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Abstract—Speech-based machine learning (ML) has been heralded as a promising solution for tracking prosodic and spectrotemporal
patterns in real-life that are indicative of emotional changes, providing a valuable window into one’s cognitive and mental state. Yet, the
scarcity of labelled data in ambulatory studies prevents the reliable training of ML models, which usually rely on ”data-hungry”
distribution-based learning. Leveraging the abundance of labelled speech data from acted emotions, this paper proposes a few-shot
learning approach for automatically recognizing emotion in spontaneous speech from a small number of labelled samples. Few-shot
learning is implemented via a metric learning approach through a siamese neural network, which models the relative distance between
samples rather than relying on learning absolute patterns of the corresponding distributions of each emotion. Results indicate the
feasibility of the proposed metric learning in recognizing emotions from spontaneous speech in four datasets, even with a small amount
of labelled samples. They further demonstrate superior performance of the proposed metric learning compared to commonly used
adaptation methods, including network fine-tuning and adversarial learning. Findings from this work provide a foundation for the
ambulatory tracking of human emotion in spontaneous speech contributing to the real-life assessment of mental health degradation.

Index Terms—Emotion recognition, scripted/spontaneous speech, few-shot learning, metric learning, siamese neural network
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1 INTRODUCTION

EMOTION tracking has been investigated as an approach
to help individuals remain in psychologically healthy

and to assist with mental diseases [1]. Speech-based am-
bulatory monitoring is a promising method to longitudinal
emotion tracking: prosodic and spectrotemporal patterns
of speech reflect changes in muscle tension of the articu-
latory system, which are indicative of one’s emotions [2].
Supplemented with artificial intelligence (AI), speech has
the potential to serve as a valuable biomarker for tracking
emotions and triggering early mental health intervention
mechanisms [3].

Despite the potential of ambulatory speech monitoring
for tracking human emotion, the reliable annotation of spon-
taneous emotional speech (i.e., speech elicited in realistic
conditions without planning), usually conducted via self-
reports or third-party evaluators, is an inherently challeng-
ing task. Self-reporting is subjective and potentially biased
by social, cultural, and psychological factors [4], while third-
party annotation can be erroneous and time-consuming [5].
Due to these limitations, audio samples in many speech-
based emotion datasets are collected through acted elicita-
tion methods relying on individuals who engender a target
emotion while uttering pre-determined linguistic contents,
also known as scripted speech [6]. Despite the fact that these
methods tend to overlook subtle expression details, they
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provide ample data, based on which machine learning (ML)
methodologies can recognize emotions [7].

Transfer learning refers to leveraging knowledge from
ample training examples from one domain to learn robust
data representations for another (potentially related) do-
main [8]. Various transfer learning algorithms have been
proposed for speech emotion recognition, including adap-
tive support vector machines, neural network fine-tuning,
progressive neural networks, and adversarial learning [9],
[10], [11], [12]. Despite the promising results, these require a
relatively large number of samples from the target domain
to achieve promising performance. Few-shot learning has
been proposed as an alternative to fully-supervised transfer
learning, since it accounts for the potential shortage of la-
belled samples in the target domain. A promising approach
in few-shot learning relies on Metric Learning (MeL). MeL
learns a transferable distance-based embedding that models
the relative distance between classes [13]. In this way, it
is easier to classify samples based on the new embedding
rather than the original space. MeL has been explored for
audio classification [14], [15], speaker recognition [16], and
image-based emotion and facial expression recognition [17],
[18]. To the best of our knowledge, MeL has not been exam-
ined in speech-based recognition of spontaneous emotion.

We propose a MeL approach that transfers knowledge
from scripted to spontaneous speech by learning emotion-
specific speech embeddings with small supervision from
the target domain. MeL conducts pairwise comparisons
of samples between emotional classes and is implemented
with a siamese neural network (SNN). Beyond the pairwise
sample comparison, we impose an additional supervision to
MeL that allows to directly obtain an emotional class output
for a test sample, referred to as Metric Learning with Super-
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vision (MeL-S). Finally, we address issues related to training
convergence that yield by the random pair formation in MeL
and MeL-S through an adaptive procedure. The proposed
Metric Learning with Supervision and Adaptive Sample Pair
Formation (MeL-S-ASPF) iteratively trains a SNN using an
adaptive selection likelihood of the input samples, assigning
higher probability to consistently misclassified samples. The
proposed few-shot learning is compared to in-domain learn-
ing, out-of-domain learning, as well as transfer learning
implemented with feedforward neural network (FNN) fine-
tuning and adversarial learning. Results indicate the ability
of MeL-S to effectively transfer knowledge between acted
and spontaneous speech relying only on a small number
of labelled samples from the target domain (e.g., 70% un-
weighted average recall using 2-3 labelled samples per class
on a 3-way classification task). Our findings further suggest
that the proposed MeL-S-ASPF provides advantages com-
pared to random sample pair formation of MeL and MeL-S,
which are especially beneficial when using a small number
of labelled samples.

