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Abstract—EEG signals have been reported to be informative and reliable for emotion recognition in recent years. However, the 

inter-subject variability of emotion-related EEG signals still poses a great challenge for the practical applications of EEG-based 

emotion recognition. Inspired by recent neuroscience studies on inter-subject correlation, we proposed a Contrastive Learning 

method for Inter-Subject Alignment (CLISA) to tackle the cross-subject emotion recognition problem. Contrastive learning was 

employed to minimize the inter-subject differences by maximizing the similarity in EEG signal representations across subjects 

when they received the same emotional stimuli in contrast to different ones. Specifically, a convolutional neural network was 

applied to learn inter-subject aligned spatiotemporal representations from EEG time series in contrastive learning. The aligned 

representations were subsequently used to extract differential entropy features for emotion classification. CLISA achieved state-

of-the-art cross-subject emotion recognition performance on our THU-EP dataset with 80 subjects and the publicly available 

SEED dataset with 15 subjects. It could generalize to unseen subjects or unseen emotional stimuli in testing. Furthermore, the 

spatiotemporal representations learned by CLISA could provide insights into the neural mechanisms of human emotion 

processing.  

Index Terms—EEG, emotion recognition, brain-computer interface, cross-subject, contrastive learning 

——————————      —————————— 

1 INTRODUCTION

lectroencephalogram (EEG) based emotion recognition 
has gained increasing interest in recent years [1], [2]. 

Unlike behavioral techniques that record facial expressions, 
body gestures, voice, etc. [3], EEG provides a more direct 
and objective measurement of human emotional responses 
that cannot be easily disguised or consciously restrained 
[1], [4], [5]. Compared to other neuroimaging techniques 
such as functional magnetic imaging (fMRI) and magne-
toencephalography (MEG), EEG is advantageous for its 
portability and cost-effectiveness in real-world applica-
tions [4], [5].  

Extensive studies have investigated emotion-related 
EEG representations [6], [7], [8]. Differential entropy (DE) 
features, which are equivalent to the logarithm energy 
spectrum in a specific frequency band [9], [10], have been 
widely used in the state-of-the-art emotion recognition 
methods [11], [12], [13]. Beta- and Gamma-band DE fea-
tures in temporal regions were found to be closely related 
to emotion [14], [15]. Beyond localized DE features, 

researchers found that modeling the relationships among 
EEG electrodes was critical for emotion recognition. In this 
direction, graph neural networks (GNNs) [13], [16], [17] 
and long short-term memory (LSTM) [11], [12] were pro-
posed to extract spatial relationships of DE features among 
different EEG channels. Network-based features like phase 
locking values [18] and microstate parameters [19] were 
also proposed to extract the coactivation patterns of differ-
ent brain regions directly. Furthermore, convolutional 
neural networks (CNNs) and attention mechanisms were 
utilized to learn the emotion-related EEG representations 
in an end-to-end manner [20], [21], [22]. These methods 
employed the prominent representational power of deep 
neural networks to avoid human-crafted feature extraction. 

However, most studies have mainly focused on intra-
subject emotion recognition [5]. To reach satisfactory 
recognition performance, researchers needed to collect suf-
ficient data (generally half an hour to more than one hour) 
within one subject to learn subject-dependent EEG repre-
sentations for emotion recognition [14], [23], [24]. This la-
borious and time-consuming training procedure has be-
come a major bottleneck for the practical use of EEG-based 
emotion recognition. Therefore, developing emotion 
recognition methods with good cross-subject generaliza-
bility is desirable for realistic applications, especially in the 
cases of new users [25], [26]. 

The substantial inter-subject variabilities of emotion-re-
lated EEG activities posed great challenge for cross-subject 
emotion recognition [27], [28]. For example, the cross-sub-
ject emotion recognition accuracy on the widely used 
SEED dataset [9], [14] could be as low as 58% with a generic 
multiple layer perceptron classifier. In comparison, the 
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intra-subject emotion recognition could achieve high accu-
racy of 96% with the same classifier [29]. The substantial 
drop in the emotion recognition performance from the in-
tra-subject to the cross-subject scenario could be explained 
by the well-acknowledged individual difference in EEG-
based emotion representations due to factors such as indi-
vidualized experience and dispositional characteristics 
[30], [31], [32], [33]. Nonetheless, subject-invariance of 
emotion representation has also been well documented in 
the field of psychology and neuroscience [15], [34], [35], 
[36], [37]. Previous fMRI and EEG studies have identified 
distinct and stable neural representations for different 
emotions across subjects [15], [34], [35], [36], [37], suggest-
ing the possibility of developing cross-subject emotion 
recognition algorithms.  

To address the issue of inter-subject variability, research-
ers have applied domain adaptation (DA) and domain 
generalization (DG) methods to cross-subject emotion 
recognition [26], [38]. The DA methods aim to minimize 
the discrepancy between data distributions of the source 
domain (i.e., the training subject) and the target domain 
(i.e., the testing subject). These methods have to access data 
from the target domain during the training process to 
measure the data discrepancy. As an example of the DA 
methods, domain-adversarial neural networks (DANNs) 
leverage adversarial training to align the EEG representa-
tion of the source domain and the target domain [39]. It 
was adopted by multiple state-of-the-art cross-subject 
emotion recognition models [11], [12], [13] and could im-
prove the accuracy from approximately 60% to more than 
80% on the SEED dataset. The DG methods, on the other 
hand, find the domain-invariant representations from the 
source domains. In contrast to DA, it does not need to ac-
cess the testing subjects’ data, so it is preferred in real-
world applications. An adversarial domain generalization 
method recently achieved comparable results with the DA 
methods on the SEED dataset [26]. The success of these 
methods indicated the possibility of finding subject-invar-
iant EEG representations for emotion recognition. How-
ever, the cross-subject emotion recognition methods to 
date have been developed mainly from the machine learn-
ing perspective, with very limited consideration of the 
neuroscientific basis of human emotion processing. 

The emerging neuroscience studies on inter-subject cor-
relation (ISC) could offer a new perspective for exploring 
subject-invariant emotion representations and developing 
cross-subject emotion recognition methods [40], [41], [42], 
[43], [44], [45], [46]. The ISC approach, originally proposed 
to investigate the perception of naturalistic visual scenes, 
focuses on the synchronization of neural activities (e.g., 
EEG) between subjects when perceiving the same stimuli. 
Taking this inter-subject perspective, the temporal, spatial, 
and spectral patterns of ISC could reveal the neural mech-
anisms of information processing for naturalistic stimuli 
such as movies and narrative speech [40], [41], [43]. In the 
field of emotion, several pioneering studies have shown 
that the ISC of EEG signals among a group of subjects 
watching the same emotional videos could reflect their 
group-level preference, arousal, valence, etc. [4], [41], [42]. 
These findings suggest that the stimulus-specific EEG 

responses shared across individuals could carry valuable 
information for discriminating different emotional states. 
More importantly, the effectiveness of the shared EEG re-
sponses provides critical neuroscience evidence in favor of 
constructing subject-invariant emotion representations. 
Nonetheless, it remains elusive how to extract the subject-
invariant emotion representations effectively and make 
them generalizable to new subjects and new stimuli.  

In this work, we propose a data-driven approach that 
performs Contrastive Learning for Inter-Subject Align-
ment (CLISA). Inspired from the neuroscientific observa-
tions of ISC, CLISA is grounded on the assumption that the 
neural activities of the subjects are in a similar state when 
they receive the same segment of emotional stimuli (i.e., 
the emotional videos in our study). Based on this funda-
mental idea, we propose to learn a subject-invariant space 
for EEG signals by aligning the representations underlying 
similar mental activities. Specifically, our CLISA frame-
work contains two phases, i.e., the contrastive learning 
procedure and the prediction procedure. In the contrastive 
learning procedure, a convolutional neural network 
(CNN)-based encoder learns invariant and predictive spa-
tiotemporal representations of EEG signals. It maximizes 
the similarities of the representations in response to iden-
tical emotional stimuli (positive pairs) while minimizing 
the similarities between signals corresponding to different 
stimuli (negative pairs). In the prediction procedure, a clas-
sifier together with the trained encoder takes EEG signals 
as inputs to identify human emotions. Considering that the 
contrastive pairs can be easily constructed from EEG da-
tasets [14], [23], [24] and they are of great number in the 
contrastive learning procedure, the learned representa-
tions are expected to be informative and generalizable in 
the prediction procedure. 

The advantages of CLISA are three-fold: 1) CLISA vir-
tually and vastly increases the training data for the learn-
ing of EEG representations by contrastive learning. 2) 
CLISA can generalize to new subjects without requiring 
extensive data from them, thus enhancing the practicality 
of emotion recognition systems. 3) Benefiting from the con-
trastive learning strategy and the considerably larger 
amount of training samples, the learned representations 
are not only invariant to subjects but also generalizable to 
different stimuli. That is to say, the representation is not 
specific to the particular stimuli used in training. Instead, 
it is a general representation for emotion processing.  

2 RELATED WORK 

2.1 EEG-based Cross-subject Emotion Recognition 

Domain adaptation (DA) has been demonstrated as an ef-
fective technology in cross-subject emotion recognition. It 
aims to deal with the domain shift problem during training 
and testing. For the classical DA methods, Zheng & Lu [47] 
compared the performance of transfer component analysis 
(TCA) [48], kernel principal component analysis (KPCA) 
[49], transductive parameter transfer (TPT), etc. on the 
SEED dataset [50]. TPT achieved the best accuracy of 76.3%, 
with a considerable improvement of 19.6% over the ge-
neric classifier with no DA. Further, Chai et al. [51] 



AUTHOR ET AL.:  TITLE 3 

 

 

proposed an adaptive subspace feature matching (ASFM) 
strategy. Its essential component is a subspace alignment 
(SA) algorithm [52], which linearly transforms the PCA 
subspace of the training subject’s data to be aligned with 
that of the testing subject’s data.  

