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Examining Emotion Perception Agreement in
Live Music Performance

Simin Yang, Courtney N. Reed, Elaine Chew, and Mathieu Barthet

Abstract—Current music emotion recognition (MER) systems rely on emotion data averaged across listeners and over time to infer the
emotion expressed by a musical piece, often neglecting time- and listener-dependent factors. These limitations can restrict the efficacy of
MER systems and cause misjudgements. We present two exploratory studies on music emotion perception. First, in a live music concert
setting, fifteen audience members annotated perceived emotion in valence-arousal space over time using a mobile application. Analyses
of inter-rater reliability yielded widely varying levels of agreement in the perceived emotions. A follow-up lab-based study to uncover the
reasons for such variability was conducted, where twenty-one participants annotated their perceived emotions whilst viewing and listening
to a video recording of the original performance and offered open-ended explanations. Thematic analysis revealed salient features and
interpretations that help describe the cognitive processes underlying music emotion perception. Some of the results confirm known
findings of music perception and MER studies. Novel findings highlight the importance of less frequently discussed musical attributes,
such as musical structure, performer expression, and stage setting, as perceived across audio and video modalities. Musicians are found
to attribute emotion change to musical harmony, structure, and performance technique more than non-musicians. We suggest that
accounting for such listener-informed music features can benefit MER in helping to address variability in emotion perception by providing
reasons for listener similarities and idiosyncrasies.

Index Terms—Music and emotion, music perception, inter-rater reliability, individual factors, live performance, music emotion recognition,
music information retrieval
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1 INTRODUCTION

MUSIC, like other forms of art, is subjective and response
to music is ultimately up to individual interpretation.

Music can both convey and evoke emotions [1]. Some common
approaches used in the investigation of these emotions
involve self-reporting [2], through which participants can
actively report their own subjective experiences. This may
include perceived emotion, that which the listener recognises
the music is trying to convey, or induced emotion, that which
is felt by the listener in response to the music [3]. A single
musical work can express a range of emotions that vary
over time and across individual listeners [4], [5], [6]; thus,
self-reporting investigations may use time-based annotation
of emotions to help identify detailed, localised emotion
“cues” [7], [8], [9], [10].

Previous work using listener annotations has determined
that music features such as dynamics, tempo, mode, melodic-
harmonic progression and interactions, and sound artic-
ulation impact perceived emotion [11], [12]. Continuous-
time music emotion recognition (MER) focuses heavily on
mapping musical features or low-level correlates to continu-
ous emotion data [13], [14], [15]. Current machine learning
approaches may efficiently predict listener perception, but
may also face confounding model performance [16], [17],
and often fail to address underlying cognitive processes [18],
[19]. Although low-level acoustic features, such as Mel-
frequency cepstral coefficients (MFCCs), relate to timbre

• S. Yang, C. N. Reed, and M. Barthet are with the Centre for Digital Music,
School of Electronic Engineering and Computer Science, Queen Mary
University of London, London, United Kingdom.

• E. Chew is with the CNRS-UMR9912/STMS, Institute for Research and
Coordination in Acoustics/Music (IRCAM), Paris, France.

Manuscript received Month XX, 2020; revised Month XX, 2021.

perception [20] and are commonly used in predictive emotion
models [13], [21], [22], it is unknown how these features
influence perceived emotion and the features do not submit
readily to cognitive modelling [23], [24].

In the attempt to develop computational models linking
music and associated emotions, the subjective and unique
perspective of each individual listener has rarely been taken
into account [2], [25], [26]. Music emotion research often re-
quires the assessment of agreement among listeners; however,
agreement in music emotion ratings from multiple listeners
is usually limited [16], [27], [28]. Variance between listeners
can be caused by numerous factors, including the inherent
subjectivity of individual perception, participants’ limited
understanding of emotion taxonomies, ill-defined rubrics
used to rate emotion and insufficient rating training, and
the lack of controls on data collection when using online or
crowd-sourcing platforms. MER normally utilises an average
or majority emotion response as a target for explanatory or pre-
dictive models, or simply discards inconsistent ratings from
further investigation. This is a reductive way of examining
the problem; we must first understand the reliability of emo-
tion annotations, as findings of disagreement between raters
are still useful and may indicate that emotion perception
differs among individuals more than previously thought [29].
This is evident in the MediaEval Database for Emotional
Analysis in Music (DEAM) [16]: the limited consistency
in annotator ratings poses a reliability issue when using
averaged emotion annotations as “ground truth” for the
creation of a generalised model [30]. This has driven analyses
instead towards investigation of the differences between
annotators. In emotion modelling, the divergence between
participant annotations from this generalisation produces
a natural upper bound for computational approaches and
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creates a serious bottleneck in MER system performance [31].
Models that would go beyond what humans agree upon
perhaps lead to a systematic misrepresentation of how
emotion perception occurs in an empirical setting [29]. The
present work was thus driven by the research questions:
(1) ”Does the agreement between listeners on perceived emotion
vary over the course of a musical piece?”, (2) ”What are the
connections between the emotions perceived and the observed
semantic features1? (3) ”What musical or individual factors
contribute to specific perceived emotions and emotion change?”

In an initial study, time-based valence-arousal ratings
were collected during a live music performance (Live
study). In a secondary study, these emotion ratings were
explored through open-ended feedback from participants in
a controlled lab setting (Lab study). Through joint thematic
analysis [32] of participants’ feedback built upon previous
findings [33], we have identified seven key themes influencing
emotion annotations. The analysis highlights the importance
of features such as instrumentation, musical structure, ex-
pressive embellishments, and music communication as being
more closely aligned with underlying cognitive processes. We
thus propose a more comprehensive focus in music emotion
modelling to include these listener-informed features. We
believe attention to underlying semantic themes will address
emotional inconsistencies and redirect the focus of MER
systems to the listener experience. Through the Lab study, we
also investigate how listeners’ music backgrounds influence
the cognitive processes underlying music emotion perception.
We provide a comprehensive summary of the connections
between listener-based features and related music informa-
tion retrieval (MIR) features by listing existing extraction
tools and related computational works. Finally, we explore
how the setting (live vs. lab) can potentially influence music
emotion perception over time regarding agreement levels
and rating frequency.

2 LIVE STUDY: TIME-BASED AUDIENCE EMOTION
An initial Live study was conducted to explore agreement
in time-varying emotion ratings across audience members.
The listeners annotated their emotions in real-time with the
use of a web-based mobile application during a live music
performance.

2.1 Materials & Apparatus
2.1.1 Live Music Performance Context
Live music performance conducted in an ecological setting
may yield stronger emotion cues and enhance listener
experience, compared to recorded performances. This can be
due to the presentation of information found in the day-to-
day experiences of emotion, particularly in the performer’s
body language, movement, and facial expression [34], [35].
The setting of a performance and the behaviour of the audi-
ence also give context to the music—different venues and
musical genres have individual cultures and impose distinct
expectations on concert goers, which may elicit different
musical responses [36], [37]. The use of live performance
thus provides a shared emotional listening context for the
audience.

1. Semantic features refer to the meaning expressed by music that can
be characterised in linguistic terms.

2.1.2 Music and Setting
The music selected for this study was Arno Babajanian’s
(1921 - 1983) Piano Trio in F# minor (1952) performed by
Hilary Sturt (violin), Ian Pressland (cello), and Elaine Chew
(piano), with simultaneous visualisation of spectral art by
Alessia Milo. The piece was performed twice at the 2015
Inside Out Festival on 22 October at Queen Mary University
of London (QMUL). Audio and video were recorded by Milo,
and the first performance was chosen for this study2.

The approximately 23-minute piece presents three
movements with widely contrasting tempos (Table 1) and
is not well known to general audiences, thus likely to
avoid familiarity bias. The piece is still firmly within the
Western classical tradition. This allows us to relate the
present research to the majority of related MER research [38];
however, the perception of this musical style may not be
relevant to other genres, as addressed in Section 5.2.

Movement Duration
(Min:Sec) Tempo Marking Tempo Characteristics

1 10:14
Largo slow

Allegro expressivo fast, bright, expressive

Maestoso majestic

2 6:15 Andante walking pace, steady

3 7:20 Allegro vivace rapid, lively

Tbl. 1: The three movements of Babajanian’s Piano Trio in F#
minor with performed duration, composed tempo markings,
and respective characteristics.

2.2 Annotation Interface
Participants annotated their perceived emotions using Mood
Rater, a smartphone-friendly web application, whilst listen-
ing to the concert. Mood Rater was originally developed
for the Mood Conductor framework [39] for participatory
music performance and was adapted for this study. The
interface (Figure 1a) is based on the valence-arousal (VA)
space derived from the Circumplex Model of Affect [40]. The
model proposes that most affective states can be associated
with this two-dimensional space. The valence dimension
describes how positive or negative an emotion is, while
the arousal dimension characterises the level of excitation.
The space’s quadrants (Q) refer to emotions sharing similar
characteristics: Q1 describes energetic positive emotions like
“happy” and “fun,” while Q2 describes energetic yet negative
emotions, such as “angry” or “scary.” Q3 comprises low
energy and negative feelings like “depressive” and “sad,”
and Q4 low energy yet positive emotions such as “mellow”
and “laid back.” The VA space is commonly used in cognition
studies to provide quantitative measures of emotion by
mapping responses to numerical coordinates in the space.