2 PREVIOUS WORK
Previously proposed transfer learning methods for speech-
based emotion recognition include both supervised and
unsupervised approaches. The first require labeled data
from the target domain, in contrast to the latter. In terms
of supervised learning, prior work has explored the ef-
fect of supervised domain adaptation in cross-corpus ex-
periments using adaptive and incremental support vector
machines [19], as well as auto-enconder architectures that
learn a transferable low-dimensional feature space from the
original features [20], [21]. Progressive neural networks have
been also proposed as an alternative method to transfer
knowledge between domains without forgetting the learned
embeddings of the source domain [9], [10]. In terms of
unsupervised transfer learning, adversarial and generative
learning have been employed to tackle the distribution
mismatch between emotional speech corpora [22], [23], [24].
Results demonstrate that even including unlabelled data
from the target domain can yield considerable improvement
compared to not including any target data. A detailed
review of transfer learning methodologies with focus on
speech-based emotion recognition can be found in [25].

Few-shot learning aims to classify samples from a target
domain using a small number of labelled examples from
that domain. A promising few-shot learning approach relies
on metric learning algorithms, which aim to learn a trans-
ferable feature embedding by optimizing a distance loss
metric between the classes of interest, rather than learning
the distribution of each class separately [26], [27]. Metric
learning, implemented through SNNs [28] and relation net-
works [27], has been explored in person re-identification,
speaker verification, and recommendation systems [29],
[30], [31]. SNNs have also shown promising results in in-
domain emotion classification, not in the context of few-shot
learning [32], [33], [34]. As part of our preliminary work, we
have explored the feasibility of metric learning implemented
with SNN to few-shot emotion recognition [35].

The contributions of this paper are: (1) A novel formu-
lation of MeL and MeL-S for transferring emotion-specific
knowledge between a source and a target domain using a

small number of labelled samples from the target domain.
The proposed approach is likely to overcome limitations of
conventional distribution-based learning due to its ability
to model the relative distance between classes; (2) An itera-
tive adaptive sample pair formation for SNN training, that
promotes the selection of samples which are consistently
misclassified by previous iterations. This has the potential
to increase the robustness of metric learning compared to
modeling the distance between random pairs of samples;
and (3) An investigation of the feasibility of transferring
knowledge between acted (source) and spontaneous (target)
speech, providing a foundation into ways to leverage the
large number of labelled samples from acted speech datasets
in emotion tracking in spontaneous speech.
3 DATA DESCRIPTION AND PRE-PROCESSING
In this study, we use four datasets, which were selected due
to the fact that they contain utterances spoken in English
and categorical emotional labels. These include the Inter-
active Emotional Dyadic Motion Capture (IEMOCAP) [36],
Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [37], Crowd-sourced Emotional Multi-
modal Actors Dataset (CREMA-D) [38], and Audio-Visual
Emotion Database (eNTERFACE’05) [39]. IEMOCAP [36]
consists of dyadic sessions between 10 actors, who are
engaged in both scripted (IEMOCAP-SC) and spontaneous
(IEMOCAP-SP) interactions. RAVDESS [37] contains audio-
visual recording from 24 actors, who uttered a list of scripted
sentences with different emotions. CREMA-D [38] includes
speech data from 91 actor participants, who were asked
to express scripted sentences with target emotions until
approved by an expert. The eNTERFACE’05 dataset [39]
includes 42 speakers, who were asked to utter scripted
sentences in response to listening short stories that were
used to elicit various target emotions. Here, we explore
the three most common emotions present in these datasets:
anger, happiness, and sadness. Scripted speech samples
from IEMOCAP-SC (133 minutes), RAVDESS (36 minutes),
CREMA-D (159 minutes), and eNTERFACE’05 (30 minutes)
are used as the source data, while spontaneous samples
from IEMOCAP-SP (92 minutes) comprise the target data.
Few-shot learning experiments will be conducted so that the
samples from target dataset are gradually made available in
the learning process.

