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Abstract—The data scarcity problem in Electroencephalogra-
phy (EEG) based affective computing results into difficulty in
building an effective model with high accuracy and stability
using machine learning algorithms especially deep learning
models. Data augmentation has recently achieved considerable
performance improvement for deep learning models—increased
accuracy, stability, and reduced over-fitting. In this paper, we pro-
pose a novel data augmentation framework, namely Generative
Adversarial Network-based Self-supervised Data Augmentation
(GANSER). As the first to combine adversarial training with
self-supervised learning for EEG-based emotion recognition, the
proposed framework can generate high-quality and high-diversity
simulated EEG samples. In particular, we utilize adversarial
training to learn an EEG generator and force the generated EEG
signals to approximate the distribution of real samples, ensuring
the quality of augmented samples. A transformation function is
employed to mask parts of EEG signals and force the generator
to synthesize potential EEG signals based on the remaining parts,
to produce a wide variety of samples. The masking possibility
during transformation is introduced as prior knowledge to guide
to extract distinguishable features for simulated EEG signals and
generalize the classifier to the augmented sample space. Finally,
extensive experiments demonstrate our proposed method can
help emotion recognition for performance gain and achieve state-
of-the-art results.

Index Terms—EEG-based emotion recognition, data augmen-
tation, generative adversarial networks

I. INTRODUCTION

Emotions are manifest in each action of our daily life be-
haviors. Understanding emotions is one of the most important
aspects of human development and growth, and, therefore, it is
an important tile for the emulation of human intelligence [1].
Thus, affective computing and automatic emotion recognition
are key for AI advancement [2] and all the research fields
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that stem from them. Electroencephalography (EEG) measures
oscillations in the brain, which reflect the synchronized activity
of neurons. It is thought that the changes in these oscillations
are correlated with the cognitive process, and can be used to
reveal important information about human emotional states.
As a kind of physiological signal, EEG has the advantage
of being difficult to hide or disguise. Compared with other
physiological signals, it has excellent time resolution, which
is similar to the nuanced changes of emotional states in time
scale. Owing to the rapid development of noninvasive, easy-
to-use and inexpensive recording devices, EEG-based emotion
recognition has received an increasing amount of attention in
both research and applications [3].

Nevertheless, EEG also subjects to several limitations. First,
as an aggregate signal from the activity of millions of neurons,
EEG suffers from a low signal-to-noise ratio (SNR) [4].
Second, EEG is generally recorded using tens to hundreds
of electrodes simultaneously, and the sampling time usually
exceeds a few seconds in each trial. Thus, the original feature
dimension of an EEG sample is not low. However, in a typical
dataset for cognitive neuroscience tasks, it usually contains
only some hundred to a few thousand samples (i.e., experi-
mental trials). It leads to a very low initial ratio of samples to
features. Third, EEG is a non-stationary signal and its statistics
varying over time. The inherent variabilities in brain anatomy,
head size, and dynamics across trails/subjects considerably
limit the generalizability of EEG analyses across subjects, and
even across trials within a single subject performing a single
task. The second limitation brings huge difficulties to the use
of machine learning models, while the other two exacerbate
this difficulty.

In the past few years, deep learning methods have achieved
breakthrough performance for EEG-based emotion recogni-
tion. Unfortunately, deep learning models are typically very
complex, i.e., have many free parameters (or degrees of
freedom) to fit [5]. Thus, if we lack enough data to train,
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considered the case of EEG-based emotion recognition that
has a low initial ratio of samples to features, training such
deep learning models risks overfitting those models to specific
quirks of the training set. It also severely limits the generaliz-
ability of these models.

Data augmentation is considered as one of the effective
technologies for solving the data scarcity problem. It is usually
a process of generating the new realistic-like data by applying
a transformation to the real data [6]. It also holds the promise
to increase the accuracy and stability of the classification or
regression. To overcome the data scarcity problem, in this
paper, we propose a Generative Adversarial Network-based
Self-supervised Data Augmentation (GANSER) framework
for EEG-based emotion recognition. The proposed framework
comprises two networks, including the Adversarial Augmen-
tation Network (AAN) and Multi-factor Training Network
(MTN). In the AAN, we propose a Masking Transformation
operation to mask parts of EEG signals and then force the
proposed Generative Adversarial Network (GAN) seeking to
synthesize potential EEG signals based on the remaining
parts. Here, the UNet, Channel Masking operation and STNet
are employed to model the spatio-temporal features of EEG
signals while adversarial training forces the generated EEG
signals to approximate the distribution of real ones, ensuring
the quality of simulated EEG signals. Next, in the MTN, the
simulated EEG signals are utilized for training the emotion
recognition models as augmented samples. The Multi-factor
Self-supervised Learning loss is proposed to introduce the
masking possibility as prior knowledge to guide the model
extracting distinguishable features for simulated EEG signals
and generalize the classifier to the augmented sample space.

In summary, the contributions of this paper can be high-
lighted as follows. (i) This paper proposes GANSER, per-
mitting to tackle the bottleneck of data scarcity for EEG-
based emotion recognition. (ii) In this paper, we are the first
to combine adversarial training with self-supervised learning
to synthesize real-like diverse EEG signals, and utilize the
augmented EEG samples to self-supervise emotion recognition
learning. On the one hand, adversarial training is designed to
learn an EEG generator and force the synthesized EEG signals
fitting the real distribution to augment real-like high-quality
samples. On the other hand, a transformation function is
employed to mask parts of EEG signals and force the generator
seeking to synthesize diverse augmented samples different
from given samples. The prior knowledge during transfor-
mation is utilized to guide the self-supervised learning upon
augmented samples. (iii) Extensive experiments are carried
out, and the results show that our proposed deep framework
significantly outperforms the existing state-of-the-art methods.
Finally, we adopt a quantitative assessment approach for EEG
analysis to evaluate the quality and diversity of the augmented
samples, and visualization results are provided for qualitative
analysis.

II. RELATED WORK

A. EEG-based Emotion Recognition

Recent years, boosted by the success of deep neural net-
works, deep learning-based emotion recognition [7]–[11] has
received an increasing amount of attention in both research
and applications and these studies seek to explore end-to-end
methods to tackle the EEG-based emotion recognition task.