The Mood Rater interface displays emotion tags; when
tapping a specific point, the emotion tag closest to the
selected coordinate, such as “sweet,” (Figure 1b) appears.
These tags are curated editorial tags extracted from I Like
Music’s (ILM)3 collection, mapped to locations in the VA

2. The performance can be found at: https://youtu.be/55JJLq3ewHss.
The video’s progress bar has been divided into the corresponding 45
sections for navigation to a specific performance segment.

3. https://web.ilikemusic.com
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space [41]. Annotations on Mood Rater are time-stamped
based on HTTP GET request times logged on the server side.
Synchronisation of the annotations to the live performance
was done with a reference signal (similar to a clapperboard)
which can be identified in the audio-video recording, as well
as the server log, through a synchronous HTTP request.
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Fig. 1: (a) Mood Rater’s interface, as displayed on partici-
pants’ mobile devices. (b) Associated guide tags in VA space.

2.3 Procedure
During the performance, audience members were invited
to participate by reporting their perceived emotions using
Mood Rater. The audience members were instructed on how
to access Mood Rater from their personal devices. A brief
overview of the VA space was also given, and participants
were able to acquaint themselves with the interface and
preview the tags by tapping around their screens in a test
run before the performance. Participants were instructed to
use the application when they perceived a change in emotion
expression by tapping on the interface; audience participants
were able to send a new rating at any time during the course
of the performance. Participants were given freedom to
annotate at their own discretion, with the hope that this
would provide a view of the moments during the piece
when participants perceived a change strong enough to
warrant making a new emotion annotation without being
prompted. Following the performance, participants provided
their gender and age and reflected on the user experience.

2.4 Participants
Invitations to the performance were made through QMUL
campus mailing lists. Audience members were then invited
to participate in the study. 15 participated out of approxi-
mately 30 concert attendees in the chosen performance. Of
these, 13 completed the post-task questionnaire; 6 male and
7 female, aged from 23 to 36 years (M = 26.8, SD = 3.8 years).

2.5 Results & Discussion
Over the course of the performance, 949 total emotion
annotations were collected (Figure 2). The collected data
points were nearly evenly spread over all VA quadrants; in
Q1: 332 points (35% of all annotations made), Q2: 253 (27%),
Q3: 158 (17%), Q4: 206 (23%). Although the concentration of
points in Q1 suggests more energetic and positive emotions
were perceived, this distribution supports the idea that the
chosen musical work is shows as variety of emotions which

contrast between movements. For example, the VA ratings
in the softer and slower second movement largely occupy
Q4, while those in the lively and rapid third movement
are clustered in Q1. Compared to the mean rating of the
full piece (Arousal: M = 0.55, SD = 0.24; Valence: M = 0.53,
SD = 0.22), the mean varied between movements on both
arousal and valence, as shown in Table 2. This suggests that
perceived emotion varies at least across movements for this
performance of the Babajanian trio, and indicates that a single
emotion descriptor would not be sufficient to characterise
the whole piece.

The mean number of ratings per participant was 66.4 for
the whole piece (SD = 88.3). On average, participants made
2.76 ratings/minute; this ranged from 0.15 ratings/minute
to 10.65 ratings/minute. This wide variance in annotations
supports the idea that some listeners are more aware of
fine emotion cues than others or may be more sensitive to
particular musical features. Participants who did not rate
as frequently may not have perceived sufficiently strong
emotion changes to warrant making an annotation, or may
have been more focused on the live performance.

Participant Agreement Over Time. Previous music emotion
studies have adopted various measures of inter-rater relia-
bility (IRR) for assessing the agreement of emotion ratings
between different raters [42], [43], [44], [45], [46]. In this
work, we used intra-class correlation (ICC) to assess the IRR
among participants’ emotion ratings; this was adapted to
assess the consistency of rank variables (here, valence and
arousal) across more than two raters [47]. Specifically, we
used two-way mixed, consistency, average-measures of ICC,
notated ICC(3, K), to measure the extent to which similar
rank orders can be found across participant annotations. It
is worth noting that ICC(3, K) is mathematically equivalent
to Cronbach’s ↵ [48], which is commonly used in assess-
ing internal consistency (reliability) of continuous emotion
annotations [16], [45], [46]. ICCs at longer timescales (e.g. a
movement or full piece) and with more items being tested can
potentially be inflated [49], [50]. Therefore, the performance
was broken down into 45 segments based on the rehearsal
letters marked in the score to offset possible bias in the
analysis. The segments last from 11 to 72 seconds (M = 31.7,
SD = 15.8) in the recorded performance, with 16, 9, and 20
segments in the three movements, respectively.

The individual emotion ratings were re-sampled using a
step function at 1 Hz (one rating/sec) for the ICC calculation,
where a rating is assumed to be unchanged until a new
rating is made. The sampling rate adequately captures the
meaningful changes in participants’ emotion annotations, as
even the most actively rating participants made up to 10.65
ratings/minute in the Live study, which is well below one
rating/sec. This assumption is in line with the instructions
given to participants, to rate when a change is perceived4.
Figure 3 shows the ICC estimate with a 95% confident
interval [51] in each of the 45 segments, as well as the number
of ratings for each segment5,6. Table 3 shows the number of

4. However, if the persistence of perceived emotions is assumed to be
decreasing over time, other modelling could be applied, e.g. Gaussian
process interpolation.

5. There were no ICC(3,k) estimates for Segment 32 because no ratings
were made in this segment.

6. The y-axis range in the figure is set to [-1,1] for figure clarity.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on January 26,2022 at 12:45:40 UTC from IEEE Xplore.  Restrictions apply. 



1949-3045 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2021.3093787, IEEE
Transactions on Affective Computing

4 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, MONTH-MONTH 2021

Fig. 2: VA rating distribution from the Live study through the piece (left subfigure)
and in each movement (right subfigures).

M Arousal
Mean (SD)

Valence
Mean (SD)

1 0.53 (0.22) 0.52 (0.23)

2 0.40 (0.22) 0.60 (0.19)

3 0.60 (0.20) 0.52 (0.23)

Tbl. 2: Live study mean and SD for all
VA ratings on each movement (M).

Fig. 3: ICC(3, K) estimates for each segment of the Live Study (at the 95% confidence interval) for arousal (red dots) and
valence (blue crosses) ratings made in the Live study. Vertical grey bars indicate the total number of ratings made in each
rehearsal segment; black vertical lines indicate the boundaries between movements.

segments associated with each level of agreement (excellent,
good, fair, poor, systematic disagreement [52]) for VA.

Agreement Level ICC(3, K) Segment Count

Arousal Valence

Excellent [0.75, 1.00] 7 1
Good [0.60, 0.74] 8 4
Fair [0.40, 0.59] 2 8

Poor [0.00, 0.39] 15 12

Systematic Disagreement [�1, 0.00] 13 20

Tbl. 3: Cicchetti’s Agreement Levels and respective ICC(3, K)
ranges [52], with occurrences from Live study segments.

The agreement spanned the entire scale from systematic
disagreement to excellent agreement for both the arousal
(-2.09 < ICC(3, K) < 0.92, M = 0.15, SD = 0.71) and valence
ratings (-2.53 < ICC(3, K) < 0.86, M = -0.14, SD = 0.8). Figure
3 depicts the ICC(3,K) estimates for each segment of the
Live Study, as well as the overall number of ratings made in
each rehearsal segment. We observe that agreement changes
quickly at the segment level, sometimes moving from near
complete agreement to total systematic disagreement in
consecutive sections. Several reasons may contribute to the
low agreements; firstly, participants may perceive or rate the
emotion at different timescales. Participants may also pay
attention to non-performance factors that are less controlled
in a live concert, such as audience noise or the actions
of participants around them. Although participants were
invited to explore the Mood Rater app after instructions
were provided, there was no explicit trial of making ratings
in context prior to the concert. Participants may not have
understood the tags on the rating tool well; further, specific
moments in a musical piece may have multiple contradictory

or ambiguous emotion cues, making it difficult for listeners
to perceive a singular emotion or select an appropriate rating
to match this perception.

The reliability of time-continuous valence and arousal
annotations collected in comparable studies also varies.
For example, [46] reported very high internal consistency
(Cronbach’s ↵) of participants’ ratings on arousal (0.998)
and valence (0.998) on 794 clips, each annotated by at
least 10 different listeners. Cronbach’s ↵ was also very
high (>0.89) on both arousal and valence for all 8 pieces
annotated by 52 listeners in [45]. In contrast, for the DEAM
dataset [16], varied agreement levels were found for arousal
(0.28 < ↵ < 0.66) and valence (0.20 < ↵ < 0.51); this
aggregates emotion ratings on 1744 clips collected across
three years, each annotated by 5 to 10 listeners. High
agreement for annotation data may be partially explained
by the choice of stimuli [45] and the selection of participants
to ensure that consistent ratings are obtained (discarding
disagreeing participants) [46]. Our results present varied
agreement levels across segments within one piece among
the same group of participants. In order to better understand
such variability, a follow-up study was conducted with the
aim of examining the rationale behind differing listener
annotations, where listeners will be able to reflect on their
time-based ratings retrospectively (see Section 3).