A 64-dimensional speech descriptor is extracted using
the openSMILE toolkit [40] to capture prosodic and spec-
trotemporal variations relevant to human emotion [41]. The
features are extracted using the configuration file from the
INTERSPEECH’09 Emotion Challenge [42] with default pa-
rameters of 25ms frame length and 10ms step length. The
first 32 feature dimensions include the arithmetic mean and
standard deviation of frame-based speech intensity, zero-
crossing rate, voicing probability, fundamental frequency,
and the first 12 Mel-frequency cepstral coefficients (MFCC).
The last 32 dimensions include the first-order derivative of
the above descriptors. Feature normalization is conducted
using the scikit-learn [43] library within each dataset to
initially mitigate potential domain differences. Each feature
is standardized using the mean and standard deviation com-
puted using the samples of each dataset. The scripted and
spontaneous part of the IEMOCAP dataset is normalized
separately to avoid potential information leaking.
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4 PROPOSED METHODOLOGY

We will first introduce the fundamentals of the SNN archi-
tecture (Section 4.1) and then describe the proposed met-
ric learning approaches (Sections 4.2-4.4). We will further
provide details on the experimental design (Section 4.5),
including the formulation of in-domain and out-of-domain
learning (Section 4.5.1), the experimental setting of the
metric learning approaches (Section 4.5.2), and the baseline
approaches (Section 4.5.3).

4.1 Siamese Neural Network (SNN)
The Siamese neural network (SNN) is comprised of two
input streams that compare a pair of input samples (xi,xj)
(Fig. 1). The hidden layers of the SNN learn a transforma-
tion fW, parameterized by weights W, that implements
a similarity function between the two pairs of samples.
The transformed input samples fW(xi) and fW(xj) are
compared at the output through the distance function d(·, ·).
The parameters W of the SNN are the same between the
two input streams and are learned so that they minimize
the following distance loss function:

Ld(W) =
∑
c

∑
xi,xj∈Xc

d (fW(xi), fW(xj))−

κ
∑
c6=c′

∑
xi ∈ Xc

xj ∈ Xc′

d (fW(xi), fW(xj)) (1)

where Xc is the set of data belonging to class c, Xc′ is
the set of data belonging to class c′ different than c, and
κ determines the trade-off between penalizing dissimilarity
between samples belonging to the same class against simi-
larity between samples belonging to different classes.

4.2 Metric Learning (MeL)
We learn emotion-specific speech representations through
a MeL approach implemented with SNNs. Our SNN is
initially trained on samples of scripted speech (i.e., source)
based on (1). Knowledge transfer is performed by fine-
tuning the weightsW of the SNN using the small number of
labelled samples from the spontaneous speech samples (i.e.,
target). Since the SNN is used to identify whether a pair of
input samples belongs to the same emotion, it does yield
explicit emotion labels. As a result, we obtain an emotion
classification outcome for a test sample x by comparing its
learned embedding to the embedding of the center x̄c of
the labelled samples from the target data for each emotional
class c. The final emotion label is obtained by identifying
the class whose center depicts the lowest distance to the test
sample: argminc d (fW(x), fW(x̄c)).

4.3 Metric Learning with Supervision (MeL-S)
We further impose an additional supervision constraint to
the original SNN architecture, which allows us to directly
obtain the emotional class outcome for a test sample (i.e.,
without having to compare the distance of the test sample
with the center of samples from each class, as in Section 4.2).
According to the MeL-S model, the transformed samples
fW(x), where W is learned by the MeL approach through
the loss function Ld, are fed into an additional set of
fully-connected hidden layers gV, which learns a mapping
between the transformed space fW(x) and the final class

outcome y. The transformation gV is implemented with a
set of neural layers, but it could have been also implemented
with any other linear or non-linear classification algorithm.
The weights V are learned such that they minimize the
cross-entropy loss of the emotion classification task:

Le(V) = −
∑

x∈X ,y∈Y
y log gV (fW(x)) (2)

where X is the set of input samples and Y is the set of labels
in the training set.

The weights W are initially pre-trained using the MeL
method on the source domain and refined using the Mel-
S method on the target domain, such that {W∗,V∗} =
argminV minW (Le(V) + Ld(W)).