In detail, deep neural networks such as recurrent neu-
ral networks (RNNs), 2D/3D convolutional neural networks
(CNNs), or both were employed for feature extraction and
classification. In 2016, Zhang et al. [12] proposed a spatial-
temporal recurrent neural network (STRNN) to investigate
both spatial and temporal dependencies of EEG signals and
achieve the state-of-the-art. In 2018, Li et al. further [13]
proposed a hybrid deep learning structure based on a CNN
and an RNN for emotion recognition based on multi-channel
EEG signals. The proposed method showed effectiveness in
the trial-level emotion recognition task. In the same year,
Salama et al. [14] employed 3D CNNs to classify human
emotion. To feed an EEG signal into inputs of a 3D CNN,
they divided the 2D shape (channel×time) of EEG data into
6-s segments and stacked them along the third axis. In the
following study, Moon et al. [15] pointed out the limitation
that only signals or features from individual electrodes are
considered and employed brain connectivity features to ac-
count for synchronous activations of different brain regions.
In 2020, Moon et al. [16] further improved their research
and introduced three different types of connectivity measures
to model brain connectivity with a CNN. Furthermore, two
data-driven methods are proposed to construct the connectivity
matrix and maximize classification performance. Luo et al.
[17] found that EEG signals significantly varied depending
on the individual and imposed difficulty in achieving satisfac-
tory classification performance. They proposed a Wasserstein
GAN-based framework to solve the domain shift problem by
narrowing down the gap between the probability distribution of
different subjects. Recently, Moon et al. [16] proposed to learn
feature space mapping and perform individuality detachment
to reduce subject-related information from EEG signals. The
proposed method can effectively discard the subject-related
information and perform well on emotion recognition tasks.

B. Data Augmentation for EEG-based Emotion Recognition

In the field of image processing and computer vision, there
are two simple and direct ways to augment data: geomet-
ric transformation and noise addition. Krell and Su et al.
suggested using rotational distortions, which were similar to
affine/rotational distortions of images, to generate augmented
EEG data [18]. Relying on relevant combinations and dis-
tortions of the original trials, Lotte proposed three methods
to obtain artificial EEG trials [19]. Different from geometric
transformations, Wang et al. generated new features by adding
Gaussian noises with different standard deviations to the
original EEG feature and applied several deep learning models
to verify the effect [20]. Other data augmentation methods
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Fig. 1. Generative Adversarial Network-based Self-supervised Emotion Recognition (GANSER).

include sliding window, sampling, the Fourier transform, and
recombination of segmentation [5]. All of the abovementioned
methods reported that the data scarcity problem had been
alleviated, and the performance of the classifiers was improved
[21].

Recently, Generative Adversarial Networks (GANs) have
revealed their potential in generating EEG signals that mimic
real ones, utilized in the emotion recognition task [21]–[23]
and a wide variety of applications [24]–[28]. A conditional
version of the Wasserstein Generative Adversarial Network
(WGAN) was used to augment EEG data for emotion recog-
nition in [22]. They tried different sizes for the augmented
data, and they found that doubling the data led to the highest
performance increment comparing to other sizes. An SVM
classifier trained on the augmented dataset improved 2.97% for
the SEED dataset from 83.99% to 86.96%. Luo et al. proposed
to use a conditional Boundary Equilibrium GAN (cBEGAN)
to generate artificial differential entropy features of original
EEG data, eye movement data and their concatenations for
multi-modal emotion recognition. The main advantage of it is
that the proposed GAN has good stability and a very quick
convergence speed [23]. Luo et al. proposed three methods for
augmenting EEG training data to enhance the performance of
emotion recognition models, including conditional Wasserstein
GAN, selective variational autoencoder, and selective WGAN
[21]. They trained SVM and deep neural networks on original
and augmented training datasets. The experimental results
showed that the augmented training datasets enhance the
performance of EEG-based emotion recognition.

Though lots of efforts have been made, the research on
data augmentation for emotion recognition is far from close.
For example, while a human can easily decide whether an
augmented dataset, e.g., of cats or other images, still resembles

the original class, the same is not true of augmented signals.
How to measure the quality and diversity of augmented
samples and synthesize high-quality and diverse augmented
samples deserves further exploration.

III. PROPOSED METHOD

A. Overall Framework

This paper designs a Generative Adversarial Network-based
Self-supervised Emotion Recognition (GANSER) framework
for EEG-based emotion recognition. Illustrated in Fig. 1, the
proposed framework comprises two networks, the Adversarial
Augmentation Network (AAN), and the Multi-factor Training
Network (MTN). Taking real EEG samples as input, the AAN
is first designed to synthesize high-quality and diverse aug-
mented EEG samples. Then, the EEG-based emotion recogni-
tion classifier can be learned on the augmented EEG samples
and finish the self-supervised learning under the guidance of
the proposed MTN. In the remainder of this section, we will
detail the network architecture of AAN and MTN proposed in
this paper.

B. Adversarial Augmentation Network

In the AAN, the Masking Transformation operation is first
proposed to cut out part of the data points of the given EEG
randomly. Then, a GAN is required to synthesize EEG signals
fitting the real data distribution based on the remained EEG
signals. By restoring the missing data points of EEG signals,
the proposed GAN would be able to recognize the feature
distribution of source EEG signals and introduce new data
points to generate new EEG signals.

To be specific, given a 32 channel EEG signal with one-
second length (sampled to 128 Hz) with the size of 32 ×
128, we first follow the pre-processing of existing work [29]
to apply baseline removal, measuring the differences between



baseline signals and the given signal. Then, the results of 32
channels are transformed into 9 × 9 maps according to the
electrodes’ location based on the international 10-20 system
[29]. As a result, the given EEG signal can be denoted by
e ∈ R128×9×9.

Then, as we described before, we design the Masking
Transformation operation to cut out partial signal values of the
given e and force the following GAN to restore the missing
parts fitting the remained information to involve potential real-
like samples different from the input EEG signal. In detail,
we first randomly sample a matrix r ∈ R128×9×9 of the same
size as e with uniform distribution U ∼ [0, 1) and utilize r
as the probability matrix representing probabilities of signal
values being masked. Then, the parameter τ is sampled from
the uniform distribution U ∼ [τmin, τmax] as the threshold to
determine which data point should be masked. In this way, the
obtained EEG signals δ(e, τ) transformed from e based on the
threshold τ can be defined by:

δ(eijk, τ) =

{
eijk , rijk > τ

0 , rijk ≤ τ
(1)

Here, a large τ means random masking ignores more parts
of the signal values of source EEG samples. In this case,
the feature distribution of source EEG signals is hard to
preserve due to the limited remained signal values. As a
result, we can avoid learning an identity mapping and produce
simulated EEG signals different from original signals, ensuring
the diversity of augmented samples. Conversely, the generated
EEG signal can be similar to the source EEG signal forced
to fit the distribution of given signals. Thus, in this paper, we
utilize τ as an augmentation factor to represent the augmented
sample’s diversity and difference from the original sample.