Emotion Rating Experience Feedback. The post-performance
questionnaire collected participants’ view of the overall ease
of using the app, the difficulty levels of the rating task, and
the impact of the guide tags. Each question was followed by
an optional comment box for participants to leave further
feedback. Lastly, an open-ended question “Do you have any
other suggestions on how we could improve our Mood Rater app?”
was presented. Age and gender were also collected from
participants. The questions and corresponding responses to
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the questionnaire are presented in Appendices A.2 and A.3.
Out of 13 participants, most participants (11) found the

app ‘easy’ or ‘very easy to use’. Over half of participants
(7) evaluated the task of rating perceived emotions during
the performance as ‘easy’ to ‘very easy’ while 2 participants
found the task ‘difficult;’ 5 participants reported that the
rating process distracted them from the performance while
3 reported no distraction; Over half the participants (7)
evaluated the mood tags as ‘useful’ or ‘very useful,’ while 3
participants evaluated them as ‘not useful.’

From the evaluation feedback, we can conclude that
most participants considered Mood Rater overall to be
successful in facilitating the self-reporting of real-time
emotions conveyed by the music; however, the results
highlight that such rating tasks tend to distract some of
the participants from the actual performance. Open-ended
feedback suggested improvements, especially in terms of
emotion tags and interface design (see Appendix A.3). People
with unfavourable opinions found the tags to be inaccurate
and not adapted to the music, or felt they did not match
their current emotion state. Mood Rater was consequently
improved for further study, with revised mood tag choices
and placements, and an updated interface to make it more
engaging and understandable.

3 LAB STUDY: REFLECTIVE RATING FEEDBACK
The Lab study further explored rehearsal segments found
in the Live study to have varied agreement, with the aim to
determine the reasons for the divergent ratings.

3.1 Music Performance Stimuli
The audio-video recordings of the Babajanian trio from
the Live study performance were the stimuli for the Lab
study. The first two movements (M1, M2) were chosen for
perceived emotion annotation. These movements comprise
the first 25 rehearsal segments (S1 - S25), which together last
approximately 17 minutes7. In addition to annotating the
first two movements, for seven segments (S5, S7, S12-14, S17)
participants additionally reviewed and provided reasons
for their emotion judgements. These excerpts were chosen
based on the diversity of musical features, including varying
instrumentation, dynamics, and tempo; in addition, these
segments were determined to span a variety of agreement
levels and VA emotion rating trends in the Live study. Table
4 presents the ICCs for these seven segments, as calculated
in the Live study. These ICC values range from -0.69 to 0.75
(M = 0.16, SD = 0.56) for arousal, and from -0.37 to 0.86 (M =
0.35, SD = 0.41) for valence.

3.2 Annotation Setup
Participants made annotations via Mood Annotator, a web-
based software adapted from Mood Rater for this study.

Emotion Rating Function. Mood Annotator enables time-
varying emotion rating collection. The VA interface (Figure
4a) is positioned next to a window which displays the audio-
video recording from the original Live study performance
(Figure 5). Corresponding emotion tags included in the VA

7. The cropped recording presented to participants in the Lab study
can be found at: https://youtu.be/MHBfGm0SsYo. Timestamps in-
cluded through the remainder of this paper reference this recording.

Segment
ICC(3,K)

Arousal Valence Agreement

S2 (M1) 0.73*** 0.86*** excellent
S5 (M1) -0.69 0.17 good
S7 (M1) 0.27* -0.37 fair
S12 (M1) 0.75*** 0.56*** poor
S13 (M1) -0.3 0.53*** disagreement
S14 (M1) -0.18 0.11
S17 (M2) 0.51*** 0.62***

Tbl. 4: ICC(3, K) for the 7 pre-selected segments from Live
study annotations. Significance for the null hypothesis (ICC
= 0): p < .05 (⇤), p < .01 (⇤⇤), p < .001 (⇤⇤⇤).

space were added to give participants a frame of reference
as in the previous study, since a majority of participants
found the tags useful (see Section 2.5). However, as some
participants reported that the tags used in the Mood Rater
app seemed inaccurate or confusing, we updated the tag
choices and placements and explicitly indicated in the UI
that these served only as guides in Mood Annotator. We
improved the selection of tags based on previous work
[53] which identified widely used music tags both from the
music service AllMusic (AMG) and entries in the Affective
Norms for English Words (ANEW) dataset [54]. Tags were
selected based on the consistency of associated valence and
arousal measures across raters in the ANEW dataset; tags
with SD < 2.5 in either arousal or valence were considered to
keep a balance between consistency and VA space coverage8.
Following this process, 14 tags were selected from the AMG
dataset which were relevant to the selected classical piece
and avoided redundant meanings in the set. In addition, we
selected another six tags from ANEW that were not included
in the aforementioned AMG tags, but which we deemed
important in the VA space interpretation (“calm”, “happy”,
“bored”, “neutral”, “excited”, “tired”). Each tag‘s location
in the UI is represented by a closed disk, with the centre
positioned on the ANEW average values and a diameter
equal to the smallest Euclidean distance between any two
out of the 20 tags (Figure 4b) on the VA space. For areas on
the VA space not covered by emotion tags, no guide tag was
presented.
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Fig. 4: (a) Mood Annotator’s interface with guide-only tags
for the Emotion Rating Task. (b) Associated guide tags.

Emotion Reflection Function. Mood Annotator allowed
participants to re-watch the recording and reflect on their

8. The ANEW ratings’ SDs range from 0.31 to 3.38.
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Fig. 5: Emotion Reflection Task; rating points (red diamonds)
are not visible during the Emotion Rating Task.

Fig. 6: Pop-up window displayed for reviewing and provid-
ing feedback for an example annotation point.

VA emotion ratings after an initial rating of the piece had
been made. Listeners were presented with several short video
recordings of the segments pre-selected from the whole music
piece. For each segment, a timeline is included under its
video to show where emotion rating points have been made,
represented by red diamonds in Figure 5. When hovering
on a timeline point, the participant’s original emotion rating
is simultaneously displayed on the VA space for reference.
When clicking on a timeline point, a pop-up window (see
Figure 6) is displayed for providing explanation feedback.
Within this window, a participant can confirm or discard their
previous rating. If the rating is confirmed, the participant is
asked to select the clarity level of the emotion on a Likert
scale from 1 (very unclear) to 7 (very clear). A comment
box is further provided to allow participants to provide
open-ended “Reasons behind your rating”.

3.3 Procedure
Participants annotated on a 13” MacBook Air in a sound
proof listening studio at QMUL. Audio stimuli were pre-
sented through headphones (Beyerdynamic DT 770 Pro)
and video on the laptop display. Participants were able to
adjust the audio level to their comfort before the initial
task. Participants were given a brief overview of the VA
space and the annotation software and explored the tag

placement mapping on the VA space, as was done in the Live
study. Participants were given time to acquaint themselves
with the software during a trial. Once confident with the
annotation procedure, they completed the Emotion Rating
Task by annotating their perceived emotion in the VA space
through the first two movements of the Babajanian Trio,
presented as audio-video recorded from the Live study.

After rating the full movements, the rating timeline
became visible (Figure 5) and participants embarked on the
Reflection Task. Participants provided reflective feedback for
each of the seven pre-selected musical segments discussed in
Section 3.1 sequentially, for musical continuity. Participants
were asked to review their previous ratings to provide open-
ended explanations for their annotations. Participants were
informed that there were no right or wrong answers and
were encouraged to provide as much information as possible.

After finishing the Reflection task, participants completed
the Goldsmiths Music Sophistication Index (Gold-MSI) [55]
to determine their relative level of music experience and basic
demographics. This background information was collected,
in comparison to the limited information collected in the
Live study, in order to examine whether musical experience
could explain different emotion perceptions in listeners. The
study duration ranged from 1.5 to 2.5 hours.

3.4 Participants
A new group of 21 participants (11 male, 10 female), distinct
from that in the Live study, was recruited through an open
call on the QMUL campus mailing list. All but one participant
completed the full study.9 Group scores for four sub-factors
of the Gold-MSI are reported in Table 5. A majority of
participants had at least 10 years of musical experience and
was engaged in regular, daily practice of a music instrument
(11), while the others had either novice to intermediate
experience (5) or no musical experience (5). The ages ranged
from 23 to 46 (M = 28.8, SD = 5.5). All participants were
fluent English speakers and resident in the UK at the time of
the study, and represented a variety of national backgrounds:
10 of the participants were Chinese, while the remaining 11
had Western backgrounds covering England (2), Greece (2)
Spain (2), France (1), Italy (1), Germany (1), USA (1), and
Costa Rica (1).