In addition to these classical DA methods, DA with 
deep learning has also been utilized in cross-subject emo-
tion recognition. In particular, Chai et al. [53] proposed an 
auto-encoder architecture to reduce the discrepancy of 
training and testing subjects in a learned latent space. Do-
main-adversarial neural networks (DANNs) employed a 
domain classifier and a gradient reversal layer to enforce 
the network to learn domain-indiscriminate representa-
tions across the source domain and the target domain [39]. 
Based on this strategy, researchers further proposed the bi-
hemispheres domain-adversarial neural network (Bi-
DANN) [11] and regularized graph neural network 
(RGNN) [13] to facilitate cross-subject emotion recognition. 
BiDANN contained two local domain classifiers for each 
hemisphere and a global domain classifier to learn subject-
invariant emotion representations. RGNN introduced a 
node-wise domain-adversarial training in graph neural 
networks, which was better than graph-level domain-ad-
versarial training. In addition to DANN, Li et al. [29] pro-
posed a joint domain adaptation model to align the mar-
ginal and conditional distribution of the data simultane-
ously. These methods have improved the performance of 
cross-subject emotion recognition to around or above 85% 
on the SEED dataset, demonstrating their superiority to 
most of the classical DA methods. However, all the meth-
ods above had to access extensive data from the testing 
subjects for domain-adversarial training. Similar to intra-
subject emotion recognition, half-an-hour to one-hour data 
from a new subject (although no requirements for emo-
tional labels) were needed in general, which still hindered 
the application of emotion recognition methods in the real 
world. 

In recent years, domain generalization (DG) methods 
have been applied to cross-subject emotion recognition to 
alleviate the reliance on data from testing subjects. DG 
models are trained to extract the domain-invariant repre-
sentations across multiple training subjects, and they are 
ready to be applied to new subjects without access to their 
data. For example, Ma et al. [26] built a domain residual 
network to learn domain-shared weights and domain-spe-
cific weights with domain-adversarial training. Then the 
domain-shared weights were used to classify emotions for 
unseen subjects. Besides, Zhao et al. [54] proposed an au-
toencoder architecture to learn domain-shared encoders 
and classifiers, which showed generalizability to a new 
subject using his/her data within only one minute for cal-
ibration. These methods have achieved similar perfor-
mance with DA methods on the SEED dataset. 

2.2 Contrastive Learning 

Contrastive learning is a kind of self-supervised learning 
algorithm that learns to discriminate whether pairs of data 
are similar or not. It has achieved state-of-the-art perfor-
mance in various fields such as computer vision [55], nat-
ural language processing (NLP) [56], and bioinformatics 

[57], [58]. Contrastive learning can be generally divided 
into two types: 1) context-instance contrast, or global-local 
contrast, such as assigning a sentence to its paragraph and 
associating strides to a zebra, and 2) instance-instance con-
trast, like identifying a transformed image with the origi-
nal one [59]. After the pretext contrastive learning, the 
model can generate better data representations for down-
stream tasks.  

For EEG, a few studies have used contrastive learning 
methods to learn data representations from relatively large 
datasets and then applied the pretrained model to down-
stream tasks. Mohsenvand et al. [60] enforced the model to 
learn similarities between different views of augmented 
samples from the same original data, similar to the popular 
SimCLR framework (a simple framework for contrastive 
learning of visual representations) [55]. The samples were 
augmented by temporal masking, linear scaling, Gaussian 
noise adding, etc. The model pretrained on the combina-
tion of three datasets performed well on multiple down-
stream tasks: sleep stage classification, clinical abnormal 
detection, and emotion recognition. Banville et al. [61] used 
temporal context prediction and contrastive predictive 
coding [62] to learn data representations on two clinical da-
tasets. They demonstrated that the pretrained model could 
extract latent structures of age effects, gender effects, and 
pathological effects. These methods generally adopted the 
contrastive learning framework from computer vision or 
natural language processing directly. Benefitted from the 
contrastive learning strategy and large datasets in pretrain-
ing, they could denoise the data or learn the temporal de-
pendencies of the data. In this work, we proposed a con-
trastive learning strategy specifically designed for cross-
subject generalization. It learns the similarity between 
samples from different subjects when they were presented 
with the same stimuli. Our method does not need exten-
sive external data but creates large self-supervised labels 
based on the inter-subject aligned experimental design.  

As our contrastive learning strategy was inspired by in-
ter-subject correlation (ISC) studies, we will introduce the 
recent neuroscience findings of ISC here. The ISC studies 
have focused on the inter-subject consistent neural activi-
ties in response to the same naturalistic stimuli [40], [41], 
[42], [43] or in the same social interaction scenarios [44], 
[45]. They provided insights into how human perceptions 
and emotions can be shared and why human communica-
tions can be effective from the neuroscience perspective. In 
a keynote fMRI study, Hasson et al. [43] found voxel-by-
voxel synchronization across subjects when they were 
watching the same movie, revealing that different brains 
tend to respond similarly to the same naturalistic stimuli. 
Later, Dmochowski et al. discovered that the level of ISC 
in EEG signals could reflect people’s emotionally laden at-
tention to the movie [42] and predict the preference for the 
video clips in a large population [41]. Ding et al. [4] further 
reported that EEG-based ISC could effectively predict real-
time emotional experiences of arousal and valence. The 
prediction performance increased as a function of the num-
ber of subjects (i.e., brains) included in the analysis. These 
findings supported that the invariant response across indi-
viduals could be informative about various mental states, 



4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

 

serving as solid theoretical supports for our contrastive 
learning strategy. However, due to the complexity of neu-
ral signals like EEGs, current ISC analysis has emphasized 
that the subjects should be positioned in the same sensory 
environment (and preferably engaged in similar tasks) to 
facilitate the computation of ISCs [46], [63]. How to extract 
inter-subject invariant representations that can generalize 
to new subjects or new stimuli has rarely been explored. 

Fortunately, the paradigms adopted by the mainstream 
emotion EEG datasets, such as SEED [14], DEAP [23], and 
DREAMER [24], have made them well suited for our con-
trastive learning method. Specifically, the data were gen-
erally collected from a group of subjects undergoing the 
same task with the same emotional stimuli. Therefore, con-
trasting the EEG signals in response to the same or differ-
ent emotional stimuli from two subjects would be helpful 
to learn the EEG representations for emotion processing 
that are shared across subjects. If the learned representa-
tion could capture the subject-invariant emotional EEG re-
sponses, it would be expected to generalize well to unseen 
subjects and unseen emotional stimuli to predict the emo-
tional states. 

Last but not least, the contrastive learning framework 
would benefit from increasing the number of subjects. The 
number of contrasts could increase quadratically with the 
increasing number of subjects. However, to our knowledge, 
the number of subjects usually ranged from 10 to 40 in the 
publicly available emotional EEG datasets [14], [23], [24]. 
In the present study, in addition to the popular SEED da-
taset with 15 subjects, a new dataset THU-EP (the Tsing-
Hua University Emotional Profile dataset [64]) with 80 
subjects was included (see Section 4.1 for more details), 
which was expected better to evaluate the effectiveness of 
the proposed CLISA method. 

3 THE CONTRASTIVE LEARNING METHOD FOR 

INTER-SUBJECT ALIGNMENT (CLISA) 

This section presents our Contrastive Learning method for 
Inter-Subject Alignment (CLISA) (Fig. 1). We first 

introduce the contrastive learning procedure and then ex-
plain the prediction procedure of CLISA. In the contrastive 
learning procedure, we utilize a base encoder and a projec-
tor with convolutional layers to align the data representa-
tions across individuals. In the prediction procedure, we 
use the learned representations to identify the emotion la-
bels of the EEG signals. 

3.1 The Contrastive Learning Procedure 

In the contrastive learning procedure, CLISA contains four 
components: a data sampler, a base encoder, a projector, 
and a contrastive loss function. First, the data sampler gen-
erates a minibatch containing several pairs of EEG seg-
ments for training. Next, the base encoder processes these 
segments using a spatial convolution operator and a tem-
poral convolution operator, aiming to transform the data 
from individual subjects to inter-subject aligned represen-
tations. Then the projector maps the representations to an-
other latent space for computing their similarities (Fig. 1). 
Together, the parameters of the base encoder and projector 
are optimized to minimize contrastive loss. 
A. The Data Sampler 

In our contrastive learning strategy, the model learns to 

distinguish whether two series of EEG signals correspond 

to the same stimuli (i.e., the same segment of the video). To 

achieve this goal, we design a data sampler to prepare the 

inputs in a minibatch manner. In the EEG datasets, the data 

from one subject consist of N trials. In each trial, the subject 

watched one emotional video. To obtain a minibatch, we 

firstly randomly extract one EEG sample from each trial of 

subject A (the time length of one sample is smaller than that 

of one trial), resulting in N samples. We denote them as 

��
�, ��

�, … , ��
�  (��

� ∈ ℝ�×� , � is the number of EEG chan-

nels and T is the number of time points in one EEG sample). 

Then we extract N samples of EEG signals from another 

subject B similarly. We denote them as ��
�, ��

�, … , ��
� . The 

samples ��
� and ��

� correspond to the same time segment 

of trial �  (� = 1,2, … , �). The set � = {��
�|� = 1,2, … , �; � ∈

 

Fig. 1. The illustration of the Contrastive Learning method for Inter-subject Alignment (CLISA). In the figure, “Sub” stands for “subject” and “Conv” 
stands for “Convolution.” Upper-left: The architecture of the base encoder. Upper-right: The architecture of the projector. Lower: The procedures 
of contrastive learning and prediction. 
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{�, �}} constitutes one minibatch (Fig. 2). In this minibatch, 

given a sample ��
� , the sample ��

�  forms a positive pair 

with it, and the other samples {��
�|� = 1,2, … , �, � ≠ �; � ∈

{�, �}} form 2(� − 1) negative pairs with ��
�. We enumer-

ate all possible subject pairs {A, B} in the training set for one 

contrastive learning epoch. For example, if there are 15 

subjects in the dataset, the number of subject pairs is 

15 × 14 / 2 = 105. If there are 80 subjects, the number of 

subject pairs is 80 × 79 / 2 = 3160. 

B. The Base Encoder 

The base encoder takes the EEG signals ��
� or ��

� as inputs 

to generate aligned representations of the EEG data of dif-

ferent subjects. It adopts two one-dimensional convolu-

tional operations to perform signal transformations (Fig. 1, 

upper-left). For simplicity, we omit the corner markers of 

��
� or ��

� in the following sections. 