Then, based on δ(e, τ), we design a GAN to synthesize
simulated EEG samples and ensure the generated EEG signals
fit the feature distribution of real samples. Unlike the Masking
Transformation operation, focusing on involving the diversity
for synthesized EEG samples at the signal value level, the
proposed GAN is responsible for learning the distribution of
realistic EEG signals at the feature level. In this way, the
generated augmented samples are further forced to preserve
the natural features of real samples. Finally, realistic and
diverse samples can lead to better classification performance
for emotion recognition.

The designed GAN is composed of two networks, i.e., a
generator G and a discriminator D, optimized to minimize a
two-player min-max game. Here, the generator G is trained
to generate the simulated EEG sample G(δ(e, τ)) taking the
EEG signal e as input. The discriminator D is required
to distinguish whether the given EEG signals are simulated
or real, while G learns to fool the discriminator and try
to make simulated samples close to real ones. Due to the
instability problems of the traditional training procedure of
GANs, different from previous GANs proposed for emotion
recognition, we utilize a modified version of Wasserstein
GAN Gradient Penalty, i.e., WGAN-GP [30], for combining
adversarial supervision and the random masking augmentation

(a) The network architecture of 𝐺
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Fig. 2. Network architectures of proposed generator G, discriminator D, and
classifier C.

strategy. Then, the loss function of G can be formulated as Eq.
(2):

LG = −Ee∼Pe
[D (G(δ(e, τ)))] (2)

where Pe denotes the distribution of the given real EEG signals
and e represents an EEG signal sample from it. Meanwhile,
the goal of D is to minimize the loss function illustrated in
Eq. (3):

LD =Ee∼Pe [D (G(δ(e, τ)))]− Ee∼Pe [D(δ(e, τ))]

+ λpEê∼Pê

[
(‖∇D(ê)‖2 − 1)

2
] (3)

where Pê is defined sampling uniformly along straight lines
between pairs of points sampled from the data distribution Pe

and the generator distribution among G(δ(e, τ)). The gradient
of the discriminator D is denoted by ∇D(ê), and λp is a
hyperparameter presenting the weight of the penalty term.
In this way, the Wasserstein distance is used to compare
the distributions of the generated samples and real samples,
where the Lipschitz-continuous map ensures the property of
a uniformly continuous distribution. This design can limit the
normal of the derivation from growing too large [30]. Utilizing
Eq. (2) and Eq. (3), G and D are optimized in turn. By
optimizing the adversarial loss, D is able to distinguish real
distribution from simulated distribution, while G improves the
ability to construct samples closer to real EEG signals.

Regarding the network architectures of G and D, unlike the
existing work focusing on generating feature representation
or single-channel EEG signals, this paper aims to tackle the
data augmentation problem for general emotion recognition
methods and synthesize high-resolution EEG samples.

For the generator G, we aim to synthesize missing signal
values of given EEG signals to augment new EEG samples. In



this case, one of the natural ideas is to utilize an auto-encoder
to reconstruct EEG signals directly in a down-sample and up-
sample fashion. However, EEG signals contain abundant de-
tails reflected by time-series variance. It is challenging for ex-
isting auto-encoder-based networks to generate low-distorted
EEG signals, because down-sampling of auto-encoder applied
to high-resolution time sequences can lead to details missing
and the reconstructed signals could be smoothed. To tackle
this bottleneck, in this paper, we integrate an adaption version
of UNet on EEG signals as the proposed generator for EEG
signal synchronizing.

As shown in Fig. 2(a), the proposed UNet consists of an
encoder, a decoder, and skip connections. The encoder takes
the EEG representation as the input and utilizes four two-
dimensional convolutional layers followed by LeakyReLU as
an activation function to down-sample the EEG signals and
extract feature maps. Based on the deep stack of convolutional
layers, spatio-temporal patterns of original EEG signals are
captured from detail to abstract. Then, in the decoder, three
de-convolutional layers are applied to up-sample feature maps
to high spatio-temporal resolution by synthesizing the missing
signal values to generate new EEG samples based on ex-
tracted features. Here, skip connections are designed between
the convolutional and symmetric de-convolutional layers to
fuse shallow feature maps to favor de-convolutional layers to
supplement high-resolution details.

Further, this paper finds EEG signals are sparse on the
spatial dimension due to limited numbers of electrodes placed
on the cap, which brings challenges for UNet to synthesize
real-like EEG signals. To be specific, given a 32 channel EEG
signal, we transform 32 channels into 9 × 9 maps according
to the location of electrodes. In the locations where electrodes
do not exist, signal values are unknown or unmeasured, and
the signal values are represented as zeros. Forcing the UNet to
fit unmeasured signal values in the locations where electrodes
do not exist, signal values to 0.0, the generator is required to
predict mutated low signal values into original spatially dense
and continuous signals, which is at variance with objective
reality and inevitably affects the modeling of measured signal
values to fit the real distribution of original EEG signals. Thus,
this paper first introduces the Channel Masking operation to
improve the ability of UNet for synthesizing EEG signals. For
the first step, we propose to build the channel mask m, a
prior binary mask with the size of 9 × 9, and set the values
where electrodes exist and signals are measured to one, while
defining the other locations to zero. Then, we apply element-
wise multiply between the designed prior mask and the output
of UNet, i.e., the synthesized EEG signals, to artificially reset
the signal values where electrodes do not exist to zero. In this
way, the proposed generator only needs to focus on fitting the
signal values where electrodes exist and neglecting the unreal
mutation of EEG signal values caused by the nonexistent
electrodes.

As the last part, illustrated in Fig. 2(b), we design a novel
network architecture, STNet, to analyze the complex spatio-
temporal features of EEG signals, and utilize STNet as the dis-

criminator. In detail, the designed STNet comprises three two-
dimensional convolutional layers, a separable convolutional
layer and an Inception block. For the first step, input EEG
signals are analyzed by two-dimensional convolutional layers
to extract feature maps from signal values of each electrode
and their spatio-temporal neighbors to summarize high-level
features. Then, due to the fact that the recognition of specific
emotions is only related to local patterns of spatial features or
temporal features, we introduce a separable convolutional layer
[31] to decouple the modeling of spatio-temporal information.
Here, the utilized separable convolutional layer containing a
depth-wise convolutional layer and a point-wise convolution
layer to capture spatial correlation and temporal correlations of
extracted feature maps, respectively. Recognizing the pattern
of emotions requires analyzing EEG signals at different spatial
scales, and thus we further introduce an Inception block [32]
containing three types of filters of different sizes to extract
multi-scale feature maps. By fusing these feature maps, the
pattern of emotions related to multiple electrode signals and
local electrode signals can both be adaptively captured. Finally,
the classification results are produced. For more implemen-
tation details of network architectures, please refer to the
supplemental material.