3.5 Results & Discussion
3176 VA emotion ratings were collected in the Emotion
Rating Task. Similarly to the data collected in the Live study
(see Section 2.5), data collected in the Lab study also spanned
all four quadrants of the VA space: Q1: 1263 annotations
(39%), Q2: 834 (26%), Q3: 460 (16%), Q4: 614 (19%). Compared
to the annotations made on the first two movements in the
Live study (Q1: 30%, Q2: 22%, Q3: 20%, Q4: 27%), high
arousal quadrants (Q1, Q2) received proportionally more
annotations than low arousal quadrants (Q3, Q4) in the
Lab study. In the Emotion Reflection Task, 21 participants
re-evaluated the 1098 VA ratings they gave for the seven
pre-selected segments. 8 participants discarded 23 previous
ratings, and 7 participants provided 12 new ratings. A total of

9. One participant completed the initial emotion rating task but left
due to personal reasons before completing the Reflection Task. The
participant later completed and returned the Gold-MSI by email.
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Range Mean SD

Engagement 9� 63 44.57 10.61
Perception 9� 63 50.81 7.51
Training 7� 49 31.14 12.33
Emotion 6� 42 32.67 3.93

Tbl. 5: Lab study group scores for
Gold-MSI sub-factors.

Fig. 7: Emotion clarity level frequency.

Fig. 8: ICC(3, K) estimates for each segment (95% confidence interval) for arousal
(red dots) and valence (blue crosses) ratings made in the Lab study. Vertical grey
bars indicate the total number of ratings made through each segment; a black
vertical line indicates the boundary between movements.

483 VA ratings were accompanied by explanatory feedback,
ranging from 2 to 24 comments per participant (M = 23, SD
= 9), including 16 amended ratings with VA value changes,
and 40 amended ratings with a time-stamp change. The rest
of the re-evaluated ratings reported the same reasons as
those for ratings close to them in time. Figure 7 presents
the emotion clarity levels reported by participants for their
ratings (1 corresponds to very unclear and 7 to very clear, NA
indicates no clarity levels were reported). The emotion clarity
levels are not normally distributed, W(483) = 0.68, p < .001.
Rather, X = 7� c follows an exponential distribution, where
c is the emotion clarity level and 7 is the highest clarity level.
The results indicate that participants have reported most
of the VA ratings with confidence, with the average clarity
being 6.27 out of 7 (SD = 1.16) and the median being 7. The
open-ended responses contained over 7000 words, on which
we undertook thematic analysis, as described in Section 4.

Rating Frequency. The number of annotations per partici-
pant ranged from 60 to 396 for the piece (M = 151, SD = 96) in
the Lab study. Like in the Live study, the rating frequency in
the Lab study varied across participants, ranging from 3.67
ratings/minute to 22.26 ratings/minute, with an average of
8.76 ratings/minute. Notably, the average participant in the
Lab study rated nearly two times more frequently than in the
Live study for the first two movements (4.21 ratings/minute
on average in the Live study, t(34) = 3.72, p < .001).

There are some possible reasons for this difference: this
participant group agreed and registered in advance to take
part in an organised lab study, so may have been more
focused and prepared, compared to the audience members
who volunteered at a live concert; during the Live study,
social factors could have limited ratings: participants may
have been more hesitant to annotate, not wanting to distract
the other audience members by using their phones. The
setting and the socio-cultural norms dictated in a perfor-
mance venue are also likely to impact the emotion perception.
In the Lab study, more relevant guide tags were used in
the rating tool, and the capability to pause and rewind the
video recordings to re-visit and reflect on their annotations
likely helped participants to make more confident ratings.
Future reproductions of this study in different live venues
would be beneficial to understanding the full impact of the
performance setting on emotion perception.

Participant Agreement Over Time. As done in the Live study
(Section 2.5), ICC values were computed at the segment level
for participants’ VA ratings. The ICC estimate with a 95%
confident interval in each of the 25 segments and the number
of ratings for each segment in the lab study are presented
in Figure 8. The resulting ICCs for arousal ratings indicate
good-to-excellent agreement for a majority of segments (0.33
< ICC(3,K) < 0.98, M = 0.87, SD = 0.15), with the exception
of fair agreement for S5. For valence ratings, the agreement
level varies from systematic disagreement to good agreement
(-0.53 < ICC(3,K) < 0.94, M = 0.52, SD = 0.15).

There was comparatively higher agreement in the Lab
study than in the Live study for the 25 tested segments. The
ICCs of arousal ratings in the Lab study (M = 0.87, SD = 0.15)
compared to those in the Live study (M = 0.37, SD = 0.44)
demonstrated significantly stronger agreement, t(24) = 6.91,
p < .001. The ICCs of valence ratings in the Lab study (M =
0.52, SD = 0.38) are also significantly higher than those in the
Live study (M = -0.08, SD = 0.76), t(24) = 4.18, p < .001).

The greater agreement levels may be attributed to differ-
ences in the listening conditions. Participants might have had
a better understanding of the emotion rating task and greater
focus and concentration in the lab setting. Each made and
reflected on their annotations alone, with few distractions
compared to a real-world live performance setting involving
audience etiquette and social interactions, as previously
mentioned when discussing rating frequency. Furthermore,
the ability to replay the Lab study recording and reevaluate
annotation points may have allowed participants to refine
and clarify their judgements, leading to more agreement
than that of judgements based on listening to only one play-
through. Although there are clear differences between the
two studies, the ICC values of the Lab study reinforce the
observations from the Live study, indicating that there are
widely varying levels of agreement through the piece. Some
sections, such as S9 and S10, display consistent systematic
disagreement of valence, regardless of setting. Despite
listening to the exact same performance, there are many
differences in emotion perception between the two studies,
further emphasising the need to address the underlying
cognitive interactions and reasoning behind the annotations.
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4 THEMATIC ANALYSIS OF REFLECTIONS
Further analysis aims to address these rating inconsistencies
by focusing on the underlying causes for the disparate
emotion judgements.

4.1 Methodology
Two of the authors (SY, CNR) jointly conducted an inductive
”bottom-up” thematic analysis [32], [56] of the participants’
feedback (Section 3.5). The comments made by participants
were annotated by each author independently in NVIVO1210.
Each author first generated a series of “codes” that identified
notable semantic or latent content in the feedback. Indepen-
dently identified codes and themes were then refined through
a joint discussion of overlaps and divergences. A final set
of themes emerged, which both researchers concur were
notable and reliable for further joint iterative coding. Both
researchers performed the final round of thematic coding by
categorising each comment to fit within one or more codes
of the final set of emerging themes.

4.2 Emergent Themes of Emotion Perception
Seven key themes motivating perceived emotion annotations
appear in participants’ open-ended reflections: (1) Perceptual
Acoustic Features, (2) Instrumentation & Arrangement, (3)
Personification of Instruments, (4) Expectation & Violation,
(5) Musical Structures, (6) Performer Expression, and (7)
Stage & Visuals.

4.2.1 Perceptual Acoustic Features
This theme includes material about music characteristics,
the most commonly referenced codes. As participants made
emotion judgements in a time-based manner, this theme can
include both elements of feature quality and feature variation.

Feature quality involves music features arising at the
time of annotation. The codes found include musical features
such as melody, timbre, timing, harmony, and dynam-
ics/loudness. The importance of these features to emotion
perception in Western tonal music are described in [2], [11],
[57], and noted by participants:

“Violin only, timbre bright; high pitch leads to a high
valence feeling. slow tempo and relatively low loudness
lead to low valence...” - P7, S5 (11:25)

Feature variation refers to comments on changes in these
musical features, the evolution of which tells us about the
changing emotion of a performance. Codes include dy-
namic change, harmonic progression, melodic progression,
timing variation, and timbre variation, each of which are
common foci in the modelling of music emotion [5], [16].

“...a transition point in the music where we are moving
to a more positive and hopeful place. This is evident
in the increased brightness of the sound and change of
tempo to that of [sic] a little faster.” - P14, S2 (01:40)

Certain features, such as timbre [58], are described as sound
qualities at given time points while other features such as
dynamics and harmony, are more commonly discussed in
the context of their changes. This theme affirms the results of
prior studies [12] and highlights the need for MER models to
examine features not only at defined points in time but also
as trajectories shaped through time.

10. https://www.qsrinternational.com/nvivo/nvivo-products

4.2.2 Instrumentation & Arrangement
Performers can control and shape timbral features specific to
their instrument, an important factor for expressiveness [58].
This theme involves attending to the sounds of an instrument
or the particular instrumental arrangement and is related to
Perceptual Acoustic Features. Participants frequently referred
to the three instruments of the trio – violin, piano and cello
– and their interactions.