4.4 Metric Learning with Supervision and Adaptive
Sample Pair Formation (MeL-S-ASPF)
The pairs of samples that serve as an input to the SNN in
MeL and MeL-S (Sections 4.2, 4.3) were randomly selected.
In this way, convergence of the training process might
require many iterations, since the algorithm has no informa-
tion on how well specific samples are learned. To address
this limitation, we propose the MeL-S-ASPF, an iterative
learning process that alternates between training the SNN
and assigning an importance factor to the input samples
used for SNN training. The importance factor is assigned
such that higher importance is given to samples that are not
adequately learned by the SNN during previous iterations.
Samples with higher importance have a higher chance to get
selected in the next training iteration of the SNN (Fig. 2).
According to MeL-S-ASPF, each sample of the training set
x ∈ X , y ∈ Y is assigned to a selection likelihood πt(x)
during training iteration t, which is updated such that:

πt+1(x) = πt(x) + λ ‖gVt
(fWt

(x))− y‖1 , t = 1, . . . , T
(3)

where fWt
and gVt

are the transformations learned by
iteration t, λ is a constant used to control the update rate
of the sample selection likelihood, and ‖ · ‖1 is the l1-norm.
We initialized π1(x) to 1 for every sample x. The likelihood
is proportional to the probability that a data sample is
being selected. The adaptive sample pair formation process
is outlined in Algorithm 1. We generate pairs of samples
within a speaker s that either belong to the same or different
emotions, each of the two cases occurring with probability
equal to 0.5. We select a sample x ∈ Xs,c uttered by speaker
s with emotion c based on the following probability:

P (x) =
πt(x)∑

xi∈Xs,c
(πt(xi))

(4)

The proposed update in (3) renders the pair formation adap-
tive in two ways: (1) The selection probability of consistently
correctly classified samples decreases over time; and (2)
The selection probability of misclassified samples increases
proportionately to the error of the current iteration.

4.5 Experimental Design
Here, we describe the experimental design that was em-
ployed to validate the proposed approach.
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Algorithm 1 Adaptive sample pair formation
1: Randomly select speaker s and emotion ck
2: Generate a from uniform distribution: a ∼ U(0, 1)
3: if a > 0.5 then
4: Form a pair of the same emotion: Set cm = ck
5: else
6: Form a pair of different emotion: Randomly select

emotion cm 6= ck
7: end if
8: Select sample xi ∈ Xs,ck based on (4)
9: Select sample xj ∈ Xs,cm based on (4)

10: Form pair (xi,xj)

Fig. 1. Visualization of the metric learning (MeL) and metric learning with
supervision (MeL-S) models.

Fig. 2. An example of the formation of sample pairs in metric learning
with supervision and adaptive sample pair formation (MeL-S-ASPF).

4.5.1 In-domain and out-of-domain learning
In order to understand the inherent domain difference be-
tween the source and the target, we conduct two exper-
iments without transfer learning. First, we conduct out-
of-domain learning by training an emotion classification
model on the source data and testing on the target. All
samples from the source are used to train the model and
all samples from the target are used for testing. Second,
we perform in-domain-training, according to which data
from the target domain are used for training and testing the
models. In-domain-training is evaluated using leave-one-
subject-out cross-validation on the target data only. For both
in-domain and out-of-domain experiments, we employed a
5-layer FNN with 64, 32, 16, and 16 nodes in the first, second,
third, and fourth layers, as well as 3 nodes in the output
layer. The rectified linear unit (ReLU) activation function
is employed in the first three layers, while the sigmoid
activation is used in the last decision making layer to yield a
probability outcome for each emotional class. All models are
trained to minimize the cross-entropy loss using the Adam
optimization [44] with a learning rate of 0.0005, 250 epochs.

4.5.2 Few-shot learning
We examine the effectiveness of the proposed metric learn-
ing (i.e., MeL, MeL-S, MeL-ASPF; Sections 4.2-4.4) by grad-
ually rendering available an increasing number of labelled
samples from the target data in our experiments. We start
by randomly selecting 1 labelled sample per speaker and
per emotion from the target data and using the remaining
samples in the test set. We repeat this process 10 times
and compute the average accuracy in order to obtain an
unbiased result. Then, we gradually increase the number
of samples to 2, . . . , 10 clips per speaker and per emotion,
to explore changes in performance when additional labeled
data from the target domain is available.