C. Multi-factor Training Network

By optimizing the adversarial loss, the trained generator
of AAN can produce augmented samples varying in signal
details but fitting the feature distribution of real samples. For
the next step, we train classifier C and fine-tune the trained
classifier further utilizing the learned generator of AAN to
generate augmented samples.

In this stage, how to utilize augmented samples for super-
vision is a crucial problem. It is known that high valence
(arousal) and low valence (arousal) are far from being clear-
cut and distinguished by an artificial threshold. Thus, if the
shift of augmented EEG varies in wide limits, the threshold
between high valence (arousal) and low valence (arousal)
can be exceeded, and the augmented EEG would change
to a different category of the original EEG. To tackle this
bottleneck, we explore to seek a self-supervised learning
framework to supervise emotion recognition training based
on augmented samples and uncertainty labels. It is important
to acknowledge that in the field of computer vision, self-
supervised learning frameworks already allow for reasonable
performance without the acquisition of large training sets and
well-labeled training samples. For example, Dosovitskiy et al.
[33] proposed to learn a network to discriminate between a
set of surrogate classes formed by applying various transfor-
mations to a randomly sampled “seed” image patch. Then,
by learning to classify different transformed samples of seed
images to the same surrogate categories, the proposed network
can extract discriminative features favoring better classification
performance.

Thus, inspired by the significant progress made by self-
supervised learning, this paper proposes the MTN for EEG-
based emotion recognition. As described before, the aug-



mented samples are synchronized based on parts of original
EEG signal values, and thus the augmented samples should
preserve the feature distribution of original samples to some
extent, although not the same. Based on these observations,
different from existing work, which directly creates a set
of surrogate classes, this paper designs a set of surrogate
confidence, measured by augmentation factor τ , learning to
restrict the feature distribution difference between real samples
and augmented samples under given surrogate confidence. To
be specific, in the case where the augmentation factor τ is
large, limited signal values of augmented samples remain from
the source EEG signal, and the generator G cannot capture
and preserve the feature of the original EEG signal during
synchronizing. Thus, the feature distribution of the augmented
EEG signals should be constrained to fit the original EEG
signals’ feature distribution under low confidence. Conversely,
if the augmentation factor τ is small, most original EEG signal
values are preserved during augmentation. We should force the
feature distribution of augmented samples close to the original
samples with high confidence. Finally, we propose Multi-
factor Self-supervised Learning loss to assign different weights
for restricting the feature distribution difference between aug-
mented EEG signals and real samples based on corresponding
surrogate confidence. Combining the cross-entropy loss for
supervising real samples’ training as usual, and the total loss
function can be formulated as:

LC(τ) =− 1

n

n∑
i=0

yi log (C(ei))

+
λa
n

n∑
i=0

(1− τi) ‖Cx(G(δ(ei, τi)))− Cx(ei)‖22

(4)

where we disregard the last fully connected layer of the
classifier C and utilize the remaining part as a feature extractor
Cx to process EEG signals and produce feature vectors. The
ground-truth label of given EEG signal ei is denoted by yi, n
is the number of samples in a mini-batch, and λa is the hyper-
parameter utilized to represent the importance of classifying
augmented samples correctly.

In Eq. (4), the cross-entropy between the ground truth labels
and corresponding prediction results of the real EEG signals
are formulated as − 1

n

∑n
i=0 yi log (C(ei)). Meanwhile, the

feature distribution difference between the original EEG sig-
nals and the corresponding augmented signals is denoted by
‖Cx(G(δ(ei, τi)))− Cx(ei)‖22. Based on augmentation factor
τi, we compute the surrogate confidence (1 − τi) to assign
large weights to different augmented samples, to narrow the
feature distribution difference when most of the original EEG
signal values are preserved in the augmented sample.

It is worth noting that existing data augmentation methods
mostly provide augmented samples in an offline fashion,
generating a preset number of samples and saving them as
training samples for the first step. Then, during optimization,
augmented samples are loaded and fed into models with origi-
nal samples. In this paper, inspired by self-supervised learning

approaches, we attempt to explore an alternative strategy.
On the one hand, the separated stages of augmentation and
training are joined together as an end-to-end pipeline. Given a
batch of samples, we first utilize the generator G in AAN to
augment EEG signals and pair the real ones. Then, we utilize
these samples to optimize the classifier C with Eq. (4) in the
current batch. Avoiding the cost of saving and reloading, the
proposed method is more efficient. On the other hand, in this
paper, augmented samples are regenerated between epochs in
runtime. Benefit from the randomness of the Masking Trans-
formation operation, augmented samples of the corresponding
batch between epochs are different, but both sampled near
the real distributions. In this way, instead of overfitting on a
preset number of augmented samples, randomly synthesized
EEG signals can approximate the distribution of EEG real
signals without number limitation.

Finally, the proposed Multi-factor Self-supervised Learning
loss can adaptively guide the feature extractor to extract dis-
tinguishable feature representation for simulated EEG signals
and generalize the classifier to the augmented sample space.

IV. IMPLEMENTATION DETAILS

In this section, we supplement the implementation details
of our proposed framework, GANSER, including the network
architectures of the designed generator G, discriminator D
and classifier C, and the hyper-parameters utilized in the
experiments.