In the Western canon, different instruments assume
distinct roles in an ensemble. Participants remarked on this,
yielding the lead instrument and instrument interaction
codes. When instruments are playing solo or carrying the
melody, participants’ comments suggest that these lead
instruments are responsible for conveying the emotion while
the supporting instruments provide context. The violin in
this piece often acts as a lead instrument, while the piano
and cello generally provide the accompaniment; however,
each of these instruments occasionally take the leading role.
At moments when the hierarchy of the instruments change,
the annotations frequently describe which of the instruments
moves into the lead position and how the others respond:

“...starts with a solo piano that slowly picks up in tempo
and volume. The cello and violin respond to the theme
presented by the piano which leads to a conversation
between the instruments that joins together in the end
with higher energy.” - P19, S3 (05:11)

Participants describe the interaction between instruments
as they come in and out of active playing. For example,
participants note when multiple instruments play the melody
in unison and describe different instruments as working
together to convey an emotion:

“when the violin is alone it sound [sic] sad, like alone.
when the cello start the [sic] go together and sounds
more positive.” - P21, S3 (07:50)

Instruments’ sound character and variations will therefore
influence the perception of emotion, highlighting the need
for further exploration of these aspects in MER research.

4.2.3 Personification of Instruments
This theme presents a novel insight, covering comments that
describe instruments communicating emotion like in human-
to-human interaction and the use of abstract metaphorical
language in music emotion perception. Participants’ com-
ments suggest they perceive emotion communicated by the
instrument in the same way they would perceive emotion
communicated by a person, suggesting a personification of
the instrument itself. Participants may associate the sound
quality and emotion of an instrument to human vocalisation;
this capability to mimic the voice and express emotion
through an instrument is well noted in the design and
aesthetics of particular instruments [59], [60]. The sound
can thus be described through evocations of images by the
listener:

“The violin plays really long notes which resembles [sic]
a wailing voice.” - P19, S17 (11:44)
“Dark timbre, sad melody, sounds like somebody is
crying.” - P3, S2 (01:77)

Moreover, instead of making self-reflections such as ”I
perceive sadness,” or ”I sense agitation,” listeners tend to
attribute sadness or agitation to the instruments themselves:
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“Lonely piano (playing by its own) playing a sad tone.”
- P8, S2 (01:20)

Instruments are described as “blue,” “playful,” or “romantic.”
This mirrors metaphorical language found in human com-
munication, where complex concepts such as emotion are
found in language via the use of metaphor; in this case, via
embodiment and personification of inanimate objects [61].
In the perception and understanding of musical emotion,
participants may view instruments as “living” beings which
want to communicate and share their emotions.

4.2.4 Expectation & Violation
Musical play with expectations may lead to the induction of
specific emotions [62]. The listener may experience pleasure
when expectations are satisfied, or surprise when they are vi-
olated. When the listener does not hear what is expected, they
may sense uncertainty and insecurity, as has been observed
with temporal violations in musical performance [10].

“...there is a real tension which causes an anxious
emotion to be perceived. There is a slight hesitancy to the
piano part with a small delay in the playing of some of
the notes which clashes with the fluidity of the strings.
It isn’t discordant, but causes a sense of anxiety about
what is next in the music.” - P14, S2 (03:09)

Participants are especially sensitive to portions of music that
defy harmonic expectations, and the inherent tension that
comes with note clashes. They feel unsure of what is to come
and react to the instability in these changes:

“Chromatic movement makes me feel like something is
about to change, although it is not yet very negative
feeling... cello increases the loudness and the progression
is very unexpected; it is hard to tell where the piece will
go next.” - P10, S4 (09:49)

Theories on expectation may be difficult to confirm, as
listeners differ in their perceived expectations [63], but we see
in this theme an immediate relevance to emotion perception.

4.2.5 Musical Structures
This theme includes comments surrounding the composi-
tional structure or musical form. Given a piece of music,
listeners may divide a sequence of sounds into segments and
group these segments into categories [64]. Emotion changes
are sometimes perceived at boundaries and transitions
when sound states change or new material is introduced:

“A new passage starts here. However, it [sic] my ratings
are not that clear, there is an increase in intensity from
the trio, but the piano starts and [sic] alternating pattern
in the bass that increases anxiety, maybe arousal should
be increasing but valence should be lower (0.4)? ” - P11,
S14 (09:52)11

“Transition to the next state. From slow/sad music to
more high energy still kind of sad music.” - P8, S7
(05:02)

Repetitions of thematic material and motifs are fundamental
to musical perception and provide listeners with a pattern
of expectation, thus influencing perceived emotion inten-
sity [65], [66]. Repetitions can also lead to the association and
recall of imagery, as noted in Personification of Instruments:

11. Note that this comment is associated with a fairly low emotion
clarity level of 4; low emotion clarity levels were rare compared to the
generally very high clarity levels (see Figure 7).

“In this section the same theme is repeated with rising
volume and confidence. I associate this pattern with
images like: sunrise, rebirth or a new dawn which all
have a positive, energetic connotation.” - P19, S7 (04:16)
“... there is an ascendent [sic] repeating intervalic pattern
that moves in arousal but keeps the joyful character.” -
P11, S14 (09:13)

4.2.6 Performer Expression
This theme refers to comments regarding how the performers
impact the music they create and its emotion content.
Musicians may alter the quality of a music note through
its timbre and colour, articulation, and movement. Some par-
ticipants associated the acoustic variations with performance
technique, such as vibrato in the violin part or grace notes
and arpeggios in the piano. Instrument-specific comments
are mentioned by people with over ten years musical training
in violin and piano respectively, and it indicates that people
might pay more attention to the instrument they have
expertise in playing for emotion perception. Different forms
of articulation, for instance legato and staccato styles, are
also reported. Examples include:

“... more violent rhythmic passage. There is a marked
staccato.” - P11, S12 (08:35)
“Vibrato, high arousal” - P7, S14 (09:40)

In addition, comments about embodied expression, refer to
use of performer gesture and facial expression to convey
feeling. Facial expression and body movements are known
to convey emotion in a performance [67], [68], as well as
information about the musical structure of a piece [69].
Participants referred to gestures such as bow movement
and performers’ facial expressions:

“...getting louder and more dissonant, cellist face looks
very expressive, face screws up.” - P13, S7 (05:11)

Performers ultimately provide the direct line of communi-
cation from the musical score to the audience. Individual
interpretations can thus change the emotion quality of a
piece, making gesture, and stage expression in the context of
live music important aspects for MER. A piece performed by
two different soloists will not sound exactly the same, nor
will it have the same emotion nuances across performers or
even individual performances.

4.2.7 Stage and Visuals
Two reactions were derived from visual reference, although
there was no instruction in the task to examine beyond
the music in the audio-video recording. Both refer to stage
lighting; in particular, participants associated the decrease
of arousal with the lights darkened in the final segment:

“The violin changes the length of the notes and with that
the energy of the music. Also as it does not have light it
is less energy as in the other parts.” - P21, S17 (11:47)

Although this is not a frequently occurring theme, it does
highlight the impact of context and setting. Even in a lab
viewing of performance video, participants were able to as-
sociate emotion with changes in stage lighting, underscoring
the relevance of environment on perception. As emotion
contagion means members of an audience are likely to react
in similar ways to their fellow concert-goers [70], [71], it is
worth exploring the impact of environment, staging, and
venue on the perceived emotion content for a performance.
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Theme Relevant Codes CO
CO Per Capita (Mean (SD))

Sig. (p) Cohen’s dMusicians Non-musician

Perceptual
Acoustic Features

Feature Variation 367 22.17(10.68) 11.22(5.85) .01** 1.22
Dynamic Change 130 8.00(5.51) 3.78(2.86) .04* 0.92
Harmonic Progression 94 7.42(5.02) 0.56(0.68) .00*** 1.78
Melodic Progression 69 3.33(2.66) 3.22(2.44) .93 0.04
Timing Variation 60 2.58(2.10) 3.22(3.08) .62 -0.25
Timbre Variation 14 0.83(1.14) 0.44(0.68) .37 0.40

Feature Quality 315 17.33(5.37) 11.89(6.76) .08 0.91
Dynamics & Loudness 40 2.33(1.65) 1.33(1.25) .15 0.67
Harmony 56 4.42(4.68) 0.33(0.67) .01** 1.14
Melody 98 4.58(2.22) 4.78(5.09) .92 -0.05
Timing 60 2.83(2.07) 2.89(2.08) .95 -0.03
Timbre & Roughness 61 3.17(1.82) 2.56(2.63) .58 0.28

Total 682 39.50(15.01) 23.11(11.16) .01 1.21

Instrumentation
& Arrangement

Instrumentation 235 11.92(6.58) 10.22(9.00) .66 0.22
Cello 48 2.17(2.03) 2.44(2.45) .80 -0.13
Piano 91 5.08(3.07) 3.33(2.98) .23 0.58
Violin 96 4.67(2.81) 4.44(4.14) .90 0.06

Instrument Interaction 63 3.08(1.38) 2.89(2.33) .84 0.11
Lead Instrument 39 2.33(1.43) 1.22(1.69) .15 0.72

Total 337 17.33(8.09) 14.33(12.54) .56 0.29

Personification of Instruments 72 3.92(3.09) 2.78(3.08) .44 0.37

Musical Structures

Boundaries of Sections 28 1.58(1.66) 1.00(1.15) .38 0.40
Repetition 26 2.00(1.63) 0.22(0.42) .00*** 1.40
Transition 12 0.50(1.19) 0.67(1.05) .75 -0.15

Total 66 4.08(3.12) 1.89(1.97) .08 0.81

Expectation & Violation 64 4.25(3.39) 1.44(1.07) .02* 1.05

Performer Expression

Embodied Expression 5 0.42(1.38) 0.00(0.00) .34 0.40
Articulations 16 1.33(1.11) 0.00(0.00) .00** 1.59
Music Playing Techniques 11 0.83(1.14) 0.11(0.31) .07 0.81

Total 32 2.58(1.93) 0.11(0.31) .00** 1.66

Stage & Visuals 2 0.08(0.28) 0.11(0.31) .84 -0.09

All 1255 70.01(19.99) 46.00(23.43) .02* 1.24

Tbl. 6: Resultant themes from analysis of participant annotation explanations.
Group mean and SD of code occurrence (CO) by capita and significant differences
are indicated, p < .05 (⇤), p < .01 (⇤⇤), p < .001 (⇤⇤⇤).