1) Spatial convolution 

As one EEG channel can pick up neural activities from 
multiple sources and the same source activity can influ-
ence signals of multiple EEG channels [65], we use a spatial 
convolution to transform the signals to a latent space for 
identifying plausible source activities. The spatial convo-
lution is formulated as  

                       ��,∙
(�)

= ���, � = 1,2, … , ��                       (1)  

where �� ∈ ℝ�×�  is the weights of the k-th one-dimen-

sional spatial convolution filter. There are �� filters in total. 

�(�) ∈ ℝ��×� is the extracted representation by the spatial 

convolution. Each row of �(�) is a latent signal identified 

by a linear combination of the original signals � ∈ ℝ�×�. 

We denote the overall spatial convolution operation as 

�(�) = Conv�����(�) for simplicity. 

2) Temporal convolution 

Another property of the EEG signals is the dynamic 

changes over time [66], [67]. Therefore, we further apply a 

temporal convolution to learn the temporal patterns of the 

EEG signals: 

���,��,� = ���
∙ �(�)

��,�:������,      

     �� = 1,2, … , ��; �� = 1,2, … , ��;  � = 1,2, … , �            (2)                                      

where ���
∈ ℝ��  represents the filter weights of the tem-

poral convolution. The filter length is ��, and the number 

of filters is ��. ���
∙ �(�)

��,�:������ represents the dot prod-

uct of the vectors ���
 and �(�)

��,�:������ . � ∈ ℝ��×��×�  is 

the representation extracted by the temporal convolution. 

The input �(�) is padded to ensure the output � is still of 

length T on the temporal dimension. A temporal convolu-

tion filter can usually extract representations in a specific 

frequency band of the EEG signals. We denote the overall 

temporal convolution operation as � = Conv�����(�(�) ).  

C. The Projector 
A nonlinear projector is utilized between the base encoder 
and the final contrastive loss (Fig. 1, upper-right). This idea 
is inspired by the SimCLR framework [55], in which a non-
linear projector can help the base encoder learn better rep-
resentations for downstream prediction tasks. As the use 
of structure units is a common practice in neural network 
designs [68], [69], we employ a similar convolutional unit 
in the projector as that in the base encoder. Specifically, we 
adopt a spatial convolution to combine the amplitudes of 
different latent spatial components and a temporal convo-
lution to extract the temporal patterns of amplitude change, 
with an average pooling layer prior to these convolution 
layers. The separable one-dimensional convolutions de-
couple the extraction of spatial patterns and temporal pat-
terns with fewer parameters [70]. 
1) Average pooling 
The average pooling has a kernel size of  1 × � and a stride 
of S: 

�� ��,��,� = ���� ������,��,[��:(���)�]��, �� = 1,2, … , ��; 

�� = 1,2, … , ��;  � = 1,2, … , ⌊�/�⌋                               (3)                  

with the output �� ∈ ℝ��×��×⌊�/�⌋. ⌊∙⌋ means round down to 
the nearest integer. �(∙) represents the exponential linear 
unit (ELU) [71].  
2) Spatial convolution 
Then a depthwise spatial convolution [72] is adopted to 
combine the pooled features across different latent signals:  

� = �(Conv�����(�� )).                                (4) 

The function Conv�����  shares similar computations with 

Conv����� but is a depthwise convolution with the filter size 

of 1 × ��. Here, the input ��  is regarded as having �� fea-

ture maps, each of size �� × ⌊�/�⌋. In the depthwise convo-

lution, each feature map of ��  is processed by � spatial con-

volution filters, so there are ���  filters in total. � ∈

ℝ���×�×⌊�/�⌋ is the output of the spatial convolution. 

3) Temporal convolution 
We further apply a depthwise temporal convolution to fur-
ther identify the temporal patterns: 

� = �(Conv�����(�))                             (5)       

The function  Conv����� shares similar computations with 

Conv�����  but is a depthwise convolution with the filter 

size as ��. There are � temporal convolution filters for each 

feature map of � , resulting in � × ��� = ����  feature 

 

Fig. 2. The illustration of the data sampler. In a minibatch, given one 
sample ��

�,  the sample ��
� forms a positive pair with it, and the other 

samples form negative pairs with ��
� . The model will maximize the 

similarity of representations for the positive pair in contrast to the neg-
ative pairs. 



6 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

 

maps in the output � ∈ ℝ����×�×(⌊�/�⌋�����). The depthwise 

convolutions reduce the parameter size and ensure specific 

spatiotemporal pattern extractions for each frequency 

band (extracted by temporal convolution in the base 

enucoder). Then, � is transformed into a one-dimensional 

vector � ∈ ℝ����(⌊�/�⌋�����)  for further similarity calcula-

tion. 

D. The Contrastive Loss 

 As introduced previously, the input samples � = {��
�|� =

1,2, … , �; � ∈ {�, �}} are transformed into ������� = {��
�|� =

1,2, … , �; � ∈ {�, �}} via the base encoder and the projector. 

Then, the similarity of the input samples ��
�  and  ��

�  is 

given by 

                             ������
�, ��

�� =
��

�∙��
�

���
�����

��
.                             (6) 

The contrastive loss aims to maximize the similarity of two 

pieces of EEG signals in a positive pair. Similar to the 

SimCLR framework [55], we adopt the normalized temper-

ature-scaled cross-entropy loss computed by  

��
� =  − log �

����������
�,��

��/��

∑ �[���] ����������
�,��

��/���
��� �∑ ����������

�,��
��/���

���

�    (7) 

where �[���] ∈ {0, 1} is an indicator function. It is set to 1 iff 

� ≠ �. By minimizing the loss function, the model will in-

crease the similarity between ��
� and ��

�  in contrast to all 

other possible sample pairs involving ��
�. Finally, the total 

loss of the minibatch is  

� = ∑ ��
��

��� + ∑ ��
��

���                            (8) 

The overall training algorithm of the contrastive learning 

procedure is summarized in Algorithm 1.  

3.2 The Prediction Procedure 

In the prediction procedure, we use the trained base en-
coder to align the representations from different subjects 
and then extract predictive features from these representa-
tions for emotion recognition (Fig. 1). 

Here, we denote the data in the prediction procedure as 

{�����} and their labels as {�}. The label � is a categorical 

variable. For example, if there are three emotional catego-

ries, � can take three values: 0, 1, or 2. We need to predict 

the emotion category �   for each sample ����� ∈ ℝ�×��
. 

CLISA extracts the aligned representations from the input 

����� by the trained base encoder: 

    ����� = Conv�����(Conv�����(�����))                (9) 

where ����� ∈ ℝ��×��×��
 can be regarded as signals with 

�� frequency components, and each component has �� la-

tent dimensions with a time length of T’. We assume that 

�����  possesses a better representation than �����  for 

cross-subject emotion recognition. Note that T’ can be dif-

ferent from the time length T used in contrastive learning, 

as the convolution operators can receive data of various 

lengths. 

Considering the limited amount of data in EEG emotion 

recognition, machine learning models tend to overfit the 

high-dimensional representations. To obtain low-dimen-

sional relevant representations for emotion recognition, 

we extract the widely-used differential entropy (DE) fea-

tures [9] from �����. DE is defined as 

���,��

�� =
�

�
log (2����(�����

��,��,∙)),  �� = 1,2, … , ��, 

�� = 1,2, … , ��                                                    (10) 

where ��  is the variance of the signal and ��� ∈ ℝ��×�� . 
DE measures the complexity of the time series. It is equiv-
alent to the logarithmic energy spectrum in a specific fre-
quency band [10]. We call the DE features ��� as “trained 
DE features” as it is extracted from the output of the 
trained base encoder. The trained DE features from consec-
utive samples within one trial of one subject are concate-
nated across time and smoothed with a linear dynamical 
system (LDS) model as in Zheng & Lu’s work [14]. The 
smoothed features are reshaped into a one-dimensional 
vector ��� ∈ ℝ���� as the classifier’s input. Here, we use a 
three-layer multilayer perceptron (MLP) as the classifier. 
We denote the transformation of the classifier as 

     ���� = �(���).                               (11) 
The MLP is optimized with a minibatch stochastic gradient 
descent algorithm and cross-entropy loss to learn the map-
ping from the DE features {���} to the emotion labels {�}. 
The algorithm of the prediction procedure is also summa-
rized in Algorithm 1. 
 

Algorithm 1. The Training Algorithm for CLISA 

The contrastive learning procedure 

Inputs: Training data {�}, the learning rate α�, the 

batch size 2�, the training epochs ��. 

1: Initialize parameters of the base encoder θ� and the 
projector θ�. 

2: for epoch = 1 to �� do 
3:     repeat 
4:         Sample two subjects A, B. 

5:         Sample 2� EEG samples {��
�|� = 1,2, … , �; � ∈

{�, �}} from subjects A, B with the data sampler. 

6:         Obtain {��
�|� = 1,2, … , �; � ∈ {�, �}} by (1)-(5). 

7:         Calculate loss � by (6)-(8). 

8:         θ� ← θ� − α�
��

���
,  θ� ← θ� − α�

��

���
. 

9:         α� ← ��(α�) according to cosine annealing 
scheme with warm restarts. 

10:   until all possible pairs of subjects are enumerated. 
11: Outputs: Parameters θ�. 

 
The prediction procedure a 
Inputs: Data {�����}. Trained parameters of the base 

encoder θ� and the classifier θ�. 
1: Calculate ����� by (9). 
2: Extract DE features ��� by (10). 
3: Obtain smoothed DE features ��� with linear  

dynamical systems. 
4: Obtain predicted labels with the classifier by (11). 

aNote that the classifier parameters �� were trained by the cross-en-

tropy loss to output training labels {�} with inputs {���} from the 

training data. We omit the training step in the algorithm for simplicity. 
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4 EXPERIMENTS 

In our computational experiments, the proposed CLISA 
method was implemented and evaluated on two datasets: 
a new dataset THU-EP with 80 subjects [64] and the 
widely-used SEED dataset [9], [14]. The THU-EP dataset is 
expected to be a good benchmark for testing cross-subject 
emotion recognition models for its relatively larger num-
ber of subjects than most publicly available datasets.  