A. Network Architectures

In the proposed GAN, the generator G is trained to generate
the simulated EEG sample G(δ(e, τ)) taking the EEG signal
e as input. The network architecture is illustrated in Fig. 3.
It consists of a contracting path (left side) and an expansive
path (right side). The contracting path follows the typical
architecture of an encoder convolutional neural network to
extract to down-sample the EEG signals G(δ(e, τ)) and extract
feature maps. It consists of the repeated application of one
3×3 convolutional layer, two 5×5 convolutional layer, another
3 × 3 convolutional layer, each followed by a leaky rectified
linear unit (LeakyReLU). At each convolutional layer, we set
the stride to one and halved the number of feature channels.
Meanwhile, the expansive path follows a decoder convolu-
tional neural network architecture with skip connections to
up-sample feature maps to a high spatio-temporal resolution
to generate new EEG samples based on extracted features.
Every step in the expansive path consists of concatenation
with the correspondingly feature map from the contracting
path and one 3× 3 convolutional layer with the stride of one,
doubling the number of feature channels. Each convolutional
layer is followed by the LeakyReLU activation function. After
the final convolutional layer, the Channel Masking operation is
introduced to build the channel mask m, a prior binary mask
with the size of 9 × 9, and set the values where electrodes
exist and signals are measured to 1.0, while defining the
other locations to 0.0. Then, we apply element-wise multiply
between the designed prior mask and the output of UNet, i.e.,
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Fig. 3. The network architecture of the generator G in the proposed GANSER framework.
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Fig. 4. The network architecture of the STNet utilized by the discriminator D and the classifier C in the proposed GANSER framework. Especially, the
dashed box represents operations that exist in the classifier C but do not exist in the discriminator D.

the synthesized EEG signals, to artificially reset the signal
values where electrodes do not exist to zero. The total G
network has seven convolutional layers.

The discriminator D is required to distinguish whether the
given EEG signals are simulated or real. As shown in Fig.
3, in this paper, we design a novel network architecture,
STNet, to analyze the complex spatio-temporal features of
EEG signals. As shown in Fig. 4, given a real EEG signal
or generated EEG signal, the input EEG signal is provided
as the input of three convolutional blocks to extract low-
resolution features. The first convolutional block uses a 3× 3
convolutional layer, while the second and third convolutional
block uses a 5 × 5 convolutional layer. Each convolutional
layer halves the number of input feature channels, and the
stride of all convolutional layers is set to one. Following each
convolutional layer, a scaled exponential linear unit (SELU)
is utilized as an activation function. For the next step, we
introduce a separable convolutional layer [31] to decouple
the modeling of spatio-temporal information. In detail, the

separable convolutional layer factorizes a standard 3 × 3
convolutional layer into a 3 × 3 depth-wise convolution and
a 1 × 1 point-wise convolution and splits the computation
into two steps: the depth-wise convolution applies a single
convolutional filter per input channel, and the point-wise
convolution is used to create a linear combination of the output
of the depth-wise convolution. The stride of both depth-wise
convolution and point-wise convolution is set to one, and the
point-wise convolution is followed by SELU. Moreover, we
find recognizing the pattern of emotions requires analyzing
EEG signals at different spatial scales, thus introducing an
Inception block inspired by [32]. In detail, this paper combines
a 1 × 1 convolutional layer, a 3 × 3 convolutional layer, and
a 5× 5 convolutional layer to utilize their output filter banks
concatenated into single feature maps forming the input of the
next stage. At each convolutional layer, we set the stride to
one and halved the number of feature channels. Finally, the
feature maps extracted by convolutional layers of each EEG
signal are reshaped to a 1× 2592(32× 9× 9) feature vector,



TABLE I
HYPER PARAMETERS UTILIZED IN THE PROPOSED GANSER FRAMEWORK.

Stage Epoch lrG lrD lrC λp λa τmin τmax

AAN 300 0.00001 0.00001 - 1.0 - 0.0 0.5
MTN 300 - - 0.00001 - 0.5 0.5 0.9

and two linear layers are utilized to map the feature vector
to a scalar. Here, the first linear layer has 1024 nodes and is
followed by the SELU activation function, while the second
linear layer has one node to predict the score of the given EEG
signal being fake.

Because the designed STNet shows good effectiveness
in EEG analysis, in this paper, the classifier C shares the
design of STNet as the discriminator D, except for several
modifications to fit the classification problem formulation of
emotion recognition. In detail, as shown in Fig. 4, the dashed
box represents operations that exist in the classifier C but do
not exist in the discriminator D. In the classifier C, we employ
dropout [34] operation with p = 0.5 after the activation
function of convolutional layers to address the problem of
over-fitting. Here, p denotes the probability of an element to
be zeroed. The number of nodes in the last linear layer is set
to two or four, corresponding to the categories of emotions.
Moreover, an additional softmax function is set to follow the
last linear layer as the activation function to produce the final
outputs representing a categorical distribution.

B. Other Configuration

In this paper, we use PyTorch [35] to implement our
networks based on eight NVIDIA Tesla V100 GPUs. For the
networks G, D and C, this paper adopts the Adam optimizer
[36] to minimize the loss functions. Here, the coefficient β1
used for computing running averages of the gradient is set
to 0.9, and the coefficient β2 used for computing running
averages of the square is 0.99. Besides, the weight decay
of the L2 penalty is set to 0.0005, and the batch size is 64.
Table I reports other hyper-parameters utilized in the proposed
GANSER. Here, lrG denotes the learning rate of the generator
G, lrD corresponds to the learning rate of the discriminator
D, and lrC represents the learning rate of the classifier D.
In addition, λp is a hyper-parameter presenting the weight
of the penalty term in Eq. (3), and λa denotes the hyper-
parameter in Eq. (4) utilized to represent the importance of
classifying augmented samples correctly. The parameter τ is
sampled from the uniform distribution U ∼ [τmin, τmax].
Moreover, in the proposed GANSER framework, the AAN
is first trained to generate augmented EEG samples, and
MTN is then introduced to train the classifier for the emotion
recognition task. Thus, as shown in Table I, we report all
hyper-parameters utilized in these two stages.

V. EXPERIMENTS

A. Dataset and Preprocessing on DEAP

To evaluate the proposed method, we conduct experiments
on the widely-used EEG-based emotion recognition dataset

DEAP [37] to demonstrate the performance gain of our pro-
posed method. To be specific, the DEAP dataset recorded 32-
channel EEG signals and 8-channel peripheral physiological
signals of 32 subjects when watching 40 one-minute-long
music videos. After watching each video, participants rate their
arousal levels, valence, liking, and dominance from one to nine
for each video. The EEG signals and rating values are utilized
to construct the emotion recognition task.

For EEG signals of each trail, the two preprocessing steps
pre-given by the DEAP dataset are first employed. Here, the
recorded EEG signals are first down-sampled to a 128 Hz sam-
pling rate. Then, obtained EEG signals are processed with a
band-pass filter from 4Hz to 45Hz to remove physiological and
power frequency noises [37]. In each trial of the preprocessed
dataset, the contained EEG signals consist of a three-second-
long baseline signal recorded in relax state and a 60-second-
long experimental signal recorded under stimulation. Further,
we use a non-overlapping sliding window to separate the trial
data into one-second-long chunks and construct the separated
EEG signals as data samples. Here, the sliding window size
is set to 128 to separate one-second chunks under a sampling
rate of 128 Hz. For the next step, to reduce the effect of basic
emotional state, following existing work, we remove a mean
baseline value from each epoch [38]. Finally, the total number
of EEG samples from 40 trials is 40× 60 = 2400.