Fig. 9: Musicians’ and non-musicians’
(a) VA ICC agreement in 25 segments,
(b) VA annotation counts, (c) explana-
tion comments, (d) code categories, and
(d) CO per participant in each group.

4.3 Code Occurrence (CO)
The number of code occurrences (CO) for any individual
code has a potential maximum value of 483, the total number
of comments collected in the study. Table 6 presents the
main themes along with their relevant codes and CO; as
each overarching theme can include several codes, the CO
number for a theme can exceed 483, as in the case of
Perceptual Acoustics Features. It should be noted that some
pieces of coded material are shared between multiple themes,
as the underlying ideas in a comment can be related to
multiple themes; for instance, Personification of Instruments
and Instrumentation & Arrangement both include comments
made about specific instrument parts and their levels of
activity in the music. Although a CO is presented alongside
each theme, it is important to bear in mind that themes
with lower CO are not inherently less relevant [32]. The
goal of thematic analysis is to gather together common
threads within the participant feedback, and understand
which points were sufficiently noteworthy as to be cited as
emotion cues. In order to account for difference in group
sizes (musician vs non-musician), a “code occurrence per
capita” was determined by averaging the CO for each group.
This CO/capita appears in Table 6 next to each relevant code
within the emergent theme.

4.4 Comparing Musicians’ and Non-Musicians’ Emo-
tion Perceptions
Comparisons were conducted between music expertise
groups for different aspects of emotion perception. Partici-

pants having 10+ years of musical training and scoring above
average on the Gold-MSI were classed as “musicians” (N =
12); others are labelled “non-musicians” (N = 9).

Agreement Levels, and Rating and Comment Frequency. We
first compared the agreement levels amongst the members
of each group with ICCs of VA ratings in the 25 rehearsal
segments. No significant differences were found in either
arousal or valence rating agreement, as indicated by Fig-
ure 9a. The ICCs of arousal ratings from the Live study (M =
0.37, SD = 0.44, see Section 2.5) demonstrated significantly
lower agreement than those from the Lab study, in both
the musician (M = 0.82, SD = 0.19, t(33) = -4.74, p < .0001)
and non-musician groups (M = 0.71, SD = 0.36, t(46) = -3.02,
p = .0041). For valence ratings, the Lab study’s ICCs of the
musician group (M = 0.34, SD = 0.65) are significantly higher
than those in the Live study (M = -0.08, SD = 0.76, t(46) =
-2.11, p < .04). This was not the case for the valence ratings
for the non-musician group (M = 0.12, SD = 0.92).

Rating and comment frequencies were compared using
the number of VA ratings made per participant for the
whole piece (Figure 9b), and the number of VA ratings
accompanied by explanation feedback per participant in
each group (Figure 9c). Although the group differences
in rating and comment frequencies were not significant
(p = .16, p = .24, respectively), musician participants, on
average, made more VA ratings (M = 174.50, SD = 120.81)
than non-musicians (M = 120.11, SD = 32.70), and provided
more explanatory comments (M = 25.08, SD = 9.02) than
non-musicians (M = 20.33, SD = 8.83). There is also greater
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variance among the musicians, as shown by larger SD and
inter-quartile ranges for these factors (Figure 9b, Figure 9c).

Code Categories and Code Occurrence. Additionally, we
compared the number of code categories and the overall
number of CO/capita for comments by both the musician
and non-musician groups. This explored the difference in
specific musical elements noted by members in each group
and the range of reasons behind the annotations made.
This was done to determine if the musical background of
the participants may have contributed to the perception of
different musical qualities.

Comments from the musician group yielded significantly
more code categories (M = 17.92, SD = 2.27) than the non-
musician group (M = 12.78, SD = 4.55), t(11) = 3.10, p = .01,
as shown in Figure 9d. Also, the musician group’s feedback
mentioned significantly more codes (higher CO per capita) in
general (M = 70.01, SD = 19.99) than that of the non-musician
group (M = 46.00, SD = 22.43), t(16) = 2.55, p = .02, as shown
in Figure 9e.

For individual codes, musicians’ feedback on annotations
included significantly greater CO in three themes: Perceptual
Music Features, t(19) = 2.73, p = .0099, Expectation &
Violation, t(14) = 2.57, p = .02, and Performer Expression,
t(12) = 4.16, p = .001. Because of relevant musical experience,
we would expect musicians’ feedback to contribute the
majority of the codes. Musicians are inherently be more
atuned to the musical features; they also possess the training
to identify and vocabulary to describe specific musical
properties within a piece. In particular, musicians commented
more often on harmony, t(12) = 2.85, p = .015, harmonic
progression, t(12) = 4.47, p = .0008, and dynamic changes,
t(17) = 2.17, p = .04. They report on Feature Variations more
than non-musicians, t(18) = 2.86, p = .01. This supports
existing findings that musicians focus more on harmonic
movement than non-musicians [72], [73].

Musicians’ feedback included significantly more refer-
ences to Repetition, t(13) = 3.46, p = .004. This may be
attributed to a number of factors, primarily that musicians
are more aware of musical structure. Musicians may also be
more likely to recognise repetitions or link certain phrases
with an emotion. Within the theme of Performer Expression,
musicians commented more often on Articulation, t(11) =
4.00, p = .002. They may have commented more on the
performers’ expressive actions because they themselves play
an instrument and are more aware of the significance of the
performer’s actions. Awareness of different articulation styles
and their connotations, particularly on different instruments,
may again depend on musical knowledge and performance
experience.

It has been previously established that musical training
has significant effect on neural activations relating to emotion
and reward while listening to music [10]. It is thus likely
that musicians may listen with more empathy and focus
compared to their non-musician counterparts.

The group differences of the other themes and codes
were not significant (p > .05, see Table 6). As participants’
agreement levels, rating frequency, and comment frequency
do not differ between groups, non-musicians may be able to
notice these particular features, but perhaps do not have the
vocabulary or background knowledge to properly describe
them.

5 DISCUSSION

Here, we refer to three levels at which music can be observed:
signal, perceptual, and semantic. Signal-based features refer
to objective characteristics that can be directly computed
or inferred from the music signal, whether in the audio
or symbolic domain. Perceptual features concern musical
properties that are subjectively evaluated by listeners and
which depend on psychoacoustic factors. Semantic features
are linked to the meaning that music conveys to listeners
and can be characterised in linguistic terms [17], [74]. These
different levels of features are interdependent and are found
to be beneficial when combined in the modelling of emotion
expression [17], [28].

Much progress has been made in MIR in recent years
for automated signal-based feature extraction and feature
learning using several inputs, including audio or symbolic
data (such as MIDI, MusicXML, piano roll notation, and
Music Encoding Initiative (MEI)). A range of feature extrac-
tion libraries and toolboxes have been proposed for both
the audio [75], [76], [77], [78], [79], [80], [81], [82], [83] and
symbolic [84], [85], [86], [87] domains. MER has been found
to greatly benefit from these tools, and commonly relies on
automated feature extraction [16], [88]. Still, investigations
of links between perceptual and semantic features and these
automated signal-based extractors are limited to a handful
of studies [17], [28].

The creation of intuitive music emotion models requires a
clearer understanding of how a listener perceives music
emotion and how a machine can recreate this process.
However, human emotion is rarely explicit in the way
computers are; thus, an interdisciplinary exchange between
MIR, music psychology, and musicology is necessary for a
holistic view of music features and for more human-centred
MER. Here, We present a general mapping between features
at different levels and discuss gaps which can be addressed in
future research, given the insights derived from our thematic
analysis.

5.1 Connecting Emergent Perceptual Themes and MIR
We derived several perceptual and semantic features below
according to each code from the thematic analysis (see
Section 4.2), in reference to prior work [17], [28]. The semantic
and perceptual features are linked to MIR features and
automatic extraction tools as presented in Table 7. We fo-
cused on existing audio-based tools, namely MIRtoolbox [75],
Vamp plugins13, and the score-based tool jSymbolic [90].
Where appropriate, the need for additional theoretical or
computational work is noted.

