multi-view
detection of video game stream highlights,” in Proceedings of the
Intl. Conference on the Foundations of Digital Games, 2018.

[7] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of
affect recognition methods: Audio, visual, and spontaneous expres-
sions,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 1, pp. 39–58, 2009.

[8] L. Zafeiriou, S. Zafeiriou, and M. Pantic, “Deep analysis of facial
behavioral dynamics,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2017.

[9] P. Lopes, G. N. Yannakakis, and A. Liapis, “Ranktrace: Relative
and unbounded affect annotation,” in Proceedings of the IEEE Intl.
Conference on Affective Computing and Intelligent Interaction, 2017, pp.
158–163.

[10] K. Makantasis, A. Liapis, and G. N. Yannakakis, “From pixels to
affect: A study on games and player experience,” in Proceedings
of the IEEE Intl. Conference on Affective Computing and Intelligent
Interaction, 2019.

[11] R. Picard, “Affective computing,” MIT, Tech. Rep., 1995.
[12] G. Bryant and H. C. Barrett, “Vocal emotion recognition across

disparate cultures,” Journal of Cognition and Culture, vol. 8, no. 1-2,
pp. 135–148, 2008.

[13] R. A. Calvo, S. D’Mello, J. M. Gratch, and A. Kappas, The Oxford
handbook of affective computing. Oxford University Press, USA, 2015.

[14] S. Pini, O. B. Ahmed, M. Cornia, L. Baraldi, R. Cucchiara, and
B. Huet, “Modeling multimodal cues in a deep learning-based
framework for emotion recognition in the wild,” in Proceedings of
the ACM Intl. Conference on Multimodal Interaction, 2017, pp. 536–
543.

[15] R. A. Calvo and S. D’Mello, “Affect detection: An interdisciplinary
review of models, methods, and their applications,” IEEE Transac-
tions on affective computing, vol. 1, no. 1, pp. 18–37, 2010.

[16] Z. Ambadar, J. Schooler, and J. Cohn, “Deciphering the enigmatic
face. the importance of facial dynamics in interpreting subtle facial
expressions,” Psychological Science, vol. 16, 2005.

[17] J. Bassili, “Emotion recognition: The role of facial movement and
the relative importance of upper and lower areas of the face,”
Journal of personality and social psychology, vol. 37, no. 11, 1979.

[18] P. Ekman, “An argument for basic emotions,” Cognition & emotion,
vol. 6, no. 3-4, pp. 169–200, 1992.

[19] G. Littlewort, J. Whitehill, T. Wu, I. Fasel, M. Frank, J. Movellan,
and M. Bartlett, “The computer expression recognition toolbox
(CERT),” in Proceedings of the IEEE Intl. Conference on Automatic Face
& Gesture Recognition, 2011.

[20] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and
J. Movellan, “Automatic recognition of facial actions in sponta-
neous expressions,” Journal of Multimedia, vol. 1, no. 6, 2006.

[21] A. Kleinsmith and N. Bianchi-Berthouze, “Recognizing affective
dimensions from body posture,” in Proceedings of the IEEE Intl.
Conference on Affective Computing and Intelligent Interaction, 2007.



13

[22] A. Kleinsmith, N. Bianchi-Berthouze, and A. Steed, “Automatic
recognition of non-acted affective postures,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 4, pp.
1027–1038, 2011.

[23] D. Glowinski, A. Camurri, G. Volpe, N. Dael, and K. Scherer,
“Technique for automatic emotion recognition by body gesture
analysis,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2008.

[24] J. M. Montepare, S. B. Goldstein, and A. Clausen, “The identi-
fication of emotions from gait information,” Journal of Nonverbal
Behavior, vol. 11, no. 1, pp. 33–42, 1987.

[25] S. Li, L. Cui, C. Zhu, B. Li, N. Zhao, and T. Zhu, “Emotion
recognition using Kinect motion capture data of human gaits,”
PeerJ, 2016.

[26] K. R. Scherer, “Vocal communication of emotion: A review of
research paradigms,” Speech communication, vol. 40, no. 1-2, pp. 227–
256, 2003.

[27] W. Han, C.-F. Chan, C.-S. Choy, and K.-P. Pun, “An efficient mfcc
extraction method in speech recognition,” in Proceedings of the IEEE
Intl. symposium on circuits and systems, 2006.

[28] M. Liu, R. Wang, S. Li, S. Shan, Z. Huang, and X. Chen, “Combin-
ing multiple kernel methods on riemannian manifold for emotion
recognition in the wild,” in Proceedings of the Intl. Conference on
multimodal interaction, 2014, pp. 494–501.

[29] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Intl. journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[30] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2005, pp. 886–893.

[31] A. Yao, J. Shao, N. Ma, and Y. Chen, “Capturing au-aware facial
features and their latent relations for emotion recognition in the
wild,” in Proceedings of the ACM on Intl. Conference on Multimodal
Interaction, 2015, pp. 451–458.

[32] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with
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modeling,” in Artificial and Computational Intelligence in Games
(Dagstuhl Seminar 12191)., 2012, pp. 45–59.

[44] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player
experience in super mario bros,” in Proc. of the Intl. Conf. on
Computational Intelligence and Games, 2009.

[45] N. Shaker, S. Asteriadis, G. N. Yannakakis, and K. Karpouzis,
“Fusing visual and behavioral cues for modeling user experience in
games,” IEEE Transactions on System, Man and Cybernetics, vol. 43,
no. 6, 2013.

[46] D. Melhart, D. Gravina, and G. N. Yannakakis, “Moment-to-
moment Engagement Prediction through the Eyes of the Observer:
PUBG Streaming on Twitch,” in Proceedings of the Intl. Conference on
the Foundations of Digital Games, 2020.

[47] H. P. Martinez, Y. Bengio, and G. N. Yannakakis, “Learning deep
physiological models of affect,” IEEE Computational intelligence mag-
azine, vol. 8, no. 2, pp. 20–33, 2013.

[48] H. P. Martinez, G. N. Yannakakis, and J. Hallam, “Don’t classify
ratings of affect; rank them!” IEEE transactions on affective computing,
vol. 5, no. 3, pp. 314–326, 2014.

[49] E. Camilleri, G. N. Yannakakis, and A. Liapis, “Towards general
models of player affect,” in Proceedings of the IEEE Intl. Conference
on Affective Computing and Intelligent Interaction, 2017, pp. 333–339.

[50] M. Guzdial, N. Sturtevant, and B. Li, “Deep static and dynamic
level analysis: A study on infinite mario,” in Proceedings of the AIIDE
workshop on Experimental AI in Games, 2016.

[51] T. Kannetis, A. Potamianos, and G. N. Yannakakis, “Fantasy,
curiosity and challenge as adaptation indicators in multimodal di-
alogue systems for preschoolers,” in Proceedings of the 2nd Workshop
on Child, Computer and Interaction, 2009, pp. 1–6.

[52] G. N. Yannakakis, H. P. Martinez, and M. Garbarino, “Psychophys-
iology in games,” in Emotion in games. Springer, 2016, pp. 119–137.

[53] S. Wang and Q. Ji, “Video affective content analysis: a survey of
state-of-the-art methods,” IEEE Transactions on Affective Computing,
vol. 6, no. 4, pp. 410–430, 2015.

[54] Y. Baveye, C. Chamaret, E. Dellandréa, and L. Chen, “Affective
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