In terms of the emotional rating value of each trail in the
range of 1.0 to 9.0 in the arousal and valence domains, the
median 5.0 was used as the threshold to divide the rating
value into two categories. In the cases where the emotional
rating value is rated more than 5.0, the corresponding EEG
signals are labeled as high arousal or valence. On the contrary,
for the ones less than or equal to 5.0, this paper labels
the corresponding EEG signals as low arousal or valence.
Finally, given EEG signals to predict corresponding labeled
categories, the emotion recognition task is formulated as a
binary classification problem.

B. Overall Performance on DEAP

In this section, to validate the performance of the proposed
framework, we give the overall performance evaluated on the
DEAP dataset and compare other state-of-the-art works and
competitive GAN-based studies on the emotion recognition
task.

In the experiments, data samples in the DEAP dataset are
split into five folds at random and five-fold cross-validation is
used to evaluate all models. To evaluate our proposed method,
we first utilize 80% randomly shuffled data samples as training
data to train the AAN for 300 epochs. In the following step,
we fix the AAN parameters and then take the pre-trained



TABLE II
AVERAGE ACC(%) OF GAN-BASED AND OTHER STATE-OF-THE-ART
METHODS ON THE DEAP DATASET FOR VALENCE CLASSIFICATION,

AROUSAL CLASSIFICATION AND FOUR CLASSIFICATION.

Method Valence Arousal Four

SOTA

CDCN [39] 92.24 92.92 -
MMResLSTM [40] 92.87 92.30 -
PCRNN [29] 90.8 91.03 -
CNNLSTM [41] 90.62 86.13 -
MergedLSTM [42] 84.89 83.85 -

GAN-based MCLFS-GAN [43] - - 81.32
sWGAN [21] - - 49.10

Proposed GANSER 93.52 94.21 89.74

AAN to generate augmented samples. Then, the proposed
classifier is learned on each fold for 300 epochs, and we
supplement the augmented samples generated by AAN for
fine-tuning of 300 epochs with the help of MTN. Finally, the
fine-tuned models are utilized for evaluation. To assess the
overall performance, the average classification accuracies over
five folds are reported.

Illustrated in Table II, we first compared our proposed
GANSER with five state-of-the-art studies, i.e., CDCN [39],
MMResLSTM [40], PCRNN [29], CNNLSTM [41], and
MergedLSTM [42], on the DEAP dataset, respect to the
emotion dimensions including valence and arousal. These
studies develop different network architectures and strate-
gies for emotion recognition. For example, CNNLSTM [41]
combined convolutional neural networks and long short-term
memory networks to extract distinguishable features, and
MMResLSTM [40] further utilized multi-modal information
to improve the classification performance. From Table II, we
can find the proposed method outperform all state-of-the-art
studies on both valence and arousal dimension. Although the
designed classifier requires lightweight training parameters
and only consists of convolutional layers, the proposed method
shows great classification performance of over 93% for two-
dimensional classification tasks and considerably outperforms
the second-best method by a margin of near 1.0%. The com-
parison results demonstrate the effectiveness of our proposed
methods for EEG-based emotion recognition.

Further, to verify the capability of our proposed method
in the field of data augmentation for emotion recognition,
we further compare the GANSER with several GAN-based
data augmentation frameworks. Especially, following the ex-
perimental setting of existing GAN-based methods [21], [43],
we formulate the emotion recognition task as a four-category
classification problem, which aims at distinguishing EEG
signals of four categories: high valence and high arousal,
high valence and low arousal, low valence and high arousal,
and low valence and high arousal. In Table II, it can be
found that the proposed GANSER significantly outperforms
existing GAN-based data augmentation frameworks with a
large margin of over 8.0%. We can also find that even in
the formulation of four-category classification, our proposed
method can correctly classify nearly 90% EEG signals at

TABLE III
ABLATION STUDY ON OUR MODULES: THE GENERATIVE ADVERSARIAL

NETWORK (GAN), THE MASKING TRANSFORMATION (MT) OPERATION,
AND THE MULTI-FACTOR SELF-SUPERVISED LEARNING (MSL) LOSS.

THE AVERAGE ACCURACIES (%) OF DIFFERENT STRIPPED-DOWN
VERSIONS OF OUR PROPOSED ARE REPORTED ON THE DEAP DATASET TO

CLASSIFY VALENCE AND AROUSAL OF EMOTIONS.

Method Metric
GAN MT MSL Valence Arousal

91.39 92.22
X 92.27 92.76
X X 93.28 93.12
X X X 93.52 94.21

valence and arousal dimensions simultaneously due to the
well-designed AAN and MTN.

C. Ablation Study on DEAP

In this section, we further conduct an ablation study to in-
vestigate the performance gain brought by each key component
in our model, including the GAN, the Masking Transforma-
tion operation, and the Multi-factor Self-supervised Learning
loss (MSL), and provide the performance of stripped-down
versions by removing these components one by one.

When the Multi-factor Self-supervised Learning loss is
ablated, the augmented samples are treated as an equivalent
of given training samples to optimize the cross-entropy based
on the label of original EEG signals. After removing the
Masking Transformation operation, the proposed generator G
takes EEG signal e as input directly instead of the masked EEG
signal δ(e, τ). While the GAN is further removed, no data
augmentation operation is employed, and the classifier is fine-
tuned based on given training samples. Finally, we follow the
above experimental setting to train and evaluate stripped-down
versions of our approach and report the average classification
accuracies of different models in Table III.

It has been shown that our proposed classifier is a strong
and effective baseline even in the case where no data aug-
mentation is utilized, and the classifier is fine-tuned based
on the original training dataset. The proposed method can
achieve the performance of 91.39% and 92.22% at valence
and arousal dimensions, comparable to the latest arts designed
based on complex network architectures or applying multi-
modal information. Meanwhile, the design of both GAN
and Masking Transformation operation brings a performance
gain of about 1.0% and obviously improves the classification
accuracy of EEG signals. This phenomenon demonstrates
that with the help of designed components, the framework
synthesizes simulated EEG signals to favor learning the EEG
signal patterns for emotion recognition. Finally, the addi-
tional Multi-factor Self-supervised Learning loss succeeds in
enhancing the classification performance to over 93.5% by
further considering the uncertainty of augmented samples’
labels and providing further guidance for model training in
a self-supervised learning fashion.