The proposed MeL, MeL-S, and MeL-S-ASPF approaches
employ a SNN, which is first trained on the source data and
then fine-tuned on the labelled samples from the target data.

To be consistent with the in-domain and out-of-domain
learning (Section 4.5.1), the proposed MeL, MeL-S, and
MeL-S-ASPF approaches are implemented with a 5-layer
SNN with 64, 32, 16, and 16 nodes and ReLU activation
in the hidden layers, as well as a sigmoid activation in the
single node of the output layer. Learning is performed using
cross-entropy loss and Adam optimization with a learning
rate of 0.0005 and 250 training epochs. The trade-off between
penalizing dissimilarity between samples belonging to the
same class against similarity between samples belonging
to different classes, as shown in (1), is set to κ = 1. The
supervision layer of the MeL-S model includes 1 hidden
layer with 8 units and ReLU activation, and an output layer
with 3 nodes and sigmoid activation. The adaptive sample
pair formation in MeL-S-ASPF is performed with an update
rate λ = 0.1 of the selection likelihood in (3), since our goal
is to avoid an uninformed abrupt increase of the selection
likelihoods in the first few training iterations. The MeL-S-
ASPF approach further includes T = 25 iterations, during
which the SNN is trained using 10 epochs. When training
the model on the source data, we form pairs of samples
without considering speaker identity, which allows us to
maximize the generalization of the original model as well as
to mitigate the difference between the source datasets. When
fine-tuning on the target data, we form pairs of samples
within a speaker (i.e., a pair containing samples from the
same speaker) with a selection likelihood that follows a
uniform distribution with half of the pairs being from the
same emotion, while the other half from different emotions.
Sample pair formation on the target data using random
pairs of speakers was also performed, but provided slightly
decreased performance.

4.5.3 Baseline methods
We used two baseline methods to compare the proposed
metric learning approaches. The first was implemented
through FNN fine-tuning, a commonly used transfer learn-
ing technique [25], [45]. Fine-tuning is conducted by pre-
training the FNN on the source samples and then refining
the learned weights of all layers based on the available
labelled target data. We employ 5-layer FNN, similar to
Section 4.5.1. The second baseline follows the Adversarial
Discriminative Domain Adaptation (ADDA) method [46],
a recently proposed domain adaptation method, that aims
to reduce the distribution difference between the source and
target samples through an adversarial loss. We implemented
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the ADDA in a similar way to previous research on speech
emotion recognition [23] using the time-frequency log-
scaled spectrogram patches as features. The 256 dimensional
Mel Filter Banks (MFBs) are computed for each sample, with
a frame length of 32ms and a 16ms shift using Scipy [47].
Each patch is comprised of 30 frames, with an overlap of
15 frames, resulting in a 256 × 30 input to a convolutional
neural network (CNN). The CNN uses a kernel size of 15
for the first convolutional layer, and a kernel size of 3 with
a dilation rate of 2 for the second convolutional layer. Each
convolutional layer has 128 channels, followed by a max
pooling layer of pool size 3 and stride size 2. Then a global
maximum is computed and resulted in a 128-dimensional
feature. Two hidden layers with 128 units were applied to
the extracted feature before the output softmax layer. Each
layer used the ReLU activation except the output layer,
which used sigmoid. Because ADDA does not require target
labels during training, we fine-tuned the trained model us-
ing target data for a better comparison with other methods.
The dropout rate during training was 0.2. The prediction
for each audio sample is obtained through a majority voting
based on all the patches of the corresponding sample.

5 RESULTS
All approaches are evaluated on their ability to correctly
classify the three considered emotions using the unweighted
average recall (UAR), which is computed by taking the
average of recall rates for each emotion (Figure 3). The
chance UAR for the 3-way classification task is 33.3%.
The in-domain training achieves UAR of 72.5% suggesting
moderate to high differentiation between the three emo-
tions when a significant number of target data is available.
The out-of-domain performance ranges between 49% to
68% demonstrating the potential data mismatch between
scripted and spontaneous speech. RAVDESS, CREMA-D,
and IEMOCAP-SC provide relatively successful out-of-
domain training (i.e., 67.4%), while this is not the case for
eNTERFACE’05, which appears to depict a large domain
difference with the target IEMOCAP-SP dataset. This dif-
ferential result might be attributed to the fact that eNTER-
FACE’05 was the only dataset in which audio samples were
recorded by regular participants rather than actors.