This section will first introduce the THU-EP dataset in 
more detail and the SEED dataset in brief, then describe the 
data preprocessing procedure and the implementation de-
tails of our model. Finally, we will introduce the approach 
of performance evaluation, performance comparison, and 
spatiotemporal pattern analysis. 

4.1 The THU-EP dataset 

Subjects. Eighty college students (50 females, mean age = 
20.16 years, ranging from 17 to 24 years) were recruited 
into the study. Informed consent was obtained from all 
subjects. The study was approved by the Ethics Committee 
of Tsinghua University. 
Stimuli. In the experiments, 28 emotional video clips were 
used as the stimuli. There were 12 video clips for eliciting 
four negative emotions (i.e., anger, disgust, fear, and sad-
ness, three clips for each category), 12 video clips for elicit-
ing four positive emotions (i.e., amusement, joy, inspira-
tion, and tenderness, three clips for each category), and 
four video clips with neutral emotion. Therefore, nine 
emotion categories were included in total. These emotional 
categories were expected to cover the daily experienced 
emotion to a large extent [73], [74], [75], [76]. The video 
clips were selected from the published emotional video da-
tasets [73], [77], [78]. The duration of the videos is 67 sec-
onds on average, ranging from 34 to 129 seconds. 
Experimental procedure. Each subject watched the video 
clips in seven blocks. Each block contained four trials. The 
subjects watched one video clip for each trial and rated 
their emotional states afterward. The subject reported their 
emotional states on 12 emotion items (i.e., anger, disgust, 
fear, sadness, amusement, joy, inspiration, and tenderness, 
as well as arousal, valence, familiarity, and liking) on a 
scale of 0 to 7. The four video clips in one block had the 
same valence (i.e., positive, negative, or neutral) to avoid 
possible influence between consecutive video clips with 
different valence. The subjects were asked to solve 20 arith-
metic problems between two blocks to prevent carry-over 
effects of valence across blocks [79]. 
EEG recording. EEG signals were recorded using a 32-
channel wireless EEG system (NeuSen.W32, Neuracle, 
China) placed according to the international 10-20 system: 
Fp1/2, Fz, F3/4, F7/8, FC1/2, FC5/6, Cz, C3/4, T3/4, 
A1/2 (left and right mastoids), CP1/2, CP5/6, T5/6, Pz, 
P3/4, PO3/4, Oz, O1/2. The sampling rate was 250 Hz. 
The EEG signals were referenced to CPz with a forehead 
ground at AFz. Electrode impedances were kept below 10 
kOhm for all electrodes throughout the experiment. 

4.2 The SEED dataset 

The SEED dataset is a widely used benchmark to evaluate 
emotion recognition algorithms [9], [14]. It contains the 

EEG data collected from 15 subjects (8 females, mean age 
= 23.27 years, std of age = 2.37 years). Each of them 
watched 15 film clips. These film clips elicited three kinds 
of emotion, including positive, neutral, and negative (five 
film clips for each emotion). Each film clip was selected to 
elicit a single desired target emotion. The duration of each 
film clip is 226 seconds on average, ranging from 185 sec-
onds to 265 seconds. Each subject was required to carry out 
the experiments for three sessions. There was a one-week 
or longer time interval between two sessions. For each ses-
sion, the subjects watched one film clip for each trial, re-
sulting in 15 trials. EEG signals were recorded using an ESI 
NeuroScan System2 with 62 channels placed according to 
the international 10-20 system with a sampling rate of 1000 
Hz.  

4.3 Data Preprocessing 

Data preprocessing was conducted with Fieldtrip [80] and 
NoiseTools [81] toolkits in Matlab.  

For the THU-EP dataset, we first applied a bandpass fil-
ter from 0.05 to 47 Hz. Then independent component anal-
ysis (ICA) was applied to remove possible artifacts due to 
eye movements, muscle movements, or other environmen-
tal noise. We used the Infomax algorithm [82] in Fieldtrip 
for ICA, which minimizes the mutual information of dif-
ferent components with natural gradient approach [83]. 
The ICA algorithm received continuous data of one subject 
(without extracting data epochs) as inputs. Other settings 
were left as their defaults in Fieldtrip. A conservative cri-
terion was applied to the ICA-based artifact rejection pro-
cedure: only the independent components (ICs) showing 
intense and persistent noise were removed. One or two ICs 
were removed per subject. After that, we implemented an 
automatic denoising procedure with NoiseTools to fix the 
data for spatially or temporally localized noises on a sin-
gle-trial basis: We first interpolated the noisy channels by 
their three closest channels. If the proportion of outliers 
from one channel exceeded 30% of time points, the channel 
was defined as a noisy channel. The outliers were defined 
as those whose absolute values exceeded three times the 
median absolute value in the particular trial. After that, we 
fixed the remaining outliers with a threshold of 100 uV, 
which means if the difference of absolute values between 
two consecutive time points of one channel exceeded 100 
uV, we replaced the value of the latter time point with that 
of the previous one. On average, 0.13 channels were inter-
polated, with a maximum of 3 channels per trial. 10.8% of 
all trials had at least one channel interpolated. The purpose 
of having the ICA-based and NoiseTools-based procedure 
was to keep (and fix) rather than reject the data, which was 
important for the present contrastive learning framework. 

After the automatic denoising procedure, we applied a 
bandpass filter from 4 to 47 Hz and re-referenced the data 
to the common average. We used the last 30 seconds of 
each trial to ensure the elicited emotions were coherent and 
intense enough [23], [33], [73]. The EEG data from one sub-
ject was rejected due to strong power-line noise in all the 
EEG channels. 

For the SEED dataset, the publicly available data have 
been downsampled to 200 Hz and filtered from 0 to 75 Hz 
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by the data provider. The same denoising procedure was 
applied to the SEED dataset as the THU-EP dataset. Then 
we applied a bandpass filter from 4 to 47 Hz and re-refer-
enced the data to the common average.  

4.4 Implementation Details 

In the base encoder for the THU-EP dataset: the filter size 
of the spatial convolution was set as the number of EEG 
channels (M=30); the temporal convolution filter length 
was set to 60, as a 60th-order finite impulse response filter 
is expected to provide the necessary support for extracting 
EEG signals in a specific frequency band; the number of 
spatial convolution filters (��) and temporal convolution 
filters (��) were both set to 16, which was expected to be 
sufficient to extract enough information for emotion-re-
lated neural representations. 

In the projector for the THU-EP dataset: the spatial 
convolution filter size was set to 16 to match the spatial di-
mension of its input (i.e., the output of the base encoder, 
��=16); the temporal convolution filter length was set to 6, 
which was expected to extract the temporal patterns of the 
averaged features sufficiently; the kernel length of the av-
erage pooling (prior to the spatial and temporal filters) was 
empirically set to 30; the parameter �  that controls the 
number of spatial or temporal filters in the projector was 
empirically set to 2. 

For the SEED dataset, most of the hyperparameters 
were set the same as for THU-EP, except that 1) the tem-
poral filter lengths and the average pooling’s kernel length 
were proportional to those for the THU-EP dataset accord-
ing to their sampling frequencies (200 Hz for SEED and 250 
Hz for THU-EP) and 2) the spatial filter size in the base en-
coder was set to match the number of EEG channels in 
SEED (M=62).  

The hyperparameters of the implemented CLISA 
method for the two datasets are shown in Table 1. The tem-
poral filter sizes in both the base encoder and the projector 
were further manipulated, and the models with the chosen 
parameters were able to obtain the top performances (Ta-
ble S1, S2). 

 
TABLE 1 

HYPERPARAMETER SETTINGS OF THE MODEL ARCHITECTURE 

 Hyperparameters THU-

EP 

SEED 

Base en-

coder 

The spatial filter size M 30 62 

The temporal filter size P1 60 48 

The number of spatial filters K1 16 16 

The number of temporal filters 

K2 

16 16 

Projector Kernel length of average pool-

ing S 

30 24 

The spatial filter size K1 16 16 

The temporal filter size P2 6 4 

The number of spatial filters 

CK2 

32 32 

The number of temporal filters 

C2K2 

64 64 

 

The time length of the samples in contrastive learning 
was determined by a tradeoff between the training sam-
ples’ number and adequate sample length. On the one 
hand, the sample needed to be long enough for the contras-
tive learning model to capture the underlying emotion ef-
fectively. On the other hand, the longer sample’s length re-
sulted in an insufficient number of training data. Based on 
this consideration, the time length of one sample was set to 
5 seconds (with a time step of 2 seconds) for the THU-EP 
dataset and 30 seconds (with a time step of 15 seconds) for 
the SEED dataset in contrastive learning. As the length of 
one trial is 30 seconds in the THU-EP dataset, the sample 
number from one trial is ⌊(30-5)/2⌋+1=13. The length of one 
trial ranges from 185 seconds to 265 seconds on the SEED 
dataset, so the sample number from one trial ranges from 
11 to 16 (13 on average). 

In the contrastive learning procedure, we used stratified 
normalization [84] during training. In stratified normaliza-
tion, we concatenated the same channel of different sam-
ples from one subject in the minibatch together and con-
ducted z-score normalization. The stratified normalization 
was applied to inputs of the base encoder, outputs of aver-
age pooling, and outputs of the temporal convolution in 
the projector. For optimization of the contrastive learning 
model, we trained the model for 100 epochs with early 
stopping (maximal tolerance of 30 epochs without valida-
tion accuracy increase). We used an Adam optimizer [85] 
with a cosine annealing learning rate scheduler and a 
three-time warm restart [86]. The initial learning rate was 
set to 0.0007, and the weight decay was set to 0.015 empir-
ically.  

In the prediction procedure, the input sample length 
was set to 1 second as in many previous studies [12], [14], 
[15]. For the extracted DE features, we conducted adaptive 
feature normalization, which adapted the mean and vari-
ance in z-score normalization online as new data come in 
[87], [88], [89]. Specifically, the initial mean and variance 
were defined as the training data’s mean (�̅�����) and vari-
ance (������

� ). Then, with new data of the testing subject 
coming in, the mean and variance were updated as the 
weighted summation of �̅����� (or ������

� ) and current avail-
able testing data’s mean �̅�:� (or variance, ��:�

� ). The weights 
for �̅�����  and ������

�  decayed exponentially with the input 
of the testing data, with a decay rate � set as 0.99 empiri-
cally.  