Existing signal-based methods cover many components
of the Perceptual Acoustic Features theme. Features related to
dynamics, timing, harmony, melody, can be extracted from
both audio and symbolic data, while timbre correlates can be
extracted from audio data. These features have been shown
to be informative for music emotion modelling [109], [110],
[111]. However, for several of the features, namely melodic
movement, extraction approaches have yet to be established
or remain to be incorporated effectively into MER systems.

12. https://github.com/bbcrd/bbc-vamp-plugins
13. https://www.vamp-plugins.org
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Relevant
Code

Perceptual and
Semantic Feature

Representative
MIR Feature

Feature Extraction by Existing Toolboxes
Related Computational Work
Audio (A) or Symbolic (S) DescriptionAudio: MIRtoolbox [M]

Vamp plugins [V-] Symbolic: jSymbolic

Perceptual Acoustic Features

Dynamics
Loudness RMS energy mirrms [M]

loudness [V-L] – Global sound energy [75], [89](A) Volume/intensity, measured with global
signal energy

Dynamic change Low energy rate mirlowenergy [M]
low energy ratio [V-B]

D-4 Average Note to Note
Change in Dynamic

Low energy ratio [75](A),
MIDI dynamic change [90](S)

Loudness contrasts, frames with less-
than-average energy

Mode Mode mirmode [M]
key mode [V-Q] P-33 Major/Minor Modality estimation [75], [91](A), [90](S) Overall mode: major, minor

Harmony Chord Chord type Chordino [V-C] C-3 Chord Type Histogram Chord estimation [92](A), [90](S) Type: major, minor, dominant, etc.

Harmonic
progression

Harmonic change
detection

mirhcdf [M]
Chordino [V-C] — Harmonic change [92](A) Change in harmonic progression

Key clarity Key clarity mirkeyclarity [M] — Key clarity [75](A) Clarity of estimated tonal centre

Pitch F0 estimate,
MIDI pitch

mirpitch [M]
fundamental freq. [V-L]

P-2 Pitch Class Histogram
P-14 Mean Pitch Pitch estimation [75], [89](A), [90](S) Perceived pitch

Melody Melodic
progresson Pitch variability — P-24 Pitch Variability

P-25 Pitch Class Variability
Pitch contour [93](A),
Pitch variability [90](S) Pitch increase/decrease

Pitch range Pitch value
differences — P-8 Range Pitch range [90](S) Pitch range in semitones

Inharmonicity Inharmonicity mirinharmonicity [M]
inharmonicity [V-L] — Inharmonicity estimation [75], [89](A) Degree of deviation of partials from

harmonic series

Tempo Tempo mirtempo [M]
tempo [V-Q]

RT-1 Initial Tempo
RT-2 Mean Tempo Tempo estimation [75], [91](A), [90](S) Estimated tempo

Timing Tempo change Tempo change mirtempo [M] RT-3 Tempo Variability Tempo change [75](A), [90](S) Tempo variation over time

Note density Note density or
event density mireventdensity [M] RT-5 Note Density, R-10 Note

Density per Quarter Note Event density [75](A), [90](S) Estimated note onset per second

Smoothness Spectral flatness
mirflatness [M]
spectral smoothness [V-L] — Flatness [75], [91](A) Smoothness of the sound

Timbre &
Roughness Dissonance Roughness mirroughness [M] — Roughness [75](A) Dissonance of the sound

Brightness Spectral centroid/
rolloff

mirbrightness [M]
spectral centroid [V-L] — Brightness [75], [91](A) Brightness of the sound

Instrumentation & Arrangement

Instrument
Instrument(s)
present

Instrument
recogniton — I-1 Pitched Instruments

Present
Instrument recognition [94], [95], [96],
[97](A), Instruments presented [90](S) Which instruments are present

Number of
instruments

Number of
instruments — I-8 Number of Pitched

instruments
Musical layers distribution [98](A),
Number of instrument presented [90](S) Number of instruments present

Instrument
interaction Interaction Layers/interaction — T-19 Parallel Motion

T-21 Contrary Motion

Ratio of musical layers transition
[98](A), Relations between independent
voices [90]

Musical lines, interaction, entrances,
active playing

Lead
instrument

Lead/melody
recognition

Prevalence/importance
of single instrument — I-3 Note Prevalence of

Pitched Instruments
Predominant instrument recognition
[96](A), Instrument prevalence [90](S)

Instruments playing solo or having a
lead melody

Personification of Instruments

Musical metaphor Evocations/imagery — — Mental image of sound [99](A) Abstract metaphor/imagery used to
relate sounds to emotions

Musical Structures

Boundaries Perceived
boundaries

Segmentation/
grouping

mirsimatrix [M]
Segmentino[V-S] — Music segmentation [75], [100],

Melodic segmentation [101], [102](S) Section definition (beginning/end)

Repetition Repetition Repeated motifs — — Music loops extraction [103](A),
Repeated theme and section [104](S)

Melodic patterns/repetitions and
reproduced motifs

Transition Section transition Transition mirnovelty [M] — Music transition [75](A) Movement to new section/form
Expectation & Violation

Tension Music tension miremotion [M] — Music tension [105](A), [73], [106](S) Rising intensity, impending climax
Performer Expression

Articulations Articulation Envelope (ADSR) mirattacktime [M] RT-7 Average Time Between
Attacks Articulation [75](A), [90](S) Flow of successive notes, eg. legato,

staccato articulation

Arpeggio Arpeggio — M-8 Amount of Arpeggiation Arpeggios pitch direction [107](A),
Arpeggiation detection [90](S)

Chord is articulated through separate
notes

Techniques Grace note Grace note — S-1 Number of Grace Notes Grace note detection [90] Stylistic embellishment through
additional notes, eg. acciaccatura

Vibrato Vibrato — P-40 Vibrato Prevalence Vibrato detection [108](A), [90](S) Regular, pulsating change of pitch

Tbl. 7: Perceptual and semantic features identified and corresponding MIR features. Audio toolboxes include MIRtoolbox
[M] [75] and Vamp plugins from QMUL [V-Q] [91], libxtract [V-L] [89], BBC plugins [V-B]12, Segmentino [V-S] [100], and
Chordino [V-C] [92]; for symbolic, jSymbolic [90]. Related audio (A) or symbolic (S) computational works are also reported.

Previous work estimated possible melody contours based
on 15 predefined patterns [93], and tested their use in emo-
tion and genre classification [112], [113]. However, extraction
of pitch progression and range remain a challenge: multipitch
(multiple f0) estimation is considered to be one of the
main challenges in current MIR research [114], [115], [116].
Compared to audio, data represented in symbolic format
can provide an accurate estimation of features which rely
on nominal information from the score, e.g. note density or
average pitch. The main disadvantage of symbolic data is
that the sonic properties of different instruments are lost,
which is detrimental to recognition of expressive aspects

such as timbre [58]. Considerably more digital music is
available in audio than in symbolic representation. For
example, improvisations recorded in audio which may be
difficult or time-consuming to transcribe, as well as music
which cannot be reflected accurately in Western notation, are
also neglected when there is reliance on symbolic data alone.
This limits the inclusion of certain musical styles in both MIR
datasets and the MER systems derived from them.

Most of the codes found in the Instrumentation & Arrange-
ment theme have associated features which can be extracted
with jSymbolic. These features are mainly limited to symbolic
data, which is currently a more reliable source for providing
information at the instrument level, compared to mixed and
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mastered audio data, from which it may be challenging to
separate instrument stems [114]. Moreover, musical scores
do not contain information on performers’ interpretations.
There is much computational work on instrument recogni-
tion [94], [95], [96], [97], but this has mainly been applied to
solo instrument classification tasks rather than multi-label
classification in polyphonic music. Novel audio-based music
texture features proposed recently could help address this
gap and have been applied to music emotion recognition [98].

The remaining results of this study outline new frontiers
for MER; for instance, the Arrangement & Instrumentation
theme has shown that listeners focus on instrument activity
and interactions and view their roles as providing emotion
cues. For real-time instrument recognition there are avenues
to explore, specifically, better detection of the instruments
playing at a given time, duration of instrument interactions,
and instrument roles (lead/solo vs accompaniment), may
benefit emotion prediction. This highlights the significance
of work in audio source separation and supports previous
findings that training on a multi-track dataset achieved better
MER results [117]14. With more multi-track datasets available
for public use [118], [119], this link between arrangement,
instrumentation, and emotion perception should be further
explored.