In regards to the proposed metric learning, the MeL
approach does not yield satisfactory performance. However,
the supervision added as part of the MeL-S and MeL-S-
ASPF approaches significantly improves results. A potential
reason for this is that MeL-S and MeL-S-ASPF explicitly
model the emotional outcome of interest, which is not the
case for MeL. The MeL does not outperform the FNN
fine-tuning and ADDA potentially for the same reason. It
is noteworthy that the MeL-S and MeL-S-ASPF methods
depict good performance even when a small amount of
labelled target data is available (e.g., 1-2 labelled samples
per speaker and emotion for eNTERFACE’05, RAVDESS,
and IEMOCAP-SC). Also the MeL-S and MeL-S-ASPF mod-
els appear to reach stability in their performance when
increasing the number of labelled target data from the
target domain. We further observe that the MeL-S-ASPF
outperforms the MeL-S across many cases including the
IEMOCAP, RAVDESS, and CREMA-D datasets, suggesting

that the adaptive sample pair formation benefits perfor-
mance compared to the random formation of sample pairs.
This indicates that this adaptive process can potentially
contribute to effectively learning challenging samples that
are difficult to estimate when not taking into account the
corresponding modeling error. The overall best performance
is obtained by the MeL-S-ASPF model when using CREMA-
D as the source with 10 samples per speaker and emotion,
reaching UAR larger than the in-domain learning (i.e., 74%).

We further compare the performance of metric learning
to the baseline. Both FNN fine-tuning and ADDA appear
to be consistently lower compared to the MeL-S and MeL-
ASPF. The UAR of FNN fine-tuning, is slowly increasing, as
we use more labelled samples from the target data. When
we only use one labelled sample per speaker and emotion,
negative transfer occurs for the FNN fine-tuning in many
cases (e.g., RAVDESS, IEMOCAP-SC), indicating that the
corresponding approach may not be promising for transfer-
ring knowledge between scripted and spontaneous speech
in emotion recognition. The performance increase of ADDA
is less consistent compared with FNN fine-tuning, which
could possibly be due to unstable training of the adversarial
model. However, the best performance of ADDA is better
compared to that of the FNN fine-tuning, indicating the
potential of this method.

Next, we visualize the embeddings learned by the pro-
posed metric learning and the baseline non-metric learning
approaches. For this, we perform principal component anal-
ysis (PCA) to the output of the last hidden layer of each
model and provide scatter plots of the first two PCA di-
mensions corresponding to the largest data variance (Fig. 4).
The transformed data samples depict high overlap among
the three classes when using the baseline FNN fine-tuning,
while the MeL-S-ASPF model results in more distinct dis-
tributions. This difference is depicted in our results, since
the metric learning approaches with additional supervision
outperform the FNN fine-tuning (Fig. 3).

We investigate how sample selection likelihoods vary
throughout the adaptive sample pair formation process by
tracking the selection likelihood πt(xn) of training samples
xn over different training iterations t (t = 5, 10, 15, 20, 25)
(Fig. 5). When using the CREMA-D as the source, the selec-
tion likelihood of most samples is concentrated around 1.
This suggests that samples from CREMA-D are fairly easily
classified based on the MeL-S-ASPF, therefore there is no
need to update the selection likelihood for many samples.
In contrast, many samples from the RAVDESS dataset are
updated with the corresponding selection likelihoods being
in higher ranges compared to CREMA-D. This is also de-
picted in the emotion classification results (Fig. 3), where
the MeL-S-ASFP presents clear benefits for CREMA-D.

We finally perform error analysis to identify consistently
misclassified samples in the target data (independently of
the source) and potential sources of error. Common sources
of error correspond to noisy audio samples with almost
ineligible speech, samples with high discrepancy among
annotators, as well as samples for which the linguistic
information played an important role in making the final
emotion decision. We provide the specific files that corre-
spond to the misclassified samples in Table 1.
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(a) IEMOCAP-SC (b) RAVDESS

(c) CREMA-D (d) eNTERFACE’05

Fig. 3. Unweighted average recall (UAR) for in-domain, out-of-domain, and few shot learning methods using various source datasets and an
increasing number of labelled samples per speaker and emotion.