For the MLP classifier in the prediction procedure, there 
were two hidden layers with 30 units for each. Rectified 
linear units (ReLUs) [90] were used between every two lay-
ers. We used cross-entropy loss and an Adam optimizer to 
optimize the parameters. The learning rate was set as 
0.0005 empirically, and the weight decay was selected from 
0.005, 0.011, 0.025, 0.056, and 0.125 by cross-validation. The 
batch size was set as 256 empirically. We trained the model 
for 100 epochs with early stopping.  

4.5 Performance Evaluation  

We implemented two tasks to evaluate the model. The first 
was the generic cross-subject emotion recognition task. In 
this task, we used 10-fold cross-subject cross-validation for 
the THU-EP dataset and leave-one-subject-out cross-
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validation for the SEED dataset. The other was a more chal-
lenging task, which we call the generalizability test. In this 
task, the model needed not only to be generalized to new 
subjects but also to be generalized to new stimuli. This task 
could test whether the model learned real subject-invariant 
emotional representations rather than overfitting the exist-
ing stimuli. In particular, we used 2/3 of the trials from the 
training subjects in training and used the other 1/3 of the 
trials from the testing subjects in testing. Thus, the stimuli 
in testing had never been accessed by the model in training. 
The training and testing subjects partition was the same as 
in the generic cross-subject emotion recognition task. 

For the generic cross-subject emotion recognition task 
on the THU-EP dataset, we implemented the following 
two versions with respect to the number of emotion classes: 
1) a basic version of binary classification for negative and 
positive emotional states and 2) a more challenging version 
of the nine-class emotional classification, including eight 
emotional classes mentioned above and neutral emotion. 
In the basic version, the samples from 12 trials that elicited 
anger, disgust, fear, and sadness were all labeled as nega-
tive emotions, while the samples from 12 trials eliciting 
amusement, joy, inspiration, and tenderness were labeled 
as positive emotions. The neutral emotion category was 
not included in the basic version due to an unbalanced 
number of trials (only four trials for eliciting neutral emo-
tion). Regarding the SEED dataset, we implemented a 
three-class emotion classification for negative, neutral, and 
positive. 

4.6 Performance Comparison  

To investigate the effectiveness of our contrastive learning 
method, we compared it with several competing emotion 
recognition methods, namely differential entropy (DE) fea-
tures with MLP classifier (denoted by DE+MLP), subspace 
alignment (SA) [52], correlated component analysis (Cor-
rCA) [42], [91], and SeqCLR [60]. DE+MLP was a simple 
baseline with no inter-subject alignment. SA and CorrCA 
conducted inter-subject alignment other than contrastive 
learning. SeqCLR implemented an alternative contrastive 
learning strategy by data augmentation. Among them, SA 
[28], [51] and SeqCLR [60] have reached state-of-the-art 
performance in cross-subject emotion recognition.  

In the DE+MLP baseline, we extracted DE features di-
rectly from preprocessed EEG data, normalized them 
adaptively, smoothed, and fed them into an MLP. The DE 
features were extracted from four frequency bands: theta 
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-
47 Hz). The hyperparameters of the classifier were the 
same as the proposed method. 

Subspace alignment (SA) utilizes a linear transfor-
mation to align the source and target data in PCA subspace. 
For the implementation of SA, we projected the data of 
training subjects to be aligned with that of each testing sub-
ject in the PCA subspace. In the subspace, the spatial di-
mension of the data was reduced to 16, which was identical 
to the number of spatial convolution filters in our model. 
After the projection, we filtered the data into 16 frequency 
bands equally spaced between the data’s frequency limits 
([4 Hz, 47 Hz]). DE features were extracted from each 

frequency band. This process resulted in 256-dimension 
(16×16, the same as in our method) features. Then we nor-
malized, smoothed the data, and submitted them to the 
classifier.  

Correlated component analysis (CorrCA) maximizes 
the correlation of latent components extracted from multi-
ple EEG records. This method has been utilized to reveal 
subject-invariant brain responses to emotion [91]. For the 
implementation of CorrCA, we identified the linear trans-
formation of each subject that maximizes the ratio of be-
tween-subject to within-subject covariance. Similar to SA, 
we also retained 16 components and decomposed them 
into 16 frequency bands.  

SeqCLR is a contrastive learning method for EEG clas-
sification [60]. It learned the similarity between augmented 
samples with the original ones and achieved state-of-the-
art performance on the SEED dataset. We implemented 
five augmentation strategies Mohsenvand et al.  [60] pro-
posed, including amplitude scale, time shift, zero-masking, 
additive Gaussian noise, and band-stop filter. The param-
eters of augmentation were the same as the original paper. 
To make a fair comparison, we used the same architectures 
of the base encoder and the projector as our model here. 
The other hyperparameters and pipelines were the same as 
our method. 

Paired t-tests were performed for the performance com-
parison between different methods. To account for multi-
ple comparisons, we conducted Bonferroni correction and 
reported the corrected p-values. 

4.7 Spatiotemporal pattern analysis  

We used the integrated gradients [92] method to identify 
important features for the MLP classifier and examined the 
spatiotemporal characteristics of these features. The inte-
grated gradients method accumulates the gradient of pre-
diction outputs along the straight line from a reference in-
put (with all entries as the minimum of the actual input) to 
the actual input. The importance index for each feature 
was defined as its corresponding accumulated gradients. 
To obtain the most powerful predictive capacity, we first 
identified the best training epoch for the contrastive learn-
ing procedure and the prediction procedure with cross-
validation. Then we trained the models with those specific 
epochs using all data. The integrated gradient method was 
applied to the trained MLP classifier to derive the features 
with large importance indices for each emotion category. 

For each important DE feature in MLP, we further iden-
tified its corresponding spatial and temporal filters in the 
base encoder. We obtained the spatial activation pattern 
�� from the spatial filter �� by: �� = Σ�

�����  ( � =
1,2, … ,16), where Σ�

��� is the mean covariance matrix of the 
EEG time series across subjects [93]. Then we source local-
ized the spatial activation pattern with Brainstorm [94] and 
OpenMEEG [95] toolboxes in Matlab. The forward model 
was estimated by a three-layer (scalp, inner skull, outer 
skull) symmetric boundary element method based on 
ICBM152 brain template [96]. It generated 15002 fixed-ori-
entation dipoles oriented normally to the cortex. A lead-
field matrix linking the dipole activities to the EEG signals 
was obtained by the boundary element method. Then the 
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linear inverse kernel that maps the EEG signals to the 
source activities was estimated by the sLORETA algorithm 
[97]. 

5 RESULTS 

5.1 Emotion Recognition Performance on the THU-
EP Dataset 

Our model achieved a binary classification accuracy of 
71.9±8.8% for discriminating the positive and negative 
emotional states on the THU-EP dataset (Table 2, Table S3). 
Compared with the control model (i.e., DE+MLP) that ex-
tracted DE features directly, CLISA presented a significant 
improvement of 6.7% (t(78)=4.19, Bonferroni corrected 
p<0.001). This comparison indicated that the representa-
tions learned by our contrastive learning method were 
more powerful than the simple DE features for cross-sub-
ject emotion recognition. CLISA also significantly outper-
formed other inter-subject alignment methods, including 
SA (65.5±9.7%, t(78)=5.01, corrected p<0.001), CorrCA 
(64.5±11.0%, t(78)=5.25, corrected p<0.001), and SeqCLR 
(64.0±9.8%, t(78)=6.41, corrected p<0.001), demonstrating 
the superiority of our contrastive learning strategy. The 
area under the receiver operating characteristic (ROC) 
curve further illustrated the effectiveness of the proposed 
method, as it presented noticeably better predictive power 
under all thresholds than the other competing baselines 
(Fig. 3). 
 

TABLE 2 
THE BINARY CLASSIFICATION ACCURACIES OF DIFFERENT 

METHODS ON THE THU-EP DATASET 

Methods Avg (%) Std (%) 

DE+MLP 65.2 11.5 

SA  65.5 9.7 

CorrCA  64.5 11.0 

SeqCLR  64.0 9.8 

CLISA (ours) 71.9 8.8 

 
To illustrate the effects of contrastive learning, we visu-

alized the original features and pretrained features of five 
example subjects by t-sne embedding (Fig. 4). The original 
DE features extracted from EEG signals were scattered in 
t-sne embedded space separately for different subjects (Fig. 
4a). In contrast, the trained DE features produced by 
CLISA were merged together, and different emotion cate-
gories remained separable (Fig. 4b), indicating that our 
model could alleviate subject discrepancy effectively with-
out loss of emotional separability, thus facilitating the 
cross-subject emotion recognition.  

The performance of the proposed CLISA method bene-
fitted substantially from the increasing number of training 
subjects in contrastive learning (Fig. 5). To investigate the 
effects of training subjects’ numbers, we randomly selected 
a subset of training subjects with different subject numbers 
(8, 16, 24, 32, 40, 48, 56, 64, or 72) in the contrastive learning 
procedure. In the prediction procedure, we used all train-
ing subjects, which ensured the difference is only induced 
by the number of subjects in contrastive learning. Besides, 

we also implemented a baseline with no contrastive learn-
ing, i.e., we randomly initialized the base encoder and ex-
tracted DE features from its output. The performances of 
CLISA under different numbers of training subjects were 
illustrated in Fig. 5. We observed that the performance of 
CLISA rises considerably with the increasing number of 
training subjects. Therefore, we could expect the CLISA 
method to learn better subject-invariant emotion represen-
tations with more subjects for contrastive learning. 

In the generalizability test concerning new stimuli for 
the testing subjects (introduced in Section 4.5), our model 
achieved a classification accuracy of 63.4±17.1% (Table 3, 
Table S3), which was higher than all baseline models (the 
highest: 60.7±19.7%, although the improvement was not 

 

Fig. 4. (a) t-sne results of original differential entropy (DE) features. (b) 
t-sne results of DE features extracted from the output of trained base 
encoder (based on validation data of fold 1). Red: data points with 
negative emotion; Green: data points with positive emotion. Different 
marker types (circle, square, triangle, pentagram, and diamond) rep-
resent different subjects.  

  

Fig. 3. The receiver operating characteristic (ROC) curve in the binary 
classification on the THU-EP dataset. The inset shows the area under 
the curve (AUC). 