Computational models of features relating to the other
themes, Personification of Instruments, Expectation & Viola-
tion, Musical Structures and Performer Expression have been
proposed, although audio or score-based computational
extractors are not yet widely available for these features. The
recognition of Musical Structures and their repetition through
a performance would likely provide additional cues for MER
systems [65], [66]. Related to Personification of Instruments,
audio retrieval by sketching mental images of sound can
be applied to the exploring of listeners’ abstract emotion
representations [99]. In Expectation & Violation, theoretical
work on modelling tonal tension with symbolic data has
been successful [73], [106], but only limited empirical tension
retrieval work exists [120]. Because these features are percep-
tual, formalising, quantifing, and capturing their variations
require further work that is still in its infancy. This leads to a
lack of available datasets which are well-labelled and verified,
thus resulting in less material for computational study. Also,
the detection of particular higher-level features, such as
embellishment and articulation, require multidimensional
lower-level features, and thus their inclusion is also limited.

The focus on live performance brings to light the im-
portance of relatively unexplored musical attributes, such
as those in the Performer Expression theme. The relation
between expressive features and emotions has been stud-
ied with regard to vibratos and articulations [121], [122].
Methods to characterise expressive techniques have recently
been proposed such as detection of vibrato in violin and
erhu [108], [123], arpeggios in multiple instruments [107],
use of pedal in piano [124], and representative playing
techniques in guitar [125], [126] and bamboo flute [127].
These embellishments are unique to individual performances
and computational models would be useful for comparison

14. We assume that some of the findings presented in this study, which
focuses on contemporary classical music, would apply to other genres of
music. However, it is likely that some of the listener-informed features
would vary across genres–this requires further investigation.

of playing styles, performer identification, and individual
instrument sounds [128]. Where performance or production
videos are also available, features related to codes in Stage
and Visuals involving embodied expression can contribute
relevant cues. The present study demonstrates the potential
importance of multimodal aspects from the performance
space itself and proposes introducing other sensory material
in MER systems besides auditory stimuli; namely visuals,
given that many popular music streaming services include
visual material. Multimodal emotion-sensing using computer
vision [129] is therefore promising for the future design of
music emotion studies, with more multimodal data exchange
platforms and web applications merging to produce enriched
music performance resources [130], [131].

5.2 Limitations
Several limitations should be considered regarding this
research. First, the musical stimuli were limited to sections
from one performance of a musical piece. Although the Baba-
janian Trio is well situated within the Western contemporary
music canon and spans a wide range of characteristics, the
findings drawn from this recording cannot be generalised
to other music without further study. Second, although
we deliberately chose this relatively unknown piece to
avoid familiarity bias in emotion perception, it could be
argued that a certain familiarity could be expected of a
Western classical and contemporary music style, which has
its own distinct set of expectations compared to other genres.
Another limitation comes from the fact that our results are
prone to low statistical power due to the small sample size;
this makes the findings only suggestive. However, such a
limitation is the cost of our attempt to extract more rich
and accurate information from each individual’s detailed
annotations in the listening studies and provides the basis
for examining notable emotion-engendering features in other
music traditions. Future studies may compare participants’
perceived emotions from different music traditions across a
variety of musical selections with larger participant sample
size.

Last, as multiple factors varied between the Live and
Lab Study settings, the differences observed between the
studies may be affected by factors other than the setting
itself. However, as an exploratory study, the primary goal
of the research was to better understand the connections
between semantic features and the perceived emotion, rather
than to provide a systematic comparison of live vs lab
settings. The differences in agreement levels and rating
frequency may be attributed to many differences in the
listening conditions including but not limited to different
participants’ demographics, different stimulus length and
presentation format, and different guide tags used in the
rating tools (e.g. the improvements made in Mood Annotator
based on participant feedback). Testing the effect of recorded
lab vs live settings would require a controlled experimental
protocol designed to that effect.

5.3 Conclusions & Future Work
Ultimately, because musical performance is a form of
emotional communication, it will be perceived differently
by individual listeners. We began by conducting a study
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which collected time-based music emotion annotations from
participants, then followed up with a study interrogating
the reasons why participants consider certain musical points
to be convey emotion. It is clear that emotion reactions to
music are highly varied, as seen in both the VA agreement
levels and also in the wide variance in the rate of annotations
made by individual participants in any given section of the
piece. We then examined listener music emotion perception
based on high-level, salient emotion aspects identified in
listener feedback. These features ranged from the qualities
of the instruments themselves to the visual atmosphere and
performer expression. Tasks in MER currently rely heavily
on musical features related to tempo, dynamics, timbre,
and melodic/harmonic progressions; although these musical
elements are critical to emotion perception, they do not make
up the full landscape of the emotion experience. Inclusion of
more low-level acoustic features may result in more accurate
models, but the ends do not always justify the means—these
potentially confounding variables do not necessarily tell us
about the underlying cognitive mechanisms at play and the
subjectivity of data has been known to be problematic in
large music emotion datasets. Our research suggests a way
to accept such subjectivity as an inherent part of emotion,
rather than as an “issue.”

For future research on music and emotion, we advocate
for providing more attention to high-level elements such
as performer expression, instrumentation and interaction
between instruments, musical structure, and visual elements
of a performance environment. These elements matter to
participants, and it is important that further research ex-
plores links between perception and cognition. In this sense,
the idea of a performance being communication between
composers, performers, and instruments and listeners is
important; such processes involved in music emotion percep-
tion share similarities with that in interpersonal communi-
cation. This finding links MER with other types of emotion
communication research and provides potential directions
for further exploration between the communication sciences,
computer science, and music cognition. In the development
of MER tools, it is therefore important to consider the listener
base. Those with relevant musical background may seek out
different features to apprehend the emotion content than
those without, and it may be beneficial to tailor systems
individually to ensure consistency in emotion prediction.
For instance, a music recommendation software targeted at
classical music fans could ask the user some basic music
experience questions during setup and incorporate this
information in the analysis.

Additionally, as mentioned in Section 4.4, the role of
language in perception of different musical elements is a
prime area for future studies. It would benefit future work
to acquire a better understanding of the way terminology is
used to describe and relate to music, and the extent to which
a knowledge of music vocabulary and concepts influences
a participant’s likelihood to attribute emotion to it. The
Lab portion of this experiment could be run in two stages
with non-musicians: following an initial rating as done here,
the participants could be supplied with some basic music
terminology and pedagogical rhetoric. Observations and dis-
cussions with participants on how their knowledge changes
and how newfound language is applied in further reflections

of the musical piece could help determine language’s role in
self-reports of music perception.

Finally, as mentioned in Section 5.1, visual factors from
performers’ body movements, stage, and lighting may also
drive emotional perceptions. This indicates the audio-visual
stimuli used in this study may express different emotions
than stimuli limited to audio-only or video-only information.
Future research should also compare listeners’ emotion
perception with music stimuli from different modalities.
It would be worthwhile for emotion perception studies to
separate these elements into different stimuli to explore the
role of audio visuals and their inter-dependence.
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X. Serra et al., “Essentia: An audio analysis library for music
information retrieval,” in Proc. ISMIR, 2013.

[77] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in python,”
in Proc. 14th Python in Science Conf., vol. 8, 2015.

[78] F. Eyben and B. Schuller, “opensmile:): the munich open-source
large-scale multimedia feature extractor,” ACM SIGMultimedia
Records, vol. 6, no. 4, pp. 4–13, 2015.

[79] G. Tzanetakis and P. Cook, “Marsyas: A framework for audio
analysis,” Organised Sound, vol. 4, no. 3, pp. 169–175, 2000.

[80] D. Cabrera, S. Ferguson, F. Rizwi, and E. Schubert, “Psysound3:
a program for the analysis of sound recordings,” Journal of the
Acoustical Society of America, vol. 123, no. 5, p. 3247, 2008.

[81] C. McKay, I. Fujinaga, and P. Depalle, “jaudio: A feature extraction
library,” in Proc. ISMIR, 2005, pp. 600–3.

[82] C. Cannam, M. O. Jewell, C. Rhodes, M. Sandler, and M. d’Inverno,
“Linked Data And You: Bringing music research software into the
Semantic Web,” Journal of New Music Research, vol. 39, no. 4, pp.
313–325, 2010.

[83] C. Cannam, C. Landone, and M. Sandler, “Sonic visualiser: An
open source application for viewing, analysing, and annotating
music audio files,” in Proceedings of the ACM Multimedia 2010
International Conference, Firenze, Italy, October 2010, pp. 1467–1468.

[84] C. McKay, J. Cumming, and I. Fujinaga, “JSYMBOLIC 2.2: Extract-
ing Features from Symbolic Music for use in Musicological and
MIR Research,” in Proc. ISMIR, 2018, pp. 348–354.

[85] M. S. Cuthbert and C. Ariza, “music21: A toolkit for computer-
aided musicology and symbolic music data,” 2010.

[86] T. Eerola and P. Toiviainen, “Midi toolbox: Matlab tools for music
research,” 2004.
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using melody features extracted from polyphonic music signals,”
in Proc. ICASSP. IEEE, 2012, pp. 81–84.

[113] R. Panda, B. Rocha, and R. P. Paiva, “Music emotion recognition
with standard and melodic audio features,” Applied Artificial
Intelligence, vol. 29, no. 4, pp. 313–334, 2015.

[114] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Automatic music
transcription: An overview,” IEEE Signal Processing Magazine,
vol. 36, no. 1, pp. 20–30, 2018.
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