(a) FNN fine-tuning (b) MeL-S-ASPF

Fig. 4. Data distributions learned by the feedforward neural network
(FNN) fine-tuning and the metric learning with supervision and adaptive
sample pair formation (MeL-S-ASPF) using RAVDESS as the source
dataset.

TABLE 1
Consistently misclassified samples from target dataset IEMOCAP-SP

Ses01M impro01 F001 Ses02F impro03 F017 Ses03M impro03 F027
Ses05F impro03 F032 Ses02M impro02 F004 Ses04F impro02 F009
Ses05M impro02 M007 Ses02M impro02 F004

6 DISCUSSION & CONCLUSIONS

We propose a few-shot learning approach that leverages the
abundance of publicly available data from scripted speech
in order to detect emotion in spontaneous speech. Our re-
sults indicate the feasibility of using scripted speech data to
initialize emotion classification models, which can provide
useful information for the target data. They further suggest
that the proposed MeL-S and MeL-S-ASPF approaches can

result in more effective transfer of knowledge compared to
conventional distribution learning that models the absolute
sample distribution. MeL-S and MeL-S-ASPF yield a relative
improvement of 6-23% compared to out-of-domain learning
and 1-7% compared to the FNN fine-tuning baseline. Indica-
tively prior work depicts approximate relative improvement
of 6-8% [22], [23], [48] compared to out-of-domain training
for similar emotion classification tasks. For a few cases, the
proposed metric learning approach is able to outperform in-
domain learning, which suggests that including additional
data with the appropriate handling of the potential domain
mismatch can benefit learning. Furthermore, this method
could potentially be used when detecting different emotions
in the source and the target data. Since the SNN learns the
relative distance between classes instead of the actual class
labels, the learned relations could still provide a meaningful
initialization of the weights of the network so that it can be
effectively generalized to unseen classes.

Results from this work can help toward reliable sys-
tems of emotional intelligence that can detect emotions
from spontaneous speech with a small number of labelled
samples from the target domain. This can be particularly
useful in real-life applications that rely on tracking well-
being from speech, since it demonstrates the ability of
speech-based systems to generalize to a new domain using
limited supervised experience, potentially mimicking the
human ability to recognize emotions from few examples
through relative comparison from previous experience. The
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5th iteration 10th iteration 15th iteration 20th iteration 25th iteration
(a) CREMA-D

5th iteration 10th iteration 15th iteration 20th iteration 25th iteration
(b) RAVDESS

Fig. 5. The distribution of sample selection likelihoods πt(x) (t = 5, 10, 15, 20, 25) using the metric learning with supervision and adaptive sample
pair formation (MeL-S-ASPF) for CREMA-D and RAVDESS over various training iterations t.

proposed methods could eventually benefit ambulatory
monitoring applications in the clinical domain, where la-
belled ambulatory data with high temporal granularity are
scarce. In this context, audio data collected in the clinic can
robustly initialize emotion recognition models that can be
generalized in real-life settings for emotion tracking. Since
the experience of everyday emotions plays a significant role
in psychopathology, this can contribute to effective mental
health diagnosis and intervention tracking.

Our study depicts the following limitations. First, the
spontaneous speech data from IEMOCAP-SP are collected
in laboratory conditions involving high quality micro-
phones and low levels of noise. Despite the phonetic and
prosodic differences between scripted and spontaneous
speech, the fact that both source and target data have
been collected in laboratory conditions has the potential to
decrease the domain mismatch between them. As part of
our future work, we plan to examine the effectiveness of the
proposed approach with various types of real-life datasets,
such as the EmotiW [49]. Second, the source and target
audio samples are uttered in English, however, emotion is
expressed universally, so it would be worthwhile to explore
transfer learning and few-shot learning techniques in cross-
linguistic scenarios. Of particular interest would be few shot
learning between languages of different families, such as
between English (i.e., Indo-European language) and Man-
darin Chinese (i.e., Sino-Tibetan language family). Datasets
that could be used toward this purpose include the Chi-
nese natural emotional audio–visual database (CHEAVD)
[50] and the Mandarin Chinese Emotional Speech Dataset
- Portrayed (MES-P) [51]. Finally, we studied each of the
source datasets in isolation. Inspired by prior findings [10],
[23], it would be beneficial to explore the extent to which
the combination of multiple source datasets can benefit few-
shot learning. It would be also interesting to investigate
the interplay between the properties of the various source
datasets (e.g., including complementary information) and
their effectiveness in few-shot learning.
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