  

Fig. 5. The validation accuracy increases with the number of training 
subjects in contrastive learning. 
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significant, corrected ps>0.05). This result indicated that 
the model did not just overfit or memorize the stimuli (i.e., 
the videos) that it had already seen in contrastive learning. 

 
TABLE 3 

THE GENERALIZABILITY TEST ON THE THU-EP DATASET 

Methods Avg (%) Std (%) 

DE+MLP 60.2 18.1 

SA 60.7 19.7 

CorrCA  59.0 17.3 

SeqCLR  60.0 15.3 

CLISA (ours) 63.4 17.1 

We used 16 trials of the training subjects and the other eight trials of 

the testing subjects in the generalizability test. 

In the nine-class emotional classification task, CLISA 
significantly surpassed all the other competing methods by 
an improvement of 10.2% (Table 4, Table S4, corrected 
ps<0.001 for all comparisons). The consistent improvement 
of CLISA over SA, CorrCA, and SeqCLR on these tasks 
shows the superiority of our method to other linear trans-
formation methods or other contrastive learning strategies.  

Based on the prediction results of CLISA, we further an-
alyzed the confusion matrix of different emotion categories 
(Fig. 6). We observed that the disgust emotion could be 
identified with high accuracy, indicating its clear neural 
representation and high inter-subject consistency. Among 
positive emotions, amusement and tenderness could be 
identified best.  

 
TABLE 4 

THE NINE-CLASS CLASSIFICATION ACCURACIES OF DIFFER-
ENT METHODS ON THE THU-EP DATASET 

Methods Avg (%) Std (%) 

DE+MLP 35.3 11.1 

SA  35.5 11.8 

CorrCA  34.5 10.4 

SeqCLR  34.3 10.5 

CLISA (ours) 45.7 11.8 

5.2 Emotion Recognition Performance on the SEED 
Dataset 

The effectiveness of our method was also evaluated on the 
widely-used SEED dataset. CLISA obtained an accuracy of 
86.4±6.4% on the three-class emotion classification task 
(Table 5, Table S5). Similar to the THU-EP dataset, CLISA 
achieved better prediction performance than DE+MLP 
(t(14)=3.37, corrected p=0.046), SA (t(14)=4.10, corrected 
p=0.011), CorrCA (t(14)=6.32, corrected p<0.001), and Se-
qCLR (t(14)=4.63, corrected p=0.004). Furthermore, 
CLISA’s performance was comparable with those of the 
latest models (i.e., DResNet and PPDA) reported in previ-
ous studies [26], [54]. It further demonstrated the effective-
ness of our contrastive learning strategy compared to do-
main-adversarial strategies. The confusion matrix of our 
model is shown in Fig. 7. The model tended to confuse neg-
ative emotion with the other two emotions, especially with 
neutral emotion. The classification of the positive emotion 
was more accurate. These results were similar to previous 
studies [11], [13], [14].  

 
TABLE 5 

THE CLASSIFICATION ACCURACIES OF DIFFERENT METHODS 
ON THE SEED DATASET 

Methods Avg (%) Std (%) 

CLISA (ours) 86.4 6.4 

DE+MLP 79.9 8.7 

SA 78.0 6.3 

CorrCA 73.7 10.2 

SeqCLR 78.4 9.2 

DResNet [26] 85.3 8.0 

PPDA [54] 86.7 7.1 

The comparison methods DE+MLP, SA, CorrCA, and SeqCLR were 

implemented in this paper. The results of DResNet and PPDA were re-

ported in previous studies. 

 
In the generalizability test on the SEED dataset, our 

model achieved the highest classification accuracy as 
77.4±13.4% (Table 6, Table S5), although the improvement 
was not statistically significant (corrected ps>0.05). This re-
sult further validated the generalizability of our model to 
new stimuli (i.e., the videos) that it had never seen. 

Fig. 6. The confusion matrix for the nine-class emotional classification 
of THU-EP dataset. 

 

Fig. 7. The confusion matrix for the SEED dataset. 
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TABLE 6 
THE GENERALIZABILITY TEST ON THE SEED DATASET 

Methods Avg (%) Std (%) 

DE+MLP 74.4 12.8 

SA  73.9 8.9 

CorrCA  70.9 13.6 

SeqCLR  71.1 18.0 

CLISA (ours) 77.4 13.4 

We used the first nine trials of the training subjects and the last six tri-

als of the testing subjects in the generalizability test. 

5.3 Spatiotemporal Patterns for Emotion 
Recognition 

This section presents the inter-subject aligned spatiotem-
poral representations extracted by CLISA. We analyzed 
the two most important features with the largest im-
portance indices (See Section 4.7 for the definition) for each 
emotion category.  

On the SEED dataset, we identified spatial activations 
mainly in anterior temporal regions for negative emotion, 
with frequency responses at around 12-21 Hz and 4 Hz (Fig. 
8, Fig. S1). For positive emotion, the spatial activations fo-
cused on the temporal regions, with higher frequency re-
sponses of more than 25 Hz. The neutral state has frontal 
and temporal activations at around 4-8 Hz and left tem-
poral activations at high frequencies of more than 25 Hz. 

For binary classification on the THU-EP dataset, the 
spatial activations of the most important feature reside 
mainly in right occipital and right temporal regions, for 
both positive and negative emotions (Figs. S2, S3). The cor-
responding frequency response of this pattern was 4-8 Hz 
for positive emotion and less than 4 Hz for negative emo-
tion. The second important features for positive and nega-
tive emotions also have similar spatial activation patterns 
located in bilateral temporal regions. The corresponding 
temporal response was around 21-38 Hz for positive emo-
tion and 17-21 Hz for negative emotion. The activation in 
temporal regions with high-frequency responses for posi-
tive emotion was similar to that on the SEED dataset. 

For nine-class emotion classification, the model 

identified distinct spatiotemporal patterns for different 
emotion categories. Only a few emotion pairs share exactly 
the same important spatiotemporal patterns (including 
disgust and fear, inspiration and neutral, and sadness and 
tenderness) (Figs. S4, S5). In comparison to spatiotemporal 
patterns in binary classification, anger has a similar pattern 
with the overall negative emotion pattern (occipital and 
posterior temporal activations with low-pass temporal fil-
ter). Joy has a similar pattern with the overall positive emo-
tion pattern (occipital and posterior temporal activations 
with the frequency response at around 4-8 Hz). Other emo-
tion categories have their own important spatiotemporal 
patterns, different from those for overall positive or nega-
tive emotions.  

6 DISCUSSION 

In comparison to existing cross-subject emotion recogni-
tion methods, our CLISA model has several prominent fea-
tures. Firstly, the proposed contrastive learning strategy 
utilized the temporal alignment information of the data, 
i.e., which two pieces of data correspond to the same video 
segment. Thus, the contrastive learning strategy can match 
different subjects’ data on a finer scale. As DResNet, PPDA, 
and other mainstream domain adaptation methods [38] 
were mostly based on domain classifiers, they can only 
roughly match the overall data distributions from different 
subjects. Secondly, CLISA implemented subject alignment 
with EEG time series as inputs, while DResNet, PPDA, and 
most existing cross-subject methods [38] used extracted 
features as inputs. To effectively process the EEG time se-
ries, CLISA used a CNN-based structure to filter the EEG 
time series and combine the spatial dimensions. In com-
parison, previous methods generally used MLP (e.g., 
DResNet) or LSTM (e.g., PPDA and BiDANN) for subject 
invariance learning and emotion classification. Our model 
demonstrated the possibility of finding a common repre-
sentational space across subjects with EEG time series as 
inputs. Thirdly, CLISA can start recognizing a new user’s 
emotion directly without accessing his/her data and im-
prove the performance with more data coming in by 

 

Fig. 8. Spatiotemporal characteristics of the important features for emotion classification on the SEED dataset. We visualize the spatial acti-
vation patterns, the temporal filters and the frequency characteristics of the temporal filters of the two most important features for negative, 
positive, and neutral emotions, respectively.  
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adaptive feature normalization. In comparison, most do-
main adaptation methods require extensive data from the 
testing subjects for adaptation [38]. Therefore, CLISA can 
enhance the practicality of an emotion recognition system. 

The spatial and temporal convolution architecture in 
CLISA offers the possibility to analyze activated sources 
and responsive frequencies for each emotion category. The 
spatial activations in temporal regions with high frequency 
responses (>20 Hz) were important for positive emotion on 
both the THU-EP and the SEED datasets. This result is in 
line with most previous studies [14], [15], [23]. The spatial 
activations for negative emotion were mainly in more an-
terior regions on the SEED dataset and more posterior re-
gions on the THU-EP dataset. The discrepancy could be 
due to context-specific responses in each dataset that re-
quires further investigations.  

When we compare the important patterns for positive 
emotion and negative emotion, spatial activations gener-
ally have considerable overlap. It supports the affective 
workspace hypothesis that positive and negative emotion 
processing involves the same valence-general brain re-
gions [98], which is consistent with a meta-analysis of 397 
fMRI studies [99]. At the same time, the frequency re-
sponses for different affective states were distinct on both 
datasets. It indicates different dynamic processing mecha-
nisms for positive and negative emotions, which fMRI 
studies can hardly reveal.  

Furthermore, discrete emotion categories (in nine-class 
emotion classification) showed both emotion-specific spa-
tial and temporal patterns. On the one hand, it suggests 
that from the perspective of EEG spatial activities, discrete 
emotion categories have more distinct neural representa-
tions than the affective dimension (i.e., valence). Different 
network activities underlying discrete emotion categories 
have also been well documented in fMRI studies [35], [100]. 
On the other hand, the temporal patterns are distinguisha-
ble for both discrete emotion categories and the valence di-
mension. Further studies could more thoroughly investi-
gate the dynamic neural activities underlying emotion 
with EEG or MEG. 