TABLE IV
FSTD SCORES OF DIFFERENT GENERATIVE MODELS ARE REPORTED. THE

COMPARED METHODS INCLUDE THREE STRIPPED-DOWN VERSIONS OF
OUR APPROACH TO EVALUATE THE PERFORMANCE GAIN OF THE UNET

NETWORK ARCHITECTURE (UNET), THE CHANNEL MASKING (CM)
OPERATION, AND THE STNET ARCHITECTURE (STNET).

Method Valence Arousal MeanUNet CM STNet
X X 96.78 80.81 88.80

X X 103.62 72.26 87.94
X X 278.76 286.63 282.70
X X X 49.61 36.61 43.11

D. Qualitative and Quantitative Experiments on DEAP

While the overall framework is introduced to improve
emotion recognition accuracy, the well-designed network ar-
chitecture of GAN is especially crucial to synthesize real-like
and diverse EEG signals. Thus, in this section, qualitative and
quantitative experiments are carried out to assess the quality of
the synthesized EEG samples and demonstrate the contribution
of our designed GAN architectures for EEG signal stimulation.

In terms of qualitative experiments, it is known that judging
the quality and diversity of samples generated by GAN-based
methods is a challenging task due to the difficulty of measuring
the distribution difference between real samples and generated
samples. Following the existing work in the computer vision
field, this paper adapts Fréchet Inception Distance (FID) for
the EEG analysis and designs Fréchet STNet Distance (FSTD)
to assess the quality of EEG signals generated by GANs.

In detail, we first train two proposed STNet on 80% training
samples to distinguish different emotions at the assessed di-
mension, e.g., valence dimension. Then, we utilize the learned
STNet as the feature extractor and provide EEG samples as
input to extract the output of the penultimate fully connected
layer. Finally, compute the sample means µ, µg and the sample
covariance matrices Σ, Σg of real samples and generated
samples’ the feature distributions, and the FSTD is then the
Wasserstein distance between the two multivariate normal
distributions N(µ,Σ) and N(µg,Σg):

FSTD = ‖µ− µg||2 + Tr
(

Σ− Σg − 2
√

ΣΣg

)
(5)

where a small FSTD value indicates a high similarity between
the generated samples and real data distribution.

Illustrated in Table IV, FSTD scores of different stripped-
down GAN-based architectures of our approach are compared
in terms of valence and arousal dimensions. The average FSTD
scores are also provided to assess overall performance. Here,
to explore the contribution of each design in the network
architecture, we use the above experimental setting to train and
evaluate different combinations of the UNet network architec-
ture (UNet), the Channel Masking operation, and the STNet
architecture (STNet). Each ablated combination removed one
of the components. Especially when UNet is removed, we
utilize an auto-encoder of the same parameter volume as an
alternative following the existing work. After eliminating the
Channel Masking operation, the output of UNet is directly

utilized as generated EEG signals. While STNet is ablated,
we replace the separable convolutional layer and the Inception
block with convolutional layers to produce output feature maps
of the corresponding size.

As shown in Table IV, it can be found that if any one of the
proposed components is removed, the average FSTD scores
will rise. It means that every proposed module contributes
to the quality and diversity of augmented samples, without
which the feature distribution of the generated sample would
be different from the real sample. Especially, we can also
find STNet affects the FSTD score to the greatest extent, and
in both valence and arousal dimensions. Because favored by
the designed separable convolutional layer and the Inception
block, STNet can model the complex spatio-temporal feature
distribution of EEG signals and force the generated samples
to fit the real feature distribution. Meanwhile, the lack of
the Channel Masking operation also leads to a relatively
sharp increase of FSTD scores at the valence dimension.
This phenomenon is because the difference between channels
in the EEG signal is crucial for valence recognition, and
the Channel Masking operation can reduce the difficulty of
synthesizing the difference between channels by giving prior
information. Further, arousal analysis is highly related to the
signal value scale. In these cases, UNet preserves the modeled
scale information to the greatest extent and thus improves the
quality of augmented samples.

To further enhance the revelation of the data augmentation
performance of our proposed framework, in this section, we
carry out a visualization experiment on the DEAP dataset. To
be specific, the experimental setting in this section is consistent
with that in Section V-B. After training is completed, the
learned AAN is utilized to synthesize EEG signals based
on given data samples. The original EEG signals and the
generated simulated EEG signals are provided in Fig. 5.

In detail, EEG signals of different categories are sampled
for visualization, including high valence and low arousal (first
column) and low valence and high arousal (second column),
respectively. For each case, the original real EEG signals are
presented in the first row, the second row depicts synthesized
EEG signals by our proposed method, and the third row
shows the generated EEG signals by an ablated version of our
approach replacing the UNet network architecture with auto-
encoder. Since the raw data of EEG signals is not conducive
to visually representing the EEG signals’ characteristics, the
topographic maps of EEG signals sampled at 0.0s, 0.25s, 0.5s,
and 0.75s are provided where red denotes high energy values,
and blue represents low energy values. As shown in Fig. 5,
it can be found that the activated areas shown by real EEG
signals and corresponding simulated EEG signals symmetric
by our proposed method are almost consistent at spatial and
temporal dimensions, demonstrating the generated data have
similar spatio-temporal data distributions as the real data.
Meanwhile, we can also observe a slight shift in the activation
area and the change in the activation degree in the augmented
EEG samples, indicating that our methods could synthesize
diverse simulated samples and avoid identity mapping. On the
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Fig. 5. A few qualitative results are showing the real EEG signals (the first line), augmented EEG signals (the second line) synthesized by the proposed
method, and augmented EEG signals (the third line) produced by the proposed method w/o UNet.

contrary, we found that the EEG signal samples generated by
the ablated model preserve limited spatio-temporal features
of original EEG signals. It is also difficult to distinguish
between different categories of samples, indicating that the
GAN may suffer from mode collapse without a specially
designed network.

E. Dataset and Preprocessing on DREAMER

The DREAMER dataset contains EEG data of 23 subjects,
which are collected via 14 EEG electrodes from the subjects
when they are watching 18 film clips. Each film clip lasts 65
seconds long to 393 seconds long. The average length of film
clips is 199 seconds. The data collection begins with a neutral
film clip watching to help the subjects return to the neutral
emotional state in each new trial of data collection and serve
as the baseline signals. As the pre-given preprocessing steps,
all the EEG signals are recorded at a sampling rate of 128
Hz and filtered by band-pass Hamming with linear phase FIR
filters. The artifact subspace reconstruction (ASR) method is
used for artifact removal. After watching a film clip, subjects
rate their levels of arousal and valence from 1.0 to 5.0. Finally,
there are experimental signals, baseline signals, and labels in
the DREAMER dataset.