 This study has some limitations that should be noted. 
Firstly, the proposed CLISA model was validated with 
EEG data of young adults (mean age = 20.16 years for the 
THU-EP dataset and mean age = 23.27 years for the SEED 
dataset). As age has been known to play an important role 
in emotion processing [101], [102], further studies are nec-
essary to include subjects covering different age ranges for 
a more generalized model. Secondly, while the base en-
coder’s architecture could be neurophysiologically mean-
ingful, the possible neurophysiological implications for the 
projector were limited. Further studies are expected to de-
velop a more neurophysiologically inspired projector, 
which could improve the interpretability of the whole net-
work architecture. Finally, since CLISA aimed to differen-
tiate different emotion categories, the spatiotemporal pat-
terns that are shared across emotion categories might not 
be sufficiently revealed in this study. Further studies 
should be designed to identify both shared and distin-
guishable spatiotemporal patterns for emotion categories 
to better understand the neural mechanisms of emotion 

processing. 

7 CONCLUSIONS 

In this study, we proposed a contrastive learning method 
for inter-subject alignment, which is inspired by the inter-
subject correlation studies in neuroscience. The proposed 
method achieved comparable or better performance in 
comparison to state-of-the-art methods on two datasets. 
On the THU-EP dataset, it obtained a binary classification 
accuracy of 71.9±8.8% and a nine-class classification accu-
racy of 45.7±11.8%. On the SEED dataset, it achieved a 
three-class classification accuracy of 86.4±6.4%. Moreover, 
we validated the model could generalize to unseen emo-
tional stimuli better than other comparison methods. By 
visualizing important spatial and temporal filters in the 
model, we also demonstrated its potential for providing in-
sights into the neural substrates of emotion.  
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SUPPLEMENTARY MATERIALS 

Figure S1. Source localization for the spatial activation patterns of the important features on the SEED dataset. The 
frequency below the emotion category (on the left) indicates the maximal frequency response of the corresponding tem-
poral filter. 
 

Figure S2. Spatiotemporal characteristics of the two most important features for binary emotion classification on the THU-
EP dataset. 
 

Figure S3. Source localization for the spatial activation patterns of the important features in binary emotion classification 
of the THU-EP dataset. The frequency below the emotion category (on the left) indicates the maximal frequency response 
of the corresponding temporal filter. 
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Figure S4. Spatiotemporal characteristics of the two most important features for nine-class emotion classification on the 
THU-EP dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AUTHOR ET AL.:  TITLE 19 

 

 

Figure S5. Source localization for the spatial activation patterns of the important features in nine-class emotion classifi-
cation of the THU-EP dataset. The frequency below the emotion category (on the left) indicates the maximal frequency 
response of the corresponding temporal filter. 
 
 
 
 

TABLE S1 

THE PERFORMANCE WITH DIFFERENT TEMPORAL CONVOLUTION FILTER LENGTHS IN THE BASE ENCODER ON THE BINARY CLASSIFI-

CATION FOR THE THU-EP DATASET 

Temporal Filter length in the base encoder Avg (%) Std (%) 

20 68.5 10.8 

40 69.3 10.0 

60 71.9 8.8 

80 72.1 10.4 

100 71.5 8.6 

The temporal filter length in the projector was set as 6 here. 
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TABLE S2 

THE PERFORMANCE WITH DIFFERENT TEMPORAL CONVOLUTION FILTER LENGTHS IN THE PROJECTOR ON THE BINARY CLASSIFICA-

TION FOR THE THU-EP DATASET 

Temporal Filter length in the projector Avg (%) Std (%) 

3 69.9 10.0 

6 71.9 8.8 

12 71.1 10.0 

24 71.0 9.2 

The temporal filter length in the base encoder was set as 60 here. 
 

 

TABLE S3 
THE BINARY CLASSIFICATION ACCURACIES FOR EACH SUBJECT IN THE THU-EP DATASET 

 Binary Cross-subject emotion recognition Generalizability test 

Subject No. DE+MLP SA CorrCA SeqCLR CLISA DE+MLP SA CorrCA SeqCLR CLISA 

1 66.7 67.8 62.5 70.8 70.8 62.5 50.0 75.0 62.5 62.5 

2 75.0 84.4 75.0 83.3 78.1 75.0 75.0 50.0 62.5 62.5 

3 62.5 70.0 54.2 62.5 83.3 25.0 62.5 37.5 37.5 62.5 

4 75.0 54.4 62.5 66.7 70.8 70.8 50.0 75.0 62.5 100.0 

5 45.8 67.9 58.3 58.3 83.3 75.0 62.5 62.5 62.5 87.5 

6 79.2 77.8 87.5 66.7 66.7 87.5 62.5 75.0 75.0 75.0 

7 75.0 53.4 62.5 73.5 70.8 62.5 62.5 62.5 49.6 62.5 

8 62.5 61.3 58.3 58.3 79.2 62.5 75.0 100.0 75.0 50.0 

9 54.2 68.8 74.6 62.5 75.0 62.5 62.5 50.0 75.0 75.0 

10 75.0 66.1 55.1 56.0 66.7 37.5 37.5 37.5 62.5 37.5 

11 75.0 70.0 66.7 62.5 70.8 62.5 75.0 62.5 75.0 37.5 

12 54.2 65.2 66.7 66.7 70.8 87.5 100.0 50.0 75.0 75.0 

13 62.5 67.9 61.9 62.5 66.7 50.0 62.5 50.0 62.5 87.5 

14 79.2 72.7 79.2 75.0 75.0 62.5 50.0 75.0 75.0 50.0 

15 62.5 46.9 62.5 70.8 70.8 62.5 12.5 75.0 62.5 50.0 

16 83.3 85.6 62.5 79.2 83.3 75.0 75.0 50.0 50.0 87.5 

17 62.5 60.1 62.5 58.3 70.8 75.0 25.0 50.0 75.0 75.0 

18 58.3 84.4 75.0 58.3 71.8 62.5 75.0 37.5 75.0 50.0 

19 75.0 54.4 50.0 45.8 62.5 75.0 50.0 50.0 62.5 50.0 

20 70.8 61.2 79.2 83.3 87.5 50.0 50.0 62.5 62.5 75.0 

21 41.7 51.3 45.8 58.3 66.7 75.0 87.5 75.0 62.5 87.5 

22 54.2 62.9 70.8 66.7 79.2 37.5 37.5 75.0 37.5 75.0 

23 47.4 66.1 58.3 67.4 75.0 62.5 87.5 37.5 50.0 87.5 

24 70.8 81.7 79.2 75.0 79.2 100.0 62.5 75.0 75.0 100.0 

25 58.3 67.0 75.0 58.3 70.8 25.0 50.0 50.0 37.5 50.0 

26 75.0 70.9 62.5 79.2 75.0 62.5 62.5 62.5 62.5 75.0 

27 62.5 70.9 70.8 75.0 66.7 62.5 75.0 37.5 50.0 87.5 

28 54.2 67.8 66.7 58.3 66.7 62.5 62.5 62.5 75.0 75.0 

29 62.5 63.1 79.2 50.0 91.7 37.5 37.5 62.5 37.5 75.0 

30 83.3 83.5 54.2 58.3 70.8 62.5 50.0 62.5 87.5 50.0 

31 70.8 73.9 83.3 50.0 75.0 37.5 37.5 25.0 50.0 50.0 

32 54.2 58.2 70.8 62.5 66.7 50.0 62.5 75.0 54.6 56.7 

33 54.2 55.2 58.3 42.5 75.0 75.0 62.5 50.0 62.5 50.0 

34 62.5 52.2 66.7 54.2 50.0 37.5 50.0 50.0 50.0 25.0 

35 86.1 58.3 70.8 79.2 86.4 75.0 62.5 62.5 62.5 62.5 

36 54.2 70.9 41.7 58.3 71.1 50.0 37.5 50.0 50.0 50.0 

37 47.8 73.9 54.2 50.1 66.7 65.8 62.5 62.5 62.5 62.5 

38 66.7 69.3 83.3 58.3 87.5 75.0 75.0 87.5 62.5 87.5 

39 66.7 75.7 58.3 62.5 70.0 37.5 37.5 62.5 37.5 25.0 

40 63.2 50.8 50.0 75.0 66.7 75.0 75.0 62.5 75.0 62.5 

41 58.3 66.0 70.8 75.0 79.2 12.5 100.0 37.5 37.5 87.5 

42 83.3 73.9 50.0 75.0 70.8 100.0 62.5 62.5 75.0 50.0 

43 83.3 73.9 66.7 75.0 79.2 62.5 75.0 37.5 50.0 50.0 
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44 73.2 74.8 57.8 66.7 83.3 93.3 75.0 87.5 75.0 75.0 