For EEG signals of each trail, we use a non-overlapping
sliding window to separate the trail data into one-second-
long chunks and construct the separated EEG signals as data
samples. Here, the sliding window size is set to 128 to separate
one-second chunks under a sampling rate of 128 Hz. For
the next step, to reduce the effect of basic emotional state,
following existing work, we removed a mean baseline value
from each epoch [38]. The length of each experimental signal
in the DREAMER dataset is different because each film clip
lasts from 65 seconds long to 393 seconds long. As a result, we
get a different number of EEG samples for each experimental
signal of the DREAMER dataset.

In terms of the emotional rating value of each trial, the
median 3.0 is used as the threshold to divide the trials
according to the levels of Valence and Arousal. That is, the
label is low when the rating is less than or equal to 3.0, and the
label is high when the rating is greater than 3.0. In this way,
the recognition task is actually a binary classification problem
for each emotion dimension.

F. Overall Performance on DREAMER

In this section, without changing the network architecture
and other configurations, we directly implement our proposed
method on the DREAMER dataset and report the performance
of our proposed method as a baseline. Notably, the contained
EEG data in the DREAMER dataset are collected via 14 EEG
electrodes, the EEG signals of 14 channels instead of 32 in the
DEAP dataset are transformed into 9×9 maps according to the
electrodes’ location based on the international 10-20 system.
Thus, the representation of EEG signals in the DREAMER
dataset is more sparse. Then, experiments are carried out to
compare our proposed method with several state-of-the-art
works.

In this experiment, following the experimental setting of
existing works, data samples in the DREAMER dataset are
split into ten folds at random, and ten-fold cross-validation
is used to evaluate all models. Notably, such an experimental
setting is different from the configuration of existing studies
reported on the DEAP dataset, where five-fold cross-validation
is generally used. To evaluate our proposed method, we first
utilize 80% randomly shuffled data samples as training data
to train the AAN for 300 epochs. In the following step, we
fix the AAN parameters and then take the pre-trained AAN to
generate augmented samples. Then, the proposed classifier is
learned on training folds for 300 epochs, and we supplement
the augmented samples generated by AAN for fine-tuning
of 300 epochs with the help of MTN. Finally, the fine-
tuned models are utilized for evaluation on the corresponding



TABLE V
ACC(%) OF GAN-BASED AND OTHER STATE-OF-THE-ART METHODS ON

THE DREAMER DATASET FOR VALENCE CLASSIFICATION, AROUSAL
CLASSIFICATION AND FOUR CLASSIFICATION.

Method Valence Arousal

SOTA

STRNN [12] 70.80 80.30
PCRNN [29] 79.93 81.48
DT [44] 75.53 75.74
MLP [44] 83.64 83.71
ContCNN [44] 84.54 84.84

Proposed GANSER 85.28 84.16

test folds. To assess the overall performance, the average
classification accuracies over ten test folds are reported.

Illustrated in Table V, we first compared our proposed
GANSER with five state-of-the-art studies, including the
spatial-temporal recurrent neural network (STRNN) [12], the
parallel convolutional recurrent neural network (PCRNN) [29],
the decision tree (DT) [44], the multi-layer perceptron (MLP)
[44], and the continuous CNN (ContCNN) [44], on the
DREAMER dataset, respect to the emotion dimensions includ-
ing valence and arousal. These studies develop different net-
work architectures and strategies for emotion recognition. For
example, Zhang et al. [12] proposed a spatial-temporal recur-
rent neural network (STRNN) to investigate both spatial and
temporal dependencies of EEG signals and achieve the state-
of-the-art. In the experiment, the STRNN [12] is implemented
on the DREAMER dataset to see how much the designed RNN
architecture can improve the discriminant ability. Further, the
parallel convolutional recurrent neural network (PCRNN) re-
ported by [29] is compared, which introduces baseline signals
into pre-processing and proposes a hybrid neural network
combining CNN and RNN to learn the compositional spatial-
temporal feature of EEG signals. In [44], the authors proposed
a 3D representation of the EEG segment to combine features
of signals from different frequency bands while preserving
spatial information among channels. Then, the performance
of the Decision Tree (DT) and the Multi-Layer Perceptron
(MLP) is reported to demonstrate the discriminant ability of
the proposed EEG representation. Further, the authors [44]
introduced the continuous CNN (ContCNN) to utilize the
combination of features of multiple bands to complement
each other and achieves comparable results. In this paper,
the reported performance of DT, MLP, and ContCNN are
all considered for the comparison experiment. From Table V,
we can find the proposed method outperforms most state-of-
the-art studies on both valence and arousal dimensions. Es-
pecially, although the designed classifier requires lightweight
training parameters and only consists of convolutional layers,
the proposed method shows great classification performance
of about 85% for two-dimensional classification tasks and
considerably outperforms all the state-of-the-art methods at
valence dimension.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel Generative Adver-
sarial Network-based Self-supervised Data Augmentation

(GANSER) framework, consisting of Adversarial Augmen-
tation Network (AAN) and Multi-factor Training Network
(MTN). In the proposed framework, we are first to combine
adversarial training with self-supervised learning to tackle the
EEG-based emotion recognition task. The design of AAN
employs the Masking Transformation operation to mask parts
of EEG signals and then force a well-designed GAN to gen-
erate high-quality and high-diversity simulated EEG samples.
Here, simple but effective network architectures, e.g., the UNet
with Channel Masking operation and STNet, are employed
to capture the complex spatio-temporal features of EEG sig-
nals. Further, to effectively utilize simulated EEG signals,
we introduce MTN, where the Multi-factor Self-supervised
Learning loss is proposed to utilize the masking possibility of
the Masking Transformation operation as prior knowledge and
guide the feature extraction process of simulated EEG signals
for generalizing the classifier to the augmented sample space.

By applying the designed framework on the benchmark
datasets for emotion recognition, DEAP, and DREAMER, the
experimental results show that the designed model can exploit
the natural feature of real EEG signals to synthesize high-
quality and diverse simulated EEG signals and finally improve
the classification performance. In the future, we will seek to
explore a semantic data augmentation framework in which the
influence of the environment noise, artifacts, and the feature at
valence or arousal dimensions of simulated EEG signals can
be further controlled and modified.
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