45 58.3 75.7 62.5 70.8 70.8 50.0 75.0 87.5 62.5 75.0 

46 45.0 49.6 50.0 50.0 66.7 37.5 75.0 50.0 50.0 62.5 

47 54.2 63.1 75.0 66.7 75.0 50.0 68.8 64.6 62.5 62.5 

48 91.7 50.5 66.7 53.5 75.0 87.5 12.5 87.5 75.0 62.5 

49 75.0 73.9 75.0 75.0 79.2 50.0 50.0 62.5 37.5 25.0 

50 70.8 66.9 70.8 58.3 70.8 75.0 87.5 75.0 75.0 62.5 

51 33.3 46.6 54.2 62.2 75.0 37.5 50.0 25.0 62.5 75.0 

52 69.9 58.2 65.1 45.8 62.5 75.0 50.0 100.0 62.5 50.0 

53 58.3 52.2 62.5 70.8 70.8 75.0 50.0 75.0 87.5 62.5 

54 41.7 60.1 66.7 58.3 79.2 62.5 37.5 50.0 50.0 75.0 

55 75.0 71.8 87.5 66.7 70.8 75.0 37.5 62.5 25.0 37.5 

56 66.7 66.1 70.8 58.3 70.8 37.5 62.5 62.5 58.8 75.0 

57 66.7 64.0 70.8 66.7 70.8 37.5 25.0 62.5 50.0 62.5 

58 58.3 48.7 45.8 73.1 66.7 62.5 50.0 25.0 64.6 37.5 

59 66.7 70.9 70.8 45.8 66.7 62.5 60.4 37.5 50.0 50.0 

60 70.8 67.8 79.2 70.8 47.4 62.5 62.5 75.0 75.0 62.5 

61 62.5 60.0 62.5 70.8 70.8 75.0 75.0 37.5 50.0 87.5 

62 62.5 59.2 45.8 41.7 50.0 37.5 87.5 50.0 37.5 62.5 

63 66.7 66.0 75.0 70.8 75.0 37.5 37.5 62.5 37.5 50.0 

64 68.2 84.4 58.3 66.7 79.2 62.5 75.0 50.0 87.5 62.5 

65 70.8 69.1 70.8 62.2 70.8 62.5 62.5 50.0 62.5 75.0 

66 43.9 75.7 75.0 75.0 70.8 75.0 87.5 25.0 62.5 50.0 

67 62.5 58.3 63.6 50.0 66.7 37.5 50.0 62.5 50.0 62.5 

68 58.3 65.8 54.2 75.0 91.7 75.0 75.0 55.4 87.5 87.5 

69 70.8 70.8 75.0 70.8 70.8 75.0 50.0 62.5 62.5 62.5 

70 79.2 75.7 62.5 66.7 68.9 37.5 62.5 50.0 50.0 37.5 

71 54.2 65.4 70.8 66.7 70.8 62.5 75.0 82.1 75.0 50.0 

72 79.2 58.3 41.7 75.0 62.5 50.0 50.0 50.0 25.0 75.0 

73 66.7 55.4 41.7 45.8 46.3 62.5 87.5 87.5 75.0 75.0 

74 62.5 56.1 70.8 66.7 62.5 75.0 87.5 50.0 62.5 62.5 

75 70.8 69.1 53.1 70.8 66.1 62.5 37.5 37.5 25.0 37.5 

76 79.2 79.6 75.0 58.3 70.8 75.0 100.0 87.5 75.0 87.5 

77 54.2 48.3 58.3 58.3 54.2 37.5 12.5 75.0 62.5 62.5 

78 75.0 54.3 41.7 67.2 83.3 75.0 75.0 50.0 87.5 50.0 

79 75.0 66.1 66.7 54.2 83.3 25.0 87.5 37.5 37.5 62.5 

Avg 65.2 65.5 64.5 64.0 71.9 60.2 60.7 59.0 60.0 63.4 

Std 11.5 9.7 11.0 9.8 8.8 18.1 19.7 17.3 15.3 17.1 

t(78) 4.19 5.01 5.25 6.41 - 1.28 1.12 1.70 1.43 - 

Bonferroni  

corrected p 
<0.001 <0.001 <0.001 <0.001 - 1.000 (0.206) a 1.000 (0.268) 0.940 1.000 (0.158) - 

We reported t-values and Bonferroni corrected p-values in the paired t-tests between the performance of CLISA and other models. 

 aThe p-values in parentheses were uncorrected. 

 
TABLE S4 

THE NINE-CLASS CLASSIFICATION ACCURACIES FOR EACH SUBJECT IN THE THU-EP DATASET 

Subject No. DE+MLP SA CorrCA SeqCLR CLISA 

1 28.6 23.4 28.6 37.4 42.9 

2 21.4 45.9 28.6 25.0 46.4 

3 53.2 32.2 28.6 46.4 35.7 

4 35.7 42.7 42.9 24.4 28.6 

5 35.1 31.5 17.9 28.6 57.1 

6 28.6 22.1 46.4 35.7 36.7 

7 50.0 29.4 32.1 35.2 50.0 

8 50.0 36.8 50.0 48.2 60.7 

9 32.1 59.0 42.9 32.1 60.7 

10 21.4 11.7 17.9 25.0 46.4 

11 45.5 50.2 39.3 32.1 60.7 

12 28.6 32.2 32.1 27.0 50.0 
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13 50.0 41.3 35.0 32.1 52.4 

14 50.0 64.8 42.9 50.0 60.2 

15 39.3 35.5 39.3 39.3 57.1 

16 28.6 23.4 44.6 42.1 46.4 

17 39.3 47.2 35.7 37.5 57.1 

18 50.0 22.8 32.1 28.6 47.4 

19 32.9 44.3 39.3 46.4 64.3 

20 46.4 39.7 54.5 53.6 67.9 

21 21.4 20.5 35.7 25.0 39.3 

22 35.7 38.4 17.9 43.5 57.1 

23 32.1 33.9 21.4 32.1 25.0 

24 38.9 45.6 46.4 35.7 57.1 

25 32.1 42.7 35.7 45.2 46.4 

26 36.5 51.9 42.9 53.6 60.7 

27 57.1 44.3 60.7 53.6 50.0 

28 39.3 42.7 50.0 53.6 53.6 

29 50.8 26.4 42.9 46.4 64.3 

30 32.1 30.9 25.0 14.3 46.4 

31 57.1 60.4 60.7 56.0 64.3 

32 53.6 39.8 32.1 35.0 41.9 

33 35.7 33.9 32.9 17.9 42.9 

34 14.3 21.2 27.0 10.7 17.9 

35 46.4 28.0 39.3 35.7 50.0 

36 14.3 12.7 20.8 35.7 39.3 

37 28.6 26.4 35.7 32.1 40.6 

38 25.0 56.1 50.0 21.4 50.0 

39 25.0 19.2 28.6 35.7 42.9 

40 39.3 32.0 42.9 32.1 54.9 

41 10.7 38.4 28.6 14.3 24.5 

42 46.4 41.3 18.2 26.0 53.6 

43 32.1 16.0 28.6 35.7 64.3 

44 31.4 33.2 20.2 35.7 50.0 

45 25.0 35.5 17.9 21.4 21.4 

46 28.6 33.9 25.0 35.7 32.1 

47 25.0 38.2 34.8 36.4 50.0 

48 42.9 11.7 39.3 28.6 57.1 

49 25.0 24.3 28.6 35.7 42.9 

50 32.1 42.7 46.4 24.4 32.1 

51 17.9 47.3 32.1 21.4 33.5 

52 21.4 44.3 21.4 39.3 44.3 

53 17.9 11.7 28.6 22.7 35.7 

54 32.1 39.7 42.9 35.7 45.2 

55 53.6 34.7 57.1 39.3 46.4 

56 42.9 33.9 32.1 41.3 46.4 

57 35.7 35.5 35.7 37.4 50.0 

58 42.9 30.9 45.4 32.1 50.0 

59 35.7 47.2 28.6 39.3 35.7 

60 39.3 28.0 39.3 25.0 35.7 

61 46.4 39.7 39.3 44.2 39.3 

62 21.4 25.5 32.1 25.0 27.1 

63 32.1 39.8 35.1 46.4 39.3 

64 53.6 59.0 46.4 42.9 60.7 

65 28.6 42.7 32.1 32.1 47.1 

66 28.6 53.1 14.3 28.6 32.1 

67 35.7 31.0 35.7 35.7 57.1 

68 21.4 24.8 25.0 10.7 42.9 

69 42.1 20.5 32.1 31.0 57.1 

70 35.4 50.1 39.3 42.9 46.4 

71 35.7 33.9 28.6 28.6 50.0 

72 36.0 35.5 32.1 35.7 25.0 
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73 25.0 21.2 28.6 28.6 25.0 

74 25.0 25.1 21.4 39.3 17.9 

75 21.4 50.1 17.9 50.0 32.1 

76 34.9 50.2 35.1 11.1 50.0 

77 49.0 30.9 46.4 53.6 50.0 

78 39.3 33.9 26.5 25.0 46.4 

79 53.6 28.5 25.0 32.1 39.3 

Avg 35.3 35.5 34.5 34.3 45.7 

Std 11.1 11.8 10.4 10.5 11.8 

t(78) 8.22 6.24 8.40 8.30 - 

Bonferroni corrected p <0.001 <0.001 <0.001 <0.001 - 

We reported t-values and Bonferroni corrected p-values in the paired t-tests between the performance of CLISA and other models. 

 
TABLE S5 

THE CLASSIFICATION ACCURACIES FOR EACH SUBJECT IN THE SEED DATASET 

  Cross-subject emotion recognition Generalizability test 

Subject No. DE+MLP SA Corr-

CA 

Seq-

CLR 

CLISA DE+MLP SA Corr-

CA 

SeqCLR CLISA 

1 80.3 75.5 59.8 74.0 75.7 71.8 57.4 63.6 36.7 66.6 

2 80.4 77.2 69.2 73.7 82.2 68.4 75.2 55.4 76.3 62.3 

3 88.2 92.6 76.4 77.9 87.6 85.4 83.7 92.8 86.7 94.4 

4 79.3 70.3 71.7 69.7 85.8 69.6 61.8 66.8 56.3 64.6 

5 80.6 75.7 71.3 87.3 86.0 80.0 83.7 71.9 90.0 82.0 

6 75.9 83.3 79.7 80.1 86.6 83.4 78.8 63.1 80.9 67.6 

7 69.7 77.3 76.0 66.6 88.6 68.6 88.4 77.8 62.2 92.3 

8 85.4 81.0 81.2 85.2 93.2 85.4 79.6 89.6 82.8 88.5 

9 75.5 65.4 69.6 79.0 90.8 57.0 67.1 62.4 48.5 65.5 

10 78.6 77.0 67.9 84.2 83.4 64.8 79.0 81.9 78.1 74.0 

11 95.8 85.1 94.5 90.2 91.7 90.1 72.2 58.0 73.2 94.3 

12 59.4 72.6 57.7 55.3 69.8 54.1 63.7 47.2 44.7 60.9 

13 71.9 76.5 59.6 78.0 91.7 54.9 64.7 59.3 60.6 62.0 

14 87.5 83.4 86.8 85.3 90.3 87.8 81.2 88.8 97.8 94.1 

15 90.5 76.9 84.4 89.3 93.0 94.3 72.4 84.7 91.8 91.7 

Avg 79.9 78.0 73.7 78.4 86.4 74.4 73.9 70.9 71.1 77.4 

Std 8.7 6.3 10.2 9.2 6.4 12.8 8.9 13.6 18.0 13.4 

t(14) 3.37 4.10 6.32 4.63 - 1.28 1.30 2.50 1.71 - 

Bonferroni  

corrected p 
0.046 0.011 <0.001 0.004 - 

1.000 

(0.221) a 

1.000 

(0.214) 
0.260 

1.000 

(0.109) 
- 

We reported t-values and Bonferroni corrected p-values in the paired t-tests between the performance of CLISA and other models. 

 aThe p-values in parentheses were uncorrected. 

 
 
 
 


